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On the nontrivial solvability of systems

of homogeneous linear equations over Z in ZFC

Jan Šaroch

Abstract. Motivated by the paper by H. Herrlich, E. Tachtsis (2017) we inves-
tigate in ZFC the following compactness question: for which uncountable car-
dinals κ, an arbitrary nonempty system S of homogeneous Z-linear equations is
nontrivially solvable in Z provided that each of its subsystems of cardinality less
than κ is nontrivially solvable in Z?

Keywords: homogeneous Z-linear equation; κ-free group; Lω1ω
-compact cardinal

Classification: 08A45, 13C10, 20K30, 03E35, 03E55

1. Introduction and preliminaries

Throughout the paper, group means always an abelian group, i.e. a Z-module.

Following [7], we say that a system S of homogeneous Z-linear equations with

a set X = {xi : i ∈ I} of variables is nontrivially solvable in a group H if there

exists a mapping f : X → H \ {0} such that, whenever
∑

j∈J ajxj = 0 is an

equation from S (where J is a finite subset of I and aj ∈ Z for each j ∈ J), then
∑

j∈J ajf(xj) = 0 holds in H .

This notion of nontriviality is a little bit unusual. If we assume instead that

the mapping f goes to H and it is not constantly zero on all x ∈ X that appear in

the system S, we say that the system S is weakly nontrivially solvable in H . More

natural as it might be, this weaker notion has got one significant disadvantage:

unlike with nontrivial solvability, if a system S is weakly nontrivially solvable

and T is a nonempty subsystem of S, then T need not be weakly nontrivially

solvable. Notice also that an empty system S is (weakly) nontrivially solvable by

definition.

Motivated by the work [7], our aim is to characterize the class S (or WS) of all

infinite cardinals κ such that any system S of homogeneous Z-linear equations is

nontrivially (or weakly nontrivially, respectively) solvable in Z provided that each

subsystem T ⊆ S of cardinality less than κ is nontrivially (weakly nontrivially,

respectively) solvable in Z. In [7, Section 2.2], the authors present several well-

known examples of countable S which show in Zermelo–Fraenkel set theory (ZF)
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that ℵ0 6∈ S ∪WS. They also discuss various interesting related questions in ZF:

among other things, they provide a model of ZF without choice where ℵ1 6∈ S

while they note that the result is not known in Zermelo–Fraenkel set theory with

axiom of choice (ZFC).

In this short note, we use κ-free groups with trivial dual to show that ZFC

actually proves ℵα 6∈ S for each α < ω1 · ω. Moreover, it is consistent with ZFC

that S = WS = ∅ (see the discussion below Corollary 2.5 for both results). On

the other hand, we are able to prove that κ ∈ WS ∩ S whenever there exists

a regular Lω1ω-compact cardinal less than or equal to κ, see Corollary 2.2 and

Theorem 3.2.

For an unexplained terminology, we recommend, for instance, the very well-

written extensive book [4].

2. The case of S

Recall that, given an infinite cardinal κ, a filter F on a set I is called κ-

complete if F is closed under intersections of systems of cardinality less than κ.

In particular, every filter is trivially ℵ0-complete.

Given an uncountable cardinal ν, we say that a cardinal κ is Lνω-compact if

every κ-complete filter on any set I can be extended to a ν-complete ultrafilter.

Observe that a cardinal µ is Lνω-compact whenever there exists an Lνω-compact

cardinal λ such that λ ≤ µ. This is obviously a large cardinal notion since

the existence of an Lνω-compact cardinal implies the existence of a measurable

cardinal.

Alternatively, one can define the notion of Lνω-compact cardinal by means of

infinitary Lνω logic. We will not follow this approach, however the fact that there

exists such a connection becomes rather apparent in the following proposition

where the language L can be allowed to be of the infinitary type Lνω . Although

the proof of Proposition 2.1 is rather standard, see for instance the if part of [8,

Proposition 4.1], we present it here for the reader’s convenience.

Proposition 2.1. Let λ be a regular Lνω-compact cardinal, L a first-order lan-

guage and Z an L-structure with the domain Z such that |Z| < ν. Then a sys-

tem S consisting of first-order L-formulas in variables from a set X is realized

in Z provided that each of its subsystems T of cardinality less than λ is realized

in Z.

Proof: First, let E denote the set ZX of all mappings from X to Z. By the

assumption for each T ∈ [S]<λ there exists e ∈ E such that Z |= ϕ[e] for

each ϕ ∈ T . Let F be the filter on E generated by the sets ET = {e ∈ E :
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Z |= ϕ[e] for all ϕ ∈ T }. Since λ is regular, we see that F is a λ-complete filter.

Let G denote an extension of F to a ν-complete ultrafilter.

For each (x, z) ∈ X × Z, put Ex,z = {e ∈ E : e(x) = z} and define f ∈ ZX

by the assignment f(x) = z ⇔ Ex,z ∈ G. This is possible since the ultrafilter G

picks for each fixed x ∈ X exactly one element from the disjoint partition E =
⋃

z∈Z Ex,z; recall that |Z| < ν.

Now let ϕ ∈ S be arbitrary and x1, . . . , xn be variables freely occurring in ϕ.

Then ∅ 6= E{ϕ} ∩
⋂n

i=1Exi,f(xi) ∈ G, and so f ∈ E{ϕ}. We conclude that S is

realized in Z using the evaluation f . �

Corollary 2.2. Let κ be a cardinal and λ ≤ κ a regular Lω1ω-compact cardinal.

Then every system S of homogeneous Z-linear equations in variables from a set X

is nontrivially solvable in Z whenever each of its subsystems of cardinality less

than κ is nontrivially solvable in Z. In other words κ ∈ S.

Proof: In the system S replace each equation ψ in variables x1, . . . , xn ∈ X by

the formula ψ&
∧n

i=1 xi 6= 0 and use Proposition 2.1. �

Before we turn our attention to the negative part, we need one preparatory

lemma which holds in the general context of R-modules over an infinite commu-

tative noetherian domain. Recall that an R-module M is noetherian provided

that it does not contain an infinite strictly increasing chain of submodules. A com-

mutative ring R is noetherian if R is noetherian as a module over itself.

For a module M ∈ Mod-R and an ordinal number σ, an increasing chain

M = (Mα : α ≤ σ) of submodules of M is called a filtration of M if M0 = 0,

Mβ =
⋃

α<β Mα whenever β ≤ σ is a limit ordinal, and Mσ =M .

Lemma 2.3. Let R be an infinite commutative noetherian domain, M a free

R-module of rank µ ≥ ℵ0, and M = (Mα : α ≤ σ) be a filtration of M where for

all α < σ, Mα+1 =Mα + 〈aα〉 with aα ∈M \Mα. For each α < σ, let zα ∈ R be

arbitrary.

Then there is a homomorphism ψ : M → R such that ψ(aα) 6= zα for all α < σ.

Proof: First, assume that µ = ℵ0. Let {gn : n < ω} be a set of free generators

of M . For each α < σ, we express aα as
∑

n∈Iα
bnαgn, where Iα is a finite subset

of ω and bnα ∈ R \ {0} for every n ∈ Iα.

Using the fact that a free R-module of finite rank is noetherian, we infer that

for each n < ω the set An = {α < σ : Iα ⊆ {0, 1, . . . , n}} is finite. Note that σ =
⋃

n<ω An. On the free generators ofM , we recursively construct a homomorphism

ψ : M → R as follows:

Let ψ(g0) be arbitrary such that for each α ∈ A0, b0αψ(g0) 6= zα. There is

always an applicable choice by the hypothesis on R. Assume that n > 0, ψ(gn−1)

is defined, and ψ(aα) 6= zα for each α ∈ An−1.
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We define ψ(gn) arbitrarily in such a way that for each α ∈ An \An−1 we have

bnαψ(gn) 6= zα −
∑

k∈Iα\{n}

bkαψ(gk).

This is possible, since An \An−1 is finite, bnα 6= 0 for each α from this set, and R

is an infinite domain. It immediately follows that ψ(aα) 6= zα for each α ∈ An.

Now, let µ be an uncountable cardinal. Again, let {gβ : β < µ} be a set of free

generators of M , and put GB = 〈gβ : β ∈ B〉 for all B ⊆ µ.

We use ideas from [6, Section 7.1]. First, we set Aα = 〈aα〉 ≤M . We say that

a subset S of the ordinal σ is ‘closed’ if every α ∈ S satisfies

Mα ∩ Aα ⊆
∑

β∈S,β<α

Aβ .

Notice that any ordinal α ≤ σ is a ‘closed’ subset of σ. For a ‘closed’ sub-

set S, we define M(S) =
∑

α∈S Aα. The results from [6, Section 7.1] give us the

following:

(1) For a system (Si : i ∈ I) of ‘closed’ subsets,
⋂

i∈I Si and
⋃

i∈I Si is ‘closed’

as well.

(2) For S, S′ ‘closed’ subsets of σ, we have S ⊆ S′ ⇐⇒M(S) ⊆M(S′).

(3) Let S be a ‘closed’ subset of σ and X be a countable subset of M . Then

there is a ‘closed’ subset S′ such thatM(S)∪X ⊆M(S′) and |S′\S| < ℵ1.

Using the properties listed above, we are going to construct a filtration N =

(M(Sα) : α ≤ µ) of M such that for each α < µ: a) Sα is ‘closed’; b) Sα+1 \ Sα

is countable; and c) there exists Bα ⊆ µ such that GBα
=M(Sα) and α ⊆ Bα.

We proceed by the transfinite recursion, starting with S0 = B0 = ∅. Let Sα

and Bα be defined and α < µ. Then |Sα| + |Bα| < µ (using b) and c)). Let

B0 ⊇ Bα ∪{α} be any subset of µ with |B0 \Bα| = ℵ0. By (3), we find S0 ⊇ Sα

such that M(S0) ⊇ GB0 and |S0 \ Sα| < ℵ1. Assuming Bn, Sn are defined for

n < ω, we can find Bn+1 ⊇ Bn with |Bn+1 \Bn| < ℵ1 such that GBn+1 ⊇M(Sn),

and Sn+1 ⊇ Sn with |Sn+1 \ Sn| < ℵ1 such that M(Sn+1) ⊇ GBn+1 . Put

Sα+1 =
⋃

n<ω S
n and Bα+1 =

⋃

n<ω B
n. This completes the isolated step. In

limit steps, we simply take unions. Since M(Sµ) =M , we have Sµ = σ by (2).

Now, for each α < µ we have the countable sets Cα = Bα+1 \ Bα and Tα =

Sα+1 \ Sα, and the canonical projection πα : M(Sα+1) → GCα
. Let τ be the

ordinal type of (Tα, <), and fix an order-preserving bijection i : τ → Tα.

Since Sα ∪ (Sα+1 ∩ β) is ‘closed’ for any β ≤ σ by (1), the part (2) yields that

the chain (Nβ : β ≤ τ) of modules defined as Nβ = M
(

Sα ∪ (Sα+1 ∩ i(β))
)

for

β < τ , and Nτ =M(Sα+1) is strictly increasing. Notice that N0 =M(Sα).
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If we putN β = πα[Nβ ] for all β ≤ τ , it follows that the strictly increasing chain

(N β : β ≤ τ) is a filtration of the free module GCα
of countable rank. Moreover,

for each β < τ , we haveN β+1 =N β + 〈πα(ai(β))〉.

Finally, we recursively define the homomorphism ψ : M → R. Let α < µ and

assume that ψ ↾ GBα
is constructed with the property ψ(aγ) 6= zγ for all γ ∈ Sα.

By the already proven part for µ = ℵ0, we can define ψ ↾ GCα
in such a way that

ψ(πα(aγ)) 6= zγ −ψ(aγ − πα(aγ)) for all γ ∈ Tα; observe that the right-hand side

of the inequality is already defined since aγ −πα(aγ) ∈ GBα
. We immediately get

ψ(aγ) 6= zγ for all γ ∈ Sα+1. �

Remark. Inspecting the proof more closely, we see that, instead of avoiding just

one element zα, we could have actually avoided a finite set Zα ⊂ R.

For the negative part, we start with an uncountable cardinal κ and a κ-free

group G with the trivial dual property, i.e. with the property G∗ :=

Hom(G,Z) = 0; here, κ-free means that any less than κ-generated subgroup

of G is free. We will discuss the existence of such groups, as well as the question

whether G can be taken with |G| = κ, later on. Firstly, we show how the existence

of such G implies that κ 6∈ S.

Let us denote by λ the cardinality of G and express G as a quotient F/K where

F is a free group of rank λ. Notice that λ ≥ κ. Let π : F → F/K denote the

canonical projection and let {eα : α < λ} be a set of free generators of the group F .

For each A ⊆ λ, let FA denote the subgroup of F generated by {eα : α ∈ A}. We

can without loss of generality assume that

Im(π ↾ Fβ) ( Im(π ↾ Fβ+1) for each ordinal β < λ. (∗)

The group K is also free of rank λ. If it had a smaller rank, G would have

possessed a free direct summand—a contradiction with G∗ = 0. Let {kβ : β < λ}

denote a set of (free) generators of the group K. Consider the uncountable set

S =

{

∑

α∈Jβ

aαβxα = 0: β < λ, Jβ ∈ [λ]<ω , (∀α ∈ Jβ) (aαβ ∈ Z)
∑

α∈Jβ

aαβeα = kβ

}

of homogeneous Z-linear equations with the set {xα : α < λ} of variables. We will

show that this is the desired counterexample.

First of all, S does not have even a weakly nontrivial solution in Z. Indeed,

any such solution would define a nonzero homomorphism ψ from F to Z which

is zero on K. Hence ψ would provide for a nonzero homomorphism from G to Z,

a contradiction.
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On the other hand, we can show

Proposition 2.4. Any system T ⊆ S of cardinality less than κ is nontrivially

solvable in Z.

Proof: Let A ∈ [λ]<κ be an infinite set such that whenever xα appears in an

equation from T then α ∈ A. Put M = Im(π ↾ FA).

Since G is κ-free, M is a free group (of infinite rank). Let σ denote the ordinal

type of A and fix an order-preserving bijection i : σ → A. For each α ≤ σ, set

Mα = 〈π(ei(β)) : β < α〉. Then (Mα : α ≤ σ) is a filtration of M such that

Mα+1 =Mα + 〈π(ei(α))〉 where π(ei(α)) 6∈Mα for all α < σ (using (∗)).

Applying Lemma 2.3 with R = Z and zγ = 0 for all γ < σ, we obtain a ho-

momorphism ψ : M → Z such that ψ(π(eα)) 6= 0 for all α ∈ A. The assignment

xα 7→ ψ(π(eα)), α ∈ A, is the desired nontrivial solution of the system T in Z. �

Corollary 2.5. Let κ be an uncountable cardinal. If there exists a κ-free group G

with G∗ = 0, then κ 6∈ S ∪WS.

The problem of existence of κ-free groups with trivial dual turns out to be

rather delicate. Under the assumption V = L (even a much weaker one), there

are κ-free groups with trivial dual for any uncountable cardinal κ. Moreover,

if κ is regular and not weakly compact, then the groups can be constructed of

cardinality κ, see [3]. If κ is singular or weakly compact, then κ-free implies κ+-

free. For more information on the topic, we refer to [4, Chapter VII]. Anyway, we

have S = WS = ∅ under V = L by Corollary 2.5.

In [5], R. Göbel and S. Shelah show in ZFC that ℵn-free groups with cardi-

nality in and trivial dual exist for all 0 < n < ω. This is further generalized

in [9] 1, where S. Shelah proves in ZFC the existence of κ-free groups with trivial

dual for any uncountable κ < ℵω1·ω. On the other hand, he also shows (modulo

the existence of a supercompact cardinal) that it is relatively consistent with ZFC

that there is no ℵω1·ω-free group with trivial dual.

By Corollary 2.5, we thus know in ZFC that κ 6∈ S for κ < ℵω1·ω. However, we

do not know what happens for larger cardinals κ since the existence of a κ-free

group with trivial dual is just a sufficient condition for κ 6∈ S. We have only

the upper bound given by Corollary 2.2. It might still be possible that S = WS

where Theorem 3.2 contains a decent description of the latter class.

1Very heavy in content.
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3. The case of WS

For the weaker notion of nontrivial solvability, we have the following general

result. Recall that KerHom(−,Z) denotes the class of all groups A such that

Hom(A,Z) = 0.

Proposition 3.1. Let κ be an uncountable cardinal. The following conditions

are equivalent:

(1) There exists a regular cardinal λ ≤ κ which is Lω1ω-compact.

(2) There is a regular cardinal λ ≤ κ such that each groupA ∈ KerHom(−,Z)

is the sum of its subgroups of cardinality less than λ which are contained

in KerHom(−,Z).

(3) For any nonempty system S of homogeneous Z-linear equations such that

S has no weakly nontrivial solution in Z, and any C ∈ [S]<κ, there exists

T ∈ [S]<κ such that C ⊆ T and T has no weakly nontrivial solution in Z.

Proof: The equivalence of (1) and (2) follows directly from [1, Corollary 5.4].

Let us show that (2) is equivalent to (3). To this end, we are going to use the

following two-way translation.

Given any system S = {kj = 0: j ∈ J} of homogeneous Z-linear equations

with the set X of variables, we can build a group A = F/K where F is freely

generated by the elements of the set X and K is generated by the set {kj : j ∈ J}.

Then Hom(A,Z) = 0 if and only if S has no weakly nontrivial solution in Z. On

the other hand, for a given group A and its presentation F/K where F is freely

generated by a set X , the same equivalence holds for the system S = {kj = 0:

j ∈ J} of homogeneous Z-linear equations where {kj : j ∈ J} is a fixed set of

generators of K expressed as Z-linear combinations of elements from the set X .

Proving (2) =⇒ (3), we start with a system S and a set C ∈ [J ]<κ. Consider

the group A constructed for S as in the previous paragraph, and let Y0 denote

the set of all the elements from X appearing in equations kj = 0, j ∈ C.

Let µ ≥ λ be a regular uncountable cardinal such that |C| < µ ≤ κ. Since

KerHom(−,Z) is closed under direct sums and quotients, and µ is regular, there

exists, by (2), G0 ∈ KerHom(−,Z) such that G0 is a subgroup of A, |G0| < µ

and Y0 +K := {y +K : y ∈ Y0} ⊆ G0. Now, take any Y1 ∈ [X ]<µ, Y0 ⊆ Y1 such

that:

(a) Group G0 is contained in the subgroup of A generated by Y1 +K.

(b) There exists C0 ∈ [J ]<µ such that 〈Y0〉 ∩K is contained in the subgroup

of K generated by {kj : j ∈ C0}, and Y1 contains all the elements from X

appearing in equations kj = 0, j ∈ C0.

For this Y1, we obtain, using (2), a subgroup G1 of A with |G1| < µ, and so on.
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After ω steps, we have the group G =
∑

n<ω Gn ∈ KerHom(−,Z) generated

by Y + K where Y =
⋃

n<ω Yn ∈ [X ]<µ. By the construction, we have also

G = 〈y + K : y ∈ Y 〉 ∼= 〈Y 〉/〈kj : j ∈
⋃

n<ω Cn〉. Finally, we put T = {kj = 0:

j ∈
⋃

n<ω Cn}.

Now, let us prove the implication ¬(1) =⇒ ¬(3). First, assume that κ is not

Lω1ω-compact. Following [1, Theorem 5.3] and its proof, we start with A = ZI/F

where F is a κ-complete filter on I which cannot be extended to an ω1-complete ul-

trafilter. From the latter part, it follows that Hom(A,Z) = 0. The κ-completeness

of F , on the other hand, assures that any subgroup of A of cardinality less than κ

can be embedded into ZI .

Consider a system S of homogeneous Z-linear equations associated to the

group A presented as F/K where F is freely generated by a set X . We can

without loss of generality assume that no x ∈ X is contained in K. Let C ∈ [J ]<κ

be nonempty. We shall show that the system {kj = 0: j ∈ C} has weakly non-

trivial solution in Z.

As in the proof of the other implication, we can possibly enlarge C to some

D ⊆ J such that |D| ≤ |C|+ℵ0 and 〈y+K : y ∈ Y 〉 ∼= 〈Y 〉/〈kj : j ∈ D〉, where Y

denotes the set of all the elements from X appearing in equations kj = 0, j ∈ D.

Let us denote the latter group by H and fix an embedding i : H → ZI (which

exists since |H | < κ).

Let y ∈ Y be any element appearing in (one of the) equations kj = 0, j ∈ C.

Since i(y+K) 6= 0 there is a projection π : ZI → Z such that πi(y+K) 6= 0. The

assignment x 7→ πi(x + K) defines the desired weakly nontrivial solution of the

system {kj = 0: j ∈ C} in Z.

It remains to tackle the possibility that κ is the least Lω1ω-compact cardinal

and κ is singular. We know by [2] that γ = cf(κ) is greater than or equal to the

first measurable cardinal in this case. Let (κα : α < γ) be an increasing sequence

of cardinals less than κ converging to κ.

Consider the group A =
⊕

α<γ Aα where for each α < γ, Aα ∈ KerHom(−,Z)

is not a sum of its subgroups of cardinality less than κα which belong to

KerHom(−,Z). Assume, for the sake of contradiction, that (3) holds for the

system S of homogeneous Z-linear equations associated to the group A (more

precisely, to its presentation F/K).

By the definition of A, there exists for each α < γ, an element aα ∈ A such

that aα is not contained in any subgroup H of A of cardinality less than κα with

the property Hom(H,Z) = 0.

We know that there is C0 ∈ [J ]<κ and Y0 ⊆ X consisting of the elements

from X appearing in the equations kj = 0, j ∈ C0 such that {aα : α < γ} ⊆

〈y +K : y ∈ Y0〉 ∼= 〈Y0〉/〈kj : j ∈ C0〉.
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For this C0, we obtain a corresponding T0 ∈ [J ]<κ using (3). We continue by

finding C1 ∈ [J ]<κ and Y1 ∈ [X ]<κ such that T0 ⊆ C1, Y0 ⊆ Y1 and 〈y + K :

y ∈ Y1〉 ∼= 〈Y1〉/〈kj : j ∈ C1〉, and so forth.

Put T =
⋃

n<ω Tn =
⋃

n<ω Cn and Y =
⋃

n<ω Yn. The system {kj = 0 :

j ∈ T } has cardinality less than κ (since γ is uncountable) and it has no weakly

nontrivial solution in Z. Whence the subgroup H = 〈y +K : y ∈ Y 〉 ∼= 〈Y 〉/〈kj:

j ∈ T 〉 of A belongs to KerHom(−,Z). However, this is impossible since aα ∈ H

for α < γ satisfying |H | < κα. �

In the proof above, we have actually showed a little bit more. In fact, we have

the following

Theorem 3.2. Let κ be a cardinal, and assume that κ is not at the same time

singular and the least Lω1ω-compact cardinal. The following conditions are equiv-

alent:

(1) Cardinal κ is Lω1ω-compact.

(2) Every system S of homogeneous Z-linear equations is weakly nontrivially

solvable in Z provided that each of its subsystems of cardinality less than κ

is weakly nontrivially solvable. In other words, κ ∈ WS.

Proof: The implication ‘(1) =⇒ (2)’ follows immediately from ‘(1) =⇒ (3)’ in

Proposition 3.1. The other implication then follows from the first part of the

proof of ‘¬(1) =⇒ ¬(3)’ in Proposition 3.1. �

As shown in [1], relative to the existence of a supercompact cardinal, there are

models of ZFC where the smallest Lω1ω-compact cardinal κ is singular. In this

only case, we cannot resolve the question whether κ ∈ WS although we conjecture

that this is not the case, which would readily imply that at least WS ⊆ S always

holds.

Apart from the subtlety above, a possible direction for further research is to

investigate further what more can be proved in ZFC about the class S.
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