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Abstract. The present paper is concerned with obtaining a classification regarding to
four-dimensional semi-symmetric neutral Lie groups. Moreover, we discuss some geometric
properties of these spaces. We exhibit a rich class of non-Einstein Ricci soliton examples.
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1. Introduction

A symmetric space refers to a connected (pseudo-) Riemannian manifoldM which

is identified by the existence of global symmetries around any point p ∈ M . A global

symmetry at p ∈ M is an isometry ζp : M → M with differential map −id on TpM .

Since global isometries reverse the geodesics through points, they are the unique ex-

tension of local geodesic isometries and so, symmetric spaces are locally symmetric

(∇R = 0), see [17]. Symmetric spaces are interesting for their simple and friendly

structure. Many scientists have studied manifolds which are in some aspects gen-

eralizations of the symmetric manifolds, e.g., k-symmetric (∇kR = 0, ∇k−1R 6= 0,

see [19]) and semi-symmetric manifolds (R(X,Y ) · R = 0 for all X,Y ∈ X(M),

see [20]).

Although locally symmetric spaces are semi-symmetric, there are several kinds of

Riemannian spaces which are semi-symmetric but not locally symmetric, see [5], [21].

However, semi-symmetry and locally symmetry are equivalent in several classes

of Riemannian manifolds, see [3], [4], [11]. In the pseudo-Riemannian setting,

semi-symmetric spaces have been the subject of several researches. Homogeneous

Lorentzian semi-symmetric manifolds of dimension three have been studied in [6],

showing the existence of semi-symmetric nonsymmetric examples, contrary to the
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Riemannian homogeneous spaces, where symmetry and semi-symmetry are equiva-

lent. A weaker condition, i.e., curvature homogeneous of order one semi-symmetric

Lorentzian three-manifolds, has been studied in [7]. A research on semi-symmetric

Lorentzian manifolds of dimension three which admitted a degenerate parallel

line field has been reported in [8], obtaining semi-symmetric curvature homoge-

neous examples in the possible different cases. Therefore most of investigations

on the pseudo-Riemannian semi-symmetric manifolds have been focused on dimen-

sion three.

In this research, we consider pseudo-Riemannian Lie groups with the metric tensor

of signature (2, 2) and study the semi-symmetry condition

(1.1) R(X,Y ) · R = 0,

on such manifolds. In the above formula (1.1), X , Y are arbitrary smooth vector

fields on M , and R(X,Y ) acts as a derivation on R. This study results in a full

classification of Lie groups of neutral signature (i.e., signature (2, 2)), and we exhibit

a rich class of Ricci parallel, Einstein and Ricci soliton examples. Although Einstein

homogeneous four dimensional Riemannian manifolds are symmetric, see [15], in the

study of the geometry of pseudo-Riemannian semi-symmetric (not locally symmetric)

Lie groups (which are obviously homogeneous spaces), several Einstein examples

arise, see [22].

This paper is organized in the following way. In Section 2, we recall some gen-

eral facts for the study of pseudo-Riemannian Lie groups. We fully classify semi-

symmetric examples of neutral Lie groups in Section 3, and Section 4 is devoted to

the study of the geometry of examples classified in the previous section. Finally,

Ricci soliton examples of the neutral Lie groups are studied in the last section.

2. Neutral Lie groups

Four-dimensional homogeneous Riemannian manifolds are classified by Bérard-

Bérgery in [2]. He has proved that a simply connected four-dimensional homogeneous

Riemannian manifold is either symmetric or isometric to a Lie group equipped with

a left-invariant Riemannian metric. This study shows the important role of Lie

groups in the study of homogeneous Riemannian spaces of dimension four. During

the study of D’Atri spaces (i.e., a space with volume-preserving symmetries), the

authors exhibit a classification of four-dimensional simply connected Riemannian

Lie groups as follows.
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Proposition 2.1 ([1]). A simply connected four-dimensional Riemannian Lie

group is

(1) either one of the unsolvable direct products R× SU(2) and R× S̃L(2,R); or

(2) one of the following solvable Lie groups:

(i) the nontrivial semi-direct products R ⋉ E(2) and R⋉ E(1, 1);

(ii) the nonnilpotent semi-direct products R⋉H , where H denotes the Heisen-

berg group;

(iii) the semi-direct products R⋉ R
3.

Following the work [12], if G is a four-dimensional simply connected Lie group,

equipped with a left invariant metric of neutral signature, then G is one of the Lie

groups listed in the above Proposition 2.1.

Let (G = R⋉G3, g) be a pseudo-Riemannian Lie group of dimension four, whereG3

is one of the Lie groups SU(2), S̃L(2,R), E(2), E(1, 1), H or R3, and denote the Lie

algebra of G3 by g3. The study of neutral Lie groups is different from the Riemannian

ones; in fact, the restriction of a Riemannian metric g on g3 is always nondegenerate

and so, (g|G3
, G3) is again a Riemannian Lie group by its own. But for neutral Lie

groups, the restriction of g on g3 can be either of signature (2, 1) or degenerate,

see [12]. We refer to the following lemma for different possibilities in the study of

four-dimensional neutral Lie groups.

Lemma 2.2 ([12]). Let g denote any four-dimensional Lie algebra and let g be

an inner product of signature (2, 2) on g. Then there exists a basis {e1, e2, e3, e4}
of g, such that

⊲ g3 = Span{e1, e2, e3} is a three-dimensional Lie algebra and e4 acts as a derivation
on g3 (that is, g = r⋉ g3, where r = Span{e4}), and

⊲ with respect to {e1, e2, e3, e4}, the neutral inner product g takes one of the follow-
ing forms:

(a)




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 , (b)




1 0 0 0

0 −1 0 0

0 0 0 1

0 0 1 0


 .

Based on the study [12], the authors in [14] have categorized four dimensional

neutral Lie groups into the following two classes:

(a) g|g3
is Lorentzian and the time-like vector e4 acts as a derivation on g3,

(b) g|g3
is degenerate and the light-like vector e4 acts as a derivation on g3,

and we could completely classify these spaces, under the hypothesis of semi-

symmetry.
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3. Semi-symmetric examples

This section is devoted to the main theorem of this study, i.e., the classification of

left-invariant neutral metrics on four-dimensional Lie groups whose curvature tensors

satisfy (1.1). We report strict (nonsymmetric) examples of this kind.

Theorem 3.1. Let G be a four-dimensional simply connected Lie group. If g is

a left invariant neutral metric on G such that its curvature tensor satisfies the strict

semi-symmetric (nonsymmetric) condition, then the Lie algebra g of G is isometric to

g = r⋉ g3, where g3 = Span{e1, e2, e3} and r = Span{e4}; then, one of the following
cases occurs.

(a) {e1, e2, e3, e4} is a pseudo-orthonormal basis, with e3,e4 time-like. In this case,

G is isometric to one of the following semi-direct products R ⋉G3:

(a1) R⋉ R
3, and g is described by one of the following sets of conditions:

(i) [e2, e4] = −Ae2 + (B + 2δA)e3, [e3, e4] = Be2 +Ae3, A(A+ δB) 6= 0,

(ii) [e1, e4] = −δAe2, [e2, e4] = δBe1 +Be3, [e3, e4] = Ae2, A(B −A) 6= 0,

(iii) [e1, e4] =
1
2δAe1 +Ae3, [e3, e4] = − 1

2δAe3, A 6= 0,

(iv) [e1, e4] =
1
4ε
√
2Ae1 +

1
4ε
√
2Ae2 +Ae3,

[e2, e4] = − 1
4εδ

√
2Ae1 +

1
4ε
√
2Ae2 − δAe3, [e3, e4] = − 1

2ε
√
2Ae3, A 6= 0.

(a2) R⋉H and g can be described by one of the following sets of conditions:

(i) [e1, e2] = δAe3, [e1, e4] = Ae3, [e2, e3] = Be3, [e3, e4] = −δBe3, A 6= 0,

(ii) [e1, e2] = Ae1 + δBe3, [e1, e4] = δAe1 + Be3, B(A±B) 6= 0,

(iii) [e1, e2] =
Aε

√
B2 + C2

B
e3,

[e1, e3] = Ce3, [e1, e4] = Ae3, [e2, e3] = Be3,

[e2, e4] = −AC

B
e3, [e3, e4] = −ε

√
B2 + C2e3, AB 6= 0.

(a3) Either R ⋉ E2 or R ⋉ E(1, 1), with g described by one of the following sets of

conditions:

(i) [e1, e2] = Ae1 + δBe3, [e1, e4] = δAe1 + Be3,

[e2, e3] = Ce3, [e3, e4] = −δCe3, ABC 6= 0,

(ii) [e1, e2] = Ae1 + 2δAe3, [e1, e4] =
1
2δBe1 +Be3,

[e2, e3] = Ae3, [e3, e4] = − 1
2δBe3, A 6= 0,

(iii) [e1, e2] = Ae1 −Be2 + 2ε
√
A2 +B2e3,

[e1, e3] = Be3, [e2, e3] = Ae3, A
2 +B2 6= 0,

(iv) [e1, e2] = Ae1 + δAe2 + 2ε
√
2Ae3, [e1, e3] = −δAe3,

[e1, e4] =
1
4ε
√
2Be1 +

1
4δε

√
2Be2 +Be3, [e2, e3] = Ae3,

[e2, e4] =
1
4δε

√
2Be1 +

1
4ε
√
2Be2 + δBe3, [e3, e4] = − 1

2ε
√
2Be3, A 6= 0,
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(v) [e1, e2] =
A2

4B
e1 − δ

A2

4B
e2 + ε

√
2Ae3, [e1, e3] = δBe3,

[e1, e4] = ε

√
2A2

8B
e1 − δε

√
2A2

8B
e2 +Ae3, [e2, e3] = Be3,

[e2, e4] = −δε

√
2A2

8B
e1 + ε

√
2A2

8B
e2 − δAe3, [e3, e4] = −ε

√
2Be3, AB 6= 0,

(vi) [e1, e2] =
A2

4B
e1 −

A2C

4B2
e2 +

ε
√
C2 +B2A

B
e3, [e1, e3] = Ce3,

[e1, e4] =
A2

4ε
√
C2 +B2

e1 −
A2C

4Bε
√
C2 +B2

e2 +Ae3, [e2, e3] = Be3,

[e2, e4] = − A2C

4Bε
√
C2 +B2

e1 +
A2C2

4B2ε
√
C2 +B2

e2 −
CA

B
e3,

[e3, e4] = −ε
√
C2 +B2e3, AB 6= 0,

(vii) [e1, e2] =
Aε

√
B2 + C2

B
e1 −

ACε
√
B2 + C2

B2
e2 +

Dε
√
B2 + C2

B
e3,

[e1, e3] = Ce3, [e1, e4] = Ae1 −
AC

B
e2 +De3, [e2, e3] = Be3,

[e2, e4] = −AC

B
e1+

AC2

B2
e2−

CD

B
e3, [e3, e4] = −ε

√
C2 +B2e3, ABD 6= 0.

(b) {e1, e2, e3, e4} is a basis, with the inner product g on g, completely determined

by g(e1, e1) = −g(e2, e2) = g(e3, e4) = g(e4, e3) = 1 and g(ei, ej) = 0 otherwise. In

this case, G is isometric to one of the following semi-direct products R⋉G3:

(b1) R⋉ R
3 and g is described by one of the following sets of conditions:

(i) [e1, e4] = Ae1 +Be2 + Ce3, [e2, e4] = De1 + Ee2 + Fe3,

[e3, e4] = Ge3, G
2 + (B +D)2 6= 0, G2 + (A− E)2 + (B −D)2 6= 0,

G2+(A+εB)2+(D+εE)2 6= 0, (A+εD)2+(E+εB)2+(2G+ε(D+B))2 6= 0,

(B −D)2 + (A− E)2 + (A−G)2 6= 0,

(A+ εD +G)2 + (B − 2εG+D)2 + (E + εD −G)2 6= 0.

(ii) [e1, e4] = δAe1 +Ae2 +Be3, [e2, e4] = δCe1 + Ce2 +De3,

[e3, e4] = Ee1 + δEe2 + Fe3, (A− δF )2 + (C − F )2 + E2 6= 0,

(BE − δAF )2 + (DE − δCF )2 6= 0.

(b2) R⋉H and g is described by one of the following sets of conditions:

(i) [e1, e2] = Ae3, [e1, e3] = δBe3,

[e1, e4] = Ce1 − δCe2 +
CA−DA+ δBE − δAF

B
e3,

[e2, e3] = Be3, [e2, e4] = Fe1 − δFe2 + Ee3, [e3, e4] = De3, B 6= 0,

C2 + F 2 6= 0, C2 + (D + δA)2 6= 0, A+ δD 6= 0.

(ii) [e1, e2] = Ae3, [e1, e4] = (−B + C)e1 +De2 + Ee3,

[e2, e4] = Fe1 +Be2 +Ge3, [e3, e4] = Ce3, A 6= 0,
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C2 +(F −A+D)2 6= 0, (AD+B2−CB−D2)2 +(FD+(B−C)B)2 6= 0,

B2 +C2 + (D−F )2 6= 0, (A+2εB)2 + (C + εA)2 + (D− F )2 6= 0, ε2 = 1.

(iii) [e1, e2] = −Ae2 −
A2

B
e3, [e1, e3] = Be2 +Ae3,

[e1, e4] =
A2 + C2

2B
e2 +

A(A2 + C2)

2B2
e3,

[e2, e4] = −CA

B
e2 −

CA2

B2
e3, [e3, e4] = Ce2 +

AC

B
e3, B 6= 0,

(iv) [e1, e3] = Ae1 +Be2, B(A±B) 6= 0.

(v) [e1, e2] = Ae3, [e1, e3] = δBe3,

[e1, e4] = Ce1 − δCe2 +De3, [e2, e3] = Be3,

[e2, e4] = Ee1 − δEe2 + Fe3,

[e3, e4] = −BD −AC − δBF + δAE

A
e3, A 6= 0,

C2 + E2 6= 0, (A+ 2E)2 +B2 + (C + δE)2 6= 0, (A− E + δC)2 +B2 6= 0,

AE + δ(BD −AC)−BF +A2 6= 0.

(vi) [e1, e2] = Ae1 − δAe2 +Be3

[e1, e4] = Ce1 − δCe2 +De3

[e2, e4] = Ee1 − δEe2 + Fe3,

[e3, e4] = −−BC − δAF +AD + δBE

B
e3, B 6= 0,

(4AD− 2BC + δ(E2 −B2 −C2))2 + (4AF +B2 − 2BE +E2 −C2)2 6= 0,

(AD −BC)2 + (EB −AF )2 6= 0,

(B + E − δC)2 + (AEF + (δC − E)(C2 − E2)−ACD)2 6= 0.

(vii) [e1, e3] = δAe3,

[e1, e4] = Be1 − δBe2 + δCe3, [e2, e3] = Ae3,

[e2, e4] = De1 − δDe2 + Ce3, [e3, e4] = Ee3, AE(B2 +D2) 6= 0,

(viii) [e1, e2] = Ae1 − δAe2

[e1, e4] = Be1 − δBe2 + δCe3

[e2, e4] = De1 − δDe2 + Ce3, [e3, e4] = Ee3, A 6= 0,

C2 + E2 6= 0, (B − δD − 2E)2 + (AC − E(δD + E))2 6= 0,

(AC −BE)2 + (D − δB)2 6= 0.

(ix) [e1, e2] = Ae1 + δAe2 +Be3,

[e1, e4] = Ce1 + δCe2 +
CB −DB − δAE + δBF

A
e3,

[e2, e4] = Fe1 + δFe2 + Ee3, [e3, e4] = De3, A 6= 0,

D2+(AE−BF )2 6= 0, (B+F + δ(C−2D))2+(AE−DC+ δF (C−2D)+

F 2 +D2)2 6= 0,

(B + F + δC)2 + (AE + δCF − CD + F 2)2 6= 0.
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(b3) Either R ⋉ E2 or R ⋉ E(1, 1), with g being described by one of the following

sets of conditions:

(i) [e1, e2] = − 1
2Ae1 +

1
2δAe2 +Be3, [e1, e3] = δAe3,

[e1, e4] = Ce1 − δCe2 +
2CB − 2DB + δAE − 2δBF

A
e3,

[e2, e3] = Ae3, [e2, e4] = Fe1 − δFe2 + Ee3, [e3, e4] = De3, A 6= 0,

(B + δC − F )2 + (AE − 2C(C −D − δF ))2 6= 0.

(ii) [e1, e2] = Ae1 − δAe2 +Be3, [e1, e3] = δCe3,

[e1, e4] = De1 − δDe2 + Ee3, [e2, e3] = Ce3,

[e2, e4] = Fe1 − δFe2 +Ge3,

[e3, e4] = −EC −DB − δAG+AE − δCG+ δBF

B
e3, ABC 6= 0,

(C + 2A)2 + (ED −G(B + δD))2 + (F −B − δD)2 6= 0.

(iii) [e1, e2] = Ae1 − δAe2, [e1, e3] = δBe3,

[e1, e4] = Ce1 − δCe2 + δDe3, [e2, e3] = Be3,

[e2, e4] = Ee1 − δEe2 +De3, [e3, e4] = Fe3, AB 6= 0,

(B + 2A)2 + (AD − CF )2 + (E − δC)2 6= 0.

(iv) [e1, e2] = Ae1 − δAe2, [e1, e3] = −δAe3,

[e1, e4] = −δBe1 +Be2 + Ce3, [e2, e3] = −Ae3,

[e2, e4] = Be1 − δBe2 +De3, [e3, e4] = −δAe1 +Ae2 + Ee3, AE 6= 0,

A(C − δD)− EB − δB2 6= 0.

(v) [e1, e2] = −Ae1 − δAe2, [e1, e3] = −δAe3, [e1, e4] = Be3,

[e2, e3] = Ae3, [e2, e4] = Ce3, [e3, e4] = δAe1 +Ae2 +De3, A(B + C) 6= 0,

(vi) [e1, e2] = −Ae1 − δAe2, [e1, e3] = −δAe3,

[e1, e4] = Be1 + δBe2 + Ce3, [e2, e3] = Ae3,

[e2, e4] = De1 + δDe2 + Ee3, [e3, e4] = Fe1 + δFe2 +Ge3, A 6= 0,

(A+δF )2+G2 6= 0, (B−δD)2+(AC+δ(AE−D2)+GD)2+(F+δA)2 6= 0,

(A− δF )2 + (BG− F (C − δE))2 + (DG+ F (δC − E))2 6= 0.

In the cases listed above, ε = ±1 and δ = ±1.

P r o o f. We start the proof by considering G to be a four-dimensional Lie

group, and let g be a left-invariant neutral metric on that. By Lemma 2.2, the

Lie algebra g of G is a semi-direct product r⋉ g3, where r = Span{e4} acts on
g3 = Span{e1, e2, e3}. So, the general form of the Lie algebra g = r⋉ g3 can be

given by

[e1, e2] = a1e1 + a2e2 + a3e3, [e1, e3] = b1e1 + b2e2 + b3e3,(3.1)

[e1, e4] = c1e1 + c2e2 + c3e3, [e2, e3] = d1e1 + d2e2 + d3e3,

[e2, e4] = p1e1 + p2e2 + p3e3, [e3, e4] = q1e1 + q2e2 + q3e3,

399



where the coefficients ai, . . . , qi are real constants. Validity of the Jacobi identity

will be shown by

(3.2) [[ei, ej], ek] + [[ej , ek], ei] + [[ek, ei], ej ] = 0, i, j, k = 1, . . . , 4,

for the Lie algebra g of (3.1). Two cases (a) and (b) may occur for the inner product g

on g. We will investigate them separately.

Case (a): We first choose a pseudo-orthonormal basis {e1, e2, e3, e4} with e3 and e4
time-like, then we apply the Koszul formula on the above Lie algebra g. By setting

Λi = ∇ei for all indices i = 1, . . . , 4; the components of the Levi-Civita connection are

Λ1 =




0 a1 b1 c1

−a1 0 1
2 (b2 + d1 + a3)

1
2 (c2 + p1)

b1
1
2 (b2 + d1 + a3) 0 1

2 (c3 − q1)

c1
1
2 (c2 + p1)

1
2 (q1 − c3) 0


 ,

Λ2 =




0 a2
1
2 (d1 + b2 − a3)

1
2 (c2 + p1)

−a2 0 d2 p2
1
2 (d1 + b2 − a3) d2 0 1

2 (p3 − q2)
1
2 (c2 + p1) p2

1
2 (q2 − p3) 0


 ,

Λ3 =




0 1
2 (b2 − d1 − a3) −b3

1
2 (q1 − c3)

1
2 (a3 − b2 + d1) 0 −d3

1
2 (q2 − p3)

−b3 −d3 0 q3
1
2 (q1 − c3)

1
2 (−p3 + q2) −q3 0


 ,

Λ4 =




0 1
2 (c2 − p1) − 1

2 (q1 + c3) 0
1
2 (p1 − c2) 0 − 1

2 (q2 + p3) 0

− 1
2 (q1 + c3) − 1

2 (q2 + p3) 0 0

0 0 0 0


 .

Then for all indices i, j applying the Riemann curvature formula

R(ei, ej) = ΛiΛj − ΛjΛi − Λ[ei,ej ],

gives the curvature components Rijkl := g(R(ei, ej)ek, eh) (for all components of the

curvature tensor, see [12]). Next, Equation (1.1) yields that

(3.3) R(R(ei, ej)ek, el, em, en) +R(ek, R(ei, ej)el, em, en)

+R(ek, el, R(ei, ej)em, en)

+R(ek, el, em, R(ei, ej)en) = 0, 1 6 i, j, k, l,m, n 6 4,

where R is the (0, 4)-curvature tensor.
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In order to classify semi-symmetric examples listed in the case (a) of the statement,

it suffices to solve the algebraic systems (3.2) and (3.3) simultaneously; generally

nonisometric solutions are not symmetric (since symmetric examples are trivially

semi-symmetric), they are exactly those 14 sets of Lie algebras listed in the case (a)

of the statement.

For cases (a1) (i)–(a1) (iv), we have [g, g] = 0; thus they correspond to the semi-

direct products of the type R⋉R
3. On the other hand, in cases (a2) (i)–(a2) (iii), [g, g]

is one-dimensional and by comparison with the classification of three-dimensional

Lorentzian Lie algebras given in [18], they correspond to R ⋉ H . Finally, in

cases (a3) (i)–(a3) (vii), [g, g] is two-dimensional and they correspond to R ⋉ E2

or R⋉ E(1, 1).

Case (b): To state our results in this case, we use a method similar to that applied

in the previous case, however, obviously, the nonzero components of the metric are

g(e1, e1) = −g(e2, e2) = g(e3, e4) = g(e4, e3) = 1. Here we avoid bringing the Levi-

Civita connection and curvature component, so for more information we can refer

to [12], [16].

Combining (3.2) and (3.3) (again, we exclude symmetric examples), we obtain the

nonisometric classification listed for the case (b) of the statement. By the study

of the dimension of the Lie algebra [g, g], we determine the correct class of the Lie

algebras of case (b) and this ends the proof. �

4. Geometry of Semi-Symmetric four dimensional

neutral Lie groups

Now, we can study the curvature properties of our classification on semi-symmetric

four dimensional Lie groups. For this purpose, we consider in each of the classes listed

in Theorem 3.1 the tensor components with respect to the pseudo-orthonormal basis

{e1, e2, e3, e4}, with e3 and e4 time-like being used to describe the Lie algebra g.

The Ricci parallel condition means that the covariant derivative of the Ricci tensor

vanishes identically. Clearly, each Ricci flat manifold (i.e., a manifold on which the

Ricci tensor vanishes) is Einstein (i.e., ̺ = µg), and every Einstein manifold is Ricci

parallel.

The concept of conformal flatness is deduced by the following system of algebraic

equations:

(4.1) Wijkh = Rijkh+
1
2 (gik̺jh+gjh̺ik−gih̺jk−gjk̺ih)− 1

6r(gikgjh−gihgjk) = 0,

for all indices i, j, k, h = 1, . . . , 4, where W and r denote the Weyl tensor and the

scalar curvature, respectively.
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Let us now study the case (a1) (i) in Theorem 3.1. The nonzero components of

the Ricci tensor are (assuming δ = −1)

̺22 = −̺23 = ̺33 = 2(AB −A2),

it is clear that this case will be Ricci flat if and only if

A = 0 or A = B,

and also is Ricci parallel, i.e., ∇̺ = 0, if and only if

A = 0 or A = B.

But these solutions satisfy the Einstein equation; therefore, there is no non-

Einstein Ricci parallel solution for this case. Based on a straightforward compu-

tation using the components of the metric tensor, the curvature tensor, the Ricci

tensor, and by the fact that the scalar curvature vanishes in our case, we will have

the following nonzero components for the Weyl tensor:

W1212 = W1313 = W2424 = W3434 = A2 − AB,

W1213 = W2434 = −A2 +AB.

So, the Weyl tensor vanishes if and only if

A = 0 or A = B.

Now (again by the assumption δ = −1), we consider another case, for exam-

ple (b1) (ii), so, the nonzero components of the Ricci tensor are

̺11 = ̺12 = ̺22 = − 1
2E

2,

̺14 = ̺24 = 1
2 (EC −AE),

̺44 = −AF − EB +AC + FC + ED − 1
2 (A

2 + C2).

To have the Ricci flat example, these components must be zero. The resulting system

has two sets of solutions:

A = C, E = 0, or A = C − 2F, E = 0.

Also, the Ricci parallel condition gives a system of algebraic equations with four sets

of solutions, e.g.,

E = 0, F = 0.
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But, if A = C, the corresponding Lie algebra is Einstein, so we exclude this condition

to have a non-Einstein example. For the Weyl tensor, the only nonzero components

are

W1414 = W1424 = W2424 = − 1
2 (FA+ FC +BE + ED).

One solution for the above equation is

E = 0, F = 0.

According to (4.1), by using the information related to metrics, curvature and Ricci

tensors for the semi-symmetric examples in Theorem 3.1, an immediate result is:

Theorem 4.1. Let (G, g) be one of the Lie groups listed in Theorem 3.1. Ricci

flat, non-Einstein Ricci parallel and conformally flat examples are listed in Table 1.

Remark 4.2. In Table 1, one can easily show that there is non-Einstein example

which is not Ricci flat, for all cases of Theorem 3.1.

5. Ricci soliton examples

A complete classification of semi-symmetric four dimensional neutral Lie groups

was given throughout Theorem 3.1. Based on this classification, we will study Ricci

solitons in this section. This consideration will complete the study of Ricci solitons

in [10], where the authors study the Ricci solitons on the four dimensional homo-

geneous spaces with nontrivial isotropy. A pseudo-Riemannian manifold (M, g) is

called a Ricci soliton if it admits a smooth vector field X such that

(5.1) LXg + ̺ = λg,

where LX and ̺ denote the Lie derivative in the direction of X and the Ricci tensor,

respectively, and λ is an arbitrary real number. Depending on the value of λ, a Ricci

soliton is called shrinking, steady, orexpanding according to whether λ > 0, λ = 0,

or λ < 0, respectively.

Ricci solitons play an important role in understanding the singularities of the Ricci

flow, since they are self-similar solutions. A survey and further references on the

geometry of Ricci solitons may be found in [13]. Ricci solitons have been the subject

of several studies on the homogeneous manifolds (see for example [9], [14], [16]).
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case Ricci flat Ricci parallel non-Einstein Conformally flat

(a1) (ii) A+B = 0 A+B 6= 0 ×
(a2) (i) A±

√
2B = 0 A±

√
2B 6= 0 ×

(a2) (ii) B ±
√
2A = 0 B ±

√
2A 6= 0 ×

(a2) (iii) A±
√
2B = 0 A±

√
2B 6= 0 ×

(a3) (i) 2C2 −B2 + 2A2 = 0 2C2 −B2 + 2A2 6= 0 ×
(a3) (ii) B ± 2A = 0 B ± 2A 6= 0 ×
(a3) (iv) B ± 2A = 0 B ± 2A 6= 0 ×
(a3) (v),(vi) A± 2B = 0 A± 2B 6= 0 ×
(a3) (vii) 2A2(B2 + C2) 2A2(B2 + C2) ×

−B2(D2 − 2B2) = 0 −B2(D2 − 2B2) 6= 0

(b1) (i) 2G(A+ E) + (B −D)2 G = 0, E −A+ ε(B −D)

−2(A2 + E2) = 0 2G(A+ E) + (B −D)2 = G+ 2(εB −A) = 0,

−2(A2 + E2) 6= 0 D +B = G− E −A = 0,

D −B = E −A = 0, ε = ±1

(b1) (ii) A+ δ(C − 2F ) = E = 0, AF − ED − δ(EB − CF ) = 0, AF + ED − δ(EB + CF ) = 0

(A+ δC) = E = 0 E 6= 0

(b2) (i) × C − δF = 0 C + δF = 0

(b2) (ii) A2 + 4B(B − C)− (F −D)2 = 0 C = 0, C − 2B = F −D = 0,

A2 − (F −D)2 + 4B2 6= 0 A− F −D = 0

(b2) (iii) × X ×
(b2) (iv)

√
2A±B = 0

√
2A±B 6= 0 ×

(b2) (v) A− δC + E = B = 0 C − δE = 0 C + δE = 0

(b2) (vi) B − δC + E = 0, BC −AD + δ(AF −BE) = 0, AD(B + C + E)−B2C −ACF

BC + 2A(δF −D) AD − δ(AF +B2) 6= 0 +δ(AF −BE)(B − E)

+δB(B − E) = 0 −δC2B = 0

(b2) (vii) × B − δD = 0 B + δD = 0

(b2) (viii) B − δD = 0, E = 0, 2AC − E(B + δD) = 0

B − δD − 2E = 0 B − δD 6= 0

(b2) (ix) B + δC + F = 0, D = 0, 2AE + δD(B + F )

B + δ(C − 2D) + F = 0 B + δC + F 6= 0 −CD − 2BF = 0

(b3) (i) B + δC − F = 0 × AE + CD

+δ(2BC +DF −DB) = 0

(b3) (ii) C + 2A = F −B − δD = 0 × D + δF = G+ δE = 0

(b3) (iii) B + 2A = C − δE = 0 × 2AD − F (C + δE) = 0

(b3) (iv) × × X

(b3) (v) X × ×
(b3) (vi) A− δF = B + δD = 0 × BG+AE

−δ(CA+GD − EF )− CF = 0

Table 1. Ricci flat, non-Einstein Ricci parallel, conformally flat examples of Theorem 3.1.
Note: X in the column “Ricci parallel non-Einstein” of table, means the corre-
sponding space is always Ricci parallel.

Clearly, Einstein manifolds are trivially Ricci solitons, so here we just report non-

Einstein Ricci soliton examples of Theorems 3.1. Therefore, we treat all cases in

Theorem 3.1 for possible Ricci soliton examples. For instance, we consider the Lie
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algebra in the case (a1) (ii) of Theorem 3.1; the Levi-Civita connection with respect

to the pseudo-orthonormal basis {e1, e2, e3, e4} with e3 and e4 time-like is

Λ1 = Λ3 =




0 0 0 0

0 0 0 1
2 (A−B)

0 0 0 0

0 1
2 (A−B) 0 0


 ,

Λ2 =




0 0 0 1
2 (A−B)

0 0 0 0

0 0 0 1
2 (B −A)

1
2 (A−B) 0 1

2 (A−B) 0


 ,

Λ4 =




0 1
2 (A+B) 0 0

− 1
2 (A+B) 0 − 1

2 (A+B) 0

0 − 1
2 (A+B) 0 0

0 0 0 0


 .

Then, we have the nonzero components of the Ricci tensor with respect to the basis

{e1, e2, e3, e4} as
̺11 = ̺13 = ̺33 = 1

2 (A
2 −B2).

Let X = X1e1 +X2e2 +X3e3 +X4e4, for arbitrary real coefficients X1, . . . , X4, be

an arbitrary vector filed on G. By direct calculation, one can easily obtain the Lie

derivative of g as

LXg =




0 X4 (A−B) 0 X2B

X4(A−B) 0 X4(A−B) −X1A−X3A

0 X4(A−B) 0 X2B

X2B −X1A−X3A X2B 0


 .

Now, (5.1) gives the system of equations





λ = X2B = 0,

X4(A−B) = 0,

A2 −B2 = 0,

−X1A−X3A = 0,

A2 −B2 − 2λ = 0,

A2 −B2 + 2λ = 0.

So the possible solution is A + εB = λ = 0, which is Einstein, and there is no

non-Einstein Ricci soliton example in this case.
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Let us now consider, for example, the Lie algebra in the case (b1) (i) of The-

orem 3.1, so, the Levi-Civita connection with respect to the pseudo-orthonormal

basis {e1, e2, e3, e4} with e3 and e4 time-like is

Λ1 =




0 0 0 A

0 0 0 1
2 (B −D)

−A 1
2 (B −D) 0 0

0 0 0 0


 ,

Λ2 =




0 0 0 1
2 (−B +D)

0 0 0 E
1
2 (B −D) E 0 0

0 0 0 0


 ,

Λ4 =




0 − 1
2 (D +B) 0 C

− 1
2 (D +B) 0 0 −F

−C −F −G 0

0 0 0 G


 ,

and Λ3 = 0. The nonzero components of the Ricci tensor with respect to the basis

{e1, e2, e3, e4} are:

̺44 = AG−A2 −DB + EG− E2 + 1
2 (D

2 +B2).

For an arbitrary vector filed X , one can easily obtain the Lie derivative of g by direct

calculation as

LXg =




2X4A −X4(−D +B) 0 −X1A−X2D +X4C

−X4(−D +B) −2X4E 0 X1B +X2E +X4F

0 0 0 X4G

−X1A−X2D+X4C X1B+X2E +X4F X4G −2X1C−2X2F−2X3G


.

Now, (5.1) gives the system of equations





−X4(−D +B) = 0,

2X4A− λ = 0,

−2X4E + λ = 0,

X4G− λ = 0,

−X1A−X2D +X4C = 0,

X1B +X2E +X4F = 0,

−2X1C − 2X2F − 2X3G+GA+ 1
2D

2 + 1
2B

2 −A2 −DB +GE − E2 = 0.
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These equations have the set of exactly seven solutions, e.g., one nontrivial solu-

tion is
A = B = X2 = X4 = λ = 0,

X1 =
−4X3G+D2 + 2GE − 2E2

4C
.

Recall that Einstein manifolds are trivially Ricci solitons. In this case, the Einstein

equation is satisfied if and only if

G =
D2 − 2E2

−2E
,

so we exclude this trivial Ricci soliton. By the same method, we can consider Ricci

solitons for all cases appearing in Theorems 3.1. The results are summarized in

Theorem 5.1.

Theorem 5.1. Let (G, g) be a four-dimensional semi-symmetric neutral Lie group

of Theorem 3.1. Then (G, g) is a Ricci soliton if one of the following cases in Table 2

occurs.

Lie algebra Ricci soliton non-Einstein

(a1) (i) λ = X2 = X3 = X4 +A+ δ = 0

(a1) (ii) ×
(a1) (iii) A− 2δX4 = λ = X1 = X3 = 0, X4 6= 0

(a1) (iv) A− ε
√
2X4 = λ = X1 +X2 = X3 = 0, X4 6= 0, δ = −1

(a3) (i) ×
(a3) (ii) λ = X1 = 4AX2 + 4A2 + 2δX4B −B2 = X3 = 0, B 6= ±2A

(a3) (iii) λ = X3 = 0, X1 = −B, X2 = −A

(a3) (iv) X1 = −X2 =
ε
√
2BX4 + 4A2 −B2

4A
, λ = X3 = 0, B ± 2A 6= 0

(b1) (i)

A = B = X2 = X4 = λ = 0,

X1 =
−4X3G+D2 + 2GE − 2E2

4C
, 2GE +D2 − 2E2 6= 0

(b1) (ii)

A = E = X2 = X4 = λ = 0,

X1 = −4X3F + C2 − 2FC

4B
, C(C − 2F ) 6= 0

(b2) (i)

A+ δD = F − δC = λ = 0, X2 =
X4D − δX1B

B
,

X3 = −BD + 4δX1D + 4X4E

4B
, X4 =

B2

4C
, BD 6= 0

Table 2. Ricci soliton examples of Theorem 3.1 (continued).
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Lie algebra Ricci soliton non-Einstein

(b2) (ii)

A− F = B = X1 = X4 = λ = 0,

X2 =
4X3C −D2 + 2FD

−4G
, D(D − 2F ) 6= 0

(b2) (iii), (iv) ×

(b2) (v)

B = λ = X1 = X2 = X4 = 0,

X3 = −A2 − E2 + 2δCE − C2

4(C − δE)
, A± (δC − E) 6= 0

(b2) (vi)

A = λ = X1 = X2 = X4 = 0,

X3 = −B2 − E2 − C2 − 2δCE

4(C − δE)
, B ± (δC − E) 6= 0

(b2) (vii) B − δD = E = λ = CX4 +AX3 = 0, X4 =
A2

4B
, A 6= 0

(b2) (viii)

λ = X1 = X2 = X4 = 0,

X3 = −B2 − 2EB + δ(2ED − 2BD) +D2

4B
, (B − δD)(B − δD − 2E) 6= 0

(b2) (ix)

λ = X1 = X2 = X4 = 0,

X3 = −B2 + (C + δF )2 − 2(D − δB)(C + δF )− δ2DB

4D
,

(B + δC + F )(B + δC + F − 2δD) 6= 0

(b3) (i)

λ =
A2(B + C − F )2

4((C −B + F )D + 2CB +AE)
,

X1 = ϕ(A(B + C − F )(2C −D)), X2 = −ϕ(A(B + C − F )(D + 2F )),

X3 = ϕ(2C(B − C)2 + 2(F −B)(F +D)2 + 3AE(F − C +
1

3
(2D +B))

+6BC(F +D) + 2C(D2 − F 2) +D(F 2 −B2)− C2(5D + 2F )),

X4 = −ϕA2(B + C − F ),

ϕ = − (B + C − F )

4(2C − 2F −D)(2BC + CD −BD +AE +DF )
,

B − F − C 6= 0 for δ = 1

(b3) (ii)

G = E = B − F − δD = X3 = 0, X1 =
−δ(C2 + 2AC) + 2δX4D + 2X4F

4A
,

X2 =
2AC − 2X4D − 2δX4F + C2

4A
, X4 =

λ

D − δF
, C(2A+ C) 6= 0

(b3) (iii) C − δE = λ = X3 = X4 = 0, −δX1 = X2 =
B(2A+B)

4A
, B + 2A 6= 0

(b3) (iv)

X4 = 0, δX1 = X2 =
λ

2A
,

X3 =
−X2(C + δD)− δAD +AC − EB − δB2

δE
, A(C − δD)− δEB −B2 6= 0

Table 2. Ricci soliton examples of Theorem 3.1 (continued).
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Lie algebra Ricci soliton non-Einstein

(b3) (v) B − δC = X3 = X4 = 0, δX1 = X2 = − λ

2A
6= 0

(b3) (vi)

A− δF = B + δD = C − δE = G = 0, X1 = −δX2 =
λ

2F
,

X3 = −X2D

F
, F 6= 0

Table 2. Ricci soliton examples of Theorem 3.1.
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