Mathematica Bohemica

Sujoy Majumder; Rajib Mandal
Uniqueness of meromorphic functions concerning value sharing of nonlinear differential monomials

Mathematica Bohemica, Vol. 145 (2020), No. 3, 281-304
Persistent URL: http://dml.cz/dmlcz/148350

Terms of use:

© Institute of Mathematics AS CR, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

UNIQUENESS OF MEROMORPHIC FUNCTIONS CONCERNING VALUE SHARING OF NONLINEAR DIFFERENTIAL MONOMIALS

Sujoy Majumder, Rajib Mandal, Raiganj
Received January 19, 2018. Published online July 24, 2019.
Communicated by Stanisłava Kanas

Abstract. With the idea of normal family we study the uniqueness of meromorphic functions f and g when $f^{n}\left(f^{(k)}\right)^{m}-p$ and $g^{n}\left(g^{(k)}\right)^{m}-p$ share two values, where p is any nonzero polynomial. The result of this paper significantly improves and generalizes the result due to A. Banerjee and S. Majumder (2018).

Keywords: uniqueness; meromorphic function; small function; nonlinear differential polynomial; normal family

MSC 2010: 30D35, 30D30

1. Introduction, DEFINITIONS AND RESULTS

In this paper, by meromorphic functions we mean meromorphic functions in the whole complex plane \mathbb{C}. We adopt the standard notations of value distribution theory (see [11]). Let $T(r)=\max \{T(r, f), T(r, g)\}$. The notation $S(r)$ denotes any quantity satisfying $S(r)=o(T(r))$ as $r \rightarrow \infty$, outside of a possible exceptional set of finite linear measure. A meromorphic function $a(z)$ is called a small function with respect to $f(z)$, provided that $T(r, a)=S(r, f)$. We use the symbol $\varrho(f)$ to denote the order of f.

Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions. Let $a(z)$ be a small function with respect to both $f(z)$ and $g(z)$. We say that $f(z)$ and $g(z)$ share $a(z) \mathrm{CM}$ (counting multiplicities) if the zeros of $f(z)-a(z)$ and $g(z)-a(z)$ have the same locations and same multiplicities and we say that $f(z)$ and $g(z)$ share $a(z)$ IM (ignoring multiplicities) if the zeros of $f(z)-a(z)$ and $g(z)-a(z)$ have the same locations but different multiplicities.

For the sake of simplicity, we use the notion $(m)^{*}$ defined by $(m)^{*}=m-1$ when m is a positive integer and $(m)^{*}=[m]$ when m is not integer but positive rational.

Let h be a meromorphic function in \mathbb{C}. Then h is called a normal function if there exists a positive real number M such that $h^{\#}(z) \leqslant M$ for all $z \in \mathbb{C}$, where

$$
h^{\#}(z)=\frac{\left|h^{\prime}(z)\right|}{1+|h(z)|^{2}}
$$

denotes the spherical derivative of h.
Let \mathcal{F} be a family of meromorphic functions in a domain $D \subset \mathbb{C}$. We say that \mathcal{F} is normal in D if every sequence $\left\{f_{n}\right\}_{n} \subseteq \mathcal{F}$ contains a subsequence which converges spherically and uniformly on compact subsets of D (see [20]).

The following theorem well known in value distribution theory was posed by Hayman and settled by several authors almost at the same time (see [4]-[7]).

Theorem A. Let f be a transcendental meromorphic function, $n \in \mathbb{N}$. Then $f^{n} f^{\prime}=1$ has infinitely many solutions.

To investigate the uniqueness result corresponding to Theorem A, both Fang and Hua in [9], Yang and Hua in [24] obtained the following result.

Theorem B. Let f and g be two non-constant entire (meromorphic) functions, $n \in \mathbb{N}$ such that $n \geqslant 6(n \geqslant 11)$. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share $1 C M$, then either $f(z)=c_{1} \mathrm{e}^{c z}, g(z)=c_{2} \mathrm{e}^{-c z}$, where $c, c_{1}, c_{2} \in \mathbb{C} \backslash\{0\}$ satisfying $4\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$, or $f \equiv t g$ for $t \in \mathbb{C} \backslash\{0\}$ such that $t^{n+1}=1$.

We say that a finite value z_{0} is called a fixed point of f if $f\left(z_{0}\right)=z_{0}$. Considering the uniqueness question of entire or meromorphic functions having fixed points, Fang and Qiu in [10] obtained the following result.

Theorem C. Let f and g be two non-constant meromorphic (entire) functions, $n \in \mathbb{N}$ such that $n \geqslant 11(n \geqslant 6)$. If $f^{n}(z) f^{\prime}(z)-z$ and $g^{n}(z) g^{\prime}(z)-z$ share 0 $C M$, then either $f(z)=c_{1} \mathrm{e}^{c z^{2}}, g(z)=c_{2} \mathrm{e}^{-c z^{2}}$, where $c, c_{1}, c_{2} \in \mathbb{C} \backslash\{0\}$ satisfying $4\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$, or $f \equiv \operatorname{tg}$ for $t \in \mathbb{C} \backslash\{0\}$ such that $t^{n+1}=1$.

Gradually the research work in the above directions gained pace and today it has become one of the most prominent branches of uniqueness theory. During the last couple of years a large amount of research papers have been published by different authors (see [5]-[10], [17]-[21], [24], [28], [30], [31]).

We recall the following result obtained by Xu, Yi and Zhang, see [21].

Theorem D. Let f be a transcendental meromorphic function, $k \in \mathbb{N}, n \in \mathbb{N} \backslash\{1\}$. Then $f^{n} f^{(k)}$ takes every finite nonzero value infinitely many times or has infinitely many fixed points.

Recently, Cao and Zhang in [5] proved the following result.

Theorem E. Let f and g be two non-constant meromorphic functions whose zeros are of multiplicities at least $k+1$, where $k \in \mathbb{N}$ such that $1 \leqslant k \leqslant 5$ and $n \in \mathbb{N}$ such that $n \geqslant 10$. If $f^{n} f^{(k)}$ and $g^{n} g^{(k)}$ share $1 C M, f^{(k)}$ and $g^{(k)}$ share $0 C M, f$ and g share $\infty I M$, then one of the following two conclusions holds:
(i) $f \equiv t g$, where $t \in \mathbb{C} \backslash\{0\}$ such that $t^{n+1}=1$;
(ii) $f(z)=c_{1} \mathrm{e}^{c z}, g(z)=c_{2} \mathrm{e}^{-c z}$, where $c, c_{1}, c_{2} \in \mathbb{C} \backslash\{0\}$ such that $(-1)^{k}\left(c_{3} c_{4}\right)^{n+1} \times$ $d^{2 k}=1$.

Regarding Theorem E the following questions are inevitable.
Question 1. Can the lower bound of n in Theorem E be further reduced?
Question 2. Can the condition "Let f and g be two non-constant meromorphic functions whose zeros are of multiplicities at least $k+1, k \in \mathbb{N}$ " in Theorem E be further weakened?

Question 3. Does Theorem E hold for $k \geqslant 6$?
We now explain the notation of weighted sharing as introduced in [13], [14].
Definition 1 ([13], [14]). Let $k \in \mathbb{N} \cup\{0\} \cup\{\infty\}$. For $a \in \mathbb{C} \cup\{\infty\}$ we denote by $E_{k}(a ; f)$ the set of all a-points of f, where an a-point of multiplicity m is counted m times if $m \leqslant k$ and $k+1$ times if $m>k$. If $E_{k}(a ; f)=E_{k}(a ; g)$, we say that f, g share the value a with weight k.

We write f, g share (a, k) to mean that f, g share the value a with weight k. If $a(z)$ is a small function with respect to $f(z)$ and $g(z)$, we define that $f(z)$ and $g(z)$ share $a(z)$ IM or $a(z)$ CM or with weight l when $f(z)-a(z)$ and $g(z)-a(z)$ share $(0,0)$ or $(0, \infty)$ or $(0, l)$, respectively.

Keeping in mind the above questions, in 2018 Banerjee and Majumder obtained the following result (see [3]).

Theorem F. Let f, g be two transcendental meromorphic functions whose zeros are of multiplicities at least k, where $k \in \mathbb{N}$ and $n \in \mathbb{N}$ such that

$$
n>\left(\frac{k^{2}+4 k+4}{k}\right)^{*} .
$$

Let p be a nonzero polynomial such that either $\operatorname{deg}(p) \leqslant n-1$ or zeros of p are of multiplicities at most $n-1$. If $f^{n} f^{(k)}-p$ and $g^{n} g^{(k)}-p$ share $\left(0, k_{1}\right)$, where $k_{1}=((k+2) /(n-k))+3$, and f, g share $\infty I M$ and $f^{(k)}, g^{(k)}$ share $0 C M$, then $f \equiv t g$ for $t \in \mathbb{C} \backslash\{0\}$ such that $t^{n+1}=1$.

Regarding Theorem F, it is natural to ask the following questions which are the motive of the present paper.

Question 4. Can one remove the condition " $\operatorname{deg}(p) \leqslant n-1$ or zeros of p be of multiplicities at most $n-1$ " in Theorem F?

Question 5. What happens when " $f^{n}\left(f^{(k)}\right)^{m}-p$ and $g^{n}\left(g^{(k)}\right)^{m}-p$ " share the value 0 CM , where p is a nonzero polynomial in Theorem F?

Question 6. Can the lower bound of n be further reduced in Theorem F?

2. Main result

In this paper, taking the possible answers of the above questions into background we obtain the following result which significantly improves and generalizes Theorem F.

Theorem 1. Let f, g be two transcendental meromorphic functions having zeros of multiplicities at least k, where $k \in \mathbb{N}$ and let $m, n, k_{1} \in \mathbb{N}$ such that

$$
n \geqslant \frac{k^{2}+2 m k+6}{k}
$$

Let p be a nonzero polynomial. If $f^{n}\left(f^{(k)}\right)^{m}-p$ and $g^{n}\left(g^{(k)}\right)^{m}-p$ share $\left(0, k_{1}\right)$, where $k_{1}=((3+(k-1) m) /(n+m+(m-2) k-1))+3$, and f, g share $\infty I M$ and $f^{(k)}, g^{(k)}$ share $0 C M$, then $f \equiv t g$, where $t \in \mathbb{C} \backslash\{0\}$ such that $t^{n+m}=1$.

We now explain some definitions and notations which are used in the paper.
Definition 2 ([17]). Let $p \in \mathbb{N}$ and $a \in \mathbb{C} \cup\{\infty\}$.
(i) $N(r, a ; f \mid \geqslant p)(\bar{N}(r, a ; f \mid \geqslant p))$ denotes the counting function (reduced counting function) of those a-points of f whose multiplicities are not less than p.
(ii) $N(r, a ; f \mid \leqslant p)(\bar{N}(r, a ; f \mid \leqslant p))$ denotes the counting function (reduced counting function) of those a-points of f whose multiplicities are not greater than p.

Definition 3. We denote by $\bar{N}(r, a ; f \mid=k)$ the reduced counting function of those a-points of f whose multiplicities are exactly k, where $k \in \mathbb{N} \backslash\{1\}$.

Definition 4 ([26]). For $a \in \mathbb{C} \cup\{\infty\}$ and $p \in \mathbb{N}$ we denote by $N_{p}(r, a ; f)$ the sum $\bar{N}(r, a ; f)+\bar{N}(r, a ; f \mid \geqslant 2)+\ldots+\bar{N}(r, a ; f \mid \geqslant p)$. Clearly $N_{1}(r, a ; f)=\bar{N}(r, a ; f)$.

Definition 5 ([1]). Let f and g be two non-constant meromorphic functions such that f and g share 1 IM . Let z_{0} be a 1-point of f with multiplicity p and a 1-point of g with multiplicity q. We denote by $\bar{N}_{L}(r, 1 ; f)$ the counting function of those 1-points of f and g where $p>q$, by $N_{E}^{1)}(r, 1 ; f)$ the counting function of those 1-points of f and g where $p=q=1$ and by $\bar{N}_{E}^{(2}(r, 1 ; f)$ the counting function of those 1-points of f and g where $p=q \geqslant 2$; each point in these counting functions is counted only once. In the same way we can define $\bar{N}_{L}(r, 1 ; g), N_{E}^{1)}(r, 1 ; g), \bar{N}_{E}^{(2}(r, 1 ; g)$.

Definition 6 ([14]). Let f, g share a value $a \mathrm{IM}$. We denote by $\bar{N}_{*}(r, a ; f, g)$ the reduced counting function of those a-points of f whose multiplicities differ from the multiplicities of the corresponding a-points of g. Clearly $\bar{N}_{*}(r, a ; f, g) \equiv \bar{N}_{*}(r, a ; g, f)$ and $\bar{N}_{*}(r, a ; f, g)=\bar{N}_{L}(r, a ; f)+\bar{N}_{L}(r, a ; g)$.

3. LEMMAS

In this section we present some lemmas which will be needed in the sequel. Let F, G be two non-constant meromorphic functions. Henceforth, we shall denote by H and V the following two functions:

$$
\begin{equation*}
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
V=\left(\frac{F^{\prime}}{F-1}-\frac{F^{\prime}}{F}\right)-\left(\frac{G^{\prime}}{G-1}-\frac{G^{\prime}}{G}\right)=\frac{F^{\prime}}{F(F-1)}-\frac{G^{\prime}}{G(G-1)} \tag{3.2}
\end{equation*}
$$

Lemma 1 ([29]). Let f be a non-constant meromorphic function and $k, p \in \mathbb{N}$. Then

$$
N_{p}\left(r, 0 ; f^{(k)}\right) \leqslant N_{p+k}(r, 0 ; f)+k \bar{N}(r, \infty ; f)+S(r, f)
$$

Lemma 2 ([16]). If $N\left(r, 0 ; f^{(k)} \mid f \neq 0\right)$ denotes the counting function of those zeros of $f^{(k)}$ which are not the zeros of f, where a zero of $f^{(k)}$ is counted according to its multiplicity, then

$$
N\left(r, 0 ; f^{(k)} \mid f \neq 0\right) \leqslant k \bar{N}(r, \infty ; f)+N(r, 0 ; f \mid<k)+k \bar{N}(r, 0 ; f \mid \geqslant k)+S(r, f)
$$

Lemma 3 ([11]). Suppose that f is a non-constant meromorphic function, $k \in$ $\mathbb{N} \backslash\{1\}$. If

$$
N(r, \infty, f)+N(r, 0 ; f)+N\left(r, 0 ; f^{(k)}\right)=S\left(r, \frac{f^{\prime}}{f}\right)
$$

then $f(z)=\mathrm{e}^{a z+b}$, where $a, b \in \mathbb{C}, a \neq 0$.
Lemma 4 ([23]). Let f be a non-constant meromorphic function and $P(f)=$ $a_{0}+a_{1} f+a_{2} f^{2}+\ldots+a_{n} f^{n}$, where $a_{0}, a_{1}, a_{2} \ldots, a_{n} \in \mathbb{C}\left(a_{n} \neq 0\right)$. Then $T(r, P(f))=$ $n T(r, f)+O(1)$.

Lemma 5 ([15]). Let f be a transcendental meromorphic function and $\alpha(\alpha \not \equiv 0$, $\alpha \not \equiv \infty$) be a small function of f. Then $\psi=\alpha(f)^{n}\left(f^{(k)}\right)^{p}$ is non-constant, where $k \in \mathbb{N}, n \in \mathbb{N} \cup\{0\}$ and $p \in \mathbb{N}$.

Lemma 6 ([25]). Let $f_{j}, j=1,2,3$ be meromorphic and f_{1} be non-constant. Suppose that

$$
\sum_{j=1}^{3} f_{j} \equiv 1
$$

and

$$
\sum_{j=1}^{3} N\left(r, 0 ; f_{j}\right)+2 \sum_{j=1}^{3} \bar{N}\left(r, \infty ; f_{j}\right)<(\lambda+o(1)) T_{1}(r)
$$

as $r \rightarrow \infty, r \in I$, where I is a set of $r \in(0, \infty)$ with infinite linear measure, $\lambda<1$ and $T_{1}(r)=\max _{1 \leqslant j \leqslant 3} T\left(r, f_{j}\right)$. Then $f_{2} \equiv 1$ or $f_{3} \equiv 1$.

Lemma 7 ([25], Theorem 1.24). Let f be a non-constant meromorphic function and let $k \in \mathbb{N}$. Suppose that $f^{(k)} \not \equiv 0$. Then $N\left(r, 0 ; f^{(k)}\right) \leqslant N(r, 0 ; f)+k \bar{N}(r, \infty ; f)+$ $S(r, f)$.

Lemma 8. Let f, g be two transcendental meromorphic functions, whose zeros are of multiplicities at least k, where $k \in \mathbb{N}$ and $F=f^{n}\left(f^{(k)}\right)^{m} / p, G=g^{n}\left(g^{(k)}\right)^{m} / p$, where p is a nonzero polynomial and $m, n \in \mathbb{N}$ such that $n+m+(m-2) k>1$. Suppose $H \not \equiv 0$. If F, G share $\left(1, k_{1}\right)$ and f, g share $\infty I M$, where $0 \leqslant k_{1} \leqslant \infty$, then

$$
\begin{aligned}
\bar{N}(r, \infty ; f) \leqslant & \frac{k+1}{k(n+m+(m-2) k-1)}(T(r, f)+T(r, g)) \\
& +\frac{1}{n+m+(m-2) k-1} \bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g)
\end{aligned}
$$

Proof. First we suppose ∞ is a Picard exceptional value of both f and g. Then the lemma follows immediately. Next we suppose ∞ is not a Picard exceptional value of both f and g. We claim that $V \not \equiv 0$. If possible, suppose $V \equiv 0$. Then by integration we obtain

$$
1-\frac{1}{F} \equiv A\left(1-\frac{1}{G}\right), \quad A \in \mathbb{C} \backslash\{0\}
$$

Let z_{0} be a pole of f with multiplicity q and a pole of g with multiplicity r such that $p\left(z_{0}\right) \neq 0$. Then from the definition of F and G we have $1 / F\left(z_{0}\right)=0$ and $1 / G\left(z_{0}\right)=0$. So $A=1$ and hence $F \equiv G$. Since $H \not \equiv 0$, it follows that $F \not \equiv G$. Therefore we arrive at a contradiction. Hence $V \not \equiv 0$. Also $m(r, V)=S(r, f)+S(r, g)$.

Clearly z_{0} is a pole of F with multiplicity $(n+m) q+m k$ and a pole of G with multiplicity $(n+m) r+m k$. Clearly

$$
\frac{F^{\prime}(z)}{F(z)(F(z)-1)}=O\left(\left(z-z_{0}\right)^{(n+m) q+m k-1}\right)
$$

and

$$
\frac{G^{\prime}(z)}{G(z)(G(z)-1)}=O\left(\left(z-z_{0}\right)^{(n+m) r+m k-1}\right)
$$

Consequently,

$$
V(z)=O\left(\left(z-z_{0}\right)^{(n+m) t+m k-1}\right),
$$

where $t=\min \{q, r\}$. Since f and g share $\infty \mathrm{IM}$, from the definition of V it is clear that z_{0} is a zero of V with multiplicity at least $n+m+m k-1$. So from the definition of V and using Lemma 2 we have

$$
\begin{aligned}
(n+ & m+m k-1) \bar{N}(r, \infty ; f) \\
\leqslant & N(r, 0 ; V)+O(\log r) \leqslant T(r, V)+S(r, f)+S(r, g) \\
\leqslant & N(r, \infty ; V)+S(r, f)+S(r, g) \\
\leqslant & \bar{N}(r, 0 ; F)+\bar{N}(r, 0 ; G)+\bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g) \\
\leqslant & \bar{N}(r, 0 ; f)+\bar{N}\left(r, 0 ; f^{(k)} \mid f \neq 0\right)+\bar{N}(r, 0 ; g)+\bar{N}\left(r, 0 ; g^{(k)} \mid g \neq 0\right) \\
& +\bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g) \\
\leqslant & \bar{N}(r, 0 ; f)+k \bar{N}(r, \infty ; f)+N_{k}(r, 0 ; f)+\bar{N}(r, 0 ; g)+k \bar{N}(r, \infty ; g) \\
& +N_{k}(r, 0 ; g)+\bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g) \\
\leqslant & \frac{k+1}{k} N(r, 0 ; f)+\frac{k+1}{k} N(r, 0 ; g)+2 k \bar{N}(r, \infty ; f) \\
& +\bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g) \\
\leqslant & \frac{k+1}{k}(T(r, f)+T(r, g))+2 k \bar{N}(r, \infty ; f)+\bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g)
\end{aligned}
$$

Hence the lemma follows.

Lemma 9. Let f be a non-constant meromorphic function and let $F=f^{n}\left(f^{(k)}\right)^{m}$, where $m, n, k \in \mathbb{N}$ such that $n>m$. Then

$$
(n-m) T(r, f) \leqslant T(r, F)-m N(r, \infty ; f)-N\left(r, 0 ;\left(f^{(k)}\right)^{m}\right)+S(r, f)
$$

Proof. Note that

$$
\begin{aligned}
N(r, \infty ; F) & =N\left(r, \infty ; f^{n}\right)+N\left(r, \infty ;\left(f^{(k)}\right)^{m}\right) \\
& =N\left(r, \infty ; f^{n}\right)+m N(r, \infty ; f)+m k \bar{N}(r, \infty ; f)+S(r, f),
\end{aligned}
$$

i.e.

$$
N\left(r, \infty ; f^{n}\right)=N(r, \infty, F)-m N(r, \infty ; f)-m k \bar{N}(r, \infty, f)+S(r, f)
$$

Also

$$
\begin{aligned}
m\left(r, f^{n}\right)= & m\left(r, \frac{F}{\left(f^{(k)}\right)^{m}}\right) \leqslant m(r, F)+m\left(r, \frac{1}{\left(f^{(k)}\right)^{m}}\right)+S(r, f) \\
= & m(r, F)+T\left(r,\left(f^{(k)}\right)^{m}\right)-N\left(r, 0 ;\left(f^{(k)}\right)^{m}\right)+S(r, f) \\
= & m(r, F)+N\left(r, \infty ;\left(f^{(k)}\right)^{m}\right)+m\left(r,\left(f^{(k)}\right)^{m}\right)-N\left(r, 0 ;\left(f^{(k)}\right)^{m}\right)+S(r, f) \\
\leqslant & m(r, F)+m N(r, \infty ; f)+m k \bar{N}(r, \infty ; f)+m\left(r, \frac{\left(f^{(k)}\right)^{m}}{f^{m}}\right)+m\left(r, f^{m}\right) \\
& -N\left(r, 0 ;\left(f^{(k)}\right)^{m}\right)+S(r, f) \\
= & m(r, F)+m T(r, f)+m k \bar{N}(r, \infty ; f)-N\left(r, 0 ;\left(f^{(k)}\right)^{m}\right)+S(r, f) .
\end{aligned}
$$

Now

$$
\begin{aligned}
n T(r, f) & =N\left(r, \infty ; f^{n}\right)+m\left(r, f^{n}\right) \\
& \leqslant T(r, F)+m T(r, f)-m N(r, \infty ; f)-N\left(r, 0 ;\left(f^{(k)}\right)^{m}\right)+S(r, f),
\end{aligned}
$$

i.e.

$$
(n-m) T(r, f) \leqslant T(r, F)-m N(r, \infty ; f)-N\left(r, 0 ;\left(f^{(k)}\right)^{m}\right)+S(r, f)
$$

This completes the lemma.

Lemma 10. Let f be a transcendental meromorphic function and let $a(z)$ $(a(z) \not \equiv 0, a(z) \not \equiv \infty)$ be a small function of f. If $n>m+1$, then $f^{n}\left(f^{(k)}\right)^{m}-a$ has infinitely many zeros, where $k, m, n \in \mathbb{N}$.

Proof. Let $F=f^{n}\left(f^{(k)}\right)^{m}$. Now in view of Lemma 9 and the second fundamental theorem for small functions (see [22]) we get

$$
\begin{aligned}
(n-m) T(r, f) \leqslant & T(r, F)-m N(r, \infty ; f)-N\left(r, 0 ;\left(f^{(k)}\right)^{m}\right)+S(r, f) \\
\leqslant & \bar{N}(r, 0 ; F)+\bar{N}(r, \infty ; F)+\bar{N}(r, a ; F)-m N(r, \infty ; f) \\
& -N\left(r, 0 ;\left(f^{(k)}\right)^{m}\right)+(\varepsilon+o(1)) T(r, f) \\
\leqslant & \bar{N}(r, 0 ; f)+\bar{N}\left(r, 0 ;\left(f^{(k)}\right)^{m}\right)+\bar{N}(r, \infty ; f)+\bar{N}(r, a ; F) \\
& -m N(r, \infty ; f)-N\left(r, 0 ;\left(f^{(k)}\right)^{m}\right)+(\varepsilon+o(1)) T(r, f) \\
\leqslant & \bar{N}(r, 0 ; f)+\bar{N}(r, a ; F)+(\varepsilon+o(1)) T(r, f) \\
\leqslant & T(r, f)+\bar{N}(r, a ; F)+(\varepsilon+o(1)) T(r, f)
\end{aligned}
$$

for all $\varepsilon>0$. Take $\varepsilon<1$. Since $n>m+1$, from the above one can easily say that $F-a$ has infinitely many zeros. This completes the lemma.

Remark 7. By Lemma 10, one can easily say that $f^{n}\left(f^{(k)}\right)^{m} a^{-1}-1$ has infinitely many zeros.

Lemma 11 ([12]). Let f and g be two non-constant meromorphic functions. Suppose that f and g share 0 and $\infty C M, f^{(k)}$ and $g^{(k)}$ share $0 C M$ for $k=1,2, \ldots, 6$. Then f and g satisfy one of the following cases:
(i) $f \equiv t g$, where $t \in \mathbb{C} \backslash\{0\}$,
(ii) $f(z)=\mathrm{e}^{a z+b}, g(z)=\mathrm{e}^{c z+d}$, where a, b, c and $d \in \mathbb{C},(a, c \neq 0)$,
(iii) $f(z)=a /\left(1-b \mathrm{e}^{\alpha(z)}\right), g(z)=a /\left(\mathrm{e}^{-\alpha(z)}-b\right)$, where $a, b \in \mathbb{C} \backslash\{0\}$ and α is a non-constant entire function,
(iv) $f(z)=a\left(1-b \mathrm{e}^{c z}\right), g(z)=d\left(\mathrm{e}^{-c z}-b\right)$, where a, b, c and $d \in \mathbb{C} \backslash\{0\}$.

Lemma 12. Let f and g be two transcendental meromorphic functions having zeros of multiplicities at least k, where $k \in \mathbb{N}$ and let $m, n \in \mathbb{N}$. Let $f^{(k)}, g^{(k)}$ share 0 $C M$ and f, g share ∞ IM. If $f^{n}\left(f^{(k)}\right)^{m} \equiv g^{n}\left(g^{(k)}\right)^{m}$, then $f \equiv t g$, where $t \in \mathbb{C} \backslash\{0\}$ such that $t^{n+m}=1$.

Proof. Suppose

$$
\begin{equation*}
f^{n}\left(f^{(k)}\right)^{m} \equiv g^{n}\left(g^{(k)}\right)^{m} \tag{3.3}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\frac{f^{n}}{g^{n}} \equiv \frac{\left(g^{(k)}\right)^{m}}{\left(f^{(k)}\right)^{m}} \tag{3.4}
\end{equation*}
$$

Since f and g share $\infty \mathrm{IM}$, it follows from (3.3) that f and g share $\infty \mathrm{CM}$ and so $f^{(k)}$ and $g^{(k)}$ share ∞ CM. Again since $f^{(k)}$ and $g^{(k)}$ share 0 CM , it follows that f and g share 0 CM also. Let $h_{1}=f / g$ and $h_{2}=f^{(k)} / g^{(k)}$. Then $h_{1} \neq 0, \infty$ and $h_{2} \neq 0, \infty$. From (3.4) we see that

$$
\begin{equation*}
h_{1}^{n} h_{2}^{m} \equiv 1 . \tag{3.5}
\end{equation*}
$$

First we suppose h_{1} is a non-constant entire function. Clearly h_{2} is also a nonconstant entire function. Let $F_{1}=h_{1}^{n}$ and $G_{1}=h_{2}^{m}$. Also from (3.5) we get

$$
\begin{equation*}
F_{1} G_{1} \equiv 1 \tag{3.6}
\end{equation*}
$$

Clearly $F_{1} \not \equiv d_{1} G_{1}$, where $d_{1} \in \mathbb{C} \backslash\{0\}$, otherwise F_{1} will be a constant and so h_{1} will be a constant.

Since $F_{1} \neq 0, \infty$ and $G_{1} \neq 0, \infty$, then there exist two non-constant entire functions α and β such that $F_{1}=\mathrm{e}^{\alpha}$ and $G_{1}=\mathrm{e}^{\beta}$. Now from (3.6) we see that $\alpha+\beta=C$, where $C \in \mathbb{C}$. Therefore $\alpha^{\prime}=-\beta^{\prime}$. Note that $F_{1}^{\prime}=\alpha^{\prime} \mathrm{e}^{\alpha}$ and $G_{1}^{\prime}=\beta^{\prime} \mathrm{e}^{\beta}$. This shows that F_{1}^{\prime} and G_{1}^{\prime} share 0 CM . Note that $F_{1} \neq 0, F_{1} \neq \infty, G_{1} \neq 0, G_{1} \neq \infty$ and $F_{1} \not \equiv d_{1} G_{1}$, where $d_{1} \in \mathbb{C} \backslash\{0\}$. Now in view of Lemma 11 we have

$$
F_{1}(z)=c_{1} \mathrm{e}^{a z} \quad \text { and } \quad G_{1}(z)=c_{2} \mathrm{e}^{-a z}
$$

where $a, c_{1}, c_{2} \in \mathbb{C} \backslash\{0\}$ such that $c_{1} c_{2}=1$. Since

$$
\left(\frac{f(z)}{g(z)}\right)^{n}=c_{1} \mathrm{e}^{a z} \quad \text { and } \quad\left(\frac{f^{(k)}(z)}{g^{(k)}(z)}\right)^{m}=c_{2} \mathrm{e}^{-a z}
$$

it follows that

$$
\begin{equation*}
\frac{f(z)}{g(z)}=t_{1} \mathrm{e}^{a z / n}=t_{1} \mathrm{e}^{c z} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{f^{(k)}(z)}{g^{(k)}(z)}=t_{2} \mathrm{e}^{-a z / m}=t_{2} \mathrm{e}^{d z} \tag{3.8}
\end{equation*}
$$

where $c, d, t_{1}, t_{2} \in \mathbb{C} \backslash\{0\}$ such that $t_{1}^{n}=c_{1}, t_{2}^{m}=c_{2}, c=a / n$ and $d=-a / m$. Let

$$
\begin{equation*}
\Phi_{1}=\frac{f^{(k+1)}}{f^{(k)}}-\frac{g^{(k+1)}}{g^{(k)}} . \tag{3.9}
\end{equation*}
$$

From (3.8) we see that

$$
\begin{equation*}
\Phi_{1}(z)=d \tag{3.10}
\end{equation*}
$$

Again from (3.7) we see that

$$
f^{(j)}(z)=t_{1} \sum_{i=0}^{j}{ }^{j} C_{i}\left(\mathrm{e}^{c z}\right)^{(j-i)} g^{(i)}(z)
$$

where we define $g^{(0)}(z)=g(z)$. Consequently, we have

$$
\begin{align*}
f^{(k+1)}(z)= & t_{1}\left(c^{k+1} \mathrm{e}^{c z} g(z)+(k+1) c^{k} \mathrm{e}^{c z} g^{\prime}(z)+\ldots+\frac{k(k+1)}{2} c^{2} \mathrm{e}^{c z} g^{(k-1)}\right. \tag{3.11}\\
& \left.+(k+1) c \mathrm{e}^{c z} g^{(k)}(z)+\mathrm{e}^{c z} g^{(k+1)}(z)\right)
\end{align*}
$$

and

$$
\begin{align*}
f^{(k)}(z)= & t_{1}\left(c^{k} \mathrm{e}^{c z} g(z)+k c^{k-1} \mathrm{e}^{c z} g^{\prime}(z)+\ldots+\frac{(k-1) k}{2} c^{2} \mathrm{e}^{c z} g^{(k-2)}\right. \tag{3.12}\\
& \left.+k c \mathrm{e}^{c z} g^{(k-1)}(z)+\mathrm{e}^{c z} g^{(k)}(z)\right)
\end{align*}
$$

Now from (3.9), (3.11) and (3.12) we have

$$
\begin{equation*}
\Phi_{1}=\frac{F_{2}-G_{2}+(k+1) c g^{(k)} g^{(k)}-k c g^{(k-1)} g^{(k+1)}}{F_{3}+g^{(k)} g^{(k)}} \tag{3.13}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{2}=c^{k+1} g g^{(k)}+(k+1) c^{k} g^{\prime} g^{(k)}+\ldots+\frac{k(k+1)}{2} c^{2} g^{(k-1)} g^{(k)}, \\
& G_{2}=c^{k} g g^{(k+1)}+k c^{k-1} g^{\prime} g^{(k+1)}+\ldots+\frac{(k-1) k}{2} c^{2} g^{(k-2)} g^{(k+1)}
\end{aligned}
$$

and

$$
F_{3}=c^{k} g g^{(k)}+\ldots+k c g^{(k-1)} g^{(k)}
$$

Let z_{p} be a zero of $g(z)$ with multiplicity $p(p \geqslant k)$. Then the Taylor expansion of g about z_{p} is

$$
\begin{equation*}
g(z)=b_{p}\left(z-z_{p}\right)^{p}+b_{p+1}\left(z-z_{p}\right)^{p+1}+b_{p+2}\left(z-z_{p}\right)^{p+2}+\ldots, \quad b_{p} \neq 0 \tag{3.14}
\end{equation*}
$$

We now consider the following two cases.

Case 1. Suppose $p=k$. Then

$$
\begin{equation*}
g^{(k)}(z)=k!b_{k}+(k+1)!b_{k+1}\left(z-z_{k}\right)+\ldots \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{(k+1)}(z)=(k+1)!b_{k+1}+(k+2)!b_{k+2}\left(z-z_{k}\right)+\ldots \tag{3.16}
\end{equation*}
$$

Now from (3.13), (3.15) and (3.16) we have

$$
\begin{equation*}
\Phi_{1}\left(z_{k}\right)=c \frac{(k+1)(k!)^{2} b_{k}^{2}}{(k!)^{2} b_{k}^{2}}=c(k+1) . \tag{3.17}
\end{equation*}
$$

Therefore we arrive at a contradiction from (3.10) and (3.17).
Case 2. Suppose $p \geqslant k+1$. Then

$$
\begin{aligned}
g^{(k-2)}(z) & =p(p-1) \ldots(p-k+3) b_{p}\left(z-z_{p}\right)^{(p-k+2)}+\ldots \\
g^{(k-1)}(z) & =p(p-1) \ldots(p-k+2) b_{p}\left(z-z_{p}\right)^{(p-k+1)}+\ldots \\
g^{(k)}(z) & =p(p-1) \ldots(p-k+1) b_{p}\left(z-z_{p}\right)^{(p-k)}+\ldots
\end{aligned}
$$

and

$$
g^{(k+1)}(z)=p(p-1) \ldots(p-k) b_{p}\left(z-z_{p}\right)^{(p-k-1)}+\ldots
$$

Therefore

$$
\begin{align*}
g^{(k)}(z) g^{(k)}(z) & =K b_{p}^{2}\left(z-z_{p}\right)^{2 p-2 k}+\ldots \tag{3.18}\\
g^{(k-1)}(z) g^{(k+1)}(z) & =\frac{p-k}{p-k+1} K b_{p}^{2}\left(z-z_{p}\right)^{2 p-2 k}+\ldots \tag{3.19}
\end{align*}
$$

where $K=(p(p-1) \ldots(p-k+1))^{2}$. Also

$$
F_{2}(z)=O\left(\left(z-z_{p}\right)^{2 p-2 k+1}\right), \quad G_{2}(z)=O\left(\left(z-z_{p}\right)^{2 p-2 k+1}\right)
$$

and

$$
F_{3}(z)=O\left(\left(z-z_{p}\right)^{2 p-2 k+1}\right)
$$

Now from (3.13), (3.18) and (3.19) we have

$$
\begin{equation*}
\Phi_{1}\left(z_{p}\right)=\frac{(k+1) c K b_{p}^{2}-k c(p-k)(p-k+1)^{-1} K b_{p}^{2}}{K b_{p}^{2}}=c \frac{p+1}{p-k+1} . \tag{3.20}
\end{equation*}
$$

Therefore we arrive at a contradiction from (3.10) and (3.20).
Thus, in either cases one can easily say that g has no zeros. Since f and g share 0 CM, it follows that f and g have no zeros. But this is impossible because the zeros of f and g are of multiplicities at least k. Hence h_{1} is constant. Then from (3.3) we get $h_{1}^{n+m}=1$. Therefore we have $f \equiv t g$, where $t \in \mathbb{C} \backslash\{0\}$ such that $t^{n+m}=1$. This completes the lemma.

Lemma 13 ([6]). Let f be a meromorphic function on \mathbb{C} with finitely many poles. If f has bounded spherical derivative on \mathbb{C}, then f is of order at most 1 .

Lemma 14 (Zalcman [19], [27]). Let F be a family of meromorphic functions in the unit disc Δ and α be a real number satisfying $-1<\alpha<1$. Then if F is not normal at a point $z_{0} \in \Delta$, there exist for each α with $-1<\alpha<1$
(i) points $z_{n} \in \Delta, z_{n} \rightarrow z_{0}$,
(ii) positive numbers $\varrho_{n}, \varrho_{n} \rightarrow 0^{+}$and
(iii) functions $f_{n} \in F$,
such that $\varrho_{n}^{-\alpha} f_{n}\left(z_{n}+\varrho_{n} \zeta\right) \rightarrow g(\zeta)$ spherically uniformly on a compact subset of \mathbb{C}, where g is a non-constant meromorphic function. The function g may be taken to satisfy the normalisation $g^{\#}(\zeta) \leqslant g^{\#}(0)=1, \zeta \in \mathbb{C}$.

Lemma 15. Let f and g be two transcendental meromorphic functions having zeros of multiplicities at least k, where $k \in \mathbb{N}$. Also let $f^{n}\left(f^{(k)}\right)^{m}-p, g^{n}\left(g^{(k)}\right)^{m}-p$ share $0 C M$ and $f^{(k)}, g^{(k)}$ share $0 C M$ and f, g share $\infty I M$, where p is a nonzero polynomial and $m, n \in \mathbb{N}$. Then $f^{n}\left(f^{(k)}\right)^{m} g^{n}\left(g^{(k)}\right)^{m} \not \equiv p^{2}$.

Proof. Suppose

$$
\begin{equation*}
f^{n}\left(f^{(k)}\right)^{m} g^{n}\left(g^{(k)}\right)^{m} \equiv p^{2} \tag{3.21}
\end{equation*}
$$

Since f and g share $\infty \mathrm{IM}$, from (3.21) one can easily say that f and g are transcendental entire functions. We consider the following cases.

Case 1. Let $\operatorname{deg}(p)=l(\geqslant 1)$. Now from (3.21) it follows that $N(r, 0 ; f)=O(\log r)$ and $N(r, 0 ; g)=O(\log r)$. Let

$$
\begin{equation*}
F=\frac{f^{n}\left(f^{(k)}\right)^{m}}{p} \quad \text { and } \quad G=\frac{g^{n}\left(g^{(k)}\right)^{m}}{p} \tag{3.22}
\end{equation*}
$$

From (3.21) we get

$$
\begin{equation*}
F G \equiv 1 \tag{3.23}
\end{equation*}
$$

If $F \equiv C_{1} G$, where $C_{1} \in \mathbb{C} \backslash\{0\}$, then F is a constant, which is impossible by Lemma 5. Hence $F \not \equiv C_{1} G$. Let

$$
\begin{equation*}
\Phi=\frac{f^{n}\left(f^{(k)}\right)^{m}-p}{g^{n}\left(g^{(k)}\right)^{m}-p} \tag{3.24}
\end{equation*}
$$

Since f and g are transcendental entire functions, it follows that $f^{n}\left(f^{(k)}\right)^{m}-p \neq \infty$ and $g^{n}\left(g^{(k)}\right)^{m}-p \neq \infty$. Also since $f^{n}\left(f^{(k)}\right)^{m}-p$ and $g^{n}\left(g^{(k)}\right)^{m}-p$ share 0 CM , we deduce from (3.24) that

$$
\begin{equation*}
\Phi \equiv \mathrm{e}^{\gamma} \tag{3.25}
\end{equation*}
$$

where γ is an entire function. Let $f_{1}=F, f_{2}=-\mathrm{e}^{\gamma} G$ and $f_{3}=\mathrm{e}^{\gamma}$. Here f_{1} is transcendental. Now from (3.25) we have $f_{1}+f_{2}+f_{3} \equiv 1$. Hence by Lemma 7 we get

$$
\begin{aligned}
\sum_{j=1}^{3} N\left(r, 0 ; f_{j}\right)+2 \sum_{j=1}^{3} \bar{N}\left(r, \infty ; f_{j}\right) & \leqslant N(r, 0 ; F)+N\left(r, 0 ; \mathrm{e}^{\gamma} G\right)+O(\log r) \\
& \leqslant(\lambda+o(1)) T_{1}(r)
\end{aligned}
$$

as $r \rightarrow \infty, r \in I, \lambda<1$ and $T_{1}(r)=\max _{1 \leqslant j \leqslant 3} T\left(r, f_{j}\right)$.
So by Lemma 6 , we get either $\mathrm{e}^{\gamma} G \equiv-1$ or $\mathrm{e}^{\gamma} \equiv 1$. But here the only possibility is that $\mathrm{e}^{\gamma} G \equiv-1$, i.e. $g^{n}\left(g^{(k)}\right)^{m} \equiv-\mathrm{e}^{-\gamma} p$ and so from (3.21) we obtain

$$
F \equiv \mathrm{e}^{\gamma_{1}} G, \quad \text { i.e. } \quad f^{n}\left(f^{(k)}\right)^{m} \equiv \mathrm{e}^{\gamma_{1}} g^{n}\left(g^{(k)}\right)^{m}
$$

where γ_{1} is a non-constant entire function. Then from (3.21) we get

$$
\begin{equation*}
f^{n}\left(f^{(k)}\right)^{m} \equiv c \mathrm{e}^{\gamma_{1} / 2} p \quad \text { and } \quad g^{n}\left(g^{(k)}\right)^{m} \equiv c \mathrm{e}^{-\gamma_{1} / 2} p \tag{3.26}
\end{equation*}
$$

where $c= \pm 1$. This shows that $f^{n}\left(f^{(k)}\right)^{m}$ and $g^{n}\left(g^{(k)}\right)^{m}$ share 0 CM. Clearly from (3.26) we see F and G are entire functions having no zeros.

Let z_{p} be a zero of f of multiplicity $p(p \geqslant k)$ and z_{q} be a zero of g of multiplicity q $(q \geqslant k)$. Clearly z_{p} will be a zero of $f^{n}\left(f^{(k)}\right)^{m}$ of multiplicity $(n+m) p-k m$ and z_{q} will be a zero of $g^{n}\left(g^{(k)}\right)^{m}$ of multiplicity $(n+m) q-k m$. Since $f^{n}\left(f^{(k)}\right)^{m}$ and $g^{n}\left(g^{(k)}\right)^{m}$ share 0 CM , it follows that $z_{p}=z_{q}$ and $p=q$. Consequently, f and g share 0 CM . Since $N(r, 0 ; f)=O(\log r)$ and $N(r, 0 ; g)=O(\log r)$, we can take

$$
\begin{equation*}
f(z)=h(z) \mathrm{e}^{\alpha(z)} \quad \text { and } \quad g(z)=h(z) \mathrm{e}^{\beta(z)} \tag{3.27}
\end{equation*}
$$

where h is a non-constant polynomial and α, β are two non-constant entire functions.
We deduce from (3.27) that

$$
\begin{equation*}
f^{n}\left(f^{(k)}\right)^{m} \equiv P_{1}\left(h, h^{\prime}, \ldots, h^{(k)}, \alpha^{\prime}, \alpha^{\prime \prime}, \ldots, \alpha^{(k)}\right) \mathrm{e}^{(n+m) \alpha} \tag{3.28}
\end{equation*}
$$

where $P_{1}\left(h, h^{\prime}, \ldots, h^{(k)}, \alpha^{\prime}, \alpha^{\prime \prime}, \ldots, \alpha^{(k)}\right)$ is a differential polynomial in $h, h^{\prime}, \ldots, h^{(k)}$, $\alpha^{\prime}, \alpha^{\prime \prime}, \ldots, \alpha^{(k)}$ and

$$
\begin{equation*}
g^{n}\left(g^{(k)}\right)^{m} \equiv P_{2}\left(h, h^{\prime}, \ldots, h^{(k)}, \beta^{\prime}, \beta^{\prime \prime}, \ldots, \beta^{(k)}\right) \mathrm{e}^{(n+m) \beta} \tag{3.29}
\end{equation*}
$$

where $P_{2}\left(h, h^{\prime}, \ldots, h^{(k)}, \beta^{\prime}, \beta^{\prime \prime}, \ldots, \beta^{(k)}\right)$ is a differential polynomial in $h, h^{\prime}, \ldots, h^{(k)}$, $\beta^{\prime}, \beta^{\prime \prime}, \ldots, \beta^{(k)}$.

Let $\mathcal{F}=\left\{F_{\omega}\right\}$ and $\mathcal{G}=\left\{G_{\omega}\right\}$, where $F_{\omega}(z)=F(z+\omega)$ and $G_{\omega}(z)=G(z+\omega)$, $z \in \mathbb{C}$. Clearly \mathcal{F} and \mathcal{G} are two families of entire functions defined on \mathbb{C}. We now consider the following two sub-cases.

Sub-case 1.1. Suppose that one of the families \mathcal{F} and \mathcal{G}, say \mathcal{F}, is normal on \mathbb{C}. Then by Marty's theorem $F^{\#}(\omega)=F_{\omega}^{\#}(0) \leqslant M$ for some $M>0$ and for all $\omega \in \mathbb{C}$. Hence by Lemma 13 we have that F is of order at most 1. Now from (3.23) we have

$$
\begin{equation*}
\varrho\left(f^{n}\left(f^{(k)}\right)^{m}\right)=\varrho(F)=\varrho(G)=\varrho\left(g^{n}\left(g^{(k)}\right)^{m}\right) \leqslant 1 . \tag{3.30}
\end{equation*}
$$

Since F and G are non-constant entire functions having no zeros and $\varrho(F)=$ $\varrho(G) \leqslant 1$, we can take

$$
\begin{equation*}
f^{n}\left(f^{(k)}\right)^{m}=c_{1} p \mathrm{e}^{a z} \quad \text { and } \quad g^{n}\left(g^{(k)}\right)^{m}=c_{2} p \mathrm{e}^{b z}, \text { where } a, b, c_{1}, c_{2} \in \mathbb{C} \backslash\{0\} . \tag{3.31}
\end{equation*}
$$

From (3.21) we see that $a+b=0$. We claim that both $(n+m) \alpha(z)-a z$ and $(n+m) \beta(z)-b z$ are constants. If possible, suppose both $(n+m) \alpha(z)-a z$ and $(n+m) \beta(z)-b z$ are non-constants. Let $\alpha_{1}(z)=(n+m) \alpha(z)-a z$ and $\beta_{1}(z)=$ $(n+m) \beta(z)-b z$. Note that

$$
\begin{aligned}
T\left(r, \alpha^{\prime}\right) & =m\left(r, \alpha^{\prime}\right) \leqslant m\left(r,(n+m) \alpha^{\prime}\right)+O(1)=m\left(r, \alpha_{1}^{\prime}+a\right)+O(1) \\
& \leqslant m\left(r, \alpha_{1}^{\prime}\right)+O(1)=m\left(\frac{\left(\mathrm{e}^{\alpha_{1}}\right)^{\prime}}{\mathrm{e}^{\alpha_{1}}}\right)+O(1)=S\left(r, \mathrm{e}^{\alpha_{1}}\right)
\end{aligned}
$$

Clearly $T\left(r, \alpha^{(i)}\right)=S\left(r, \mathrm{e}^{\alpha_{1}}\right)$ for $i=1,2, \ldots$ Therefore $T\left(r, P_{1}\right)=S\left(r, \mathrm{e}^{\alpha_{1}}\right)$ and so $T\left(r, p / P_{1}\right)=S\left(r, \mathrm{e}^{\alpha_{1}}\right)$. Similarly we have $T\left(r, p / P_{2}\right)=S\left(r, \mathrm{e}^{\beta_{1}}\right)$.

Now from (3.28), (3.29) and (3.31) we conclude that $T\left(r, \mathrm{e}^{\alpha_{1}}\right)=S\left(r, \mathrm{e}^{\alpha_{1}}\right)$ and $T\left(r, \mathrm{e}^{\beta_{1}}\right)=S\left(r, \mathrm{e}^{\beta_{1}}\right)$. Therefore we arrive at a contradiction. Hence, both α_{1} and β_{1} are constants. Consequently both α and β are polynomials of degree 1. Finally, we take

$$
\begin{equation*}
f(z)=d_{1} h(z) \mathrm{e}^{a z} \quad \text { and } \quad g(z)=d_{1} h(z) \mathrm{e}^{-a z}, \text { where } d_{1}, d_{2} \in \mathbb{C} \backslash\{0\} \tag{3.32}
\end{equation*}
$$

Now from (3.32) we have

$$
f^{n}\left(f^{(k)}\right)^{m}=d_{1}^{n+m} h^{n}\left(\sum_{i=0}^{k}{ }^{k} C_{i} a^{k-i} h^{(i)}\right)^{m} \mathrm{e}^{(n+m) a z}
$$

where we define $h^{(0)}=h$. Similarly we have

$$
g^{n}\left(g^{(k)}\right)^{m}=d_{2}^{n+m} h^{n}\left(\sum_{i=0}^{k}{ }^{k} C_{i}(-1)^{k-i} a^{k-i} h^{(i)}\right) \mathrm{e}^{-(n+m) a z} .
$$

Since $f^{n}\left(f^{(k)}\right)^{m}$ and $g^{n}\left(g^{(k)}\right)^{m}$ share 0 CM , it follows that

$$
\begin{equation*}
\sum_{i=0}^{k}{ }^{k} C_{i} a^{k-i} h^{(i)} \equiv d^{*} \sum_{i=0}^{k}{ }^{k} C_{i}(-1)^{k-i} a^{k-i} h^{(i)} \tag{3.33}
\end{equation*}
$$

where $d^{*} \in \mathbb{C} \backslash\{0\}$. But relation (3.33) does not hold.
Sub-case 1.2. Suppose that one of the families \mathcal{F} and \mathcal{G}, say \mathcal{F}, is not normal on \mathbb{C}. Now by Marty's theorem there exists a sequence of meromorphic functions $\left\{F\left(z+\omega_{j}\right)\right\} \subset \mathcal{F}$, where $z \in\{z:|z|<1\}$ and $\left\{\omega_{j}\right\} \subset \mathbb{C}$ is some sequence of complex numbers such that $F^{\#}\left(\omega_{j}\right) \rightarrow \infty$, as $\left|\omega_{j}\right| \rightarrow \infty$. Then by Lemma 14 there exist
(i) points $z_{j},\left|z_{j}\right|<1$,
(ii) positive numbers $\varrho_{j}, \varrho_{j} \rightarrow 0^{+}$,
(iii) a subsequence $\left\{F\left(\omega_{j}+z_{j}+\varrho_{j} \zeta\right)\right\}$ of $\left\{F\left(\omega_{j}+z\right)\right\}$
such that

$$
\begin{equation*}
h_{j}(\zeta)=\varrho_{j}^{-1 / 2} F\left(\omega_{j}+z_{j}+\varrho_{j} \zeta\right) \rightarrow h(\zeta) \tag{3.34}
\end{equation*}
$$

spherically uniformly on a compact subset of \mathbb{C}, where $h(\zeta)$ is some non-constant holomorphic function such that $h^{\#}(\zeta) \leqslant h^{\#}(0)=1$. Now from Lemma 13 we see that $\varrho(h) \leqslant 1$. Also by Hurwitz's theorem we can see that $h(\zeta) \neq 0$. From the proof of Zalcman's lemma (see [19], [27]) we have

$$
\begin{equation*}
\varrho_{j}=\frac{1}{F^{\#}\left(b_{j}\right)} \tag{3.35}
\end{equation*}
$$

and

$$
\begin{equation*}
F^{\#}\left(b_{j}\right) \geqslant F^{\#}\left(\omega_{j}\right) \tag{3.36}
\end{equation*}
$$

where $b_{j}=\omega_{j}+z_{j}$. Let

$$
\begin{equation*}
\widehat{h}_{j}(\zeta)=\varrho_{j}^{1 / 2} G\left(\omega_{j}+z_{j}+\varrho_{j} \zeta\right) \tag{3.37}
\end{equation*}
$$

From (3.23) we have

$$
F\left(\omega_{j}+z_{j}+\varrho_{j} \zeta\right) G\left(\omega_{j}+z_{j}+\varrho_{j} \zeta\right) \equiv 1
$$

and so from (3.34) and (3.37) we get

$$
\begin{equation*}
h_{j}(\zeta) \widehat{h}_{j}(\zeta) \equiv 1 \tag{3.38}
\end{equation*}
$$

Now from (3.34) and (3.38) we can deduce that

$$
\begin{equation*}
\widehat{h}_{j}(\zeta) \rightarrow \widehat{h}(\zeta) \tag{3.39}
\end{equation*}
$$

spherically uniformly on a compact subset of \mathbb{C}, where $\widehat{h}(\zeta)$ is some non-constant holomorphic function in the complex plane. By Hurwitz's theorem we can see that $\widehat{h}(\zeta) \neq 0$. From (3.34), (3.38) and (3.39) we get $h(\zeta) \widehat{h}(\zeta) \equiv 1$. Since $\varrho(h) \leqslant 1$, we have $\varrho(h)=\varrho(\widehat{h}) \leqslant 1$. Again since h and \widehat{h} are non-constant entire functions having no zeros and $\varrho(h)=\varrho(\widehat{h}) \leqslant 1$, we can take

$$
\begin{equation*}
h(z)=c_{1} \mathrm{e}^{c z} \quad \text { and } \quad \widehat{h}(z)=\hat{c}_{2} \mathrm{e}^{-c z} \tag{3.40}
\end{equation*}
$$

where $c, c_{1}, \widehat{c}_{2} \in \mathbb{C} \backslash\{0\}$ such that $c_{1} \widehat{c}_{2}=1$. Also from (3.40) we have

$$
\begin{equation*}
\frac{h_{j}^{\prime}(\zeta)}{h_{j}(\zeta)}=\varrho_{j} \frac{F^{\prime}\left(w_{j}+z_{j}+\varrho_{j} \zeta\right)}{F\left(w_{j}+z_{j}+\varrho_{j} \zeta\right)} \rightarrow \frac{h^{\prime}(\zeta)}{h(\zeta)}=c, \tag{3.41}
\end{equation*}
$$

spherically uniformly on a compact subset of \mathbb{C}. Now from (3.35) and (3.41) we get

$$
\begin{align*}
\left|\frac{h_{j}^{\prime}(0)}{h_{j}(0)}\right|=\varrho_{j}\left|\frac{F^{\prime}\left(\omega_{j}+z_{j}\right)}{F\left(\omega_{j}+z_{j}\right)}\right| & =\frac{1+\left|F\left(\omega_{j}+z_{j}\right)\right|^{2}}{\left|F^{\prime}\left(\omega_{j}+z_{j}\right)\right|} \frac{\left|F^{\prime}\left(\omega_{j}+z_{j}\right)\right|}{\left|F\left(\omega_{j}+z_{j}\right)\right|} \tag{3.42}\\
& =\frac{1+\left|F\left(\omega_{j}+z_{j}\right)\right|^{2}}{\left|F\left(\omega_{j}+z_{j}\right)\right|} \rightarrow\left|\frac{h^{\prime}(0)}{h(0)}\right|=|c|,
\end{align*}
$$

which implies that $\lim _{j \rightarrow \infty} F\left(\omega_{j}+z_{j}\right) \neq 0, \infty$ and so from (3.34) we see that

$$
\begin{equation*}
h_{j}(0)=\varrho_{j}^{-1 / 2} F\left(\omega_{j}+z_{j}\right) \rightarrow \infty \tag{3.43}
\end{equation*}
$$

Again from (3.34) and (3.40) we have

$$
\begin{equation*}
h_{j}(0) \rightarrow h(0)=c_{1} . \tag{3.44}
\end{equation*}
$$

But from (3.43) and (3.44) we arrive at a contradiction.
Case 2. Let $p(z)=b \in \mathbb{C} \backslash\{0\}$. Then from (3.21) we get $f^{n}\left(f^{(k)}\right)^{m} g^{n}\left(g^{(k)}\right)^{m} \equiv b^{2}$, where f and g are transcendental entire functions. Clearly f and g have no zeros. But this is impossible because zeros of f and g are of multiplicities at least k. This completes the lemma.

Lemma 16. Let f and g be two transcendental meromorphic functions having zeros of multiplicities at least k, where $k \in \mathbb{N}$ and let $F=f^{n}\left(f^{(k)}\right)^{m} p^{-1}, G=$ $g^{n}\left(g^{(k)}\right)^{m} p^{-1}$, where p is a nonzero polynomial and $m, n \in \mathbb{N}$ such that $n>(m k+$ $\left.k^{2}+k+2\right) k^{-1}$. Suppose $f^{n}\left(f^{(k)}\right)^{m}-p, g^{n}\left(g^{(k)}\right)^{m}-p$ share $\left(0, k_{1}\right)$, where $k_{1} \in$ $\mathbb{N} \cup\{0\} \cup\{\infty\}$ and f, g share ∞ IM. If $H \equiv 0$, then either $f^{n}\left(f^{(k)}\right)^{m} g^{n}\left(g^{(k)}\right)^{m} \equiv p^{2}$, where $f^{n}\left(f^{(k)}\right)^{m}-p, g^{n}\left(g^{(k)}\right)^{m}-p$ share 0 CM or $f^{n}\left(f^{(k)}\right)^{m} \equiv g^{n}\left(g^{(k)}\right)^{m}$.

Proof. Since $H \equiv 0$, on integration, we get

$$
\frac{F^{\prime}}{(F-1)^{2}} \equiv C_{1} \frac{G^{\prime}}{(G-1)^{2}}, \quad \text { i.e. } \quad \frac{\left(\left(F_{1}-p\right) p^{-1}\right)^{\prime}}{\left(\left(F_{1}-p\right) p^{-1}\right)^{2}} \equiv C_{1} \frac{\left(\left(G_{1}-p\right) p^{-1}\right)^{\prime}}{\left(\left(G_{1}-p\right) p^{-1}\right)^{2}}
$$

where $C_{1} \in \mathbb{C} \backslash\{0\}, F_{1}=f^{n}\left(f^{(k)}\right)^{m}$ and $G_{1}=f^{n}\left(f^{(k)}\right)^{m}$. This shows that $\left(F_{1}-p\right) p^{-1}$ and $\left(G_{1}-p\right) p^{-1}$ share 0 CM and so $F_{1}-p$ and $G_{1}-p$ share 0 CM . Finally, by integration we get

$$
\begin{equation*}
\frac{1}{F-1} \equiv \frac{b G+a-b}{G-1} \tag{3.45}
\end{equation*}
$$

where $a, b \in \mathbb{C}(a \neq 0)$. We now consider the following cases.
Case 1. Let $b \neq 0$ and $a \neq b$. If $b=-1$, then from (3.45) we have

$$
F \equiv \frac{-a}{G-a-1} .
$$

Therefore $\bar{N}(r, a+1 ; G)=\bar{N}(r, \infty ; F)=\bar{N}(r, \infty ; f)+\bar{N}(r, 0 ; p)$. So in view of Lemma 9 and the second fundamental theorem we get

$$
\begin{aligned}
(n-m) T(r, g) \leqslant & T\left(r, g^{n}\left(g^{(k)}\right)^{m}\right)-m N(r, \infty ; g)-N\left(r, 0 ;\left(g^{(k)}\right)^{m}\right)+S(r, g) \\
\leqslant & T(r, G)-m N(r, \infty ; g)-N\left(r, 0 ;\left(g^{(k)}\right)^{m}\right)+S(r, g) \\
\leqslant & \bar{N}(r, \infty ; G)+\bar{N}(r, 0 ; G)+\bar{N}(r, a+1 ; G) \\
& -m N(r, \infty ; g)-N\left(r, 0 ;\left(g^{(k)}\right)^{m}\right)+S(r, g) \\
\leqslant & \bar{N}(r, 0 ; g)+\bar{N}\left(r, 0 ; g^{(k)} \mid g \neq 0\right)+\bar{N}(r, \infty ; f) \\
& -N\left(r, 0 ;\left(g^{(k)}\right)^{m}\right)+S(r, g) \\
\leqslant & \bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; g)+S(r, g) \\
\leqslant & \frac{1}{k} N(r, 0 ; g)+N(r, \infty ; g)+S(r, g) \leqslant \frac{k+1}{k} T(r, g)+S(r, g),
\end{aligned}
$$

which is a contradiction since $n>(m k+k+1) k^{-1}$.
If $b \neq-1$, from (3.45) we obtain that

$$
F-\left(1+\frac{1}{b}\right) \equiv \frac{-a}{b^{2}\left(G+(a-b) b^{-1}\right)}
$$

So $\bar{N}\left(r,(b-a) b^{-1} ; G\right)=\bar{N}(r, \infty ; F)=\bar{N}(r, \infty ; f)+\bar{N}(r, 0 ; p)$. Using Lemma 9 and the same argument as used in the case when $b=-1$ we can get a contradiction.

Case 2. Let $b \neq 0$ and $a=b$. If $b=-1$, then from (3.45) we have $F G \equiv 1$, i.e. $f^{n}\left(f^{(k)}\right)^{m} g^{n}\left(g^{(k)}\right)^{m} \equiv p^{2}$, where $f^{n}\left(f^{(k)}\right)^{m}-p$ and $g^{n}\left(g^{(k)}\right)^{m}-p$ share 0 CM .

If $b \neq-1$, from (3.45) we have

$$
\frac{1}{F} \equiv \frac{b G}{(1+b) G-1}
$$

Therefore $\bar{N}\left(r,(1+b)^{-1} ; G\right)=\bar{N}(r, 0 ; F)$. So in view of Lemmas 2, 9 and the second fundamental theorem we get

$$
\begin{aligned}
(n-m) T(r, g) \leqslant & T(r, G)-m N(r, \infty ; g)-N\left(r, 0 ;\left(g^{(k)}\right)^{m}\right)+S(r, g) \\
\leqslant & \bar{N}(r, \infty ; G)+\bar{N}(r, 0 ; G)+\bar{N}\left(r, \frac{1}{1+b} ; G\right) \\
& -m N(r, \infty ; g)-N\left(r, 0 ;\left(g^{(k)}\right)^{m}\right)+S(r, g) \\
\leqslant & \bar{N}(r, 0 ; g)+\bar{N}\left(r, 0 ; g^{(k)} \mid g \neq 0\right)+\bar{N}(r, 0 ; F) \\
& -N\left(r, 0 ;\left(g^{(k)}\right)^{m}\right)+S(r, g) \\
\leqslant & \bar{N}(r, 0 ; g)+\bar{N}(r, 0 ; f)+\bar{N}\left(r, 0 ; f^{(k)} \mid f \neq 0\right)+S(r, g) \\
\leqslant & \bar{N}(r, 0 ; g)+\bar{N}(r, 0 ; f)+k \bar{N}(r, 0 ; f \mid \geqslant k)+k \bar{N}(r, \infty ; f)+S(r, g) \\
\leqslant & \frac{1}{k} T(r, g)+\frac{1}{k} T(r, f)+T(r, f)+k T(r, f)+S(r, f)+S(r, g) .
\end{aligned}
$$

Without loss of generality, we suppose that $T(r, f) \leqslant T(r, g)$ for $r \in I$. So for $r \in I$ we have

$$
(n-m) T(r, g) \leqslant \frac{k^{2}+k+2}{k} T(r, g)+S(r, g),
$$

which is a contradiction since $n>\left(m k+k^{2}+k+2\right) k^{-1}$.
Case 3. Let $b=0$. From (3.45) we obtain

$$
\begin{equation*}
F \equiv \frac{G+a-1}{a} \tag{3.46}
\end{equation*}
$$

If $a \neq 1$, then from (3.46) we obtain $\bar{N}(r, 1-a ; G)=\bar{N}(r, 0 ; F)$. We can similarly deduce a contradiction as in Case 2. Therefore $a=1$ and from (3.46) we obtain $F \equiv G$, i.e.

$$
f^{n}\left(f^{(k)}\right)^{m} \equiv g^{n}\left(g^{(k)}\right)^{m} .
$$

This completes the lemma.

Lemma 17 ([2]). Let f and g be non-constant meromorphic functions sharing $\left(1, k_{1}\right)$, where $2 \leqslant k_{1} \leqslant \infty$. Then

$$
\begin{aligned}
\bar{N}(r, 1 ; f \mid=2) & +2 \bar{N}(r, 1 ; f \mid=3)+\ldots+\left(k_{1}-1\right) \bar{N}\left(r, 1 ; f \mid=k_{1}\right)+k_{1} \bar{N}_{L}(r, 1 ; f) \\
& +\left(k_{1}+1\right) \bar{N}_{L}(r, 1 ; g)+k_{1} \bar{N}_{E}^{\left(k_{1}+1\right.}(r, 1 ; g) \leqslant N(r, 1 ; g)-\bar{N}(r, 1 ; g) .
\end{aligned}
$$

4. Proof of the theorem

Proof of Theorem 1. Let $F=f^{n}\left(f^{(k)}\right)^{m} / p$ and $G=g^{n}\left(g^{(k)}\right)^{m} / p$. Clearly F and G share $\left(1, k_{1}\right)$, except for the zeros of p, and f, g share ∞ IM.

Case 1. Let $H \not \equiv 0$. From (3.1) it can be easily calculated that the possible poles of H occur at (i) multiple zeros of F and G, (ii) those 1 points of F and G whose multiplicities are different, (iii) those poles of F and G whose multiplicities are different, (iv) zeros of F^{\prime} which are not the zeros of $F\left(F-1\right.$), (v) zeros of G^{\prime} which are not the zeros of $G(G-1)$. Since H has only simple poles, we get

$$
\begin{align*}
N(r, \infty ; H) \leqslant & \bar{N}_{*}(r, \infty ; f, g)+\bar{N}_{*}(r, 1 ; F, G)+\bar{N}(r, 0 ; F \mid \geqslant 2) \tag{4.1}\\
& +\bar{N}(r, 0 ; G \mid \geqslant 2)+\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; G^{\prime}\right)
\end{align*}
$$

where $\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)$ is the reduced counting function of those zeros of F^{\prime} which are not the zeros of $F(F-1)$ and $\bar{N}_{0}\left(r, 0 ; G^{\prime}\right)$ is similarly defined. Now from Nevanlinna's fundamental estimate of the logarithmic derivative we obtain $m(r, H)=S(r, F)+$ $S(r, G)$.

Since $T(r, F) \leqslant(n+(k+1) m) T(r, f)+S(r, f), T(r, G) \leqslant(n+(k+1) m) T(r, g)+$ $S(r, g)$, then $m(r, H)=S(r, f)+S(r, g)$. Let z_{0} be a simple zero of $F-1$ but $p\left(z_{0}\right) \neq 0$. Clearly z_{0} is a simple zero of $G-1$. Then an elementary calculation gives that $H(z)=O\left(\left(z-z_{0}\right)\right)$, which proves that z_{0} is a zero of H. Now by the first fundamental theorem of Nevanlinna we get

$$
\begin{align*}
N(r, 1 ; F \mid=1) & \leqslant N(r, 0 ; H) \leqslant T(r, H)+O(1) \tag{4.2}\\
& =N(r, \infty ; H)+m(r, H)+O(1) \\
& \leqslant N(r, \infty ; H)+S(r, f)+S(r, g) .
\end{align*}
$$

Using (4.1) and (4.2) we get

$$
\begin{align*}
\bar{N}(r, 1 ; F) \leqslant & N(r, 1 ; F \mid=1)+\bar{N}(r, 1 ; F \mid \geqslant 2) \tag{4.3}\\
\leqslant & \bar{N}_{*}(r, \infty ; f, g)+\bar{N}(r, 0 ; F \mid \geqslant 2)+\bar{N}(r, 0 ; G \mid \geqslant 2)+\bar{N}_{*}(r, 1 ; F, G) \\
& +\bar{N}(r, 1 ; F \mid \geqslant 2)+\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; G^{\prime}\right)+S(r, f)+S(r, g)
\end{align*}
$$

$$
\begin{aligned}
\leqslant & \bar{N}(r, \infty ; f)+\bar{N}(r, 0 ; F \mid \geqslant 2)+\bar{N}(r, 0 ; G \mid \geqslant 2)+\bar{N}_{*}(r, 1 ; F, G) \\
& +\bar{N}(r, 1 ; F \mid \geqslant 2)+\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; G^{\prime}\right)+S(r, f)+S(r, g)
\end{aligned}
$$

Now in view of Lemmas 2 and 17 we get

$$
\begin{align*}
\bar{N}_{0}(r, 0 ; & \left.G^{\prime}\right)+\bar{N}(r, 1 ; F \mid \geqslant 2)+\bar{N}_{*}(r, 1 ; F, G) \tag{4.4}\\
\leqslant & \bar{N}_{0}\left(r, 0 ; G^{\prime}\right)+\bar{N}(r, 1 ; F \mid=2)+\bar{N}(r, 1 ; F \mid=3)+\ldots+\bar{N}\left(r, 1 ; F \mid=k_{1}\right) \\
& \quad+\bar{N}_{E}^{\left(k_{1}+1\right.}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G)+\bar{N}_{*}(r, 1 ; F, G) \\
\leqslant & \bar{N}_{0}\left(r, 0 ; G^{\prime}\right)-\bar{N}(r, 1 ; F \mid=3)-\ldots-\left(k_{1}-2\right) \bar{N}\left(r, 1 ; F \mid=k_{1}\right) \\
& \quad-\left(k_{1}-1\right) \bar{N}_{L}(r, 1 ; F)-k_{1} \bar{N}_{L}(r, 1 ; G)-\left(k_{1}-1\right) \bar{N}_{E}^{\left(k_{1}+1\right.}(r, 1 ; F) \\
& +N(r, 1 ; G)-\bar{N}(r, 1 ; G)+\bar{N}_{*}(r, 1 ; F, G) \\
\leqslant & \bar{N}_{0}\left(r, 0 ; G^{\prime}\right)+N(r, 1 ; G)-\bar{N}(r, 1 ; G)-\left(k_{1}-2\right) \bar{N}_{L}(r, 1 ; F) \\
& \quad-\left(k_{1}-1\right) \bar{N}_{L}(r, 1 ; G) \\
\leqslant & N\left(r, 0 ; G^{\prime} \mid G \neq 0\right)-\left(k_{1}-2\right) \bar{N}_{L}(r, 1 ; F)-\left(k_{1}-1\right) \bar{N}_{L}(r, 1 ; G) \\
\leqslant & \bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; g)-\left(k_{1}-2\right) \bar{N}_{L}(r, 1 ; F)-\left(k_{1}-1\right) \bar{N}_{L}(r, 1 ; G) \\
= & \bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; g)-\left(k_{1}-2\right) \bar{N}_{*}(r, 1 ; F, G)-\bar{N}_{L}(r, 1 ; G)
\end{align*}
$$

Hence using (4.3), (4.4) and Lemma 1 we get from the second fundamental theorem that

$$
\begin{align*}
T(r, F) \leqslant & \bar{N}(r, 0 ; F)+\bar{N}(r, \infty ; F)+\bar{N}(r, 1 ; F)-N_{0}\left(r, 0 ; F^{\prime}\right) \tag{4.5}\\
\leqslant & 2 \bar{N}(r, \infty, f)+N_{2}(r, 0 ; F)+\bar{N}(r, 0 ; G \mid \geqslant 2)+\bar{N}(r, 1 ; F \mid \geqslant 2) \\
& +\bar{N}_{*}(r, 1 ; F, G)+\bar{N}_{0}\left(r, 0 ; G^{\prime}\right)+S(r, f)+S(r, g) \\
\leqslant & 3 \bar{N}(r, \infty ; f)+N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)-\left(k_{1}-2\right) \bar{N}_{*}(r, 1 ; F, G) \\
& +S(r, f)+S(r, g) \\
\leqslant & 3 \bar{N}(r, \infty ; f)+2 \bar{N}(r, 0 ; f)+N_{2}\left(r, 0 ;\left(f^{(k)}\right)^{m}\right)+2 \bar{N}(r, 0 ; g) \\
& +m N_{2}\left(r, 0 ; g^{(k)}\right)-\left(k_{1}-2\right) \bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g) \\
\leqslant & 3 \bar{N}(r, \infty ; f)+2 \bar{N}(r, 0 ; f)+N\left(r, 0 ;\left(f^{(k)}\right)^{m}\right)+2 \bar{N}(r, 0 ; g) \\
& +m N_{k+2}(r, 0 ; g)+m k \bar{N}(r, \infty ; g)-\left(k_{1}-2\right) \bar{N}_{*}(r, 1 ; F, G) \\
& +S(r, f)+S(r, g) \\
\leqslant & (3+m k) \bar{N}(r, \infty ; f)+2 \bar{N}(r, 0 ; f)+2 \bar{N}(r, 0 ; g)+m N(r, 0 ; g) \\
& +N\left(r, 0 ;\left(f^{(k)}\right)^{m}\right)-\left(k_{1}-2\right) \bar{N}_{*}(r, 1 ; F, G) \\
& +S(r, f)+S(r, g) .
\end{align*}
$$

Now using Lemmas 8 and 9 we get from (4.5) that
(4.6) $(n-m) T(r, f) \leqslant T\left(r, f^{n}\left(f^{(k)}\right)^{m}\right)-m N(r, \infty ; f)-N\left(r, 0 ;\left(f^{(k)}\right)^{m}\right)+S(r, f)$

$$
\leqslant T(r, F)-m N(r, \infty ; f)-N\left(r, 0 ;\left(f^{(k)}\right)^{m}\right)+S(r, f)
$$

$$
\leqslant(3+(k-1) m) \bar{N}(r, \infty ; f)+2 \bar{N}(r, 0 ; f)+2 \bar{N}(r, 0 ; g)
$$

$$
+m N(r, 0 ; g)-\left(k_{1}-2\right) \bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g)
$$

$$
\leqslant \frac{(k+1)(3+(k-1) m)}{k(n+m+(m-2) k-1)}(T(r, f)+T(r, g))
$$

$$
+\frac{2}{k}(T(r, f)+T(r, g))+\frac{3+(k-1) m}{n+m+(m-2) k-1} \bar{N}_{*}(r, 1 ; F, G)
$$

$$
+m T(r, g)-\left(k_{1}-2\right) \bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g)
$$

$$
\leqslant \frac{(m k+4) n+m^{2} k^{2}+\left(m^{2}+3 m-2\right) k+2(m+1)}{k(n+m+(m-2) k-1)} T(r)+S(r)
$$

In a similar way we can obtain

$$
\begin{equation*}
(n-m) T(r, g) \leqslant \frac{(m k+4) n+m^{2} k^{2}+\left(m^{2}+3 m-2\right) k+2(m+1)}{k(n+m+(m-2) k-1)} T(r)+S(r) \tag{4.7}
\end{equation*}
$$

Combining (4.6) and (4.7) we see that

$$
(n-m) T(r) \leqslant \frac{(m k+4) n+m^{2} k^{2}+\left(m^{2}+3 m-2\right) k+2(m+1)}{k(n+m+(m-2) k-1)} T(r)+S(r),
$$

i.e.

$$
\begin{equation*}
k\left(n-K_{1}\right)\left(n-K_{2}\right) T(r) \leqslant S(r) \tag{4.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& K_{1}=\frac{(2-m) k^{2}+(m+1) k+4+\sqrt{L_{1}}}{2 k}, \\
& K_{2}=\frac{(2-m) k^{2}+(m+1) k+4-\sqrt{L_{1}}}{2 k}
\end{aligned}
$$

and $L_{1}=\left((2-m) k^{2}+(m+1) k+4\right)^{2}+8 k\left(\left(m^{2}-m\right) k^{2}+\left(m^{2}+m-1\right) k+(m+1)\right)$.
Note that

$$
\begin{aligned}
L_{1}= & m^{2} k^{4}+9 m^{2} k^{2}+2 m k^{2}+6 m^{2} k^{3}-6 m k^{3}+4 k^{4}(1-m) \\
& +16 k(m+1)+9 k^{2}+4 k^{3}+16 \\
< & m^{2} k^{4}+9 m^{2} k^{2}+6 m^{2} k^{3}+10 m k^{2}-2 m k^{3}+16(3 m-1) k \\
& +k^{2}+64+8 k^{2}(1-m)+4 k^{3}(1-m)+32 k(1-m) \\
\leqslant & \left(m k^{2}+(3 m-1) k+8\right)^{2} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
K_{1} & =\frac{(2-m) k^{2}+(m+1) k+4+\sqrt{L_{1}}}{2 k} \\
& <\frac{(2-m) k^{2}+(m+1) k+4+m k^{2}+(3 m-1) k+8}{2 k}=\frac{k^{2}+2 m k+6}{k} .
\end{aligned}
$$

Since $n \geqslant\left(k^{2}+2 m k+6\right) k^{-1}$, (4.8) leads to a contradiction.
Case 2. Let $H \equiv 0$. Then the theorem follows from Lemmas 16,12 and 15.

References

[1] T. C. Alzahary, H. X. Yi: Weighted value sharing and a question of I. Lahiri. Complex Variables, Theory Appl. 49 (2004), 1063-1078.
zbl MR doi
[2] A. Banerjee: On a question of Gross. J. Math. Anal. Appl. 327 (2007), 1273-1283. Zbl MR doi
[3] A. Banerjee, S. Majumder: On certain non-linear differential polynomial sharing a nonzero polynomial. Bol. Soc. Mat. Mex., III. Ser. 24 (2018), 155-180.
[4] W. Bergweiler, A. Eremenko: On the singularities of the inverse to a meromorphic function of finite order. Rev. Mat. Iberoam. 11 (1995), 355-373.
[5] Y.-H. Cao, X.-B. Zhang: Uniqueness of meromorphic functions sharing two values. J. Inequal. Appl. 2012 (2012), Paper No. 100, 10 pages.
zbl MR doi
] J. Chang, L. Zalcman: Meromorphic functions that share a set with their derivatives. J. Math. Anal. Appl. 338 (2008), 1020-1028.
zbl MR doi
[7] H. Chen, M. Fang: The value distribution of $f^{n} f^{\prime}$. Sci. China, Ser. A 38 (1995), 789-798. Zbl MR
[8] J.Dou, X.-G. Qi, L.-Z. Yang: Entire functions that share fixed-points. Bull. Malays. Math. Sci. Soc. (2) 34 (2011), 355-367.
zbl MR
[9] M. Fang, X. Hua: Entire functions that share one value. J. Nanjing Univ., Math. Biq. 13 (1996), 44-48.

Zbl MR
[10] M. Fang, H. Qiu: Meromorphic functions that share fixed-points. J. Math. Anal. Appl. 268 (2002), 426-439.
[11] W. K. Hayman: Meromorphic Functions. Oxford Mathematical Monographs. Clarendon Press, Oxford, 1964.
zbl MR doi
[12] L. Köhler: Meromorphic functions sharing zeros and poles and also some of their derivatives sharing zeros. Complex Variables, Theory Appl. 11 (1989), 39-48.
zbl MR
[13] I. Lahiri: Weighted sharing and uniqueness of meromorphic functions. Nagoya Math. J. 161 (2001), 193-206.
zbl MR doi
[14] I. Lahiri: Weighted value sharing and uniqueness of meromorphic functions. Complex Variables, Theory Appl. 46 (2001), 241-253.
zbl MR doi
zbl MR doi
[15] I. Lahiri, S. Dewan: Inequalities arising out of the value distribution of a differential monomial. JIPAM, J. Inequal. Pure Appl. Math. 4 (2003), Paper No. 27, 6 pages.
zbl MR
[16] I. Lahiri, S. Dewan: Value distribution of the product of a meromorphic function and its derivative. Kodai Math. J. 26 (2003), 95-100.
zbl MR doi
[17] I. Lahiri, A. Sarkar: Nonlinear differential polynomials sharing 1-points with weight two. Chin. J. Contemp. Math. 25 (2004), 325-334.
zbl MR
[18] W. Lin, H. X. Yi: Uniqueness theorems for meromorphic functions concerning fixedpoint. Complex Variables, Theory Appl. 49 (2004), 793-806.
zbl MR doi
[19] X. C. Pang: Normality conditions for differential polynomials. Kexue Tongbao, Sci. Bull. 33 (1988), 1690-1693.
zbl MR
[20] J. L. Schiff: Normal Families. Universitext. Springer, New York, 1993.
[21] J. Xu, H. Yi, Z. Zhang: Some inequalities of differential polynomials. Math. Inequal. Appl. 12 (2009), 99-113.
zbl MR doi
[22] K. Yamanoi: The second main theorem for small functions and related problems. Acta Math. 192 (2004), 225-294.
[23] C. C. Yang: On deficiencies of differential polynomials. II. Math. Z. 125 (1972), 107-112. zbl MR doi
[24] C.-C. Yang, X. Hua: Uniqueness and value-sharing of meromorphic functions. Ann. Acad. Sci. Fenn., Math. 22 (1997), 395-406.
zbl MR
[25] C.-C. Yang, H.-X. Yi: Uniqueness Theory of Meromorphic Functions. Mathematics and Its Applications 557. Kluwer Academic Publishers, Dordrecht, 2003.
zbl MR doi
[26] H. X. Yi: On characteristic function of a meromorphic function and its derivative. Indian J. Math. 33 (1991), 119-133.
zbl MR
[27] L. Zalcman: A heuristic principle in complex function theory. Am. Math. Mon. 82 (1975), 813-817.
zbl MR doi
[28] J. Zhang: Uniqueness theorems for entire functions concerning fixed points. Comput. Math. Appl. 56 (2008), 3079-3087.
zbl MR doi
[29] Q. Zhang: Meromorphic function that shares one small function with its derivative. JIPAM, J. Inequal. Pure Appl. Math. 6 (2005), Article No. 116, 13 pages.
zbl MR
[30] T. Zhang, W. Lü: Uniqueness theorems on meromorphic functions sharing one value. Comput. Math. Appl. 55 (2008), 2981-2992.
zbl MR doi
[31] X.-Y. Zhang, W.-C. Lin: Corrigendum to "Uniqueness and value-sharing of entire functions". J. Math. Anal. Appl. 352 (2009), page 971.
zbl MR doi

Authors' address: Sujoy Majumder, Rajib Mandal, Department of Mathematics, Raiganj University, University Road, Raiganj, West Bengal-733134, India, e-mail: sujoy.katwa@ gmail.com, rajib547mandal@gmail.com.

