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Abstract. For a Lebesgue integrable complex-valued function f defined on R
+ := [0,∞)

let f̂ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that f̂(y)→ 0 as
y → ∞. But in general, there is no definite rate at which the Walsh-Fourier transform tends
to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as
slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of
L1(R+) there is a definite rate at which the Walsh-Fourier transform tends to zero. We
determine this rate for functions of bounded variation on R

+. We also determine such rate
of Walsh-Fourier transform for functions of bounded variation in the sense of Vitali defined
on (R+)N , N ∈ N.
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1. Introduction

We consider the Walsh orthonormal system {wm(x) : m ∈ N0}, N0 = N ∪ {0},

defined on the unit interval I := [0, 1) in the Paley enumeration (see [19]). To go

into some details, let

r0(x) :=

{

1 if x ∈ [0, 12 ),

−1 if x ∈ [ 12 , 1),
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and extend r0(x) for the half-real axis R
+ := [0,∞) with period 1. The Rademacher

orthonormal system {rk(x) : k ∈ N} is defined by

rk(x) := r0(2
kx), k = 1, 2, . . . , x ∈ I.

Now, the mth Walsh function wm(x) in the Paley enumeration is defined as follows:

If

m =

∞
∑

k=0

mk2
k, where each mk = 0 or 1,

is the binary decomposition of m ∈ N, then let

(1.1) wm(x) :=

∞
∏

k=0

rmk

k (x), x ∈ I.

Clearly, mk = 0 except for a finite number of k’s. Thus, the right-hand side of (1.1)

is a finite product for each m ∈ N. In particular, we have

w0(x) ≡ 1 and w2m = rm(x), m ∈ N0.

It is well known that {wm(x) : m ∈ N0} is a complete orthonormal system on I.

Any x ∈ I can be written in the form

x =

∞
∑

k=0

xk2
−k−1, where each xk = 0 or 1.

For each x ∈ I\Q there is only one expression of this form, where Q is the collection

of dyadic rationals in I. When x ∈ Q, there are two expressions of this form, one

which terminates in 0’s and other which terminates in 1’s. Now the dyadic sum of

x, y ∈ I is defined by

x+̇y :=

∞
∑

k=0

|xk − yk|2
−k−1.

A remarkable property of the Walsh functions is that for each m ∈ N0 we have

wm(x+̇y) = wm(x)wm(y), x, y ∈ I, x+̇y /∈ Q.

Next, we consider the generalized Walsh functions ψx, x ∈ R+ (see [20], Chap-

ter 9), and recall the following properties:

(i) ψk(x) = wk(x) for k ∈ N0, x ∈ I;

(ii) ψy(x+̇t) = ψy(x)ψy(t) for x, t ∈ R+ and x+̇t dyadic irrational;
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(iii) ψy(x) = ψx(y), ψy(x) = ψ[y](x)ψ[x](y) for x, y ∈ R+, where for u ∈ R+, [u] rep-

resents the greatest integer in u;

(iv) the functions ψj , j ∈ N0 form a complete orthonormal system in each of the

intervals of the form [k, k + 1), k ∈ N0;

(v) ψj is a periodic extension of wj from I to R+.

Now we recall (see e.g. [20], page 421) that the Walsh-Fourier transform of an

f ∈ L1(R+) is defined by

(1.2) f̂(y) :=

∫ ∞

0

f(x)ψy(x) dx, y ∈ R
+.

We also recall that the Riemann-Lebesgue lemma holds for Walsh-Fourier transform

(see [20], page 422), that is, f̂(y) → 0 as y → ∞. But in general, there is no definite

rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier

transform of an integrable function can tend to zero as slowly as we wish (see e.g. [13],

32.47 (b)). Therefore, it is interesting to know for functions of which subclasses of

L1(R+) there is a definite rate at which the Walsh-Fourier transform tends to zero.

Looking to the periodic version, for the case of trigonometric Fourier series, that is,

for functions on one-dimensional torus T := [0, 2π), the study of order of magnitude

of Fourier coefficients is done extensively (see e.g. [15], [21], see also [3], Section 2.3,

page 30 and [22], Section 4, page 45). This study in periodic version for trigonometric

Fourier series is done even for more general cases, that is, for the case of functions on

two-dimensional torus, or more generally, on theN -dimensional torus TN := [0, 2π)N ,

N ∈ N (see e.g. [16], [5], [6], [8]).

Also looking to the periodic version, for the case of Walsh-Fourier series, that is, for

functions defined on I, the study of order of magnitude of Walsh-Fourier coefficients

is done (see e.g. [4], [11]). This study in periodic version for Walsh-Fourier series is

done even for more general cases, that is, for the case of functions on two-dimensional

torus I2, or more generally, on the N -dimensional torus IN , N ∈ N (see e.g. [7]).

Recently, in 2015 (see [9]), we have studied the order of magnitude of trigonomet-

ric Fourier transform for functions of bounded variation on R and for functions of

bounded variation in the sense of Vitali on RN and obtained results analogous to the

periodic case. But it appears that such a study for the Walsh-Fourier transform has

not yet been done. In this paper we carry out this study and determine the rate of

decay of Walsh-Fourier transform for functions of bounded variation on R+. We also

determine such rate of Walsh-Fourier transform for functions of bounded variation

in the sense of Vitali defined on (R+)N , N ∈ N.
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2. One-dimensional case

We recall that a function f : R+ → C is said to be of bounded variation over R+,

in symbol f ∈ BV(R+), if

(2.1) sup
S

n
∑

k=1

|f(xk)− f(xk−1)| <∞,

where the supremum is extended over all finite sequences

S : 0 6 x0 < x1 < x2 < . . . < xn <∞ and n = 1, 2, . . .

The supremum in (2.1), denoted by V (f), is called the total variation of f over R+.

It is clear that the above definition of bounded variation over R+ can be reformu-

lated equivalently as follows. A function f is of bounded variation over R+ if and

only if f is of bounded variation over any closed and bounded interval [a, b] ⊂ R+

in the ordinary sense and the set of the total variations V (f, [a, b]) of f over all such

closed and bounded intervals [a, b] is bounded. Furthermore, if this is the case, then

the supremum of the total variations over all such closed and bounded intervals is

equal to V (f) defined above (see e.g. [18], page 238).

In a similar way, one can define the notion of bounded variation over the intervals

of the form [a,∞), where a ∈ R is arbitrary.

Given f ∈ BV(R+), let V (f, x) := V (f, [0, x]) denote the total variation of f over

the interval [0, x]. Then it is evident that

(2.2) lim
x→∞

V (f, x) = V (f).

We note that the variation of f over [x,∞) is given by V (f, [x,∞)) = V (f)−V (f, x)

(see e.g. [9], (9) in Lemma 1) and hence from (2.2) it follows that

lim
x→∞

V (f, [x,∞)) = 0.

In this section we prove a theorem concerning definite rate of decay of Walsh-

Fourier transform for functions of bounded variation on R+. Our main theorem of

this section is as follows.

Theorem 2.1. If f ∈ L1(R+) ∩ BV(R+), then f̂(y) = O(1/y), y → ∞.

268



We need the following lemma whose proof is similar to that of Lemma 1 in [9].

Lemma 2.1. If f ∈ BV(R+) and {an : n ∈ N0} is an increasing sequence of

non-negative real numbers with lim
n→∞

an = ∞, then the series
∞
∑

n=1
V (f, [an−1, an])

converges and

(2.3) V (f, [a0,∞)) =
∞
∑

n=1

V (f, [an−1, an]).

P r o o f of Theorem 2.1. We present a proof using Taibleson-like technique

(see [21]), which we have developed for I in [11] and here for R+.

Fix y ∈ R+, y > 1. Put n = [y]. Then n ∈ N, so there exists a unique m ∈ N0

such that 2m 6 n < 2m+1. Now, put ai = i/2m for i = 0, 1, 2, 3, . . . , 2m. Then by

the definition of Walsh functions, wn takes the value 1 on one half of each of the

intervals (ai−1, ai) and the value −1 on the other half. Therefore we have

∫ ai

ai−1

wn(x) dx = 0 for i = 1, 2, 3, . . . , 2m.

Since ψn is a periodic extension of wn from I to R+, for each k ∈ N0 and i =

1, 2, 3, . . . , 2m, we have

(2.4)

∫ k+ai

k+ai−1

ψn(x) dx =

∫ ai

ai−1

ψn(x) dx =

∫ ai

ai−1

wn(x) dx = 0.

Define a step function g on R+ by g(x) := f(k + ai−1) on [k + ai−1, k + ai),

i = 1, 2, 3, . . . , 2m, k ∈ N0. Since f ∈ L1(R+), it follows that g ∈ L1(R+). Then in

view of (2.4) for each k ∈ N0 and i = 1, 2, 3, . . . , 2m, we have

(2.5)

∫ k+ai

k+ai−1

g(x)ψn(x) dx = f(k + ai−1)

∫ k+ai

k+ai−1

ψn(x) dx = 0.

Therefore by Property (iii) of generalized Walsh functions, as stated above and

from (2.5) we have

∫ k+ai

k+ai−1

g(x)ψy(x) dx =

∫ k+ai

k+ai−1

g(x)ψn(x)ψ[x](y) dx(2.6)

= ψk(y)

∫ k+ai

k+ai−1

g(x)ψn(x) dx = 0
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for each k ∈ N0 and i = 1, 2, 3, . . . , 2m. Now, by definition (1.2) of f̂(y) and (2.6) we

have

|f̂(y)| =

∣

∣

∣

∣

∫ ∞

0

f(x)ψy(x) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∞
∑

k=0

2m
∑

i=1

∫ k+ai

k+ai−1

f(x)ψy(x) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∞
∑

k=0

2m
∑

i=1

∫ k+ai

k+ai−1

(f(x)− g(x))ψy(x) dx

∣

∣

∣

∣

6

∞
∑

k=0

2m
∑

i=1

∫ k+ai

k+ai−1

|f(x) − g(x)| dx

=

∞
∑

k=0

2m
∑

i=1

∫ k+ai

k+ai−1

|f(x)− f(k + ai−1)| dx

6

∞
∑

k=0

2m
∑

i=1

V (f, [k + ai−1, k + ai])(k + ai − (k + ai−1))

=

∞
∑

k=0

V (f, [k, k + 1])
1

2m
=

1

2m
V (f) 6

2

n
V (f) 6

4

y
V (f).

Note that we have used (2.3) of Lemma 2.1 in the last step. Therefore we have

(2.7) |f̂(y)| 6
4V (f)

y
.

This completes the proof of Theorem 2.1. �

P r o b l e m 2.1. What can be said about the exactness of the constant in (2.7)?

3. Two-dimensional case

There is a number of definitions extending the concept of bounded varia-

tion for functions of two variables defined on closed and bounded rectangle (see

e.g. [1], [2], [12]). We recall one of them.

Let R := [a1, b1]× [a2, b2] be a closed and bounded rectangle on the real plane R
2.

We recall that (see e.g. [10], page 21) a collection of points (x0, y0), (x0, y1), . . . ,

(xm, yn) in R, where m,n ∈ N, satisfying

a1 = x0 6 x1 6 x2 6 . . . 6 xm = b1 and a2 = y0 6 y1 6 y2 6 . . . 6 yn = b2,

is called a collection of grid points of R. If P is any such collection of grid points

of R and f : R→ C is any function, we put

(3.1) S(P, f) =

m
∑

j=1

n
∑

k=1

|f(xj , yk)− f(xj−1, yk)− f(xj , yk−1) + f(xj−1, yk−1)|.
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Now, such a function f : R → C is said to be of bounded variation over the

rectangle R in the sense of Vitali (-Lebesgue, -Fréchet, -de la Vallée Poussin, as

indicated in [2]), in symbol f ∈ BVV (R), if

(3.2) V (f) = V (f,R) := supS(P, f) <∞,

where the supremum is extended over all collections P of grid points of R, while

V (f) defined in (3.2) is called the total variation of f over R.

Next, we recall the concept of bounded variation for functions on (R+)2 which

is defined as follows (see e.g. [17], Section 2). To do this, analogously to the

grid points of a rectangle as defined above, we say that a collection of points

(x0, y0), (x0, y1), . . . , (xm, yn) in (R+)2, where m,n ∈ N, satisfying

0 6 x0 6 x1 6 x2 6 . . . 6 xm <∞

and

0 6 y0 6 y1 6 y2 6 . . . 6 yn <∞,

is called a collection of grid points of (R+)2. If P is any such collection of grid points

of (R+)2 and f : (R+)2 → C is any function, we define S(P, f) as in (3.1).

Now, such a function f : (R+)2 → C is said to be of bounded variation over the

set (R+)2 in the sense of Vitali, in symbol f ∈ BVV ((R
+)2), if

(3.3) V (f) = V (f, (R+)2) := supS(P, f) <∞,

where the supremum is extended over all collections P of grid points of (R+)2, while

V (f) defined in (3.3) is called the total variation of f over (R+)2.

Similarly to the case of functions f ∈ BV(R+), the above definition can also

be equivalently reformulated as follows. A function f : (R+)2 → C is of bounded

variation over (R+)2 if and only if f is of bounded variation over all closed and

bounded rectangles

[a1, b1]× [a2, b2], 0 6 a1 < b1 <∞ and 0 6 a2 < b2 <∞

in the sense of Vitali, and in addition, the set of the total variations of f over all such

closed and bounded rectangles [a1, b1] × [a2, b2] is bounded. Furthermore, if this is

the case, then the supremum of the set of these total variations over all such closed

and bounded rectangles [a1, b1]× [a2, b2] is equal to V (f) defined in (3.3).

Next, for a complex-valued Lebesgue integrable function f on (R+)2, in symbol

f ∈ L1((R+)2), we consider its Walsh-Fourier transform defined as

(3.4) f̂(ξ, η) :=

∫ ∞

0

∫ ∞

0

f(x, y)ψξ(x)ψη(y) dxdy, (ξ, η) ∈ (R+)2.
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We observe that a version of Riemann-Lebesgue lemma holds for the Walsh-Fourier

transform defined above. In fact, we have the following.

Lemma 3.1 (Riemann-Lebesgue). If f ∈ L1((R+)2), then

(3.5) lim
ξ,η→∞

f̂(ξ, η) = 0.

P r o o f. We give a proof of this lemma, which is similar to its one-dimensional

version (see [20], page 422). Let ε > 0 be given. Since f ∈ L1((R+)2), we have

lim
m,n→∞

∫ m

0

∫ n

0

|f(x, y)| dxdy =

∫ ∞

0

∫ ∞

0

|f(x, y)| dxdy.

Therefore, we can choose m,n so large that

∫ ∞

0

∫ ∞

0

|f(x, y)| dxdy −

∫ m

0

∫ n

0

|f(x, y)| dxdy < ε,

that is,

(3.6)

∫ m

0

∫ ∞

n

|f(x, y)| dxdy +

∫ ∞

m

∫ n

0

|f(x, y)| dxdy +

∫ ∞

m

∫ ∞

n

|f(x, y)| dxdy < ε.

Now, we notice that

(3.7)

∫ m

0

∫ n

0

f(x, y)ψξ(x)ψη(y) dxdy

=

m−1
∑

k=0

n−1
∑

l=0

∫ k+1

k

∫ l+1

l

f(x, y)ψξ(x)ψη(y) dxdy

=

m−1
∑

k=0

n−1
∑

l=0

∫ k+1

k

∫ l+1

l

f(x, y)ψ[ξ](x)ψ[x](ξ)ψ[η](y)ψ[y](η) dxdy

=

m−1
∑

k=0

n−1
∑

l=0

ψk(ξ)ψl(η)

∫ k+1

k

∫ l+1

l

f(x, y)ψ[ξ](x)ψ[η](y) dxdy

=

m−1
∑

k=0

n−1
∑

l=0

ψk(ξ)ψl(η)

∫ 1

0

∫ 1

0

f(x, y)w[ξ](x)w[η](y) dxdy.

In view of (3.6) and (3.7), we see that f̂(ξ, η) is dominated by ε plus a fixed sum

of double Walsh-Fourier coefficients of order ([ξ], [η]). Since each of these double

Walsh-Fourier coefficients tend to zero as ξ, η → ∞, we conclude that (3.5) holds.

This completes the proof of Lemma 3.1. �
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By the Riemann-Lebesgue lemma, as above, it is certain that the Walsh-Fourier

transform f̂(ξ, η) → 0 as ξ, η → ∞. But in general, there is no definite rate at which

the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of

an integrable function on (R+)2 can tend to zero as slowly as we wish (see e.g. [13],

32.47 (b)). Therefore, as in the one-dimensional case, it is interesting to know for

functions of which subclasses of L1((R+)2) there is a definite rate at which the Walsh-

Fourier transform tends to zero. In this section, we carry out this study for functions

of bounded variation on (R+)2 in the sense of Vitali. Our main theorem of this

section is as follows.

Theorem 3.1. If f ∈ L1((R+)2) ∩ BVV ((R
+)2) and (ξ, η) ∈ (R+)2 is such that

ξη 6= 0, then

f̂(ξ, η) = O
( 1

ξη

)

, ξ, η → ∞.

We need the following lemma, whose proof is similar to that of Lemma 2 in [9].

Lemma 3.2. If f ∈ BVV ((R
+)2) and if {an : n ∈ N0} and {bn : n ∈ N0} are two

increasing sequences of non-negative real numbers with

lim
n→∞

an = lim
n→∞

bn = ∞,

then

V (f) =

∞
∑

m=1

∞
∑

n=1

V (f, [am−1, am]× [bn−1, bn]),

the series on the right-hand side being convergent in the Pringsheim’s sense.

P r o o f of Theorem 3.1. As in the proof of Theorem 2.1, here we present a

proof using Taibleson-like technique (see [21]) developed in [7], and developed here

for (R+)2.

Fix (ξ, η) ∈ (R+)2 with ξ > 1, η > 1. Put m = [ξ] and n = [η]. Then m,n ∈ N, so

there exist unique s, t ∈ N0 such that 2
s 6 m < 2s+1 and 2t 6 n < 2t+1.

Now, put ai = i/2s for i = 0, 1, 2, 3, . . . , 2s. Then by the definition of Walsh

functions, wm takes the value 1 on one half of each of the intervals (ai−1, ai) and the

value −1 on the other half. Similarly, if we put bj = j/2t for j = 0, 1, 2, 3, . . . , 2t,

then again by the definition of Walsh functions, wn takes the value 1 on one half of

each of the intervals (bj−1, bj) and the value −1 on the other half. Therefore we have

(3.8)

∫ ai

ai−1

wm(x) dx = 0 for i = 1, 2, 3, . . . , 2s
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and

(3.9)

∫ bj

bj−1

wn(y) dy = 0 for j = 1, 2, 3, . . . , 2t.

Since ψm and ψn are periodic extensions of wm and wn, respectively, from I to R+,

for each k, l ∈ N0, i = 1, 2, 3, . . . , 2s, and j = 1, 2, 3, . . . , 2t, in view of (3.8)–(3.9), we

have

(3.10)

∫ k+ai

k+ai−1

ψm(x) dx =

∫ ai

ai−1

ψm(x) dx =

∫ ai

ai−1

wm(x) dx = 0

and

(3.11)

∫ l+bj

l+bj−1

ψn(y) dy =

∫ bj

bj−1

ψn(y) dy =

∫ bj

bj−1

wn(y) dy = 0.

Define three functions f1, f2, f3 on (R+)2 by setting

f1(x, y) := f(x, l + bj−1), x ∈ R
+, l + bj−1 6 y < l + bj

for j = 1, 2, 3, . . . , 2t, l ∈ N0;

f2(x, y) := f(k + ai−1, y), k + ai−1 6 x < k + ai, y ∈ R
+

for i = 1, 2, 3, . . . , 2s, k ∈ N0; and

f3(x, y) := f(k + ai−1, l + bj−1), k + ai−1 6 x < k + ai, l + bj−1 6 y < l + bj

for i = 1, 2, 3, . . . , 2s, j = 1, 2, 3, . . . , 2t, and k, l ∈ N0. Since f ∈ L1((R+)2), it

follows that f1, f2, f3 ∈ L1((R+)2). Now, in view of Fubini’s theorem and relations

(3.10)–(3.11), for each i = 1, 2, 3, . . . , 2s, j = 1, 2, 3, . . . , 2t and k, l ∈ N0, we have

(3.12)

∫ k+ai

k+ai−1

∫ l+bj

l+bj−1

f1(x, y)ψξ(x)ψn(y) dxdy

=

∫ k+ai

k+ai−1

(

f(x, l + bj−1)

∫ l+bj

l+bj−1

ψn(y) dy

)

ψξ(x) dx = 0,

(3.13)

∫ k+ai

k+ai−1

∫ l+bj

l+bj−1

f2(x, y)ψm(x)ψη(y) dxdy

=

∫ l+bj

l+bj−1

(

f(k + ai−1, y)

∫ k+ai

k+ai−1

ψm(x) dx

)

ψη(y) dy = 0
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and

(3.14)

∫ k+ai

k+ai−1

∫ l+bj

l+bj−1

f3(x, y)ψm(x)ψn(y) dxdy

= f(k + ai−1, l + bj−1)

(
∫ k+ai

k+ai−1

ψm(x) dx

)(
∫ l+bj

l+bj−1

ψn(y) dy

)

= 0.

Therefore by Property (iii) of generalized Walsh functions and (3.12)–(3.14) for each

i = 1, 2, 3, . . . , 2s, j = 1, 2, 3, . . . , 2t, and k, l ∈ N0, we have

(3.15)

∫ k+ai

k+ai−1

∫ l+bj

l+bj−1

f1(x, y)ψξ(x)ψη(y) dxdy

=

∫ k+ai

k+ai−1

∫ l+bj

l+bj−1

f1(x, y)ψξ(x)ψn(y)ψ[y](η) dxdy

= ψl(η)

∫ k+ai

k+ai−1

∫ l+bj

l+bj−1

f1(x, y)ψξ(x)ψn(y) dxdy = 0,

(3.16)

∫ k+ai

k+ai−1

∫ l+bj

l+bj−1

f2(x, y)ψξ(x)ψη(y) dxdy

=

∫ k+ai

k+ai−1

∫ l+bj

l+bj−1

f2(x, y)ψm(x)ψ[x](ξ)ψη(y) dxdy

= ψk(ξ)

∫ k+ai

k+ai−1

∫ l+bj

l+bj−1

f2(x, y)ψm(x)ψη(y) dxdy = 0,

and

(3.17)

∫ k+ai

k+ai−1

∫ l+bj

l+bj−1

f3(x, y)ψξ(x)ψη(y) dxdy

=

∫ k+ai

k+ai−1

∫ l+bj

l+bj−1

f3(x, y)ψm(x)ψ[x](ξ)ψn(y)ψ[y](η) dxdy

= ψk(ξ)ψl(η)

∫ k+ai

k+ai−1

∫ l+bj

l+bj−1

f3(x, y)ψm(x)ψn(y) dxdy = 0.

Using (3.15)–(3.17) in definition (3.4) of f̂(ξ, η) we get

|f̂(ξ, η)| =

∣

∣

∣

∣

∫ ∞

0

∫ ∞

0

f(x, y)ψξ(x)ψη(y) dxdy

∣

∣

∣

∣

=

∣

∣

∣

∣

∞
∑

k=0

∞
∑

l=0

2s
∑

i=1

2t
∑

j=1

∫ k+ai

k+ai−1

∫ l+bj

l+bj−1

f(x, y)ψξ(x)ψη(y) dxdy

∣

∣

∣

∣
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=

∣

∣

∣

∣

∞
∑

k=0

∞
∑

l=0

2s
∑

i=1

2t
∑

j=1

∫ k+ai

k+ai−1

∫ l+bj

l+bj−1

(f(x, y)− f1(x, y)

− f2(x, y) + f3(x, y))ψξ(x)ψη(y) dxdy

∣

∣

∣

∣

6

∞
∑

k=0

∞
∑

l=0

2s
∑

i=1

2t
∑

j=1

∫ k+ai

k+ai−1

∫ l+bj

l+bj−1

|f(x, y)− f1(x, y)

− f2(x, y) + f3(x, y)| dxdy

=

∞
∑

k=0

∞
∑

l=0

2s
∑

i=1

2t
∑

j=1

∫ k+ai

k+ai−1

∫ l+bj

l+bj−1

|f(x, y)− f(x, l + bj−1)

− f(k + ai−1, y) + f(k + ai−1, l+ bj−1)| dxdy

6

∞
∑

k=0

∞
∑

l=0

2s
∑

i=1

2t
∑

j=1

V (f, [k + ai−1, k + ai]× [l + bj−1, l + bj ])

× (ai − ai−1)(bj − bj−1)

6

∞
∑

k=0

∞
∑

l=0

V (f, [k, k + 1]× [l, l + 1])
1

2s
1

2t

=
1

2s2t
V (f) 6

4

mn
V (f) 6

16V (f)

ξη
,

in view of Lemma 3.2. Thus, we get

(3.18) |f̂(ξ, η)| 6
16V (f)

ξη
.

The proof of Theorem 3.1 is complete. �

P r o b l e m 3.1. How to estimate f̂(ξ, 0), ξ 6= 0 (or f̂(0, η), η 6= 0) in terms of ξ

(or η), even assuming that f is of bounded variation over (R+)2 in the sense of Hardy

(see [17] for definition)?

P r o b l e m 3.2. What can be said about the exactness of the constant in (3.18)?

4. Extension of the result to (R+)N , N ∈ N

We start by defining the concept of bounded variation for functions on (R+)N ,

N ∈ N in the sense of Vitali.

For a function f : (R+)N → C and for any rectangle R = [α1, β1]× . . .× [αN , βN ]

in (R+)N with 0 6 αi < βi < ∞ for all i = 1, 2, . . . , N , we define ∆f(R) as follows:
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When N = 2, we put

∆f(R) := ∆f([α1, β1]× [α2, β2]) = f(β1, β2)− f(β1, α2)− f(α1, β2) + f(α1, α2);

for N = 3

∆f(R) := ∆f([α1, β1]× [α2, β2]× [α3, β3])

= (f(β1, β2, β3)− f(β1, α2, β3)− f(α1, β2, β3) + f(α1, α2, β3))

− (f(β1, β2, α3)− f(β1, α2, α3)− f(α1, β2, α3) + f(α1, α2, α3))

= ∆[α3,β3]∆f([α1, β1]× [α2, β2])

and successively for any N > 3

∆f(R) := ∆f([α1, β1]× . . .× [αN , βN ])

= ∆[αN ,βN ]∆f([α1, β1]× . . .× [αN−1, βN−1]).

A collection of points (x01, . . . , x
0
N ), (x01, . . . , x

0
N−1, x

1
N ), . . . , (xs11 , . . . , x

sN
N ) of

(R+)N satisfying

0 6 x0j 6 x1j 6 . . . 6 x
sj
j <∞, sj ∈ N, j = 1, 2, . . . , N,

is called a collection of grid points of (R+)N . If P is any such collection of grid points

of (R+)N and f : (R+)N → C is any function, we put

S(P, f) =

s1
∑

i1=1

. . .

sN
∑

iN=1

|∆f([xi1−1
1 , xi11 ]× . . .× [xiN−1

N , xiNN ])|.

Now, a function f : (R+)N → C is said to be of bounded variation over the set

(R+)N in the sense of Vitali, in symbol f ∈ BVV ((R
+)N ), if

(4.1) V (f) = V (f, (R+)N ) := supS(P, f) <∞,

where the supremum is extended over all collections P of grid points of (R+)N , while

V (f) defined in (4.1) is called the total variation of f over (R+)N .

Similarly to the case of functions f ∈ BV(R+) and f ∈ BVV ((R
+)2), the above def-

inition can also be equivalently reformulated as follows. A function f : (R+)N → C

is of bounded variation over (R+)N in the sense of Vitali if and only if f is of bounded

variation over all closed and bounded N -rectangles

[a1, b1]× . . .× [aN , bN ], 0 6 ai < bi <∞, i = 1, 2, . . . , N
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in the sense of Vitali (see e.g. [14] or [5] for definition), and in addition, the set of total

variations of f over all such closed and bounded N -rectangles [a1, b1]× . . .× [aN , bN ]

is bounded. Furthermore, if this is the case, then the supremum of the set of these

total variations over all such closed and bounded N -rectangles [a1, b1]× . . .× [aN , bN ]

is equal to V (f) defined in (4.1).

Next, for a complex-valued Lebesgue integrable function f on (R+)N , in symbol

f ∈ L1((R+)N ), we consider its Walsh-Fourier transform defined as

f̂(ξ1, . . . , ξN ) :=

∫

(R+)N
f(x1, . . . , xN )ψξ1(x1) . . . ψξN (xN ) dx1 . . . dxN ,

where (ξ1, . . . , ξN ) ∈ (R+)N .

In this case also, similar to Lemma 3.1, a version of Riemann-Lebesgue lemma

holds, that is, f̂(ξ1, . . . , ξN ) → 0 as ξ1, . . . , ξN → ∞. But in general, there is no

definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-

Fourier transform of an integrable function on (R+)N can tend to zero as slowly as

we wish (see e.g. [13], 32.47 (b)). Therefore, as in one and two dimensional cases,

it is interesting to know for functions of which subclasses of L1((R+)N ) there is a

definite rate at which the Walsh-Fourier transform tends to zero. In this section, we

state the result for functions of bounded variation on (R+)N in the sense of Vitali,

which is an extension of our theorems in Sections 2 and 3. The proof of this theorem

is similar to that of Theorem 3.1.

Theorem 4.1. If f ∈ L1((R+)N ) ∩ BVV ((R
+)N ) and (ξ1, . . . , ξN ) ∈ (R+)N is

such that
N
∏

i=1

ξi 6= 0, then

f̂(ξ1, . . . , ξN ) = O
(

1
/

N
∏

i=1

ξi

)

, ξ1, . . . , ξN → ∞.

More precisely,

(4.2) |f̂(ξ1, . . . , ξN )| 6 4NV (f)
/

N
∏

i=1

ξi, ξ1, . . . , ξN > 1.

P r o b l e m 4.1. How to estimate f̂(ξ1, . . . , ξN ) if (ξ1, . . . , ξN ) 6= (0, . . . , 0), but

ξj = 0 for some j ∈ {1, . . . , N}, even assuming that f is of bounded variation over

(R+)N in the sense of Hardy (which can be defined similarly as in the case of (R+)2)?

P r o b l e m 4.2. What can be said about the exactness of the constant in (4.2)?
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