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KYBERNETIKA — VOLUME 56 (2020), NUMBER 4, PAGES 662-694

THE STUDY ON SEMICOPULA BASED IMPLICATIONS

ZUMING PENG

Recently, Baczyniski et al. (2017) proposed a new family of implication operators called
semicopula based implications, which combines a given a priori fuzzy implication and a semi-
copula. In this paper, firstly, the relationship between the basic properties of the priori fuzzy
implication and the semicopula based implication are analyzed. Secondly, the conditions such
that the semicopula based implication is a fuzzy implication are studied, the study is carried
out mainly in the case that the semicopula is a special family semicopula and the priori fuzzy
implication is a (U, N)-implication. Moreover, the case that the semicopula based implication
is 2-increasing (directionally decreasing, respectively) is also considered.

Keywords: fuzzy implications, semicopula based implications, (U, N)-implications, semi-
copula, 2-increasing

Classification: 03E72, 03B52

1. INTRODUCTION

Fuzzy implications are the generalization of the classical (Boolean) implications on the
unit interval [0,1], and are the basis for fuzzy logic systems, fuzzy control, decision
theory, expert systems [2, [0 [T, [I5]. The main way of generating fuzzy implications
is from basic fuzzy logic connectives [Il 2 [B] 4], t-norms, t-conorms and negations.
Other way of generating fuzzy implications is from monotone functions [I3} [14, 16, 22|
20], or from convex combination of two fuzzy implications [17, 18] 19, 21], 23] 241 25].
Moreover, in consideration of imperfect knowledge that involve uncertainty, imprecision
and randomness, the probability implications and probability S-implications [10] were
proposed.

Recently, Baczytiski et al. [5] introduced a new method of constructing implications
based on a fuzzy implication I and a semicopula B. The resulting implication J;pg is
defined by

Jr(x,y) = I(z, B(z,y)), z,y € [0,1]. (1)

The implication J;p can be seen as a generalization of the probabilistic implication
and the probabilistic S-implication. However, its monotonicity in the first coordinate
may fail, and thus it need not be a fuzzy implication. Due to this, in this paper, as
a supplement of this research topic from the theoretical point of view, we attempt a
systematic study of J;p.
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The paper is organized as follows. In Section 2, some concepts and results are recalled.
In Section 3, we discuss the relationship between the properties of J;g and I. In Section
4, conditions for Jrp being a fuzzy implication are deeply studied. In Section 5, some
trivial results of ®-conjugate with J;p are given. The last section is the Conclusion.

2. PRELIMINARIES

For the convenience of reading, in this section, we recall some definitions and results
that will be used in the rest of the paper.

Definition 2.1. (Durante et al. [8]) A function B : [0,1]2 — [0,1] is said to be a
semicopula if, and only if, it satisfies the two following conditions:

(i) B(z,1) = B(1,z) =z for all z in [0,1],
(ii) B(z,y) is increasing in each place.

Definition 2.2. (Klement et al. [12], Nelsen [20]) A function T : [0,1]2 — [0,1] is
said to be a t-norm if it is an associative and commutative semicopula. A function
S :[0,1]> = [0,1] is said to be a t-conorm if it is an associative and commutative dual
semicopula. A function C : [0,1]? — [0, 1] is said to be a copula if it is a semicopula and
satisfies C'(z1,y1) + C(z2,y2) > C(x1,y2) + C(x9,y1) for all x1, xa, y1, y2 € [0, 1] with
r1 < x9 and y; < Yo.

Five basic t-norms that will be used throughout this paper are given as follows:

e Ty (x,y) = min(z,y), is the greatest semicopula.
o Tp(x,y) = xy.

o Tri(z,y) = max(z +y — 1,0).

0, if (z,y) €1[0,1)2,
min(z,y), otherwise,

o Tonm(z,y) = {

o Tp(x,y) = is the smallest semicopula.

0, if 24y<1,
min(z,y), otherwise.
These basic t-norms form the following chains:
Tp <Trx <Tp <Tm,Tp <Trx <Thm <Tu.

Definition 2.3. (Baczyniski et al. [2]) A function I : [0,1]*> — [0,1] is called a fuzzy
implication if it satisfies, for all =, z1, 2, y, y1, y2 € [0, 1], the following conditions:

(I1) if 1 < x9, then I(z1,y) > I(x2,y), i.e., I(,y) is decreasing,
(12) if y1 < yo, then I(z,y1) < I(x,y2), i.e., I(z,-) is increasing,
(I3) 1(0,0) =1, I(1,1) = 1, I(1,0) = 0.

The set of all fuzzy implications will be denoted by F'I.



664 Z. PENG

Important fuzzy implications that will be used throughout this paper are given as

follows:

e The Lukasiewicz implication: Ik (z,y) = min(1l,1 —z +y).

=)

1, if z <
e The Rescher implication: Irg(z,y) = { ’ 1 =Y
, if x>y

1, if 0,1
e The Weber implication: Iy p(z,y) =14 1 z€0,1),
y, if x=1.
1, ifz=1and y=0,

e The greatest implication: Ig(x,y) = {0 herwi
, otherwise.

Remark 2.4. (Baczynski et al. [2]) I satisfies the following properties (called left and
right boundary condition, respectively):

(LB) I1(0,y) =1, for all y € [0,1],
(RB) I(z,1) =1, for all z € [0,1].
Definition 2.5. (Baczyniski et al. [2])

(i) A function N :[0,1] — [0,1] is called a fuzzy negation if N(0) =1, N(1) =0, and
N is decreasing.

(ii) A fuzzy negation N is strong if it is an involution, i.e., N(N(x)) = « for all
z € 10,1].

(iii) Let T be a t-norm. A function N : [0, 1] — [0, 1] defined as
Nr(z) =sup{y € [0,1]|T(z,y) =0}, = € [0,1],
is called the natural negation of T" or the negation induced by T

(iv) Let I € FI. A function Ny : [0,1] — [0,1] defined as N;(z) = I(z,0), z € [0,1], is
called the natural negation of I.

Important fuzzy negations that will be used throughout this paper are given as follows:

e The classical fuzzy negation: N¢o(z) =1 — z for all z € [0, 1].

1, f =0
Th 1 " f t . N — ? )
e The least fuzzy negation: Np, () 0, if z € (0,1].
1. if 0,1
e The greatest fuzzy negation: Np,(z) = ’ 1 el
0, if z=1.

Definition 2.6. (Baczynski et al. [2], Fodor [9], Grzegorzewski [10], Pradera et al. [24])
An operator I : [0,1]% — [0, 1] is said to satisfy

(i) the left neutrality property, if I(1,y) =y for all y € [0, 1]. (NP)
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(ii) the identity principle, if I(z,z) = 1 for all z € [0, 1]. (IP)

(iii) the ordering property, if I(z,y) =1 < o <y for all z,y € [0,1]. (OP)
(iv) the contrapositive symmetry with respect to a fuzzy negation N, if

I(z,y) = I(N(y), N(x)), for all z,y € [0, 1]. (CP(N))

(v) the exchange principle, if I(x, I(y,z)) = I(y,I(z,2)) for all x,y,z € [0,1]. (EP)

(vi) the T-conditionality, if T(x,I(x,y)) < y,x,y € [0,1], where T is a t-norm.

(TC)

(vii) the lowest truth property, I(z,y) =1 if and only if x =0 or y = 1. (LT)

(viii) the lowest falsity property, I(z,y) = 0 if and only if z =1 and y = 0. (LF)
(ix) the boolean-like law, I(z,I(y,z)) =1 for all z,y € [0,1]. (BL)

Definition 2.7. (Baczynski et al. [2], Ouyang [21], Yager [26], Grzegorzewski [10])

(i) A function Isn : [0,1]*> — [0,1] is called an (S, N)-implication if there exist a
t-conorm S and a fuzzy negation N such that Ign(z,y) = S(N(x),y) for all
z,y € [0,1].

(ii) A function Ir : [0,1]*> — [0, 1] is called an R-implication if there exists a t-norm T
such that Ir(z,y) = sup{t € [0,1)|T(z,t) < y} for all z,y € [0, 1].

(iii) Let f :[0,1] — [0, 00] be a strictly decreasing and continuous function with f(1)=
0. The function I : [0,1]2 — [0,1] defined by I¢(z,y) = f~!(x - f(y)) for all z,
y € [0, 1], with the convention 0-co = 0, is called an f-generated implication.

(iv) Let g : [0,1] — [0, 00] be a strictly increasing and continuous function with g(0) =
0. The function I, : [0,1]*> — [0, 1] defined by

fy(e) =g~ (min (1 90.90) ) ) for ail 2.y € 0.1

with the convention % =00 and 0o - 0 = o0, is called a g-generated implication.

(v) Let C be a copula. A function I : [0,1]2 — [0, 1] given by
Io(z,y) = C(z,y) —x+1, for all z,y €[0,1],
is called a probabilistic S—implication.
(vi) Let C be a copula. A function I¢ : [0,1]% — [0, 1] given by

1, if x =0,
Gew) i g >0,

x

IC(xay) = {

is called a probabilistic implication.
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Definition 2.8. (Baczynski et al. [6])

(i) A function ¢ : [0,1] — [0,1] is an automorphism if it is continuous and strictly
increasing and satisfies the boundary conditions ¢(0) = 0 and ¢(1) = 1. By ® we
denote the family of all automorphism from [0, 1] to [0, 1].

(ii) The functions f, g : [0,1]™ — [0, 1] are called ®—conjugate, if there exists a ¢ € ®

such that g = f,, where f, (21,22, -, @) = o H(f(p(z1), p(x2), - - -, o(20))), for
all z1, o, ..., z, €[0,1].

Proposition 2.9. (Baczynski et al. [5]) For any fuzzy implication I and any semicopula
B the following conditions hold:

(i) Jrp is increasing with respect to the second variable.
(ii) Jrg(1,0) =0, Jr(0,y) =1 for all y € [0, 1].
(i) Jrp(1,y) = I(1,y) for all y € [0,1);
(iv) Jrp(z,0) = I(z,0), i.e., Nj,,(z) = Ny(z) for all z € [0, 1].
) Jip(z,1)

(v

3. RELATIONSHIP BETWEEN THE PROPERTIES OF J;p AND I

15(z,1) = I(x,x) for all x € [0,1].

In this section, we discuss the relationship between the basic properties of J;p and I.

Proposition 3.1. Let I be a fuzzy implication and B a semicopula. Then, the implica-
tion Jrp defined by (1) satisfies (NP) ((RB), respectively) if and only if I satisfies (NP)
((IP), respectively).

Proof. Straightforward from Proposition (iii) and (v). O

Proposition 3.2. Let I be a fuzzy implication and B a semicopula. If the implication
Jrp defined by (1) satisfies (IP)((OP), respectively), then I satisfies (IP).

Proof. Jrp satisfies (IP)((OP), respectively) = Jrp(z,2) =1 = I(x, B(z,z)) = 1.
Since I(z,z) > I(z, B(x,x)), then I(z,x) =1 for all z € [0, 1]. O

The fact that the converse of Proposition does not hold can be easily shown in
the following example.

Example 3.3. Consider the Fodor implication Ipp:

Len(z,y) 1, if <y,
x? = . .
PO min(l — z,y), if z >y.
It satisfies (IP). Taking a semicopula B(z,y) = xy. From (1) we get
J1.55(0.5,0.5) = Irp (0.5, B(0.5,0.5)) = Irp(0.5,0.25) = 0.25 # 1,

that is, Jy,,p does not satisfy (IP) ((OP), respectively).
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Nevertheless, if I satisfies (OP), we have the following proposition.
Proposition 3.4. Let I be a fuzzy implication that satisfies (OP). Then J;p satisfies
(IP) if and only if B = Tyy.

Proof. (Necessity). Jrp satisfies (IP) = Jyp(z,z) = 1 forallz € [0,1] = I(x, B(z,x))
=1 for all z € [0,1]. Since I satisfies (OP), then z = B(z, ) for all € [0,1]. Hence
B(z,y) = min(z,y), i.e., B=Thy.

(Sufficiency). Obvious. O

Remark 3.5. (i) Let I be a fuzzy implication that satisfies (IP). If B = T}/, then
J1p satisfies (IP).

(ii) Let I be a fuzzy implication that satisfies (OP). Then J;p satisfies (OP) if and
only if B =T}y.

(iii) Let It be an R-implication of a left-continuous t-norm 7. Then Jy,.p satisfies
(IP)((OP), respectively) if and only if B = T)y.

From Remark we have the following problem.

Problem 3.6. Let I be a fuzzy implication that satisfies (IP) but not (OP), what
conditions does B satisfy such that J;p satisfies (IP)?

Proposition 3.7. Let I € FI and B be a semicopula, let S, S be sets defined as

S={(z,y)I(z,y) =1, z,y € [0,1]},
S ={(z,y)ly > B(z,z), z,y € [0,1]}.

Then J;p satisfies (IP) if and only if S cSs.
Proof. (Sufficiency) Let z € [0,1] and (x, B(x, z)) € S. Since § C S, then (z, B(z,x))
€ S. Hence Jrg(x,z) = I(x, B(z,x)) =1, i.e., Jrp satisfies (IP).

(Necessity) Let (z,y) € S, then y > B(z,x). Since Jrp satisfies (IP), then I(z,y) >

A

I(z,B(z,x)) =1, i.e., (z,y) € S. Hence S C S. O

Remark 3.8. From Proposition [3.7] for a given semicopula B, there always exists a
I € FI such that J;p satisfies (IP). Moreover, I may not be unique.

Example 3.9. Let B = Tp. Note that § = {(z,y)|ly > B(z,z), z,y € [0,1]}, then
S ={(z,y)ly > 2> z,y € [0,1]}.

Consider the following fuzzy implication

(2, y) 1, if y> a2,
€, = .
ney 1—x+y, ify<a?



668 Z. PENG

Since S1 = {(z,y)|i(z,y) = 1, z,y € [0,1]}, then S1 = {(z,y)ly > 2?, z,y € [0,1]}.
Thus S C S;. Hence Jy, g satisfies (IP) by Proposition
Consider the following fuzzy implication

1, if y> a3,
IZ(xay): _ . 3
l—z+y, if y<a’.

It is easy to see that Sy = {(z,y)|y > 3, z,y € [0,1]}, then S C S,. Hence Jr1, B satisfies
(IP) by Proposition

Proposition 3.10. Let I € FI and B be a semicopula that is strictly increasing in
second variable, and let S, S be sets defined as

S = {(x,y)|l(m,y) =lz,y€ [071]}a
S = {(x,y)ly > B(aam),x,y € [071]}'

Then Jrp satisfies (OP) if and only if 5=25.

Proof. (Sufficiency) Let z, y € [0,1]. If x =0, then Jig(z,y) =1=z < y.
If z > 0, then Jyg(z,y) = 1= I(z, B(z,y)) =1
= (z,B(z,y)) €5
= (2, B(z,y)) € §
= B(x,y) > B(r,).
Note that B is strictly increasing in second variable, thus x < y.
On the other hand, if z < y, then JIB(x y) = I(z,B(z,y)) > I(xz, B(x,x)). Since
B(z,z) > B(z,z), then (x, B(x,x)) € S. By § = S, we have (z,B(z,z)) € 5, i.e,
I(z,B(z,z)) = 1. Hence Jyp(z,y) = 1.

(Necessit}ﬁLet Jip satisfy (OP), follows that Jrp satisfies (IP), then S

Proposition [3.7] If (z,y) € S, then I(z,y) = 1. Assume that (z,y) € S, where
complement of S in [0,1]2, then y < B(x,z) < . Hence

I(z,y) < I(z,B(z,2)) < I(x, B(z,y)) = Jis(2,y).

Note that I(x,y) = 1, then Jrp(x y) 1. Since Jrp satisfies (OP), then = < y, this
contradicts the fact that y < B(x,z) < x. Hence S C S, thus § = S. O

Lemma 3.11. (Baczynski et al. [2]) Let I € FI and N be a fuzzy negation. If I
satisfies (NP) and (CP(N)), then N = N is a strong fuzzy negation.

Proposition 3.12. Let I be a fuzzy implication and B a semicopula. If the implication
Jrp satisfies (CP(N)), then

(i) I satisfies (IP).

(ii) Jrp is a fuzzy implication.
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(iii) If I satisfies (NP), then N = Ny is a strong negation.

(iv) If I satisfies (OP), then x = B(z,y) & N(y) = B(N(y), N(z)), =,y € [0, 1].

Proof.

(i) Assume that Jrp satisfies (CP(N)), then
I(z,B(x,y)) = I(N(y), B(N(y), N(x))) for all =,y € [0,1].

Taking y = 1, then I(z,z) = I(0, B(0, N(x))) =1 for all z € [0,1], i.e., I satisfies
(IP).

(ii) From [2] Lemma 1.5.4 (ii) and Proposition[2.9| (i), we have, J; 5 satisfies (I1), then
Jrp is a fuzzy implication.

(iii) Straightforward from Lemma [3.11} Proposition (iii) and (iv).

(iv) Suppose that there exists some (xo,y0) € [0,1]? such that xo = B(zo,yo) and
N(yo) > B(N(y0), N (o)), then

Jre(wo,y0) = I(z0, B(zo,v0)) = 1,
Jr(N(yo), N(z0)) = I(N(y0), B(N(y0), N(z0))) < 1.

Hence Jrp(xo,y0) > Jra(N(yo), N(xo)). This contradicts the fact that Jrp satisfies
(CP(N)). Thus completes the proof. O

Remark 3.13. (i) Let I be a fuzzy implication that satisfies (NP). If Ny, the natural
negation of I, is not strong, by Proposition (iii), then Jrp does not satisfy
(CP) with respect to any fuzzy negation N and any semicopula B. Therefore,

— for the (S, N)-implication Ign: if N is not strong, then Jr, ,p does not
satisfy (CP) with respect to any fuzzy negation N and any semicopula B.

— for the R-implication I7: if N7, the natural negation of T, is not strong (strict,
continuous, strictly decreasing, respectively), then Jr,.p does not satisty (CP)
with respect to any fuzzy negation N and any semicopula B.

— for the g-implication I,: since I, satisfies (NP) and N;, = Np,, then Jr B
does not satisfy (CP) with respect to any fuzzy negation N and any semicop-
ula B.

— for the probabilistic implication I¢: since I satisfies (NP) and Ny, = Np,,
then Jy.p does not satisfy (CP) with respect to any fuzzy negation N and
any semicopula B.

(ii) For the f-implication I;: note that Iy does not satisfy (IP), then J;,p does not
satisfy (CP) with respect to any fuzzy negation N and any semicopula B.

(iii) Let I € FI. Even if I satisfies (IP) and (CP), Jrp may not satisfy (CP).
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Example 3.14. Consider the Lukasiewicz implication Iy . It satisfies (IP) and (CP).
Let B = TD.

From (1) we get
Y, if =1,
JILKB(xay) =431 if y=1,

1 — =z, otherwise.

Note that J;, ,5(0.9,0.9) =0.1 < 0.9 = J;, . 5(1,0.9), i.e., Ji, . 5 does not satisfy (I1),
then Jy, . p does not satisfy (CP) with respect to any fuzzy negation N by Lemma 1.5.4
in [2].

Problem 3.15. Let I be a fuzzy implication that satisfies (IP) and (NP), but not (CP),
and its natural negation Ny is strong. Does Jyp not satisfy (CP)?

Unfortunately, the answer is negative.

Example 3.16. Consider the following fuzzy implication

I(2,9) 1, if x <y,
:177 = .
Y max(¥,1—x), if z>y.

It satisfies (IP) and (NP), but not (CP).
Taking B = Tp, from (1) we get

1

max(y,1 —z), otherwise.

if x=0o0r y=1,

3

Jr(z,y) = {

Obviously, Jrg(z,y) = Jig(Ni(y), Ni(z)), i.e., Jrp satisfies (CP) with respect to Nj.
Proposition 3.17. Let I be a fuzzy implication that satisfies (IP) and (CP), then there

exists a semicopula B such that Jyp satisfies (CP).

Proof. Consider B = Tys. Let z, y € [0,1]. If z <y, then I(z,y) =1 = I(z,z) =
Iz, Ty (z,y)) = Jrp(x,y) by I satisfies (IP). If z > y, then I(z,y) = I(x, T (z,y)) =
Jrg(x,y). Hence Jrg = I. Note that I satisfies (CP), then J;p satisfies (CP). |

Proposition 3.18. Let f : [0,1] — [0, 00] be a continuous, strictly decreasing function
with f(1) =0, let T be a continuous Archimedean t-norm with additive generator f and
I7 its R-implication. Then the following statements are equivalent:

(i) Jr,.p satisfies (CP) with respect to a fuzzy negation N.

(i) N = Ny,., and the triple (f, B, N) satisfies the following equation:

f(B(z,y)) = f(B(N(y), N(x))) = f(z) = f(N(y)).
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Proof. From [2] Theorem 2.1.5 and Definition (i), we get

Ir(z,y) = f~! (max(f(y) — f(x),0)) for all 2,y € [0,1],
then the rest of the proof comes directly from calculation. |

Proposition 3.19. Let I be a continuous fuzzy implication that satisfies (OP) and
(EP). Then the following statements are equivalent:

(i) Jrp satisfies (CP) with respect to a fuzzy negation N.
(i) There exists a ¢ € ®, such that N(z) = ¢~ (1 — (z)) and
p(B(z,y)) — ¢(B(N(y), N(x))) = ¢(x) — ¢(N(y)) for all z,y € [0,1].

Proof. The proof comes directly from calculation. O

Proposition 3.20. Let B be a semicopula and N a fuzzy negation, let C' be a copula
and ¢ a probabilistic S—implication, let J;_p be an implication defined by (1). Then
the following statements are equivalent:

(i) J:

7..p satisfies (CP) with respect to N.

(i) I¢ = I g, N = N¢ and B(z,y) — B(N(y), N(z)) = 2 — N(y) for all z, y € [0,1].

Proof. The proof comes directly from calculation. O

Proposition 3.21. Let I € FI and B be a semicopula. If the implication J;g satisfies
(EP), then I satisfies (IP).

Proof. Jip satisfies (EP) = Jip(z, Jig(y,2)) = Jig(y, Jig(z,2)) for all z,y,z €
[0,1].
Taking z = 0, then J;5(0, Jr5(y, 2)) = Jre(y, Ji5(0, 2))
= I(O7B(07 JIB(y7Z))) = J]B(Z/,I(O,B(O,Z))
= 1=Jr5(y,1)
= Iy, B(y,1)) =1
= I(y,y) =1 for all y € 0,1].
That is, I satisfies (IP). O

Remark 3.22. (i) Let Ny, the natural negation of I, be a continuous negation. If T
does not satisfy (NP), then J;p does not satisfy (EP).

In fact, suppose that J;p satisfies (EP), then for all z, y, z € [0, 1], we get
Jig(@, Jip(y,2)) = Jip(y, JiB(z, 2)).

Taking z = 0, x = 1, then I(1, N;(y)) = I(y,0) = N;(y). A contradiction to the
fact that I does not satisfy (NP).
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(ii) Let I be a fuzzy implication that satisfies (IP). Even if I does not satisfy (EP),
Jrp may satisfy (EP).

(iii) Let I be a fuzzy implication that satisfies (IP). Even if I satisfies (EP), J;p may
not satisfy (EP).

Example 3.23. Consider the Rescher implication Irg. It satisfies (IP) but not (EP).
Let B =Tp. From (1) we get

1, ifx=0o0r y=1,

JIRSB(x7 y) = {

0, otherwise.
Let x, y, z € [0, 1]. By calculations, we have

1, fx=0o0ory=0o0r z2=1,

JrpsB(T, J1sB(Y,2)) = {0 otherwise

1, fz=0o0ory=0o0r z=1,

J , , =
1rsB(Y: Tins B (@5 2)) {0, otherwise.

Then Jr,o5(%, JrmsB(Y, 2)) = J1psB(Y, J1msB(T, 2)), 1. €., Jrpp satisfies (EP).

On the other hand, consider the Lukasiewicz implication I . It satisfies (IP) and
(EP).
Let B =Tp. Taking z = 0.9, y = 0.5 and z = 0.3, we have

Jr,,.5(0.5,0.3) = I (0.5, T(0.5,0.3)) = I (0.5,0) = 0.5,
J1,,05(0.9,0.3) = 115 (0.9, T5(0.9,0.3)) = I1x(0.9,0) = 0.1.

Thus

Jr, . 5(0.9, 1, . 5(0.5,0.3)) = J;, . 5(0.9,0.5) = I (0.9, Tp(0.9,0.5)) = 0.1,
J1,.8(0.5, 1, . 5(0.9,0.3)) = J7, . 5(0.5,0.1) = I (0.5, Tp(0.5,0.1)) = 0.5.

This fact shows that Jy, . p does not satisfy (EP).

Proposition 3.24. Let I € FI and Ny, the natural negation of I, be a continuous
negation. Then J;p satisfies (EP) if and only if J;p is an (S, Nj)-implication.

Proof. The proof comes directly from Theorem 2.4.10, Remark 2.4.13 (ii) in [2] and
Proposition (i). O

Corollary 3.25. Let I € FI and Ny, the natural negation of I, be a strong negation.
If the implication J;p satisfies (EP), then J;p satisfies (CP) with respect to Nj.

Proposition 3.26. Let I be a fuzzy implication and B a semicopula, and let T, T be
t-norms such that 7" < T'. If I satisfies (TC) with T, then J;p satisfies (TC) with 7" .
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Proof. T'(z,Jip(z,y)) < T(z,Jig(z,y)) = T(z,I(z,B(z,y))) < T(x,I(z,y)) <y
for all z,y € [0, 1]. O

Remark 3.27. (i) Note that N, , = Ny, if Ny > Np, the nature negation of T, then,

for any semicopula B, J;p does not satisfy (TC) with t-norm 7' by Proposition
7.4.3 in [2)].

(ii) Let N; < N7, and let A, A be sets defined as

A={(z,y)|T(z,I(x,y)) <y for all z,y € [0,1]},
A= {(z,y)|T(z,I(x,y)) >y for all z,y € [0,1]}.

If A =10, Jip satisfies (TC) with T. If A # (), then J;p satisfies (TC) with T" if
only if (x, B(z,y)) € A for all (z,y) € A.

(iii) Even if I does not satisfy (TC) with a t-norm T, J;rp may satisfy (TC) with T.

Example 3.28. Let [ = Irx and T = Tpps. Since Ty2,(0.6,1(0.6,0.3)) = 0.6 > 0.3,
then I i does not satisfy (TC) with T,,5;. However, taking B = Tp, we get

1—z, ifz,yel0,1),
J[B(J,‘,y) = JILKTD(x7y) =3Y if =1,
1, if y=1.

Forz,y € [0,1), Thn(z, Jrg(z,y)) =0 <y. Forz =landy € [0,1], Thr(z, Jrp(z,y)) =
y<y.Forzel0,l]andy =1, T, (x, Jig(z,y)) = 2 < 1 =y. Hence Tya(z, Jrp(z,y)) <
y for all z, y € [0,1], i.e., Jrp satisfies (TC) with T),ps.

Proposition 3.29. Let I € FI and B be a semicopula. Then the implication Jrp
satisfies (LF) if and only if I satisfies (LF).

Proof. Let Jrp satisfy (LF), i.e., Jig(z,y) = 0 < x = 1 and y = 0. Assume that
I(z,y) = 0. Note that J;p < I, then Jrg(z,y) = 0, thus = 1 and y = 0. Reversely,
assume that £ = 1 and y = 0, then I(z,y) = 0. Thus I(z,y) =0< z=1and y =0,
i.e., I satisfies (LF).

On the other hand, let I satisfy (LF), i.e., I(z,y) =0 < x =1 and y = 0. Assume
that Jrg(z,y) = 0, i.e., I(z,B(x,y)) = 0, then z = 1 and B(z,y) = 0. Hence z =1
and y = 0. Reversely, assume that x = 1 and y = 0, then J;g(x,y) = 0. Thus
Jip(z,y) =0 x=1and y =0, i.e., Jrp satisfies (LF). O

Proposition 3.30. Let I € FI and B be a semicopula. If J;p satisfies (LT), then I
satisfies (IP).

Proof. Let Jrp satisfy (LT), then Jrp(z,1) = 1 forallz € [0,1],i.e., I(z, B(z,1)) =1
Thus I(x,z) =1 for all € [0, 1]. Hence I satisfies (IP). O

Let F'Ii1py be the set of all fuzzy implications that satisfies (IP).



674 Z. PENG

Remark 3.31. (i) Let I be a fuzzy implication that satisfies (LT). Then J;p does
not satisfy (LT) for any semicopula B. Actually, if I satisfies (LT), then I(z,x) # 1
for z € (0,1). Hence, I does not satisfy (IP). Thus J;p does not satisfy (LT) by
Proposition [3.30)

(ii) There exists some I € FI1py such that J;p satisfy (LT). See Example @ (i).

) . _
(iii) There exists some I € F'I1p) such that J;p does not satisfy (LT) for any semicop
ula B. See Example (ii).

Example 3.32. (i) Consider the Lukasiewicz implication I k. It satisfies (IP) but
not (LT). Taking B = Tp, then the implication Jy, . p has the following form:

Jrep(@y)=1—x+ 2y, for all z, y €[0,1].

Since Jy, . p(z,y) =1 1—ax+zy=1< 2 =0o0ry =1, then Jy, , p satisfies
(LT).

(ii) Consider the Weber implication Iy p. It satisfies (IP) but not (LT). For any
semicopula B, by calculations, we get Jr,, , 5 = Iwp. This shows that there exists
some I € FIpy such that Jrp does not satisfy (LT) for any semicopula B.

Problem 3.33. Let I be a fuzzy implication that satisfies (IP), what conditions does
semicopula B have to ensure that Jyp satisfy (LT)?

In the following, we give a partial answer.

Proposition 3.34. Let I be a fuzzy implication that satisfies (OP), and let B be a
semicopula. If x = B(z,y) <« =0 or y = 1, then Jyp satisfies (LT).

Proof. Let I satisfy (OP), then Jrp(z,y) =1 < I(x,B(z,y)) =1 < 2 = B(z,y) <
rz=0o0ry=1. |

Proposition 3.35. Let I € FI and B be a semicopula. If J;p satisfies (BL), then I
satisfies (IP) and (BL).
Proof. Let J;p satisfy (BL), then Jrg(z, Jig(y,z)) =1 for all z,y € [0, 1], i.e.,
1w, Bz, I(y, Bly,)))) = 1 for all 2,y € [0,1].
Taking y = 0, then I(z,z) =1 for all = € [0,1]. That is, I satisfies (IP).
Since I(z,I(y,z)) > I(z,1(y, B(y,x))) > I(x, B(z,I(y,B(y,x)))), then I satisfies
(BL). O

Remark 3.36. Let I € FI. Even if I satisfies (IP) and (BL), Jrp may not satisfy
(BL).
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Example 3.37. Consider the following fuzzy implication

1, if 22 <y,
I(x,y){ o2
Yy, U x°>y.

Obviously, it satisfies (IP). Let x, y € [0,1]. If y* < z, then I(z,I(y,z)) = I(z,1) = 1.
If y> > z, then I(z,1(y,z)) = I(z,x) = 1. Hence I(x,[(y, x)) =1 for all z, y € [0,1].
That is, I satisfies (BL).

Let semicopula B = Tp. From (1) we get

1, if x=0o0r y=1,
JIB(‘/E7y): Y, lfl':17
0, otherwise.

Since Jrp(0.5, Jrp(0.5,0.5)) = Jrp(0.5,0) = 0 # 1, i.e., Jrp does not satisfy (BL).
Lemma 3.38. Let I € FI. If I satisfies (IP) and (NP), then I satisfies (BL).
Proof. Letz,y€0,1]. If >y, then

I(
x <y, since I satisfies (NP), then I(y,z) >
1. Thus I(z,I(y,z)) =1 for all , y € [0,1],

y,x) =1 by (IP). Hence I(z,I(y,x)) =
I(Lw)—x. Hence I(z,I(y,z)) > I(z, )
i.e., I satisfies (BL).

Dll_h

Proposition 3.39. Let B be a semicopula and I a fuzzy implication that satisfies (NP).
Let S, S be sets defined by

S = {(m,y)|l(m,y) =1, zye [0’ 1]}’a
S={(,y)ly > Bz, ), 7,y € [0,1]}.

It S C S, then J;p satisfies (BL).

Proof. Let I satisfy (NP), then Jrp satisfies (NP) by Proposition Let S C S,
then J;p satisfies (IP) by Proposition 3.7 Thus J;p satisfies (BL) by Lemma [3.38 O

Proposition 3.40. Let I be a fuzzy implication that satisfies (OP) and (NP), and let
B be a semicopula. Then Jrp satisfies (BL) if and only if B = T,.

Proof. (Necessity) Let Jrp satisfy (BL), then Jyp(z, Jip(y,z)) = 1 for all z,y € [0, 1],
i.e.,
I(z,B(z,I(y, B(y,x)))) = 1, for all z,y € [0,1].

Since I satisfies (OP), then = B(x,I(y, B(y,x))) for all z,y € [0,1]. Taking y = 1,
then = B(x,I(1,z)). Note that I satisfies (NP), hence = B(z,z) for all z € [0, 1],
i.e.. B=Ty,.

(Sufficiency) Obvious. O
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4. CONDITIONS FOR J;g BEING A FUZZY IMPLICATION
4.1. Sufficient conditions
In this section, the sufficient conditions such that J;p is a fuzzy implication are studied.

Definition 4.1. (Nelsen [19]) A function I : [0,1]? — [0, 1] is 2-increasing if it satisfies,
for all 21, 22, y1, y2 € [0,1] with 1 < 22 and y; < ya, the following inequation:

I(z1,y1) + I(z2,y2) = I(z1,y2) + I(22,91).
Lemma 4.2. Let I : [0,1]? — [0,1] be a function. If I satisfies the following conditions:
(i) I is 2-increasing,
(ii) 1(0,2) =1, I(x,1) =1, I(1,0) = 0.
then I is a fuzzy implication.

Proof. It suffices to prove that I satisfies (I1) and (I12). Let x1, 22, y1, y2 € [0,1] such
that x1 < 9, y1 < y2. Since [ is 2-increasing, then

I(xy,y1) + I(ze,y2) > I(x1,y2) + I(22,91).

Taking yo = 1, then I(z1,y1) > I(x2,y1) for 1 < x5 and x4, 22, y1 € [0, 1]. Therefore, I
satisfies (I1). Taking x; = 0, then I(xq,y2) > I(x2,y1) for y1 < yo and x4, y1, y2 € [0, 1],
thus I satisfies (I2). O

Remark 4.3. (i) A fuzzy implication I may not be 2-increasing. See Example

(ii) A fuzzy implication [ is 2-increasing, which may or not satisfy (IP). See Example
4.9

Example 4.4. Consider the Rescher implication Irg. Since Irg(0.7,0.6)+1rs(0.8,0.75)
— 0, I5g(0.7,0.75)+Irs(0.8,0.6) = 1, then Irg(0.7,0.6)+Irs(0.8,0.75) < Irs(0.7,0.75)
+1rs(0.8,0.6). That is, Irs is not 2-increasing.

Example 4.5. Let x1, x2, y1, y2 € [0,1] and 21 < 29, y1 < y2. Consider the Reichen-
bach implication Igc:

Irc(z,y) =1 —x +ay for all z,y € [0,1].
Since Irc(z1,91) + Irc(w2,y2) — (Irc(®1,y2) + IR (22,91)) = (21 — 22)(y1 — ¥2) > 0,
then Ipe is 2-increasing.
Consider the Weber implication Iyyp. If o < 1, then Iwg(z1,y1) + Iwp(z2,y2) =

1 = Iwp(r1,y2) + Iwp(x2,y1). If 23 = 1, then Iwp(z1,y1) + Iwp(22,y2) = 1 +y2 >
1 +y1 = Iwp(x1,y2) + Iws(x2,y1). Hence

Iwg(zi,y1) + Iwe(z2,y2) > Iws(x1, y2) + Iws (2, 41),

that is, Iy p is 2-increasing. However, Irc does not satisfy (IP), Iy g satisfies (IP).
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Theorem 4.6. Let I be a fuzzy implication that satisfies (IP). If J;p is 2-increasing,
then Jrp is a fuzzy implication.

Proof. Straightforward from Proposition (ii), (v), and Lemma O

Corollary 4.7. Let I be a fuzzy implication that satisfies both (IP) and (NP), and let
N; = N¢. If Jrp is 2-increasing, then J;p is a probabilistic S-implication.

Proof. Let C:[0,1]> — [0,1] be a function defined by
C(z,y) = Jig(z,y) +x — 1, for all =,y € [0,1].

It suffices to show that C' is a copula.
Assume that J;p is 2-increasing. Since I satisfies (IP), then Jr g is a fuzzy implication
by Theorem [4.6] Thus, for all z € [0,1], we get

Clz,1)=Jmp@,1)+r—-1=1+2—-1=u,
C(O,x):JIB(O,x)—H)—l:l—I—O—l:O.

Note that I satisfies (NP) and N; = N¢, by Proposition (i), (iv), for all = € [0, 1],
we get
Cllyz)=Js(l,z)+1—-1=u,
C(z,0) = Jp(z,0) =Ni(z)+z—-—1=1—z+2—-1=0.
On the other hand, let x1, xa, y1, y2 € [0,1] and x1 < x3, y1 < y2. Note that J;p is
2-increasing, i.e.,

Ji(z1,y1) + Ji(z2,y2) > Jig(z1,y2) + Jrs(x2, 1),

then C'(z1,y1) + C(x2,y2) > C(x1,y2) + C(x2,y1), i.e., C is 2-increasing.
Taking y; = 0, then C(x9,y2) > C(x1,y2), i.e., C is increasing in the first variable.
Taking z; = 0, then C(z2,y2) > C(x2,y1), i.e., C is increasing in the second variable.
Hence C is a copula. O

Remark 4.8. Let I be a fuzzy implication that satisfies (IP). Even if I is 2-increasing,
Jrp may not be 2-increasing.

Example 4.9. Consider the Lukasiewicz implication Ipx. It satisfies (IP), and it is
2-increasing. Let B = Tp. From (1) we get

1—az, ifz,yel0,1),
JILKB(Iay) =3\Y if x=1,

1, if y=1.

Since Jr, . 5(0.9,0.3) + Jr, .5(1,1) = 1.1 < 1.3 = J;,,.5(0.9,1) + J;, . 5(1,0.3), then
J1, B 1s not 2-increasing.
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An open problem: Let I be a fuzzy implication that satisfies (IP). If I is 2-increasing,
what conditions does the semicopula B have to ensure that J;p be 2-increasing?

Definition 4.10. (Bustince et al. [7]) Let (r1,72) be a real 2-dimensional vector,
(r1,72) # (0,0). A function I : [0,1]? — [0,1] is (1, r2)-decreasing if it satisfies, for ev-
ery point (z1,x2) € [0,1]? and every real number ¢ € Rt such that (z1 +cry, 2 +crs) €
[0,1])2, the following inequation:

I(z1,22) > I(x1 + cry, e + cra).

Theorem 4.11. Let I be a fuzzy implication that satisfies (IP), and let B be a semi-
copula. If there exist ry, 7o € R, such that Jrp is (r1,72)-decreasing, then Jrp is a
fuzzy implication.

Proof. Let Jrp be a (r1,r2)-decreasing function, and let x, y € [0,1]. Then, for all
c € RY, such that (z + cry,y + cre) € [0,1]2, we get Jrp(z,y) > Jip(z + cry,y + cra),
i.e.,

I(z,B(x,y)) > I(x 4+ cr1, B(x + cr1,y + cra)).
Since B(x + ¢r1,y + ¢ra) > B(x + ¢ry,y), then I(z, B(x,y)) > I[(x + cr1, B(xz + cr1,y)),
i.e., Jig(z,y) > Jrg(z + cri,y). Hence Jyp is a fuzzy implication. O

In the following, we study the necessary and sufficient conditions such that J;p is a
fuzzy implication when I = Irs (I, Iws, Ig, respectively).

Proposition 4.12. Let I = Ips and B be a semicopula. If |B(zg,y) — B(x1,y)| <
|xo — x1| for all 1, xo, y € [0, 1], then J;p is a fuzzy implication.

Proof. Let z1, 23, y € [0,1] and ;1 < zo. It suffices to prove that Jrg(z1,y)
Jig(x2,y).
Since I = Irg, then

Y]

17 if z:B(x7y)7

J ,Y) =
15(2,9) {0, if x> B(z,y).

Ifzy =0o0r y =1, then Jrp(z1,y) =1 > Jrg(za,y).

If x1 >0,y <1and z; = B(x1,y), then Jrp(x1,y) =1 > Jrp(z2,y).

Ifzy >0,y <1and z1 > B(x1,y), then Jrg(z1,y) = 0. Since |B(z2,y) — B(x1,y)| <
|xa — x1|, then B(z2,y) — B(z1,y) < 22 — x1. Thus

T2 Z (B(x27y) - B<x17y)) + = B(Jb,y) + (1'1 - B(Z‘1,y)) > B(any)
Hence Jyg(x2,y) = 0. Therefore Jyp(x1,y) > Jrg(z2,y). a

Proposition 4.13. Let I = I and B be a semicopula. Then J;p is a fuzzy implica-
tion if and only if |B(x2,y) — B(x1,y)| < |z2 — 21| for all xq, x2, y € [0, 1].
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Proof. Straightforward from calculation. |

Proposition 4.14. If I = Iy (Ig, respectively), then J;p is a fuzzy implication for
any semicopula B.

Proof. Assume that I = Iy . From (1) we get

1, if x€1]0,1),
J JY) =
18(@,y) {B(x,y), if z=1,

1, if z€0,1),
B y, if x=1,

= Iwg(z,y).

Similarly, assume that I = I, then J;g = Ig. Hence J;p is a fuzzy implication for any
semicopula B. O

Remark 4.15. (i) From Proposition there exists some I € F'I such that Jip
is a fuzzy implication for any semicopula B. Hence the conclusion in [5] (Line 18,
page 146) is incorrect.

(ii) Jrp may not be 2-increasing even if I is 2-increasing and satisfies (IP) by Propo-
sitions [4.14) and Theorem [4.6]

Inspired by Proposition for any semicopula B, it is interesting to find which fuzzy
implication I satisfies the equation I = J;p.

Proposition 4.16. Let I be a fuzzy implication that satisfies (IP), then I = J;p for
any semicopula B if, and only if there exists an increasing function f : [0,1] — [0, 1]
with f(0) =0 and f(1) = 1, such that

1 ifz<l1
I — ) )
(@,9) {f(y), ifx=1.

Proof. (Necessity) Firstly, consider the following semicopula B:

B(l’ ) _ 07 if w7y e [07 1)7
W= min(x,y), otherwise.

Let I = Jrp, then

I(z,0), ifz,yel0,1),
I(z,y) = { I(L,y), ifz=1, (2)
1, iy —=1.

Secondly, let us consider the semicopula B(z,y) = min(z,y). By I = Jrp, we obtain

1, if x <y,
I(z,y) = 3
(@y) {I(Jc,y), ife>y. )
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From (2) and (3), we obtain I(x,0) =1 for all z € [0,1). Hence

I(z,y) 1, ifr <1,
Z, =
Y7104y, ifr=1.

Let f(y) = I(1,y). Obviously, f : [0,1] — [0, 1] is an increasing function with f(0) = 0

and f(1) = 1. Thus
1 ife<1
I — ) )
(2,y) {f(y), ol

(Sufficiency) The proof comes directly from calculation. O

Remark 4.17. (i) Let f:[0,1] — [0, 1] be an increasing function with f(0) = 0 and
f(1) =1, and let I be a fuzzy implication defined by

1, ifz <1,

I(a,y) = {f(y), L (@)

Then J;p is a fuzzy implication for any semicopula B, and J;p is 2-increasing.

(ii) Let I be a fuzzy implication that satisfies (NP) and (IP). If I = J;p for any
semicopula B, then I = Iy pg.

(iii) An open problem: Does there exist some I € FI, which is not an implication
defined as (4), such that J;p is a fuzzy implication for any semicopula B?

Proposition 4.18. Let I be a continuous fuzzy implication that satisfies (OP) and
(EP). Then J;p is a fuzzy implication if and only if there exists a ¢ € ®, such that the
semicopula B,-1 is 1-Lipschitz.

Proof. Let I be a continuous fuzzy implication that satisfies (OP) and (EP), then I
is ®-conjugate with Ik, i.e., there exists a ¢ € @, such that

I(,y) = ¢ (I (p(x), 0(y)) = ¢~ (min(1 — (z) + ¢(y), 1)), for all z,y € [0,1].

Let x1, 22, y € [0,1] and 21 < x9. Jrp is a fuzzy implication implies the following
equivalences:
Jrg(w1,y) > Jip(w2,y)
& 1—p(z1) + o(B(21,9) 2 1 — p(x2) + ¢(B(22,9))
< @(B(22,y)) — ¢(B(z1,y)) < @(22) — p(21)
& o(Ble~He(x2), 0~ He(W))) — p(Ble~He(r1), ¢ He())) < pla2) —p(a1)
< B,-1 is 1-Lipschitz,
i.e., Jrp is a fuzzy implication if and only if there exists a ¢ € ®, such that the

semicopula B,-1 is 1-Lipschitz.
O
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4.2. Conditions for J;p being a fuzzy implication with a special kind of
semicopula

In this section, we study the sufficient conditions such that J;p is a fuzzy implication
with B defined by

_Jmin(z,y), if y > N(z),
Bla,y) = {0, if y < N(x), 5)

where N is a continuous fuzzy negation. A semicopula of form (5) is denoted by BY, .

Definition 4.19. (Baczynski et al. [2]) Let N be a fuzzy negation, the range of N is
given by Ran(N) = {N(z)|z € [0,1]}, the pseudo-inverse of N is given by N(=1(y) =
sup{z € [0,1]|N(z) >y}, y € [0,1].

Proposition 4.20. Let I be a fuzzy implication that satisfies (IP), and B = BY, . Let

s € (0,1) be a fixed point of N, and n = min{z € [0,1]|N(xz) = s}. Then J;p is a fuzzy
implication if and only if
(i) Ny(z) =1 for all z € [0,n), and

(ii) for each y € (0,s], I(z,y) < Ni(NH(y)) for all 2 € (NV(y), 1].

Proof. (Necessity) (i) Suppose that there exists an zo € (0,n) such that Ny(zo) < 1.
Let N({Eo) = Yo, then J[B(l'myo) = I(.%‘(),B((Eo,yo)) = I(CU(),O) = N[(LL‘()) < 1.

Let € > 0 such that o + & < s, then N(zg +¢) < N(zg) = yo. Note that yo =
N(xzg) > N(n) = s, thus Jrg(zo +¢,y0) = I(xog+e,B(xo+¢,y0)) = [(xo+e,20+¢) =
1> Jrg(xo,yo), this contradicts the fact that Jrp is a fuzzy implication.

(ii) Suppose that there exist an yo € (0, ] and an zo € (N~ (yg), 1] such that
I(wo,50) > Nr(NTH (). (6)

Let 2’ = N(=D(yy), then 2’ > s and N(z') = yo. Hence

Jis(' yo) = I(2', B(2',y0)) = I(a',0) = Ny(NV (yp)). (7)
Let € > 0 such that 2/ + & = x¢, then N(zg) < N(z') = yo. Note that yg < s < z0, then
Jis(x’ +¢e,90) = I(xo, B(zo,y0)) = I(x0,%0)- (8)

From (6), (7) and (8), we obtain Jrp(a’,y0) < Jrp(a’ + &,yo0), this contradicts the fact
that Jyp is a fuzzy implication.

(Sufficiency). Let x1, xo, y € [0,1] with z; < x5. Note that Jyg(x,y) = 1 for all
x <y and y > s, hence it suffices to prove that

Jrg(x1,y) > Ji(x2,y) for all y € (0,s).
Actually, let y € (0,5) and 2" = N"U(y). If 21 < 29 < 2", then

Jig(z1,y) = I(x1,0) = Ni(21), Jip(w2,y) = I(22,0) = Ni(x2),
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thus Jrg(z1,y) > Jrg(xe2,y).

If 2, < 2" < g, then Jrp(x1,y) = Ni(z1) > Np(2") = Ny (N (y), Jrp(xe,y) =
I(x9,y). Thus Jrp(x1,y) > Jrg(x2,y).

If 2”7 < 21 < @o, then Jrp(z1,y) = I(21,y), Jre(z2,y) = [(z2,y). Thus Jrp(z1,y) >

Jr(z2,y).
From above discussion, we get Jrp(x1,y) > Jrp(za,y) for all x1, a9, y € [0,1] with

r1 < x3. Hence Jyp is a fuzzy implication, see also Figure 1. O
Y
1
N(x)
1

s> 5 I(x,»)
y—- ] ._.E_ ..... ;

e | v
o) T NOG) 1y

Fig. 1. The fuzzy implication Jrp in Proposition 4.20.

Corollary 4.21. Let I be a fuzzy implication that satisfies (IP), let B = BY. and N

be a strict fuzzy negation with a fixed point s € (0,1). Then J;5 is a fuzzy implication
if and only if

(i) Ny(z) =1 for all z € [0, s), and
(ii) for each y € (0,s], I(z,y) < Ny (N~1(y)) for all z € (N~1(y), 1].

Proof. Let s € (0,1) be the fixed point of N, and let n = min{z € [0,1]|N(z) = s}.
Since N is strict, then n = s. Therefore, the proof comes directly from Proposition [£:20]
0

Corollary 4.22. Let I be a fuzzy implication that satisfies (IP), let B = BY, and N

be a continuous negation with a fixed point s € (0,1). Then J;p satisfies (IP) if and
only if Ny(s) = 1.

Proof. (Sufficiency). Since s is a fixed point of N, then s = N(s). If z < N(z), then
x <'s. Hence Ny(x) > Ny(s) =1, i.e., I(z,0) =1 for all z < N(z). Note that

)
I(z,0), ifz < N(x)
(

JIB(sc,a:):I(a:,B(x,x)): {1 1f1‘>N$)’

then Jrp(x,xz) =1 for all z € [0, 1]. Hence Jrp satisfies (IP).
(Necessity). Obvious. O
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4.3. Conditions for J;p being a fuzzy implication with I = Iy

In this section, we discuss the conditions such that J;p is a fuzzy implication when [ is
a (U, N)-implication.

Definition 4.23. (Baczynski et al. [2]) An associative, commutative and increasing
operator U : [0,1]% — [0,1] is called a uninorm if it has a neutral element e € [0,1], i.e.,
Ule,z) =z, for all z € [0,1].

Obviously, if e = 0, then U is a t-conorm and if e = 1, then U is a t-norm.

Definition 4.24. (Baczytiski et al. [2]) A uninorm U is called conjunctive if U(0,1) = 0.
A uninorm U is called disjunctive if U(0,1) = 1.

Theorem 4.25. (Baczyiiski et al. [2]) Let U be a uninorm with neutral element e €
(0,1), such that the functions U(z,1) and U(z,0) are continuous except at the point
x = e. If U is disjunctive, then there exist a t-norm 7" and a t-conorm S such that

e-T(%,4), if x,y € [0, €],
U,y)={e+(1-e)-5(F2 L), ifayelel, 9)
max(x,y), otherwise.

A uninorm of form (9) will be denoted by Up'g",.

Definition 4.26. (Baczynski et al. [2]) A function I : [0,1]? — [0,1] is called a (U, N)-
implication, if there exist a disjunctive uninorm U and a fuzzy negation N such that

I(z,y) = U(N(z),y), =,y €[0,1].

If I is a (U, N)-implication generated from a disjunctive uninorm U and a negation N,
then we will denote it by Iy .

Lemma 4.27. Let U be a uninorm with a neutral element e € (0,1). If Iy satisfies
(IP), then N(xz) =1 for all z € [0, ¢].

Proof. Assume that Iyy satisfy (IP), then Iyy(z,z) = 1 for all z € [0,1], i.e,
U(N(z),z) = 1 for all x € [0,1]. Let = e, then U(N(e),e) = 1, thus N(e) = 1.
Since N(x) is decreasing, then N(z) > N(e) =1 for z € [0,e]. Hence N(z) =1 for all
x € [0,€]. O

Lemma 4.28. Let U = Up¥,. If Iyy satisfies (IP), then

(i) NY(e) =1.

(i) S (Nm—e H) =1 for all 2 € (e, NV (e)).

l—e 7’ 1—e

(iii) If S is positive, i.e., S(x,y) = 1 = either x =1 or y = 1, then N = Np,.
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Proof. Let z € [0,¢], then N(z) = 1 by Lemma [4.27] Thus
U(N(z),z) = max(N(z),z) = N(z) = 1.
Let x € (e, 1], then 0 < N(z) < N(e) = 1.
If e < N(z) < 1, namely, e < 2 < N(=Y(e), then

N = 1—e)-

TN @) a) =+ (=) 5 (D5 =

If 0 < N(z) < e, namely, N(_l)(e)gaﬁﬁl, then
U(N(z),z) = max(N(z),z) = .

From above discussion, we get

1, if x€1]0,€],
Iyn(z,z)=<e+(1—¢)-S (N(%);e, f::) ., if 2 € (e, N(Y(e)),
x, if ze [NCY(e),1].

Assume that Iy y satisfies (IP), then

N(z)—e z—e
l—e "1—e

NEY(e) =1, and S( > =1 for all z € (S,NH)(G))

Assume that S is positive, then we get

N(alc)—ezlor r—e
1—e 1—e
N(z)—e

Note that e < z < 1, then

=1, thus N(z) = 1forallx € (e,1). Hence N = Np,.
O

1—e

Proposition 4.29. (Baczynski et al. [5]) Let I € FI and B be a semicopula. If Jyp is
a fuzzy implication, then I satisfies (IP).

Proposition 4.30. Let I = Iyyy. If Jrp is a fuzzy implication, then

(i) N(z) =1 for all z € [0, ¢€].

(ii) Tf U = U2, then N(=D(e) = 1, and S (% ;ﬂ:g) —1lforallz € (e,1).

(iii) If s is a fixed point of N, then s > e.

Proof. Straightforward from Lemmas [1.27] £:28 and Proposition [£:29] O
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Remark 4.31. Let I = Iyyy. If N is strict, then there is no semicopula B such that J;p
is a fuzzy implication. Actually, suppose that J;p is a fuzzy implication, then N(x) =1
for all € [0,e] by Proposition m (i), a contradiction to the hypothesis that N is
strict.

Proposition 4.32. Let U = Up'§’, and I = Iyy. If the t-conorm S is positive, then
Jrp is a fuzzy implication if and only if N = Np,.

Proof. (Sufficiency) Since Jrp(1,1) = U(N(1),B(1,1)) = U(0,1) = 1, then it suffices
to prove that Jrp satisfies (I1).

Let 1, 2, y € [0,1] with 1 < x2. Since Np,(z) =1forallz € [0,1) and U(1,2) =1
for all z € [0,1], then

Jig(21,y) — Jip(z2,y) = U(Np, (1), B(21,9)) — U(Np, (22), B(22,y))
=1-U(Np,(22), B(z2,y))
Z Oa

that is, Jrp satisfies (I1).
(Necessity) Straightforward from Lemma [1.28] (iii). O

Theorem 4.33. Let [ = Iyy, U = UPS',, and N be a fuzzy negation that satisfies

N(z) = 1 for all x € [0,¢], and N("Y(e) = 1. Let B be a semicopula that satisfies
B(z,y) > e for all z, y € [e,1]. Then Jrp is a fuzzy implication if and only if the triple
(S, N, B) satisfies the following conditions:

l—e 1—e = 1—e

(a) S (N(I)_e B(m’y)_e) > Y=° for all x € (e,1) and y € (e, 1],

(b) S (N(I)_e B(I’y)_e) is decreasing with respect to x € (e, 1) for every y € (e, 1].

Proof. Since Jrp(1,1) =U(N(1),B(1,1)) = U(0,1) = 1, then it suffices to prove that
Jrp satisfies (I1) if and only if the conditions (a) and (b) hold.

Let z, y € [0,1]. Note that Unax(1,a) = 1 for all a € [0,1], then, for x € [0,e] and
Y€ [05 1]7 JIB<xay) = U(N(m)7B($’y)) =U(1,B(z,y)) = 1.

Since N(=Y(e) = 1, then N(x) > e for all = € [e,1). Actually, suppose that there
exists an zg € (e, 1) such that N(z¢) < e, then N(z) < e for all z € [xg, 1]. Thus

NY(e) = sup{z € [0,1]|N(z) > e}
= sup{{z € [0,z0)|N(z) = e} U{xz € [z0,1]|N(z) = e}}
= sup{z € [0,z9)|N(x) > e}.

Note that {z € [e,z0)|N(z) > e} C [e,x0), then sup{x € [e,z)|N(z) > e} < suple,xq).
Since suple, zg) < xp, then

sup{z € [e,20)|N(z) > e} < zo <1, ie., NOH(e) <z <1,

this contradicts the fact that N(—Y(e) = 1. That is, N(z) > e for all x € [e, 1).
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For z € (e,1) and y € [0, e]. Note that B(x,y) < min(x,y), then B(x,y) < e. Hence
Ji(x,y) = U(N(x), B(z,y)) = max(N(z), B(z,y)) = N(z).
For z € (e,1) and y € (e, 1]. Since B(z,y) > e for all x,y € [e, 1], then

N(z)—e B(z,y)—e
l—-e 7 1-—e )

Jrs(x,y) =U(N(z),B(z,y)) =e+(1—¢€)-S (
For z =1 and y € [0, €]. Note that B(1,y) =y < e, then
Iinla) = VN (@), Bla) = U0) = -7 (£.2) 0.
For x =1 and y € (e, 1]. Note that B(1,y) =y > e, then

Jip(z,y) = U(N(x), B(z,y)) = U(0,y) = max(0,y) = y.

From above discussion, we get

1, if z€(0,¢e] and y € [0,1],

N(x), if € (e,1) and y € [0, €],
Jig(z,y)=ce+(l—e)-S (%‘?;ﬂ%) , if z€(e1) and y € (e, 1],

0, if x=1 and y € [0,¢],

v, if =1 and y € (e, 1].

Let x1, @2, y € [0, 1] with 21 < x2. Consider the following cases:
Case 1. If 21 <ee, then Jrp(z1,y) =1 > Jrg(za,y) for all y € [0,1].
Case 2. If e <y <2 <1andye[0,e], then

Jig(x1,y) = N(x1) > N(x2) = Jrp(x2,9).

Case 3. If e <1 <@g <1 and y € (e, 1], then
Jig(x1,y) > Jrp(e,y) & S (N(fi)fev B(z1liye)7e> > 5( (@a)-e Blzzy)- >,

€

ie, S (% B(%yi*‘j is decreasing with respect to x € [e, 1] for every y € (e, 1].

e )

Case 4. If e <z <xy=1andy € [0,¢], then Jrp(z1,y) = N(z1) > e, Jip(w2,y) = 0.
Hence Jrp(x1,y) > Jrg(z2,y).

Case 5. If e < 71 < 22 = 1 and y € (e, 1], then Jrg(z1,y) = S( 11 = B(Ill;ye)fe),

Jre(x2,y) = y. Hence Jrp(x1,y) > Jip(w2,y) < S (%» B(f’ 2 e) > 4= for

all z € (e,1), y € (e,1].
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From above cases, Jrp satisfies (I1) if only if the triple (S, N, B) satisfies the following
conditions:

(a) S (N(m) = M) > 4= forall z € (¢,1) and y € (e, 1],

l—e 1—e
(b) S (N(f)e e M) is decreasing with respect to x € (e, 1) for every y € (e, 1].
Thus we complete the proof. O

To illustrate there exists a triple (S, N, B) such that the conditions (a) and (b) of
Theorem [£.33] hold, an example is given.

Example 4.34. Let N be a fuzzy negation defined as

1, if €10,€],
—x+e+1, if:ﬂe(e,i]
N(z) = Ite if € ( , 1),
2
0, if x=1,

where e € (0.5,1). Obviously, N satisfies N(z) =1 for all 2 € [0,¢], and N(=V(e) = 1
Let B =Ty It is easy to see that Ty (x,y) > e for all z, y € [e, 1].
Let S = Sflng, that is

1, if > Ny(y),

S(a,y) = Spis(w,y) =
(-’177?/) nM(x’y) {max(z7y), if z< Nl(y)a

where Ni(y) = 1 —y. Note that N(m) © > Ny (§=¢) for all z € (e, 1), then, for x € (e, 1),
y € (e, 1] with z <y, we get

§N <N(:c)e B(x,y) 6) = SNy (N(»T) —e TnM(:E,y)e)

1l—e ' 1-—e¢ 1—e ’ 1—e
_gM N(z)—e z—e
o TnM l—e "1—ce

=1

Similarly, for z € (e, 1), y € (e, 1] with = > y, we get

SNl N(I)*@ B(Ivy)ie :SNI N(I)*@ y—e
nM l—e 7 1-—e nM l—e "1—¢)/°

Hence
SN (N(m)*e B(w,y)*e,) = - if z <y,x€(e1)ye (el
M S (M2t 1)L ey c ey e el

l—-e ’1—e

It easy to see that S, ( 1:'3) <, B(x y) e) is decreasing with respect to = € (e, 1) for

every y € (e, 1], and S,]:]Al/[( (2)= —, B(m y) ©) > ¥=£, i.e., conditions (a) and (b) of

Theorem .33 hold.
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If the conditions on B are weakened, we obtain Theorem [£.38

Definition 4.35. (Klement et al. [12]) Let e € (0,1) be a constant. A semicopula B is
G(e)-continuous if for every y € [e, 1], there exists x € [e, 1] such that B(z,y) = e.

Remark 4.36. (i) If a semicopula B is continuous, then B is G(e)-continuous.

(ii) A semicopula B may not be continuous even is G(e)-continuous.

Example 4.37. (i) Let e € [0,1] and B = Tp. Obviously, B is continuous. For
each y € [e, 1], there exists © = £ € [e,1] such that B(z,y) = e, hence B is
G(e)-continuous.

(ii) Consider B = T,,5s, which is not continuous. However, let e = 0.7, for each y €
[0.7,1], there exists = 0.7 such that B(x,y) = 0.7, i.e., B is G(0.7)-continuous.

Theorem 4.38. Let I = Iyn, U = Upg’, and N be a fuzzy negation that satisfies

N(z) = 1 for all x € [0,¢], and N("V(e) = 1. Let B be a semicopula that is G/(e)-
continuous. Then Jrp is a fuzzy implication if and only if the triple (S, N, B) satisfies
following conditions:

(a) S (%7 %) > 4= for y € (e,1] and € {t € [e,1)|B(t,y) > e},

(b) S (%7 %) is decreasing with respect to « € {t € [e,1)|B(t,y) > e} for

every y € (e, 1].

Proof. Similar to the proof of Theoremm it suffices to prove that Jrp satisfies (I1)
if and only if the conditions (a) and (b) hold.

Let z, y € [0,1]. Note that Upax(1,a) =1 for all a € [0, 1], then, for x € [0, €], we get
Jip(z,y) =U(N(z), B(z,y)) = U(1, B(z,y)) =1 for all y € [0,1].

Note that N(=1(e) = 1, then N(z) > e for all z € [e, 1).

(1) For = € (e, 1) and y € [0, ¢], since B(z,y) < min(z,y) =y < e, then
Ji(z,y) = U(N(z), B(z,y)) = max(N(z), B(x,y)) = N(z).
(2) For = € (e,1) and y € (e, 1] such that B(z,y) < e, then
Ji(z,y) = U(N(2), B(z,y)) = max(N(z), B(z,y)) = N(z).
(3) For = € (e,1) and y € (e, 1] such that B(z,y) > e, then

N(z)—e B(z,y)—e
l—-e 7 1-—e )

Jrp(e.y) = UN(z), Ba.y) = e+ (1—¢) - (
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(4) For x =1 and y € [0, ¢], since B(z,y) =y < e, then
Jip(z,y) = U(N(2), B(z,y)) = U(0,y) = 0.
(5) For x = 1 and y € (e, 1], since B(z,y) =y > e, then
Ji(x,y) = U(N (), B(x,y)) = U(0,y) = max(0,y) = y.

From above discussion, we get

1, if z€0,¢] and y € [0,1],

N(z), it x € (e 1),y€]0,1] and B(z,y) <e,
Jip(z,y)=<e+(1—e)- S(Ngm_);e,m%ye)fe), if z € (e1),y€ (e, 1] and B(z,y) > e,

0, if =1 and y € [0,¢],

v, if =1 and y € (e, 1].

Let x1, 2, y € [0,1] and 21 < z2. Consider the following cases:
Case 1. If 1 <ee, then Jrg(z1,y) =1 > Jrp(ze,y) for all y € [0,1].

Case 2. If e < x1 < g < 1 and y € [0, ¢], note that B(z,y) < min(z,y) <y < e, then
Jrip(r1,y) = N(z1) > N(22) = Jrp(22,9)-

Case 3. Ife< 1 <9 < 1andy € (e, 1]. Given yp € (e, 1], since B is G(e)-continuous,
then there exists an zg € [e, 1] such that B(zg,yo) = e.

Let A(y) = {t € [e,1)|B(t,y) > e}, y € (e, 1]. Obviously, A # 0.

Case 3.1. o < xg. Note that B(z1,y0) < B(z2,%0) < B(zo,y0) = e, then

Jre(x1,90) = N(x1) > N(x2) = Jrp(22,y0)-

Case 3.2. 1 < 29 < x2 < 1. Note that B(z1,y0) < e and B(x2,y0) > e, then
x2 € A(yo), and

Jr(x1,y0) = N(z1),
Ji5(wo,90) = N(zo) = e + (1 - ¢) - § (Mul=e, Blepuloc),

l1—e 1—e

Jig(x2,y0) =e+ (1 —e€)-S (1\7(11:2)%7 B(zg,yo),e) .

—e 1—e
Hence, for all zo € A(yo), we have

Jrs(z1,y0) = Jrs(ta,y0) & S (N(lﬂﬂi)efe, B(wmyo)*e) >S9 (N(acz)*e7 B(l’z;llo)*e)

l—e 1—e l1—e

Case 3.3. g < 21 < w2 < 1. Note that e = B(wo,y0) < B(w1,50) < B(%2,%0),
then z1 € A(yo), 2 € A(yo), and

Tis(esgn) = et (1) (M, Plri=e),

1—e

Jr(x2,90) =e+(1—e)-S <N(:Jvz)fe7 B(zifg),e).

l—e
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e e 1—e

Thus Jrp(z1,y0) > J1p(72,%0) < S (N(zl) s B(zi’yO) e) > S8 (N(ff)_e B(zQ’yO)_e),

—e e

ie, S ( (2)—e B(Ilyo) ) is decreasing with respect to x € A(yo).

From Cases 3.2 and 3.3, and the arbitrary of yo, we get Jrp(x1,y) > Jrp(z2,y) <
S (Ngm)g ===, M) is decreasing with respect to = € {t € [e,1)|B(t,y) > e} for

every y € (e, 1].
Case 4. If e <21 < a9 =1and y € [0,¢], then Jrp(z1,y) > 0= Jrp(za,y).

Case 5. If e < 21 < 29 = 1 and y € (e,1]. Similarly, let yo € (e, 1], since B is G(e)-
continuous, then there exists an xg € (e, 1) such that B(zo,y0) = e.

Let A(y) = {t € [e,1)|B(t,y) > e}, y € (e, 1].
Case 5.1. g < z1. Note that B(z1,y0) > B(zo,yo) = e, i.e., z1 € A(yo), then
Jip(z1,y0) =e+(1—e)-S (N(iri)e_e’ B(zif}g)_e) '

l—e 7 1—e = l—e~

Hence Jrg(z1,50) > Jrg(z2,y0) & S (N(“)_e B(ml’yO)_e> > Yo—¢

Case 5.2. e < x1 < . Note that B(z1,y) < B(zo,y) = e, then

Jip(@1,90) = N(@1) = Nwo) = e+ (1 = ¢) - § ( Nped=e, Blogani=e),

1—e ? 1—e
Jr(x2,%0) = Yo

Hence Jyp(1,y0) > Jrp(wa o) & S (XGukee, Blpanlc) > soce

From Cases 5.1 and 5.2, and the arbitrary of yg, we get
Jip(@ry) = Jip(en,y) & 8 (Yekee, Bosiec) > 4= for all 2y € A(y),

—e
i.e.,

S (7N§3i)e—e’ 73(»’52—6) > Y= for y € (e,1] and z € {t € [e,1)|B(t,y) > e}.

From above discussion, Jrp satisfies (I1) if and only if the conditions (a) and (b) hold.J
To show the application of Theorem an example is given.

Example 4.39. Let e € (0,1) and N be a fuzzy negation defined as

1, if x€]0,e€],
N@)=q-z+e+1, if z€le, 1),
0, iz =1

Obviously, N satisfies N(z) = 1 for all z € [0,¢], and N(=V(e) = 1.
Let S = Spk, the Lukasiewicz t-conorm, i.e., S(z,y) = min(x + y,1). Consider
B = Tp. Obviously, B is G(e)-continuous.
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Fore<z <1l,e<y<1, we have

N(z)—e ay—e y—1
S =1 : .
( 1—e ’1—@) L g

N(z)—e xy—e

Then, given y € (e, 1], the function S ( ) is decreasing with respect to x.

l—-e 7 1—e
Thus ()
N(zx)—e zy—e y—1 y—e
1 -
S( l1—e 71—e>> L

for all z € [5, 1). This fact shows that there exists a triple (S, N, B) such that the
conditions (a) and (b) hold.

From (1) we get

1, if x €0,e] and y € [0,1],

l+e—z, if z€(el), ye[0,1] and zy <e,
Jip(z,y) =1 —z+azy, if x€(el), y€le 1] and zy > e,

0, if x=1 and yE[O,e]

Y, if =1 and y € (e, 1].

Hence J;p is a fuzzy implication by Theorem [£:38] see also Figure 2.

Y

1

0] X

Fig. 2. The fuzzy implication Jrp in Example 4.39.

5. PROPERTIES OF ®-CONJUGATE WITH J;p

In this section, some trivial properties of ®-conjugate with J;p are presented.

Proposition 5.1. Let ¢ € ®, I € FI and B be a semicopula, then (Jrg), = J1,B,-

Proof. Let z, y € [0,1], then (J1g),(z,y) = ¢ (Jis(e(z), ¢(y)))
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-1

o (L(p(x), B(p(2), ¢(y))))
e (I(p(x), o o™ Blp(x), ¢(y))))
I(z, o7 (B(p(2), ()
Io(z, By(2,y))

= JIw B, (.’17, y) O
Proposition 5.2. Let ¢ € ®. If I satisfies (NP), then (J;p), satisfies (NP).
Proof. Straightforward from Proposition (iii) and Proposition 1.3.6 in [2]. g

Proposition 5.3. Let ¢ € ® and N(, ), be the natural negation of (Jip),. If I € F1I,
then N(j, ), is a fuzzy negation, and Nz, ), = (N1)e-

Proof. Note that (Jrg),(z,y) = ¢~ (I(¢(x), B(p(z), ¢(y)))), then

N(JIB)¢ = (JIB)SD(IE,O)

Since I is a fuzzy implication, then Ny is a fuzzy negation by Lemma 1.4.14 in [2]. Note
that ¢ € @, thus (N7),, is a fuzzy negation by Proposition 1.4.8 in [2]. Hence N(;, )  is
a fuzzy negation.

Proposition 5.4. Let ¢ € ® and I be a fuzzy implication that satisfies (IP). If J;p is
2-increasing, then Jr_p, is a fuzzy implication.

Proof. Let I satisfy (IP) and Jrp is 2-increasing, then J;p is a fuzzy implication by
Theorem Note that ¢ € ®, then (Jrg), is a fuzzy implication by Proposition 1.1.8
n [2]. Thus J; g, is a fuzzy implication by Proposition O

6. CONCLUSION

In this paper, the research on the implication J;p is mainly carried out in two ways, one
is studying the relationship between the properties of J;p and I, another is studying the
conditions such that J;p is a fuzzy implication. The main results and research contents
are as follows:

e Implication Jyp satisfies (NP) if and only if I satisfies (NP), so is (LF), but not
(IP), (OP), (CP), (EP), (LT) and (BL).

o Sufficient conditions under which J;p satisfies (IP) ((OP), (CP), (EP), (LT), (BL),
respectively) are studied and introduced.



The study on semicopula based implications 693

e If the implication Jyp is 2-increasing ((r, r2)-decreasing, respectively)), then Jrp

is a fuzzy implication.

e Conditions under which J;pg is a fuzzy implication when B is a special semicopula

(I is an (U, N)-implication, respectively)) are studied/introduced.

In our future work, we want to study the following problems:

* The open problems proposed in Section 4.1.

* The conditions under which J;p is a fuzzy implication when [ is a Q) L-implication.

* The distributivity of J;g.
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