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Translation surfaces of finite type in Sol3

Bendehiba Senoussi, Hassan Al-Zoubi

Abstract. In the homogeneous space Sol3, a translation surface is parametrized
by r(s, t) = γ1(s) ∗ γ2(t), where γ1 and γ2 are curves contained in coordinate
planes.

In this article, we study translation invariant surfaces in Sol3, which has finite
type immersion.

Keywords: Laplacian operator; homogeneous space; invariant surface; surfaces
of coordinate finite type

Classification: 53C30, 53B25

Introduction

A Euclidean submanifold is said to be of finite Chen-type if its coordinate

functions are a finite sum of eigenfunctions of its Laplacian, see [3]. B.-Y. Chen

posed the problem of classifying the finite type surfaces in the 3-dimensional

Euclidean space E
3. Further, the notion of finite type can be extended to any

smooth function on a submanifold of a Euclidean space or a pseudo-Euclidean

space.

Let M2 be a 2-dimensional surface of the Euclidean 3-space E
3. If we denote

by r, H and ∆ the position vector field, the mean curvature vector field and the

Laplace operator of M2, respectively, then it is well-known, see [3], that

(1) ∆r = −2H.

A well-known result due to T. Takahashi in [9] states that minimal surfaces and

spheres are the only surfaces in E
3 satisfying the condition ∆r = λr for a real

constant λ. Equation (1) shows that M2 is a minimal surface of E3 if and only if

its coordinate functions are harmonic. In [2], M. Bekkar and B. Senoussi studied

the translation surfaces in the 3-dimensional Euclidean and Lorentz–Minkowski

space under the condition ∆IIIri = µiri, µi ∈ R, where ∆III denotes the Laplacian

of the surface with respect to the third fundamental form III.
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In [11], D.W. Yoon studied translation surfaces in Sol3 satisfying the condition

∆x = Ax+B,

where A ∈ Mat(3,R) is a 3×3 real matrix and B ∈ R
3. In [1], H. Al-Zoubi,

S. Stamatakis, W. Al-Mashaleh and M. Awadallah studied the translation surfaces

of coordinate finite type.

The main purpose of this paper is to complete classification of translation

surfaces in Sol3 in terms of the position vector field and the Laplacian operator

(2) ∆ri = λiri, λi ∈ R, i = 1, 2, 3,

where (r1, r2, r3) are the components of r and ∆r = (∆r1,∆r2,∆r3).

As a result, we are to complete [11] classification of translation surfaces in Sol3
satisfying the condition (2).

1. Preliminaries

The space Sol3 is the space R
3 equipped with the metric

ds2 = (ezdx)2 + (e−zdy)2 + (dz)2,

where (x, y, z) are usual coordinates of R3, see for instance [8].

The space Sol3 is a Lie group with the multiplication

(x, y, z) ∗ (x′, y′, z′) = (x+ e−zx′, y + ezy′, z + z′),

where ‘∗’ denotes the group operation of Sol3. A left-invariant orthonormal frame

{E1, E2, E3} in Sol3 is given by

E1 = e−z ∂

∂x
, E2 = ez

∂

∂y
, E3 =

∂

∂z
.

Proposition 1.1 ([10]). The Levi–Civita connection ∇̃ of Sol3 with respect to

this frame is

(3)




∇̃E1
E1

∇̃E1
E2

∇̃E1
E3


 =




0 0 −1

0 0 0

1 0 0







E1

E2

E3







∇̃E2
E1

∇̃E2
E2

∇̃E2
E3


 =




0 0 0

0 0 1

0 −1 0








E1

E2

E3




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


∇̃E3
E1

∇̃E3
E2

∇̃E3
E3


 =




0 0 0

0 0 0

0 0 0








E1

E2

E3



 .

The immersion (M2, r) is said to be of finite Chen-type k, if the position

vector r of M2 can be written as a finite sum of nonconstant eigenvectors of the

Laplacian ∆, that is, if

r = y0 +

k∑

i=1

yi,

where ∆yi = λiyi, i = 1, 2, . . . , k, y0 is a fixed vector and λ1, λ2, . . . , λk are eigen-

values of ∆. In particular, if all eigenvalues λ1, λ2, . . . , λk are mutually distinct,

then M2 is said to be of finite type k. However, if λi = 0 for some i = 1, 2, . . . , k,

then M2 is said to be of finite null type k. Otherwise M2 is said to be of infinite

type.

For the matrix G = (gij) consisting of the components of the induced metric

on M2, we denote by G−1 = (gij) (or D = det(gij)) the inverse matrix (the

determinant, respectively) of the matrix (gij). The Laplacian ∆ on M2 is, in

turn, given by [11]

(4) ∆ =
−1√
D

∑

ij

∂

∂xi

(√
Dgij

∂

∂xj

)
.

2. Translation surfaces in Sol3

A surface M2 in the Euclidean 3-space E3 is called minimal when locally each

point on the surface has a neighborhood which is the surface of least area with

respect to its boundary. In 1775, J. B. Meusnier showed that the condition of

minimality of a surface in E
3 is equivalent with the vanishing of its mean curvature

function, H = 0.

In 1835, H. F. Scherk studied translation surfaces in E
3 and proved that, besides

the planes, the only minimal translation surfaces are given by

z(x, y) =
1

a
log | cos(ax)| − 1

a
log | cos(ay)|,

where a is a nonzero constant. The minimal translation surfaces were generalized

to minimal translation hypersurfaces by F. Dillen, L. Verstraelen and G. Zafind-

ratafa in [4].

R. López and M. I. Munteanu constructed translation surfaces in Sol3 and

investigated properties of minimal ones in [7]. In [6], the authors defined and

classified two types of constant angle surfaces in the homogeneous 3-manifold Sol3.
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In [5] J. Inoguchi, R. López and M. I. Munteanu defined translation surfaces in

the 3-dimensional Heisenberg group H3 in terms of a pair of two planar curves

lying in orthogonal planes. D.W. Yoon, C.W. Lee and M.K. Karacan in [12]

considered translation surfaces in H3 generated as product of two planar curves

lying in planes, which are not orthogonal, and the authors classified such minimal

translation surfaces.

In the space Sol3, a translation surface is parameterized by r(s, t) = γ1(s)∗γ2(t),
where γ1 and γ2 are curves contained in coordinate planes and ‘∗’ denotes the

group operation of Sol3.

Definition 2.1 ([7]). A translation surface M(γ1, γ2) in Sol3 is a surface param-

etrized by r(s, t) = γ1(s) ∗ γ2(t), where γ1 : I ⊂ R → Sol3, γ2 : J ⊂ R → Sol3 are

curves in two coordinate planes of R3.

We distinguish six types of translation surfaces in Sol3.

2.1 Translation surfaces of type I and type IV . Let the curves γ1 and γ2
be given by γ1(s) = (s, f(s), 0) and γ2(t) = (t, 0, g(t)). We have two translation

surfaces M(γ1, γ2) and M(γ2, γ1) parametrized by, respectively,

r(s, t) = γ1(s) ∗ γ2(t) = (s+ t, f(s), g(t))

and

r(s, t) = γ2(t) ∗ γ1(s) = (se−g(t) + t, f(s)eg(t), g(t)),

which are called the translation surfaces of type I and IV .

2.2 Translation surfaces of type II and type V . Let the curves γ1 and γ2
be given by γ1(s) = (s, f(s), 0) and γ2(t) = (0, t, g(t)). We have two translation

surfaces M(γ1, γ2) and M(γ2, γ1) parametrized by, respectively,

r(s, t) = γ1(s) ∗ γ2(t) = (s, t+ f(s), g(t))

and

r(s, t) = γ2(t) ∗ γ1(s) = (se−g(t), t+ f(s)eg(t), g(t)),

which are called the translation surfaces of type II and V .

2.3 Translation surfaces of type III and type VI. Let the curves γ1 and γ2
be given by γ1(s) = (s, 0, f(s)) and γ2(t) = (0, t, g(t)). We have two translation

surfaces M(γ1, γ2) and M(γ2, γ1) parametrized by, respectively,

r(s, t) = γ1(s) ∗ γ2(t) = (s, tef(s), f(s) + g(t))

and

r(s, t) = γ2(t) ∗ γ1(s) = (se−g(t), t, f(s) + g(t)),

which are called the translation surfaces of type III and VI.
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3. Translation surfaces in Sol3 satisfying ∆ri = λiri

3.1 Translation surfaces of type II. Let M(γ1, γ2) be a translation surface

of type II in Sol3. Then, M(γ1, γ2) is parametrized by

(5) r(s, t) = γ1(s) ∗ γ2(t) = (s, t+ f(s), g(t)).

We have the natural frame
{

∂r
∂s
, ∂r
∂t

}
given by

(6)

∂r

∂s
= rs =

∂

∂x
+ f ′

∂

∂y
= egE1 + f ′e−gE2,

∂r

∂t
= rt =

∂

∂y
+ g′

∂

∂z
= e−gE2 + g′E3.

Let N be a unit normal vector of M(γ1, γ2). Then it is defined by

N =
rs × rt

‖rs × rt‖
and hence we get

N =
(f ′g′e−g

W

)
E1 −

(g′eg
W

)
E2 +

( 1

W

)
E3,

where W =
√
‖rs × rt‖ =

√
g′2e2g + f ′2g′2e−2g + 1.

The first fundamental form I of M(γ1, γ2) is defined by

I = Eds2 + 2Fdsdt+Gdt2,

where

E = 〈rs, rs〉 = e2g + f ′2e−2g, F = 〈rs, rt〉 = f ′e−2g, G = 〈rt, rt〉 = e−2g + g′2,

and 〈 , 〉 denotes the standard scalar product in E
3.

To compute the second fundamental form of M(γ1, γ2), we have to calculate

the following:

(7)

rss = ∇̃rsrs = f ′′e−gE2 + (f ′2 − 1)e2gE3,

rst = ∇̃rsrt = ∇̃rtrs = g′egE1 − f ′g′e−gE2 + f ′e−2gE3,

rtt = ∇̃rtrt = −2g′e−gE2 + (e−2g + g′′)E3,

which imply the coefficients of the second fundamental form ofM(γ1, γ2) are given

by

L = 〈∇̃rsrs,N〉 = −1

W
(f ′′g′ − f ′2e−2g + e2g),
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M = 〈∇̃rsrt,N〉 = 1

W
(2f ′g′2 + f ′e−2g),

N = 〈∇̃rsrs,N〉 = 1

W
(g′′ + 2g′2 + e−2g).

A surface is minimal if its mean curvature, computed by the formula

H =
EN − 2FM +GL

2W 3
,

vanishes identically. Thus, the mean curvature of M(γ1, γ2) is given by

(8) H =
−f ′′g′3 − (f ′′g′ + f ′2g′2 − f ′2g′′)e−2g + (g′2 + g′′)e2g

2W 3
.

Then M(γ1, γ2) is a minimal surface if and only if

−f ′′g′3 − (f ′′g′ + f ′2g′2 − f ′2g′′)e−2g + (g′2 + g′′)e2g = 0.

By (4), the Laplacian operator ∆ of r can be expressed as

(9)
∆r =

−1

W

[ ∂
∂s

(Grs − Frt
W

)
+
∂

∂t

(Ert − Frs
W

)]

= − 1

2W 4

(
2W 2(G∇̃rsrs − 2F ∇̃rsrt + E∇̃rtrt) +H1rs +H2rt

)
,

where

H1 = e−2g(4f ′g′ − 2f ′f ′′g′4) + e−4g(2f ′3g′3 − 2f ′f ′′g′2 + 2g′g′′f ′3)

+ 6f ′g′3 + 2f ′g′g′′,

H2 = 4g′e2g + e−2g(−2f ′′ − 4f ′2g′) + e−4g(−2f ′4g′3 − 2g′g′′f ′4)

+ e4g(−2g′g′′ + 2g′3)− 2f ′′g′2 − 4g′g′′f ′2.

The substituting of (6) and (7) into (9) gives

(10)

∆r = − 1

2W 4

(
2W 2(Grss − 2Frst + Ertt) +H1rs +H2rt

)

= − 1

2W 4

(
2W 2(Grss − 2Frst + Ertt)

+H1(e
gE1 + f ′e−gE2) +H2(e

−gE2 + g′E3)
)

=
−2H

W
(f ′g′e−gE1 − g′egE2 + E3)

= − 2HN.
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M(γ1, γ2) is a minimal surfaces in Sol3 if and only if its coordinate functions

are harmonic.

Equations (2) and (4) imply

2Hf ′g′

W
= −λ1se2g,(11)

2Hg′

W
= λ2(f + t)e−2g,(12)

2H

W
= −λ3g.(13)

Case 1. Let λ3 = 0. (13) implies that the mean curvature H is identically

zero. Thus, the surface M(γ1, γ2) is minimal.

Case 2. Let λ3 6= 0.

2-1) Let λ1 = 0 and λ2 = 0. In this case the system (11), (12) and (13) is

reduced equivalently to

Hf ′g′ = 0,

Hg′ = 0,

2H

W
= −λ3g.

2-1-1) If H = 0, then λ3 = 0, a contradiction.

2-1-2) If g′ = 0, then H = 0. So we get a contradiction.

2-2) Let λ1 = 0 and λ2 6= 0. In this case the system (11), (12) and (13) is

reduced equivalently to

(2H
W

)
f ′g′ = 0,(14)

2Hg′

W
= λ2(f + t)e−2g,(15)

2H

W
= −λ3g.(16)

2-2-1) If H = 0, then λ3 = 0 and λ2 = 0, a contradiction.

2-2-2) If g′ = 0, then λ2 = 0. So we get a contradiction.

2-2-3) If f ′ = 0. Then f(s) = α, α ∈ R.

Substituting (16) into (15), we get

−λ3gg′ = λ2(α+ t)e−2g.

A direct integration implies that there exist α1, α2, α3 such that

(2g − 1)e2g = α1t
2 + α2t+ α3.
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2-3) If λ1 6= 0 and λ2 = 0. In this case the system (11), (12) and (13) is

reduced equivalently to

(17)
2Hg′

W
= 0.

(17) implies that the mean curvature H is identically zero. Then (13) gives

λ3 = 0, a contradiction.

2-4) If λ1 6= 0 and λ2 6= 0. Substituting (13) into (12), we get

(18) λ3gg
′ = −λ2(f + t)e−2g.

Differentiating (18) with respect to s we get λ2f
′ = 0. If f ′ = 0, then λ1 = 0.

So we get a contradiction.

Therefore, we have the following:

Theorem 3.1. Let M(γ1, γ2) be a translation surface of type II in Sol3. Then,

M(γ1, γ2) satisfies the equation ∆ri = λiri, i = 1, 2, 3, λi ∈ R, if and only if one

of the following statement is true:

1) A surface M(γ1, γ2) has zero mean curvature everywhere.

2) A surface M(γ1, γ2) is parametrized as

r(s, t) = (s, t+ α, g(t)),

where (2g − 1)e2g = α1t
2 + α2t+ α3; α, αi ∈ R.

3.2 Translation surfaces of type V . Let M(γ1, γ2) be a translation surface

of type V in Sol3. Then, M(γ1, γ2) is parametrized by

(19) r(s, t) = γ2(t)γ1(s) ∗ γ1(s) = (se−g(t), t+ f(s)eg(t), g(t)).

By differentiating (19) with respect to s and to t we deduce the following:

(20) rs = E1 + f ′E2, rt = (−sg′)E1 + (e−g + fg′)E2 + g′E3.

The coefficients of first fundamental form of M(γ1, γ2) are

(21)

E = 1 + f ′2,

F = −sg′ + f ′(fg′ + e−g),

G = g′2(s2 + 1) + (fg′ + e−g)2.

The unit normal vector field N of M(γ1, γ2) is given by

N =
(f ′g′

W

)
E1 −

( g′
W

)
E2 +

(fg′ + sf ′g′ + e−g

W

)
E3,
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where W =
√
g′2(1 + f ′2) + (fg′ + sf ′g′ + e−g)2. From (20) and (3), we have

(22)

∇̃rsrs = f ′′E2 + (f ′2 − 1)E3,

∇̃rsrt = ∇̃rtrs = (ff ′g′ + sg′ + f ′e−g)E3,

∇̃rtrt = − s(g′′ + g′2)E1 + (−2g′e−g + f(g′′ − g′2))E2

+ (g′′ − s2g′2 + (fg′ + e−g)2)E3.

The coefficients of the second fundamental form are given by

WL = − g′f ′′ + (f ′2 − 1)(fg′ + sf ′g′ + e−g),

WM = (fg′ + sf ′g′ + e−g)(ff ′g′ + sg′ + f ′e−g),

WN = (fg′ + sf ′g′ + e−g)(g′′ − s2g′2 + (fg′ + e−g)2)

− g′(−2g′e−g + f(g′′ − g′2))− sf ′g′(g′′ + g′2).

The mean curvature H of M(γ1, γ2) is given by

(23) H =
H

2W 3
,

where

H = − f ′′g′(g′2(1 + s2 + f2) + 2fg′e−g + e−2g) + g′′e−g(f ′2 + 1)

+ g′2e−g(1 + 3f ′2 + 2s2f ′2) + 2f ′g′3(ff ′ − s).

The substituting of (21) and (19) into (4) gives

(24) ∆r = −2HN.

Then, from (24) and (2), we get

−
(2H
W

)
f ′g′ = λ1s,

(2H
W

)
g′ = λ2(f + te−g),

−2H

W
(fg′ + sf ′g′ + e−g) = λ3g.

Therefore, the problem of classifying the translation surfaces M(γ1, γ2) sat-

isfying (2) is reduced to the integration of this system of ordinary differential

equations.

Then, by using similar method as for the translation surface of type II, we

have the following result:
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Theorem 3.2. Let M(γ1, γ2) be a translation surface of type V in Sol3. Then,

M(γ1, γ2) satisfies the equation ∆ri = λiri, i = 1, 2, 3, λi ∈ R, if and only if one

of the following statement is true:

1) A surface M(γ1, γ2) has zero mean curvature everywhere.

3) A surface M(γ1, γ2) is parametrized as

r(s, t) = (se−g(t), t+ aeg(t), g(t)),

where (δ1g + δ2)e
2g = δ3t

2 + δ4te
g; a, δi ∈ R, 1 ≤ i ≤ 4.

3.3 Translation surfaces of type III. Let M(γ1, γ2) be a translation surface

of type III in Sol3. Then, M(γ1, γ2) is parametrized by

(25) r(s, t) = γ1(s) ∗ γ2(t) = (s, tef(s), f(s) + g(t)).

The first derivatives are

(26)

∂r

∂s
= rs = eg+fE1 + tf ′e−gE2 + f ′E3,

∂r

∂t
= rt = e−gE2 + g′E3.

From this, the unit normal vector field N of M(γ1, γ2) is given by

N = −
(f ′(1 − tg′)e−g

W

)
E1 −

(g′ef+g

W

)
E2 +

( ef

W

)
E3,

where W =
√
g′2e2(f+g) + f ′2(1− tg′)2e−2g + e2f .

The coefficients of the first fundamental form are:

(27)

E = 〈rs, rs〉 = e2(f+g) + f ′2(1 + t2e−2g),

F = 〈rs, rt〉 = f ′(g′ + te−2g),

G = 〈rt, rt〉 = e−2g + g′2.

The covariant derivatives are:

(28)

rss = ∇̃rsrs = (2f ′ef+g)E1 + t(f ′′ − f ′2)e−gE2

+ (f ′′ + t2f ′2e−2g − e2(f+g))E3,

rst = ∇̃rsrt = ∇̃rtrs = g′ef+gE1 − tf ′g′e−gE2 + tf ′e−2gE3,

rtt = ∇̃rtrt = − 2g′e−gE2 + (e−2g + g′′)E3.
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The coefficients of the second fundamental form are given by

WL = ef
[
(f ′′ − 2f ′2)(1 − tg′) + tg′f ′2 + t2f ′2e−2g − e2(f+g)

]
,

WM = ef [−f ′g′(1− tg′) + tf ′(e−2g + g′2)],

WN = ef [g′′ + 2g′2 + e−2g].

The mean curvature H of M(γ1, γ2) is given by

(29) H =
H

2W 3
,

where

H = ef
[
(g′2 + g′′)e2(f+g) + (f ′′(1− tg′)− f ′2(1− tg′)2 + f ′2t(tg′′ + g′))e−2g

+ f ′′g′2(1− tg′) + f ′2g′2(1− tg′) + f ′2(g′′ + g′2)
]
.

By (4), the Laplacian operator ∆ of r can be expressed as

(30) ∆r = − 1

2W 4
(2W 2(Grss − 2Frst + Ertt) +H1rs +H2rt),

where

H1 = e−2g(4f ′g′ − 2f ′f ′′g′4) + e−4g(2f ′3g′3 − 2f ′f ′′g′2 + 2g′g′′f ′3)

+ 6f ′g′3 + 2f ′g′g′′,

H2 = 4g′e2g + e−2g(−2f ′′ − 4f ′2g′) + e−4g(−2f ′4g′3 − 2g′g′′f ′4)

+ e4g(−2g′g′′ + 2g′3)− 2f ′′g′2 − 4g′g′′f ′2.

The substituting of (26) and (28) into (30) gives

(31)

∆r = − 1

2W 4
[2W 2(Grss − 2Frst + Ertt) +H1rs +H2rt]

= − 1

2W 4

[
2W 2(G∇̃rsrs − 2F ∇̃rsrt + E∇̃rtrt)

+H1(e
g+fE1 + tf ′e−gE2 + f ′E3) +H2(e

−gE2 + g′E3)
]

= − H
W 4

(−(f ′(1 − tg′)e−g)E1 − (g′ef+g)E2 + (ef )E3)

= − 2HN.
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Then, from (31) and (2), we get

(2H
W

)
f ′(1− tg′) = λ1se

f+2g,(32)

(2H
W

)
g′ = λ2te

−f−2g,(33)

2H

W
= −λ3(f + g)e−f .(34)

Therefore, the problem of classifying the affine translation surfaces M(γ1, γ2)

satisfying (2) is reduced to the integration of this system of ordinary differential

equations. Next we study it according to the constants λ1, λ2, λ3.

Case 1. Let λ3 = 0. (34) implies that the mean curvature H is identically

zero. Thus, the surface M(γ1, γ2) is minimal.

Case 2. Let λ3 6= 0.

2-1) Let λ1 = 0 and λ2 = 0. In this case the system (32), (33) and (34) is

reduced equivalently to

Hf ′(1 − tg′) = 0,

Hg′ = 0,

2H

W
= −λ3(f + g)e−f .

2-1-1) If H = 0, then f = a and g = −a, a ∈ R. Then H = 0.

2-1-2) If g′ = 0, then H = 0. Thus, the surface M(γ1, γ2) is minimal.

2-2) Let λ1 = 0 and λ2 6= 0. In this case the system (32), (33) and (34) is

reduced equivalently to

(2H
W

)
f ′(1− tg′) = 0,(35)

(2H
W

)
g′ = λ2te

−f−2g,(36)

2H

W
= −λ3(f + g)e−f .(37)

2-2-1) If H = 0, then λ2 = 0. So we get a contradiction.

2-2-2) If 1− tg′ = 0, then H = 0. So we get a contradiction.

2-2-3) If f ′ = 0. Then f(s) = b, b ∈ R.

Substituting (37) into (36), we get

−λ3(b+ g)g′ = λ2te
−2g.

A direct integration implies that there exist β1, β2 such that

(2b+ 2g − 1)e2g = β1t
2 + β2.
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2-3) If λ1 6= 0 and λ2 = 0. From (33), we have g′ = 0. Then g(t) = c, c ∈ R.

Substituting (34) into (32), we get

−λ3(c+ f)f ′ = λ1se
2(f+c).

A direct integration implies that there exist γ1, γ2 such that

(2c+ 2f + 1)e−2f = γ1s
2 + γ2.

2-4) If λ1 6= 0 and λ2 6= 0. Substituting (34) into (33), we get

(38) −λ3(f + g)g′ = λ2te
−2g.

Differentiating (38) with respect to s we get λ3f
′g′ = 0.

2-4-1) If f ′ = 0, then λ1 = 0, a contradiction.

2-4-2) If g′ = 0, then λ2 = 0, a contradiction.

Therefore, we have the following

Theorem 3.3. Let M(γ1, γ2) be a translation surface of type III in Sol3. Then,

M(γ1, γ2) satisfies the equation ∆ri = λiri, i = 1, 2, 3, λi ∈ R, if and only if one

of the following statement is true:

1) A surface M(γ1, γ2) has zero mean curvature everywhere.

2) A surface M(γ1, γ2) is parametrized as

r(s, t) = (s, teb, b+ g(t)),

where (2b+ 2g − 1)e2g = β1t
2 + β2; β1, β2 ∈ R.

3) A surface M(γ1, γ2) is parametrized as

r(s, t) = (s, tef(s), f(s) + c),

where (2c+ 2f + 1)e−2f = γ1s
2 + γ2; γ1, γ2 ∈ R.

3.4 Translation surfaces of type VI. Let M(γ1, γ2) be a translation surface

of type VI in Sol3. Then, M(γ1, γ2) is parametrized by

(39) r(s, t) = γ2(s) ∗ γ1(t) = (se−g(t), t, f(s) + g(t)).

The first derivatives are

(40)
rs = efE1 + f ′E3,

rt = (−g′sef )E1 + e−(f+g)E2 + g′E3.

The unit normal vector N of the surface is defined by

N =
(−f ′e−(f+g)

W

)
E1 −

(g′(1 + sf ′)ef

W

)
E2 +

(e−g

W

)
E3,
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where W =
√
f ′2e−2(f+g) + g′2(1 + sf ′)2e2f + e−2g. The coefficients of the first

fundamental form are:

(41)

E = e2f + f ′2,

F = g′(f ′ − se2f ),

G = e−2(f+g) + g′2(1 + s2e2f ).

The covariant derivatives are:

(42)

rss = ∇̃rsrs = (2f ′ef )E1 + (f ′′ − e2f )E3,

rst = ∇̃rtrs = −(sg′f ′ef )E1 − (f ′e−(f+g))E2 + (sg′e2f )E3,

rtt = −sef(g′′ + g′2)E1 − (2g′e−(f+g))E2 + (e−2(f+g) + g′′ − g′2s2e2f )E3.

The coefficients of the second fundamental form are given by

WL = e−g(f ′′ − 2f ′2 − e2f ),

WM = e−g(f ′g′(1 + sf ′) + sg′(e2f + f ′2)),

WN = e−g((g′′ + 2g′2)(1 + sf ′) + sf ′g′2 + e−2(f+g) − g′2s2e2f ).

The mean curvature H of M(γ1, γ2) is given by

(43) H =
H

2W 3
,

where

H = g′′e−g(1 + sf ′)(e2f + f ′2) + f ′′e−g(g′2(1 + s2e2f ) + e−2(f+g))

+ e−g(1 + sf ′)g′2(e2f + sf ′ − f ′2)− f ′e−g(f ′g′2 + f ′e−2f − sg′2e2f ).

The substituting of (40), (41) and (42) into (4) gives

(44) ∆r = −2HN.

Then, from (44) and (2), we get

(2H
W

)
f ′ = λ1se

2f+g,(45)

(2H
W

)
g′(1 + sf ′) = λ2te

−2f−g,(46)

−2H

W
= λ3(f + g)eg.(47)

Therefore, the problem of classifying the translation surfaces M(γ1, γ2) satisfy-

ing (2) is reduced to the integration of this system of ordinary differential equa-

tions. Next we study it according to the constants λ1, λ2, λ3.
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Then, by using similar method as for the translation surface of type III, we

have the following result:

Theorem 3.4. Let M(γ1, γ2) be a translation surface of type VI in Sol3. Then,

M(γ1, γ2) satisfies the equation ∆ri = λiri, i = 1, 2, 3, λi ∈ R, if and only if one

of the following statement is true:

1) A surface M(γ1, γ2) has zero mean curvature everywhere.

2) A surface M(γ1, γ2) is parametrized as

r(s, t) = (se−a, t, f(s) + a),

where (2a+ 2f + 1)e−2f = β1s
2 + β2; a, β1, β2 ∈ R.

3) A surface M(γ1, γ2) is parametrized as

r(s, t) = (se−g(t), t, c+ g(t)),

where (2c+ 2g − 1)e2g = γ1t
2 + γ2; c, γ1, γ2 ∈ R.

3.5 Translation surfaces of type IV . Let M(γ1, γ2) be a translation surface

of type IV in Sol3. Then, M(γ1, γ2) is parametrized by

(48) r(s, t) = γ2(s) ∗ γ1(t) = (se−g(t) + t, f(s)eg(t), g(t)).

The first derivatives are

(49)

∂r

∂s
= rs = E1 + f ′E2,

∂r

∂t
= rt = (eg − sg′)E1 + g′fE2 + g′E3.

From this, the unit normal vector field N of M(γ1, γ2) is given by

N = −
(f ′g′

W

)
E1 −

( g′
W

)
E2 +

(fg′ − f ′(eg − sg′)

W

)
E3,

where

(50) W =
√
(1 + f ′2 + f2)g′2 + f ′2(eg − sg′)2 − 2ff ′g′(eg − sg′).

The coefficients of the first fundamental form are:

(51) E = 1 + f ′2, F = eg − g′(s− ff ′), G = (eg − sg′)2 + g′2(1 + f2).

The covariant derivatives are:

(52)
∇̃rsrs = f ′′E2 + (f ′2 − 1)E3,

∇̃rtrs = (ff ′g′ + sg′ − eg)E3,



252 B. Senoussi, H. Al-Zoubi

∇̃rtrt = (2g′eg − s(g′′ + g′2))E1 + f(g′′ − g′2)E2

+ (g′′ − (eg − sg′)2 + f2g′2)E3.

The coefficients of the second fundamental form are given by

WL = (1− f ′2)(f ′(eg − sg′)− fg′)− g′f ′′,

WM = (ff ′g′ − (eg − sg′))(fg′ − f ′(eg − sg′)),

WN = (fg′ − f ′(eg − sg′))(g′′ + f2g′2 − (eg − sg′)2)

− f ′g′(s(g′′ + g′2)− 2g′eg)− fg′(g′′ − g′2).

The mean curvature H of M(γ1, γ2) is given by

(53) H =
H

2W 3
,

where

H = (1 + f ′2)((fg′ − f ′(eg − sg′))(g′′ + f2g′2 − (eg − sg′)2)

− f ′g′(s(g′′ + g′2)− 2g′eg)− fg′(g′′ − g′2))

+ ((eg − sg′)2 + g′2(1 + f2))((1 − f ′2)(f ′(eg − sg′)− fg′)− g′f ′′)

− 2(eg − g′(s− ff ′))((ff ′g′ − (eg − sg′))(fg′ − f ′(eg − sg′))).

The substituting of (49), (51) and (52) into (4) gives

(54) ∆r = −2HN.

Then, from (54) and (2), we get

(−2H

W

)
f ′g′ = λ1(s+ teg),(55)

(2H
W

)
g′ = λ2f,(56)

(−2H

W

)
(fg′ − f ′eg + sf ′g′) = λ3g.(57)

Therefore, the problem of classifying the affine translation surfaces M(γ1, γ2)

satisfying (2) is reduced to the integration of this system of ordinary differential

equations. Next we study it according to the constants λ1, λ2, λ3.

Case 1. Let λ2 = 0. Then, the equation (56) gives rise to g′H = 0. If g′ = 0,

then H = 0, which means that the surfaces are minimal.

Case 2. Let λ2 6= 0.

i) If f = 0, then H = 0.
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ii) If f 6= 0, in this case we have four possibilities:

a) Let λ1 = 0 and λ3 = 0. (55) gives rise to f ′g′H = 0. Then (53) implies

H = 0. Then λ2 = 0, a contradiction.

b) Let λ1 = 0 and λ3 6= 0. In this case the system (55), (56) and (57) is

reduced equivalently to

(−2H

W

)
f ′g′ = 0,(58)

(2H
W

)
g′ = λ2f,(59)

−2H

W
(fg′ − f ′eg + sf ′g′) = λ3g.(60)

i) If f = 0, then (60) gives g = 0. Then (50) gives W = 0, a contradiction.

ii) If f 6= 0, from (58), we have f ′g′H = 0. So, we get H = 0, it is

a contradiction.

c) If λ1 6= 0 and λ3 = 0. In this case the system (55), (56) and (57) is reduced

equivalently to

(2H
W

)
f ′g′ = λ1(s+ teg),(61)

(2H
W

)
g′ = λ2f,(62)

(−2H

W

)
(fg′ − f ′eg + sf ′g′) = 0.(63)

i) If f = 0, then (61) gives λ1 = 0, a contradiction.

ii) If f 6= 0, from (63), we have (fg′ − f ′eg + sf ′g′)H = 0. We discuss by

cases:

(1) The case H = 0. Then (62) implies λ2f = 0, a contradiction.

(2) The case when

(64) fg′ − f ′eg + sf ′g′ = 0.

(2-1) If g′ = 0, then H = 0, a contradiction.

(2-2) If f ′ = 0, then λ1 = 0, a contradiction.

(2-3) If f ′g′ 6= 0, combining equations (61) and (62), we have

(65) −λ2ff ′ − λ1s = λ1te
g.

We have an identity of two functions, one depending only on t and the other one

depending only on s. Hence we deduce the existence of a real number k ∈ Rr{0}
such that

(66) λ2ff
′ + λ1s = −k = −λ1teg.
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This differential equation admits the solutions

λ2f
2 + λ1s

2 + 2ks+ a = 0, a ∈ R,(67)

g(t) = ln
k

λ1t
.(68)

From (64) and (68), there exists a constant c ∈ Rr{0} such that

(69) f(s) =
c

k + s
.

By combining (69) and (67), we have

λ1s
2(k + s)2 + 2ks(k + s)2 + a(k + s)2 + λ2c

2 = 0.

This is a polynomial in s. Then λ1 = 0, a contradiction.

d) If λ1 6= 0 and λ3 6= 0, from (68), we have g′(t) = −1/t. We put this value

of g′(t) into (53) and we obtain

(70)
2H

W
=

ψ(s)

ϕ2(s)
t,

where

ψ(s) = 2f ′(δ + s)− 2ff ′2 + f ′′(1 + (δ + s)2) + f(ff ′′ − 2f ′2),

ϕ(s) = 1 + f ′2(1 + (δ + s)2) + 2ff ′(δ + s) + f2,

δ =
k

λ1
.

By combining (60) and (70), we have

(71) − ψ(s)

ϕ2(s)
(f + δf ′ + sf ′) = λ3g.

Differentiating (71) with respect to t, we have λ3 = 0 , it is a contradiction.

Theorem 3.5. Let M(γ1, γ2) be a translation surface of type IV in Sol3. Then,

M(γ1, γ2) satisfies the equation ∆ri = λiri, i = 1, 2, 3, λi ∈ R, if and only if

M(γ1, γ2) has zero mean curvature.

3.6 Translation surfaces of type I. Let M(γ1, γ2) be a translation surface of

type I in Sol3. Then, M(γ1, γ2) is parametrized by

(72) r(s, t) = γ1(s) ∗ γ2(t) = (s+ t, f(s), g(t)).

The coefficients of the first fundamental form of M2 are given by

E = e2g + f ′2e−2g, F = e2g, G = e2g + g′2.
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The unit normal vector is given by

N =
(f ′g′e−g

W

)
E1 −

(g′eg
W

)
E2 −

( f ′

W

)
E3,

where W =
√
g′2e2g + f ′2 + f ′2g′2e−2g.

The mean curvature H of M(γ1, γ2) is given by

H =
H

2W 3
,

where H = −f ′′g′3 − (f ′′g′ + f ′g′2 + f ′g′′)e2g + f ′3(g′2 − g′′)e−2g − f ′′g′3.

Then, by using similar method as for the translation surface of type IV , we

have the following result:

Theorem 3.6. Let M(γ1, γ2) be a translation surface of type I in Sol3. Then,

M(γ1, γ2) satisfies the equation ∆ri = λiri, i = 1, 2, 3, λi ∈ R, if and only if

M(γ1, γ2) has zero mean curvature.
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[7] López R., Munteanu M. I., Minimal translation surfaces in Sol3, J. Math. Soc. Japan. 64

(2012), no. 3, 985–1003.

[8] Scott P., The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401–487.
[9] Takahashi T., Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18

(1966), 380–385.
[10] Troyanov M., L’horizon de SOL, Exposition. Math. 16 (1998), no. 5, 441–479.



256 B. Senoussi, H. Al-Zoubi

[11] Yoon D.W., Coordinate finite type invariant surfaces in Sol spaces, Bull. Iranian Math.
Soc. 43 (2017), no. 3, 649–658.

[12] Yoon D.W., Lee C.W., Karacan M.K., Some translation surfaces in the 3-dimensional

Heisenberg group, Bull. Korean Math. Soc. 50 (2013), no. 4, 1329–1343.

B. Senoussi:

Department of Mathematics, Ecole Normale Supérieure, 45 rue d’Ulm, 75230,

Mostaganem, Algeria

E-mail: se bendhiba@yahoo.fr

H. Al-Zoubi:

Department of Mathematics, Al-Zaytoonah University of Jordan,

P.O. Box 130, Amman 11733, Jordan

E-mail: dr.hassanz@zuj.edu.jo

(Received December 4, 2018, revised March 27, 2019)


		webmaster@dml.cz
	2021-02-25T13:21:17+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




