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KYBERNET IKA — VOLUME 5 6 ( 2 0 2 0 ) , NUMBER 4 , PAGES 6 6 2 – 6 9 4

THE STUDY ON SEMICOPULA BASED IMPLICATIONS

Zuming Peng

Recently, Baczyński et al. (2017) proposed a new family of implication operators called
semicopula based implications, which combines a given a priori fuzzy implication and a semi-
copula. In this paper, firstly, the relationship between the basic properties of the priori fuzzy
implication and the semicopula based implication are analyzed. Secondly, the conditions such
that the semicopula based implication is a fuzzy implication are studied, the study is carried
out mainly in the case that the semicopula is a special family semicopula and the priori fuzzy
implication is a (U,N)-implication. Moreover, the case that the semicopula based implication
is 2-increasing (directionally decreasing, respectively) is also considered.

Keywords: fuzzy implications, semicopula based implications, (U,N)-implications, semi-
copula, 2-increasing

Classification: 03E72, 03B52

1. INTRODUCTION

Fuzzy implications are the generalization of the classical (Boolean) implications on the
unit interval [0, 1], and are the basis for fuzzy logic systems, fuzzy control, decision
theory, expert systems [2, 6, 11, 15]. The main way of generating fuzzy implications
is from basic fuzzy logic connectives [1, 2, 3, 4], t-norms, t-conorms and negations.
Other way of generating fuzzy implications is from monotone functions [13, 14, 16, 22,
26], or from convex combination of two fuzzy implications [17, 18, 19, 21, 23, 24, 25].
Moreover, in consideration of imperfect knowledge that involve uncertainty, imprecision
and randomness, the probability implications and probability S-implications [10] were
proposed.

Recently, Baczyński et al. [5] introduced a new method of constructing implications
based on a fuzzy implication I and a semicopula B. The resulting implication JIB is
defined by

JIB(x, y) = I(x,B(x, y)), x, y ∈ [0, 1]. (1)

The implication JIB can be seen as a generalization of the probabilistic implication
and the probabilistic S-implication. However, its monotonicity in the first coordinate
may fail, and thus it need not be a fuzzy implication. Due to this, in this paper, as
a supplement of this research topic from the theoretical point of view, we attempt a
systematic study of JIB .
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The paper is organized as follows. In Section 2, some concepts and results are recalled.
In Section 3, we discuss the relationship between the properties of JIB and I. In Section
4, conditions for JIB being a fuzzy implication are deeply studied. In Section 5, some
trivial results of Φ-conjugate with JIB are given. The last section is the Conclusion.

2. PRELIMINARIES

For the convenience of reading, in this section, we recall some definitions and results
that will be used in the rest of the paper.

Definition 2.1. (Durante et al. [8]) A function B : [0, 1]2 → [0, 1] is said to be a
semicopula if, and only if, it satisfies the two following conditions:

(i) B(x, 1) = B(1, x) = x for all x in [0,1],

(ii) B(x, y) is increasing in each place.

Definition 2.2. (Klement et al. [12], Nelsen [20]) A function T : [0, 1]2 → [0, 1] is
said to be a t-norm if it is an associative and commutative semicopula. A function
S : [0, 1]2 → [0, 1] is said to be a t-conorm if it is an associative and commutative dual
semicopula. A function C : [0, 1]2 → [0, 1] is said to be a copula if it is a semicopula and
satisfies C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1) for all x1, x2, y1, y2 ∈ [0, 1] with
x1 < x2 and y1 < y2.

Five basic t-norms that will be used throughout this paper are given as follows:

• TM (x, y) = min(x, y), is the greatest semicopula.
• TP (x, y) = xy.
• TLK(x, y) = max(x + y − 1, 0).

• TD(x, y) =

{
0, if (x, y) ∈ [0, 1)2,

min(x, y), otherwise,
is the smallest semicopula.

• TnM (x, y) =

{
0, if x + y ≤ 1,

min(x, y), otherwise.

These basic t-norms form the following chains:

TD ≤ TLK ≤ TP ≤ TM , TD ≤ TLK ≤ TnM ≤ TM .

Definition 2.3. (Baczyński et al. [2]) A function I : [0, 1]2 → [0, 1] is called a fuzzy
implication if it satisfies, for all x, x1, x2, y, y1, y2 ∈ [0, 1], the following conditions:

(I1) if x1 < x2, then I(x1, y) ≥ I(x2, y), i. e., I(·, y) is decreasing,

(I2) if y1 < y2, then I(x, y1) ≤ I(x, y2), i. e., I(x, ·) is increasing,

(I3) I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0.

The set of all fuzzy implications will be denoted by FI.
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Important fuzzy implications that will be used throughout this paper are given as
follows:

• The Lukasiewicz implication: ILK(x, y) = min(1, 1− x + y).

• The Rescher implication: IRS(x, y) =

{
1, if x ≤ y,

0, if x > y.

• The Weber implication: IWB(x, y) =

{
1, if x ∈ [0, 1),

y, if x = 1.

• The greatest implication: IG(x, y) =

{
1, if x = 1 and y = 0,

0, otherwise.

Remark 2.4. (Baczyński et al. [2]) I satisfies the following properties (called left and
right boundary condition, respectively):

(LB) I(0, y) = 1, for all y ∈ [0, 1],

(RB) I(x, 1) = 1, for all x ∈ [0, 1].

Definition 2.5. (Baczyński et al. [2])

(i) A function N : [0, 1]→ [0, 1] is called a fuzzy negation if N(0) = 1, N(1) = 0, and
N is decreasing.

(ii) A fuzzy negation N is strong if it is an involution, i. e., N(N(x)) = x for all
x ∈ [0, 1].

(iii) Let T be a t-norm. A function NT : [0, 1]→ [0, 1] defined as

NT (x) = sup{y ∈ [0, 1]|T (x, y) = 0}, x ∈ [0, 1],

is called the natural negation of T or the negation induced by T .

(iv) Let I ∈ FI. A function NI : [0, 1]→ [0, 1] defined as NI(x) = I(x, 0), x ∈ [0, 1], is
called the natural negation of I.

Important fuzzy negations that will be used throughout this paper are given as follows:

• The classical fuzzy negation: NC(x) = 1− x for all x ∈ [0, 1].

• The least fuzzy negation: ND1
(x) =

{
1, if x = 0,

0, if x ∈ (0, 1].

• The greatest fuzzy negation: ND2
(x) =

{
1, if x ∈ [0, 1),

0, if x = 1.

Definition 2.6. (Baczyński et al. [2], Fodor [9], Grzegorzewski [10], Pradera et al. [24])
An operator I : [0, 1]2 → [0, 1] is said to satisfy

(i) the left neutrality property, if I(1, y) = y for all y ∈ [0, 1]. (NP)
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(ii) the identity principle, if I(x, x) = 1 for all x ∈ [0, 1]. (IP )

(iii) the ordering property, if I(x, y) = 1⇔ x ≤ y for all x, y ∈ [0, 1]. (OP)

(iv) the contrapositive symmetry with respect to a fuzzy negation N , if

I(x, y) = I(N(y), N(x)), for all x, y ∈ [0, 1]. (CP(N))

(v) the exchange principle, if I(x, I(y, z)) = I(y, I(x, z)) for all x, y, z ∈ [0, 1]. (EP)

(vi) the T -conditionality, if T (x, I(x, y)) ≤ y, x, y ∈ [0, 1], where T is a t-norm.
(TC)

(vii) the lowest truth property, I(x, y) = 1 if and only if x = 0 or y = 1. (LT)

(viii) the lowest falsity property, I(x, y) = 0 if and only if x = 1 and y = 0. (LF)

(ix) the boolean-like law, I(x, I(y, x)) = 1 for all x, y ∈ [0, 1]. (BL)

Definition 2.7. (Baczyński et al. [2], Ouyang [21], Yager [26], Grzegorzewski [10])

(i) A function IS,N : [0, 1]2 → [0, 1] is called an (S,N)-implication if there exist a
t-conorm S and a fuzzy negation N such that IS,N (x, y) = S(N(x), y) for all
x, y ∈ [0, 1].

(ii) A function IT : [0, 1]2 → [0, 1] is called an R-implication if there exists a t-norm T
such that IT (x, y) = sup{t ∈ [0, 1]|T (x, t) ≤ y} for all x, y ∈ [0, 1].

(iii) Let f : [0, 1]→ [0,∞] be a strictly decreasing and continuous function with f(1)=
0. The function If : [0, 1]2 → [0, 1] defined by If (x, y) = f−1(x · f(y)) for all x,
y ∈ [0, 1], with the convention 0 · ∞ = 0, is called an f -generated implication.

(iv) Let g : [0, 1]→ [0,∞] be a strictly increasing and continuous function with g(0) =
0. The function Ig : [0, 1]2 → [0, 1] defined by

Ig(x, y) = g−1
(

min

(
1

x
· g(y), g(1)

))
for all x, y ∈ [0, 1],

with the convention 1
0 =∞ and ∞ · 0 =∞, is called a g-generated implication.

(v) Let C be a copula. A function ĨC : [0, 1]2 → [0, 1] given by

ĨC(x, y) = C(x, y)− x + 1, for all x, y ∈ [0, 1],

is called a probabilistic S−implication.

(vi) Let C be a copula. A function IC : [0, 1]2 → [0, 1] given by

IC(x, y) =

{
1, if x = 0,
C(x,y)

x , if x > 0,

is called a probabilistic implication.
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Definition 2.8. (Baczyński et al. [6])

(i) A function ϕ : [0, 1] → [0, 1] is an automorphism if it is continuous and strictly
increasing and satisfies the boundary conditions ϕ(0) = 0 and ϕ(1) = 1. By Φ we
denote the family of all automorphism from [0, 1] to [0, 1].

(ii) The functions f , g : [0, 1]n → [0, 1] are called Φ−conjugate, if there exists a ϕ ∈ Φ
such that g = fϕ, where fϕ(x1, x2, · · ·, xn) = ϕ−1(f(ϕ(x1), ϕ(x2), · · ·, ϕ(xn))), for
all x1, x2, . . . , xn ∈ [0, 1].

Proposition 2.9. (Baczyński et al. [5]) For any fuzzy implication I and any semicopula
B the following conditions hold:

(i) JIB is increasing with respect to the second variable.

(ii) JIB(1, 0) = 0, JIB(0, y) = 1 for all y ∈ [0, 1].

(iii) JIB(1, y) = I(1, y) for all y ∈ [0, 1].

(iv) JIB(x, 0) = I(x, 0), i. e., NJIB
(x) = NI(x) for all x ∈ [0, 1].

(v) JIB(x, 1) = I(x, x) for all x ∈ [0, 1].

3. RELATIONSHIP BETWEEN THE PROPERTIES OF JIB AND I

In this section, we discuss the relationship between the basic properties of JIB and I.

Proposition 3.1. Let I be a fuzzy implication and B a semicopula. Then, the implica-
tion JIB defined by (1) satisfies (NP) ((RB), respectively) if and only if I satisfies (NP)
((IP), respectively).

P r o o f . Straightforward from Proposition 2.9 (iii) and (v). �

Proposition 3.2. Let I be a fuzzy implication and B a semicopula. If the implication
JIB defined by (1) satisfies (IP)((OP), respectively), then I satisfies (IP).

P r o o f . JIB satisfies (IP)((OP), respectively) ⇒ JIB(x, x) = 1 ⇒ I(x,B(x, x)) = 1.
Since I(x, x) ≥ I(x,B(x, x)), then I(x, x) = 1 for all x ∈ [0, 1]. �

The fact that the converse of Proposition 3.2 does not hold can be easily shown in
the following example.

Example 3.3. Consider the Fodor implication IFD:

IFD(x, y) =

{
1, if x ≤ y,

min(1− x, y), if x > y.

It satisfies (IP). Taking a semicopula B(x, y) = xy. From (1) we get

JIFDB(0.5, 0.5) = IFD(0.5, B(0.5, 0.5)) = IFD(0.5, 0.25) = 0.25 6= 1,

that is, JIFDB does not satisfy (IP) ((OP), respectively).
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Nevertheless, if I satisfies (OP), we have the following proposition.

Proposition 3.4. Let I be a fuzzy implication that satisfies (OP). Then JIB satisfies
(IP) if and only if B = TM .

P r o o f . (Necessity). JIB satisfies (IP)⇒ JIB(x, x) = 1 for all x ∈ [0, 1]⇒ I(x,B(x, x))
= 1 for all x ∈ [0, 1]. Since I satisfies (OP), then x = B(x, x) for all x ∈ [0, 1]. Hence
B(x, y) = min(x, y), i. e., B = TM .

(Sufficiency). Obvious. �

Remark 3.5. (i) Let I be a fuzzy implication that satisfies (IP). If B = TM , then
JIB satisfies (IP).

(ii) Let I be a fuzzy implication that satisfies (OP). Then JIB satisfies (OP) if and
only if B = TM .

(iii) Let IT be an R-implication of a left-continuous t-norm T . Then JITB satisfies
(IP)((OP), respectively) if and only if B = TM .

From Remark 3.5, we have the following problem.

Problem 3.6. Let I be a fuzzy implication that satisfies (IP) but not (OP), what
conditions does B satisfy such that JIB satisfies (IP)?

Proposition 3.7. Let I ∈ FI and B be a semicopula, let S, Ŝ be sets defined as

S = {(x, y)|I(x, y) = 1, x, y ∈ [0, 1]},

Ŝ = {(x, y)|y ≥ B(x, x), x, y ∈ [0, 1]}.

Then JIB satisfies (IP) if and only if Ŝ ⊆ S.

P r o o f . (Sufficiency) Let x ∈ [0, 1] and (x,B(x, x)) ∈ Ŝ. Since Ŝ ⊆ S, then (x,B(x, x))
∈ S. Hence JIB(x, x) = I(x,B(x, x)) = 1, i. e., JIB satisfies (IP).

(Necessity) Let (x, y) ∈ Ŝ, then y ≥ B(x, x). Since JIB satisfies (IP), then I(x, y) ≥
I(x,B(x, x)) = 1, i. e., (x, y) ∈ S. Hence Ŝ ⊆ S. �

Remark 3.8. From Proposition 3.7, for a given semicopula B, there always exists a
I ∈ FI such that JIB satisfies (IP). Moreover, I may not be unique.

Example 3.9. Let B = TP . Note that Ŝ = {(x, y)|y ≥ B(x, x), x, y ∈ [0, 1]}, then

Ŝ = {(x, y)|y ≥ x2, x, y ∈ [0, 1]}.

Consider the following fuzzy implication

I1(x, y) =

{
1, if y ≥ x2,

1− x + y, if y < x2.
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Since S1 = {(x, y)|I1(x, y) = 1, x, y ∈ [0, 1]}, then S1 = {(x, y)|y ≥ x2, x, y ∈ [0, 1]}.
Thus Ŝ ⊆ S1. Hence JI1B satisfies (IP) by Proposition 3.7.

Consider the following fuzzy implication

I2(x, y) =

{
1, if y ≥ x3,

1− x + y, if y < x3.

It is easy to see that S2 = {(x, y)|y ≥ x3, x, y ∈ [0, 1]}, then Ŝ ⊆ S2. Hence JI2B satisfies
(IP) by Proposition 3.7.

Proposition 3.10. Let I ∈ FI and B be a semicopula that is strictly increasing in
second variable, and let S, Ŝ be sets defined as

S = {(x, y)|I(x, y) = 1, x, y ∈ [0, 1]},

Ŝ = {(x, y)|y ≥ B(x, x), x, y ∈ [0, 1]}.

Then JIB satisfies (OP) if and only if Ŝ = S.

P r o o f . (Sufficiency) Let x, y ∈ [0, 1]. If x = 0, then JIB(x, y) = 1⇒ x ≤ y.
If x > 0, then JIB(x, y) = 1⇒ I(x,B(x, y)) = 1

⇒ (x,B(x, y)) ∈ S

⇒ (x,B(x, y)) ∈ Ŝ
⇒ B(x, y) ≥ B(x, x).

Note that B is strictly increasing in second variable, thus x ≤ y.
On the other hand, if x ≤ y, then JIB(x, y) = I(x,B(x, y)) ≥ I(x,B(x, x)). Since

B(x, x) ≥ B(x, x), then (x,B(x, x)) ∈ Ŝ. By Ŝ = S, we have (x,B(x, x)) ∈ S, i. e.,
I(x,B(x, x)) = 1. Hence JIB(x, y) = 1.

(Necessity) Let JIB satisfy (OP), follows that JIB satisfies (IP), then Ŝ ⊆ S by

Proposition 3.7. If (x, y) ∈ S, then I(x, y) = 1. Assume that (x, y) ∈ Ŝ, where Ŝ is the

complement of Ŝ in [0, 1]2, then y < B(x, x) ≤ x. Hence

I(x, y) ≤ I(x,B(x, x)) ≤ I(x,B(x, y)) = JIB(x, y).

Note that I(x, y) = 1, then JIB(x, y) = 1. Since JIB satisfies (OP), then x ≤ y, this

contradicts the fact that y < B(x, x) ≤ x. Hence S ⊆ Ŝ, thus S = Ŝ. �

Lemma 3.11. (Baczyński et al. [2]) Let I ∈ FI and N be a fuzzy negation. If I
satisfies (NP) and (CP(N)), then N = NI is a strong fuzzy negation.

Proposition 3.12. Let I be a fuzzy implication and B a semicopula. If the implication
JIB satisfies (CP(N)), then

(i) I satisfies (IP).

(ii) JIB is a fuzzy implication.
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(iii) If I satisfies (NP), then N = NI is a strong negation.

(iv) If I satisfies (OP), then x = B(x, y)⇔ N(y) = B(N(y), N(x)), x, y ∈ [0, 1].

P r o o f .

(i) Assume that JIB satisfies (CP(N)), then

I(x,B(x, y)) = I(N(y), B(N(y), N(x))) for all x, y ∈ [0, 1].

Taking y = 1, then I(x, x) = I(0, B(0, N(x))) = 1 for all x ∈ [0, 1], i. e., I satisfies
(IP).

(ii) From [2] Lemma 1.5.4 (ii) and Proposition 2.9 (i), we have, JIB satisfies (I1), then
JIB is a fuzzy implication.

(iii) Straightforward from Lemma 3.11, Proposition 2.9 (iii) and (iv).

(iv) Suppose that there exists some (x0, y0) ∈ [0, 1]2 such that x0 = B(x0, y0) and
N(y0) > B(N(y0), N(x0)), then

JIB(x0, y0) = I(x0, B(x0, y0)) = 1,

JIB(N(y0), N(x0)) = I(N(y0), B(N(y0), N(x0))) < 1.

Hence JIB(x0, y0) > JIB(N(y0), N(x0)). This contradicts the fact that JIB satisfies
(CP(N)). Thus completes the proof. �

Remark 3.13. (i) Let I be a fuzzy implication that satisfies (NP). If NI , the natural
negation of I, is not strong, by Proposition 3.12 (iii), then JIB does not satisfy
(CP) with respect to any fuzzy negation N and any semicopula B. Therefore,

– for the (S,N)-implication IS,N : if N is not strong, then JIS,NB does not
satisfy (CP) with respect to any fuzzy negation N and any semicopula B.

– for the R-implication IT : if NT , the natural negation of T , is not strong (strict,
continuous, strictly decreasing, respectively), then JITB does not satisfy (CP)
with respect to any fuzzy negation N and any semicopula B.

– for the g-implication Ig: since Ig satisfies (NP) and NIg = ND1
, then JIgB

does not satisfy (CP) with respect to any fuzzy negation N and any semicop-
ula B.

– for the probabilistic implication IC : since IC satisfies (NP) and NIC = ND1
,

then JICB does not satisfy (CP) with respect to any fuzzy negation N and
any semicopula B.

(ii) For the f -implication If : note that If does not satisfy (IP), then JIfB does not
satisfy (CP) with respect to any fuzzy negation N and any semicopula B.

(iii) Let I ∈ FI. Even if I satisfies (IP) and (CP), JIB may not satisfy (CP).
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Example 3.14. Consider the Lukasiewicz implication ILK . It satisfies (IP) and (CP).
Let B = TD.

From (1) we get

JILKB(x, y) =


y, if x = 1,

1, if y = 1,

1− x, otherwise.

Note that JILKB(0.9, 0.9) = 0.1 < 0.9 = JILKB(1, 0.9), i. e., JILKB does not satisfy (I1),
then JILKB does not satisfy (CP) with respect to any fuzzy negation N by Lemma 1.5.4
in [2].

Problem 3.15. Let I be a fuzzy implication that satisfies (IP) and (NP), but not (CP),
and its natural negation NI is strong. Does JIB not satisfy (CP)?

Unfortunately, the answer is negative.

Example 3.16. Consider the following fuzzy implication

I(x, y) =

{
1, if x ≤ y,

max( y
x , 1− x), if x > y.

It satisfies (IP) and (NP), but not (CP).
Taking B = TP , from (1) we get

JIB(x, y) =

{
1, if x = 0 or y = 1,

max(y, 1− x), otherwise.

Obviously, JIB(x, y) = JIB(NI(y), NI(x)), i. e., JIB satisfies (CP) with respect to NI .

Proposition 3.17. Let I be a fuzzy implication that satisfies (IP) and (CP), then there
exists a semicopula B such that JIB satisfies (CP).

P r o o f . Consider B = TM . Let x, y ∈ [0, 1]. If x ≤ y, then I(x, y) = 1 = I(x, x) =
I(x, TM (x, y)) = JIB(x, y) by I satisfies (IP). If x > y, then I(x, y) = I(x, TM (x, y)) =
JIB(x, y). Hence JIB = I. Note that I satisfies (CP), then JIB satisfies (CP). �

Proposition 3.18. Let f : [0, 1]→ [0,∞] be a continuous, strictly decreasing function
with f(1) = 0, let T be a continuous Archimedean t-norm with additive generator f and
IT its R-implication. Then the following statements are equivalent:

(i) JITB satisfies (CP) with respect to a fuzzy negation N .

(ii) N = NIT , and the triple (f,B,N) satisfies the following equation:

f(B(x, y))− f(B(N(y), N(x))) = f(x)− f(N(y)).
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P r o o f . From [2] Theorem 2.1.5 and Definition 2.7 (ii), we get

IT (x, y) = f−1 (max(f(y)− f(x), 0)) for all x, y ∈ [0, 1],

then the rest of the proof comes directly from calculation. �

Proposition 3.19. Let I be a continuous fuzzy implication that satisfies (OP) and
(EP). Then the following statements are equivalent:

(i) JIB satisfies (CP) with respect to a fuzzy negation N .

(ii) There exists a ϕ ∈ Φ, such that N(x) = ϕ−1(1− ϕ(x)) and

ϕ(B(x, y))− ϕ(B(N(y), N(x))) = ϕ(x)− ϕ(N(y)) for all x, y ∈ [0, 1].

P r o o f . The proof comes directly from calculation. �

Proposition 3.20. Let B be a semicopula and N a fuzzy negation, let C be a copula
and ĨC a probabilistic S−implication, let JĨCB be an implication defined by (1). Then
the following statements are equivalent:

(i) JĨCB satisfies (CP) with respect to N .

(ii) ĨC = ILK , N = NC and B(x, y)−B(N(y), N(x)) = x−N(y) for all x, y ∈ [0, 1].

P r o o f . The proof comes directly from calculation. �

Proposition 3.21. Let I ∈ FI and B be a semicopula. If the implication JIB satisfies
(EP), then I satisfies (IP).

P r o o f . JIB satisfies (EP) ⇒ JIB(x, JIB(y, z)) = JIB(y, JIB(x, z)) for all x, y, z ∈
[0, 1].

Taking x = 0, then JIB(0, JIB(y, z)) = JIB(y, JIB(0, z))

⇒ I(0, B(0, JIB(y, z))) = JIB(y, I(0, B(0, z))

⇒ 1 = JIB(y, 1)

⇒ I(y,B(y, 1)) = 1

⇒ I(y, y) = 1 for all y ∈ [0, 1].

That is, I satisfies (IP). �

Remark 3.22. (i) Let NI , the natural negation of I, be a continuous negation. If I
does not satisfy (NP), then JIB does not satisfy (EP).

In fact, suppose that JIB satisfies (EP), then for all x, y, z ∈ [0, 1], we get

JIB(x, JIB(y, z)) = JIB(y, JIB(x, z)).

Taking z = 0, x = 1, then I(1, NI(y)) = I(y, 0) = NI(y). A contradiction to the
fact that I does not satisfy (NP).
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(ii) Let I be a fuzzy implication that satisfies (IP). Even if I does not satisfy (EP),
JIB may satisfy (EP).

(iii) Let I be a fuzzy implication that satisfies (IP). Even if I satisfies (EP), JIB may
not satisfy (EP).

Example 3.23. Consider the Rescher implication IRS . It satisfies (IP) but not (EP).

Let B = TP . From (1) we get

JIRSB(x, y) =

{
1, if x = 0 or y = 1,

0, otherwise.

Let x, y, z ∈ [0, 1]. By calculations, we have

JIRSB(x, JIRSB(y, z)) =

{
1, if x = 0 or y = 0 or z = 1,

0, otherwise,

JIRSB(y, JIRSB(x, z)) =

{
1, if x = 0 or y = 0 or z = 1,

0, otherwise.

Then JIRSB(x, JIRSB(y, z)) = JIRSB(y, JIRSB(x, z)), i. e., JIRSB satisfies (EP).

On the other hand, consider the Lukasiewicz implication ILK . It satisfies (IP) and
(EP).

Let B = TD. Taking x = 0.9, y = 0.5 and z = 0.3, we have

JILKB(0.5, 0.3) = ILK(0.5, TD(0.5, 0.3)) = ILK(0.5, 0) = 0.5,

JILKB(0.9, 0.3) = ILK(0.9, TD(0.9, 0.3)) = ILK(0.9, 0) = 0.1.

Thus

JILKB(0.9, JILKB(0.5, 0.3)) = JILKB(0.9, 0.5) = ILK(0.9, TD(0.9, 0.5)) = 0.1,

JILKB(0.5, JILKB(0.9, 0.3)) = JILKB(0.5, 0.1) = ILK(0.5, TD(0.5, 0.1)) = 0.5.

This fact shows that JILKB does not satisfy (EP).

Proposition 3.24. Let I ∈ FI and NI , the natural negation of I, be a continuous
negation. Then JIB satisfies (EP) if and only if JIB is an (S,NI)-implication.

P r o o f . The proof comes directly from Theorem 2.4.10, Remark 2.4.13 (ii) in [2] and
Proposition 2.9 (i). �

Corollary 3.25. Let I ∈ FI and NI , the natural negation of I, be a strong negation.
If the implication JIB satisfies (EP), then JIB satisfies (CP) with respect to NI .

Proposition 3.26. Let I be a fuzzy implication and B a semicopula, and let T , T
′

be
t-norms such that T

′ ≤ T . If I satisfies (TC) with T , then JIB satisfies (TC) with T
′
.
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P r o o f . T ′(x, JIB(x, y)) ≤ T (x, JIB(x, y)) = T (x, I(x,B(x, y))) ≤ T (x, I(x, y)) ≤ y
for all x, y ∈ [0, 1]. �

Remark 3.27. (i) Note that NJIB
= NI , if NI > NT , the nature negation of T , then,

for any semicopula B, JIB does not satisfy (TC) with t-norm T by Proposition
7.4.3 in [2].

(ii) Let NI ≤ NT , and let A, A be sets defined as

A = {(x, y)|T (x, I(x, y)) ≤ y for all x, y ∈ [0, 1]},
A = {(x, y)|T (x, I(x, y)) > y for all x, y ∈ [0, 1]}.

If A = ∅, JIB satisfies (TC) with T . If A 6= ∅, then JIB satisfies (TC) with T if
only if (x,B(x, y)) ∈ A for all (x, y) ∈ A.

(iii) Even if I does not satisfy (TC) with a t-norm T , JIB may satisfy (TC) with T .

Example 3.28. Let I = ILK and T = TnM . Since TnM (0.6, I(0.6, 0.3)) = 0.6 > 0.3,
then ILK does not satisfy (TC) with TnM . However, taking B = TD, we get

JIB(x, y) = JILKTD
(x, y) =


1− x, if x, y ∈ [0, 1),

y, if x = 1,

1, if y = 1.

For x, y ∈ [0, 1), TnM (x, JIB(x, y)) = 0 ≤ y. For x = 1 and y ∈ [0, 1], TnM (x, JIB(x, y)) =
y ≤ y. For x ∈ [0, 1] and y = 1, TnM (x, JIB(x, y)) = x ≤ 1 = y. Hence TnM (x, JIB(x, y)) ≤
y for all x, y ∈ [0, 1], i. e., JIB satisfies (TC) with TnM .

Proposition 3.29. Let I ∈ FI and B be a semicopula. Then the implication JIB
satisfies (LF) if and only if I satisfies (LF).

P r o o f . Let JIB satisfy (LF), i. e., JIB(x, y) = 0 ⇔ x = 1 and y = 0. Assume that
I(x, y) = 0. Note that JIB ≤ I, then JIB(x, y) = 0, thus x = 1 and y = 0. Reversely,
assume that x = 1 and y = 0, then I(x, y) = 0. Thus I(x, y) = 0 ⇔ x = 1 and y = 0,
i. e., I satisfies (LF).

On the other hand, let I satisfy (LF), i. e., I(x, y) = 0 ⇔ x = 1 and y = 0. Assume
that JIB(x, y) = 0, i. e., I(x,B(x, y)) = 0, then x = 1 and B(x, y) = 0. Hence x = 1
and y = 0. Reversely, assume that x = 1 and y = 0, then JIB(x, y) = 0. Thus
JIB(x, y) = 0⇔ x = 1 and y = 0, i. e., JIB satisfies (LF). �

Proposition 3.30. Let I ∈ FI and B be a semicopula. If JIB satisfies (LT), then I
satisfies (IP).

P r o o f . Let JIB satisfy (LT), then JIB(x, 1) = 1 for all x ∈ [0, 1], i. e., I(x,B(x, 1)) = 1.
Thus I(x, x) = 1 for all x ∈ [0, 1]. Hence I satisfies (IP). �

Let FI(IP) be the set of all fuzzy implications that satisfies (IP).
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Remark 3.31. (i) Let I be a fuzzy implication that satisfies (LT). Then JIB does
not satisfy (LT) for any semicopula B. Actually, if I satisfies (LT), then I(x, x) 6= 1
for x ∈ (0, 1). Hence, I does not satisfy (IP). Thus JIB does not satisfy (LT) by
Proposition 3.30.

(ii) There exists some I ∈ FI(IP) such that JIB satisfy (LT). See Example 3.32 (i).

(iii) There exists some I ∈ FI(IP) such that JIB does not satisfy (LT) for any semicop-
ula B. See Example 3.32 (ii).

Example 3.32. (i) Consider the Lukasiewicz implication ILK . It satisfies (IP) but
not (LT). Taking B = TP , then the implication JILKB has the following form:

JILKB(x, y) = 1− x + xy, for all x, y ∈ [0, 1].

Since JILKB(x, y) = 1 ⇔ 1 − x + xy = 1 ⇔ x = 0 or y = 1, then JILKB satisfies
(LT).

(ii) Consider the Weber implication IWB . It satisfies (IP) but not (LT). For any
semicopula B, by calculations, we get JIWBB = IWB . This shows that there exists
some I ∈ FI(IP) such that JIB does not satisfy (LT) for any semicopula B.

Problem 3.33. Let I be a fuzzy implication that satisfies (IP), what conditions does
semicopula B have to ensure that JIB satisfy (LT)?

In the following, we give a partial answer.

Proposition 3.34. Let I be a fuzzy implication that satisfies (OP), and let B be a
semicopula. If x = B(x, y)⇔ x = 0 or y = 1, then JIB satisfies (LT).

P r o o f . Let I satisfy (OP), then JIB(x, y) = 1 ⇔ I(x,B(x, y)) = 1 ⇔ x = B(x, y) ⇔
x = 0 or y = 1. �

Proposition 3.35. Let I ∈ FI and B be a semicopula. If JIB satisfies (BL), then I
satisfies (IP) and (BL).

P r o o f . Let JIB satisfy (BL), then JIB(x, JIB(y, x)) = 1 for all x, y ∈ [0, 1], i. e.,

I(x,B(x, I(y,B(y, x)))) = 1 for all x, y ∈ [0, 1].

Taking y = 0, then I(x, x) = 1 for all x ∈ [0, 1]. That is, I satisfies (IP).
Since I(x, I(y, x)) ≥ I(x, I(y,B(y, x))) ≥ I(x,B(x, I(y,B(y, x)))), then I satisfies

(BL). �

Remark 3.36. Let I ∈ FI. Even if I satisfies (IP) and (BL), JIB may not satisfy
(BL).
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Example 3.37. Consider the following fuzzy implication

I(x, y) =

{
1, if x2 ≤ y,

y, if x2 > y.

Obviously, it satisfies (IP). Let x, y ∈ [0, 1]. If y2 ≤ x, then I(x, I(y, x)) = I(x, 1) = 1.
If y2 > x, then I(x, I(y, x)) = I(x, x) = 1. Hence I(x, I(y, x)) = 1 for all x, y ∈ [0, 1].
That is, I satisfies (BL).

Let semicopula B = TD. From (1) we get

JIB(x, y) =


1, if x = 0 or y = 1,

y, if x = 1,

0, otherwise.

Since JIB(0.5, JIB(0.5, 0.5)) = JIB(0.5, 0) = 0 6= 1, i. e., JIB does not satisfy (BL).

Lemma 3.38. Let I ∈ FI. If I satisfies (IP) and (NP), then I satisfies (BL).

P r o o f . Let x, y ∈ [0, 1]. If x ≥ y, then I(y, x) = 1 by (IP). Hence I(x, I(y, x)) = 1. If
x < y, since I satisfies (NP), then I(y, x) ≥ I(1, x) = x. Hence I(x, I(y, x)) ≥ I(x, x) =
1. Thus I(x, I(y, x)) = 1 for all x, y ∈ [0, 1], i. e., I satisfies (BL). �

Proposition 3.39. Let B be a semicopula and I a fuzzy implication that satisfies (NP).

Let S, Ŝ be sets defined by

S = {(x, y)|I(x, y) = 1, x, y ∈ [0, 1]},

Ŝ = {(x, y)|y ≥ B(x, x), x, y ∈ [0, 1]}.

If Ŝ ⊆ S, then JIB satisfies (BL).

P r o o f . Let I satisfy (NP), then JIB satisfies (NP) by Proposition 3.1. Let Ŝ ⊆ S,
then JIB satisfies (IP) by Proposition 3.7. Thus JIB satisfies (BL) by Lemma 3.38. �

Proposition 3.40. Let I be a fuzzy implication that satisfies (OP) and (NP), and let
B be a semicopula. Then JIB satisfies (BL) if and only if B = TM .

P r o o f . (Necessity) Let JIB satisfy (BL), then JIB(x, JIB(y, x)) = 1 for all x, y ∈ [0, 1],
i. e.,

I(x,B(x, I(y,B(y, x)))) = 1, for all x, y ∈ [0, 1].

Since I satisfies (OP), then x = B(x, I(y,B(y, x))) for all x, y ∈ [0, 1]. Taking y = 1,
then x = B(x, I(1, x)). Note that I satisfies (NP), hence x = B(x, x) for all x ∈ [0, 1],
i. e., B = TM .

(Sufficiency) Obvious. �
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4. CONDITIONS FOR JIB BEING A FUZZY IMPLICATION

4.1. Sufficient conditions

In this section, the sufficient conditions such that JIB is a fuzzy implication are studied.

Definition 4.1. (Nelsen [19]) A function I : [0, 1]2 → [0, 1] is 2-increasing if it satisfies,
for all x1, x2, y1, y2 ∈ [0, 1] with x1 < x2 and y1 < y2, the following inequation:

I(x1, y1) + I(x2, y2) ≥ I(x1, y2) + I(x2, y1).

Lemma 4.2. Let I : [0, 1]2 → [0, 1] be a function. If I satisfies the following conditions:

(i) I is 2-increasing,

(ii) I(0, x) = 1, I(x, 1) = 1, I(1, 0) = 0.

then I is a fuzzy implication.

P r o o f . It suffices to prove that I satisfies (I1) and (I2). Let x1, x2, y1, y2 ∈ [0, 1] such
that x1 < x2, y1 < y2. Since I is 2-increasing, then

I(x1, y1) + I(x2, y2) ≥ I(x1, y2) + I(x2, y1).

Taking y2 = 1, then I(x1, y1) ≥ I(x2, y1) for x1 < x2 and x1, x2, y1 ∈ [0, 1]. Therefore, I
satisfies (I1). Taking x1 = 0, then I(x2, y2) ≥ I(x2, y1) for y1 < y2 and x2, y1, y2 ∈ [0, 1],
thus I satisfies (I2). �

Remark 4.3. (i) A fuzzy implication I may not be 2-increasing. See Example 4.4.

(ii) A fuzzy implication I is 2-increasing, which may or not satisfy (IP). See Example
4.5.

Example 4.4. Consider the Rescher implication IRS . Since IRS(0.7, 0.6)+IRS(0.8, 0.75)
= 0, IRS(0.7, 0.75)+IRS(0.8, 0.6) = 1, then IRS(0.7, 0.6)+IRS(0.8, 0.75) < IRS(0.7, 0.75)
+IRS(0.8, 0.6). That is, IRS is not 2-increasing.

Example 4.5. Let x1, x2, y1, y2 ∈ [0, 1] and x1 < x2, y1 < y2. Consider the Reichen-
bach implication IRC :

IRC(x, y) = 1− x + xy for all x, y ∈ [0, 1].

Since IRC(x1, y1) + IRC(x2, y2)− (IRC(x1, y2) + IRC(x2, y1)) = (x1 − x2)(y1 − y2) ≥ 0,
then IRC is 2-increasing.

Consider the Weber implication IWB . If x2 < 1, then IWB(x1, y1) + IWB(x2, y2) =
1 = IWB(x1, y2) + IWB(x2, y1). If x2 = 1, then IWB(x1, y1) + IWB(x2, y2) = 1 + y2 >
1 + y1 = IWB(x1, y2) + IWB(x2, y1). Hence

IWB(x1, y1) + IWB(x2, y2) ≥ IWB(x1, y2) + IWB(x2, y1),

that is, IWB is 2-increasing. However, IRC does not satisfy (IP), IWB satisfies (IP).
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Theorem 4.6. Let I be a fuzzy implication that satisfies (IP). If JIB is 2-increasing,
then JIB is a fuzzy implication.

P r o o f . Straightforward from Proposition 2.9 (ii), (v), and Lemma 4.2. �

Corollary 4.7. Let I be a fuzzy implication that satisfies both (IP) and (NP), and let
NI = NC . If JIB is 2-increasing, then JIB is a probabilistic S-implication.

P r o o f . Let C : [0, 1]2 → [0, 1] be a function defined by

C(x, y) = JIB(x, y) + x− 1, for all x, y ∈ [0, 1].

It suffices to show that C is a copula.
Assume that JIB is 2-increasing. Since I satisfies (IP), then JIB is a fuzzy implication

by Theorem 4.6. Thus, for all x ∈ [0, 1], we get

C(x, 1) = JIB(x, 1) + x− 1 = 1 + x− 1 = x,

C(0, x) = JIB(0, x) + 0− 1 = 1 + 0− 1 = 0.

Note that I satisfies (NP) and NI = NC , by Proposition 2.9 (iii), (iv), for all x ∈ [0, 1],
we get

C(1, x) = JIB(1, x) + 1− 1 = x,

C(x, 0) = JIB(x, 0) = NI(x) + x− 1 = 1− x + x− 1 = 0.

On the other hand, let x1, x2, y1, y2 ∈ [0, 1] and x1 < x2, y1 < y2. Note that JIB is
2-increasing, i. e.,

JIB(x1, y1) + JIB(x2, y2) ≥ JIB(x1, y2) + JIB(x2, y1),

then C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1), i. e., C is 2-increasing.
Taking y1 = 0, then C(x2, y2) ≥ C(x1, y2), i. e., C is increasing in the first variable.

Taking x1 = 0, then C(x2, y2) ≥ C(x2, y1), i. e., C is increasing in the second variable.
Hence C is a copula. �

Remark 4.8. Let I be a fuzzy implication that satisfies (IP). Even if I is 2-increasing,
JIB may not be 2-increasing.

Example 4.9. Consider the Lukasiewicz implication ILK . It satisfies (IP), and it is
2-increasing. Let B = TD. From (1) we get

JILKB(x, y) =


1− x, if x, y ∈ [0, 1),

y, if x = 1,

1, if y = 1.

Since JILKB(0.9, 0.3) + JILKB(1, 1) = 1.1 < 1.3 = JILKB(0.9, 1) + JILKB(1, 0.3), then
JILKB is not 2-increasing.
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An open problem: Let I be a fuzzy implication that satisfies (IP). If I is 2-increasing,
what conditions does the semicopula B have to ensure that JIB be 2-increasing?

Definition 4.10. (Bustince et al. [7]) Let (r1, r2) be a real 2-dimensional vector,
(r1, r2) 6= (0, 0). A function I : [0, 1]2 → [0, 1] is (r1, r2)-decreasing if it satisfies, for ev-
ery point (x1, x2) ∈ [0, 1]2 and every real number c ∈ R+ such that (x1 + cr1, x2 + cr2) ∈
[0, 1]2, the following inequation:

I(x1, x2) ≥ I(x1 + cr1, x2 + cr2).

Theorem 4.11. Let I be a fuzzy implication that satisfies (IP), and let B be a semi-
copula. If there exist r1, r2 ∈ R+, such that JIB is (r1, r2)-decreasing, then JIB is a
fuzzy implication.

P r o o f . Let JIB be a (r1, r2)-decreasing function, and let x, y ∈ [0, 1]. Then, for all
c ∈ R+, such that (x + cr1, y + cr2) ∈ [0, 1]2, we get JIB(x, y) ≥ JIB(x + cr1, y + cr2),
i. e.,

I(x,B(x, y)) ≥ I(x + cr1, B(x + cr1, y + cr2)).

Since B(x + cr1, y + cr2) ≥ B(x + cr1, y), then I(x,B(x, y)) ≥ I(x + cr1, B(x + cr1, y)),
i. e., JIB(x, y) ≥ JIB(x + cr1, y). Hence JIB is a fuzzy implication. �

In the following, we study the necessary and sufficient conditions such that JIB is a
fuzzy implication when I = IRS (ILK , IWB , IG, respectively).

Proposition 4.12. Let I = IRS and B be a semicopula. If |B(x2, y) − B(x1, y)| ≤
|x2 − x1| for all x1, x2, y ∈ [0, 1], then JIB is a fuzzy implication.

P r o o f . Let x1, x2, y ∈ [0, 1] and x1 < x2. It suffices to prove that JIB(x1, y) ≥
JIB(x2, y).

Since I = IRS , then

JIB(x, y) =

{
1, if x = B(x, y),

0, if x > B(x, y).

If x1 = 0 or y = 1, then JIB(x1, y) = 1 ≥ JIB(x2, y).
If x1 > 0, y < 1 and x1 = B(x1, y), then JIB(x1, y) = 1 ≥ JIB(x2, y).
If x1 > 0, y < 1 and x1 > B(x1, y), then JIB(x1, y) = 0. Since |B(x2, y)−B(x1, y)| ≤

|x2 − x1|, then B(x2, y)−B(x1, y) ≤ x2 − x1. Thus

x2 ≥ (B(x2, y)−B(x1, y)) + x1 = B(x2, y) + (x1 −B(x1, y)) > B(x2, y).

Hence JIB(x2, y) = 0. Therefore JIB(x1, y) ≥ JIB(x2, y). �

Proposition 4.13. Let I = ILK and B be a semicopula. Then JIB is a fuzzy implica-
tion if and only if |B(x2, y)−B(x1, y)| ≤ |x2 − x1| for all x1, x2, y ∈ [0, 1].
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P r o o f . Straightforward from calculation. �

Proposition 4.14. If I = IWB (IG, respectively), then JIB is a fuzzy implication for
any semicopula B.

P r o o f . Assume that I = IWB . From (1) we get

JIB(x, y) =

{
1, if x ∈ [0, 1),

B(x, y), if x = 1,

=

{
1, if x ∈ [0, 1),

y, if x = 1,

= IWB(x, y).

Similarly, assume that I = IG, then JIB = IG. Hence JIB is a fuzzy implication for any
semicopula B. �

Remark 4.15. (i) From Proposition 4.14, there exists some I ∈ FI such that JIB
is a fuzzy implication for any semicopula B. Hence the conclusion in [5] (Line 18,
page 146) is incorrect.

(ii) JIB may not be 2-increasing even if I is 2-increasing and satisfies (IP) by Propo-
sitions 4.13, 4.14 and Theorem 4.6.

Inspired by Proposition 4.14, for any semicopula B, it is interesting to find which fuzzy
implication I satisfies the equation I = JIB .

Proposition 4.16. Let I be a fuzzy implication that satisfies (IP), then I = JIB for
any semicopula B if, and only if there exists an increasing function f : [0, 1] → [0, 1]
with f(0) = 0 and f(1) = 1, such that

I(x, y) =

{
1, if x < 1,

f(y), if x = 1.

P r o o f . (Necessity) Firstly, consider the following semicopula B:

B(x, y) =

{
0, if x, y ∈ [0, 1),

min(x, y), otherwise.

Let I = JIB , then

I(x, y) =


I(x, 0), if x, y ∈ [0, 1),

I(1, y), if x = 1,

1, if y = 1.

(2)

Secondly, let us consider the semicopula B(x, y) = min(x, y). By I = JIB , we obtain

I(x, y) =

{
1, if x ≤ y,

I(x, y), if x > y.
(3)
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From (2) and (3), we obtain I(x, 0) = 1 for all x ∈ [0, 1). Hence

I(x, y) =

{
1, if x < 1,

I(1, y), if x = 1.

Let f(y) = I(1, y). Obviously, f : [0, 1]→ [0, 1] is an increasing function with f(0) = 0
and f(1) = 1. Thus

I(x, y) =

{
1, if x < 1,

f(y), if x = 1.

(Sufficiency) The proof comes directly from calculation. �

Remark 4.17. (i) Let f : [0, 1]→ [0, 1] be an increasing function with f(0) = 0 and
f(1) = 1, and let I be a fuzzy implication defined by

I(x, y) =

{
1, if x < 1,

f(y), if x = 1.
(4)

Then JIB is a fuzzy implication for any semicopula B, and JIB is 2-increasing.

(ii) Let I be a fuzzy implication that satisfies (NP) and (IP). If I = JIB for any
semicopula B, then I = IWB .

(iii) An open problem: Does there exist some I ∈ FI, which is not an implication
defined as (4), such that JIB is a fuzzy implication for any semicopula B?

Proposition 4.18. Let I be a continuous fuzzy implication that satisfies (OP) and
(EP). Then JIB is a fuzzy implication if and only if there exists a ϕ ∈ Φ, such that the
semicopula Bϕ−1 is 1-Lipschitz.

P r o o f . Let I be a continuous fuzzy implication that satisfies (OP) and (EP), then I
is Φ-conjugate with ILK , i. e., there exists a ϕ ∈ Φ, such that

I(x, y) = ϕ−1(ILK(ϕ(x), ϕ(y))) = ϕ−1(min(1− ϕ(x) + ϕ(y), 1)), for all x, y ∈ [0, 1].

Let x1, x2, y ∈ [0, 1] and x1 ≤ x2. JIB is a fuzzy implication implies the following
equivalences:

JIB(x1, y) ≥ JIB(x2, y)

⇔ 1− ϕ(x1) + ϕ(B(x1, y)) ≥ 1− ϕ(x2) + ϕ(B(x2, y))

⇔ ϕ(B(x2, y))− ϕ(B(x1, y)) ≤ ϕ(x2)− ϕ(x1)

⇔ ϕ(B(ϕ−1(ϕ(x2)), ϕ−1(ϕ(y))))− ϕ(B(ϕ−1(ϕ(x1)), ϕ−1(ϕ(y)))) ≤ ϕ(x2)− ϕ(x1)

⇔ Bϕ−1 is 1-Lipschitz,
i. e., JIB is a fuzzy implication if and only if there exists a ϕ ∈ Φ, such that the
semicopula Bϕ−1 is 1-Lipschitz.

�
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4.2. Conditions for JIB being a fuzzy implication with a special kind of
semicopula

In this section, we study the sufficient conditions such that JIB is a fuzzy implication
with B defined by

B(x, y) =

{
min(x, y), if y > N(x),

0, if y ≤ N(x),
(5)

where N is a continuous fuzzy negation. A semicopula of form (5) is denoted by BN
min.

Definition 4.19. (Baczyński et al. [2]) Let N be a fuzzy negation, the range of N is
given by Ran(N) = {N(x)|x ∈ [0, 1]}, the pseudo-inverse of N is given by N (−1)(y) =
sup{x ∈ [0, 1]|N(x) ≥ y}, y ∈ [0, 1].

Proposition 4.20. Let I be a fuzzy implication that satisfies (IP), and B = BN
min. Let

s ∈ (0, 1) be a fixed point of N , and n = min{x ∈ [0, 1]|N(x) = s}. Then JIB is a fuzzy
implication if and only if

(i) NI(x) = 1 for all x ∈ [0, n), and

(ii) for each y ∈ (0, s], I(x, y) ≤ NI(N (−1)(y)) for all x ∈ (N (−1)(y), 1].

P r o o f . (Necessity) (i) Suppose that there exists an x0 ∈ (0, n) such that NI(x0) < 1.
Let N(x0) = y0, then JIB(x0, y0) = I(x0, B(x0, y0)) = I(x0, 0) = NI(x0) < 1.

Let ε > 0 such that x0 + ε < s, then N(x0 + ε) < N(x0) = y0. Note that y0 =
N(x0) > N(n) = s, thus JIB(x0 + ε, y0) = I(x0 + ε,B(x0 + ε, y0)) = I(x0 + ε, x0 + ε) =
1 > JIB(x0, y0), this contradicts the fact that JIB is a fuzzy implication.

(ii) Suppose that there exist an y0 ∈ (0, s] and an x0 ∈ (N (−1)(y0), 1] such that

I(x0, y0) > NI(N (−1)(y0)). (6)

Let x′ = N (−1)(y0), then x′ ≥ s and N(x′) = y0. Hence

JIB(x′, y0) = I(x′, B(x′, y0)) = I(x′, 0) = NI(N (−1)(y0)). (7)

Let ε > 0 such that x′+ ε = x0, then N(x0) < N(x′) = y0. Note that y0 ≤ s < x0, then

JIB(x′ + ε, y0) = I(x0, B(x0, y0)) = I(x0, y0). (8)

From (6), (7) and (8), we obtain JIB(x′, y0) < JIB(x′ + ε, y0), this contradicts the fact
that JIB is a fuzzy implication.

(Sufficiency). Let x1, x2, y ∈ [0, 1] with x1 < x2. Note that JIB(x, y) = 1 for all
x ≤ y and y ≥ s, hence it suffices to prove that

JIB(x1, y) ≥ JIB(x2, y) for all y ∈ (0, s).

Actually, let y ∈ (0, s) and x′′ = N (−1)(y). If x1 < x2 ≤ x′′, then

JIB(x1, y) = I(x1, 0) = NI(x1), JIB(x2, y) = I(x2, 0) = NI(x2),
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thus JIB(x1, y) ≥ JIB(x2, y).

If x1 ≤ x′′ < x2, then JIB(x1, y) = NI(x1) ≥ NI(x′′) = NI(N (−1)(y)), JIB(x2, y) =
I(x2, y). Thus JIB(x1, y) ≥ JIB(x2, y).

If x′′ < x1 < x2, then JIB(x1, y) = I(x1, y), JIB(x2, y) = I(x2, y). Thus JIB(x1, y) ≥
JIB(x2, y).

From above discussion, we get JIB(x1, y) ≥ JIB(x2, y) for all x1, x2, y ∈ [0, 1] with
x1 < x2. Hence JIB is a fuzzy implication, see also Figure 1. �

Fig. 1. The fuzzy implication JIB in Proposition 4.20.

Corollary 4.21. Let I be a fuzzy implication that satisfies (IP), let B = BN
min and N

be a strict fuzzy negation with a fixed point s ∈ (0, 1). Then JIB is a fuzzy implication
if and only if

(i) NI(x) = 1 for all x ∈ [0, s), and

(ii) for each y ∈ (0, s], I(x, y) ≤ NI(N−1(y)) for all x ∈ (N−1(y), 1].

P r o o f . Let s ∈ (0, 1) be the fixed point of N , and let n = min{x ∈ [0, 1]|N(x) = s}.
Since N is strict, then n = s. Therefore, the proof comes directly from Proposition 4.20.

�

Corollary 4.22. Let I be a fuzzy implication that satisfies (IP), let B = BN
min and N

be a continuous negation with a fixed point s ∈ (0, 1). Then JIB satisfies (IP) if and
only if NI(s) = 1.

P r o o f . (Sufficiency). Since s is a fixed point of N , then s = N(s). If x ≤ N(x), then
x ≤ s. Hence NI(x) ≥ NI(s) = 1, i. e., I(x, 0) = 1 for all x ≤ N(x). Note that

JIB(x, x) = I(x,B(x, x)) =

{
I(x, 0), if x ≤ N(x),

1, if x > N(x),

then JIB(x, x) = 1 for all x ∈ [0, 1]. Hence JIB satisfies (IP).
(Necessity). Obvious. �
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4.3. Conditions for JIB being a fuzzy implication with I = IUN

In this section, we discuss the conditions such that JIB is a fuzzy implication when I is
a (U,N)-implication.

Definition 4.23. (Baczyński et al. [2]) An associative, commutative and increasing
operator U : [0, 1]2 → [0, 1] is called a uninorm if it has a neutral element e ∈ [0, 1], i. e.,
U(e, x) = x, for all x ∈ [0, 1].

Obviously, if e = 0, then U is a t-conorm and if e = 1, then U is a t-norm.

Definition 4.24. (Baczyński et al. [2]) A uninorm U is called conjunctive if U(0, 1) = 0.
A uninorm U is called disjunctive if U(0, 1) = 1.

Theorem 4.25. (Baczyński et al. [2]) Let U be a uninorm with neutral element e ∈
(0, 1), such that the functions U(x, 1) and U(x, 0) are continuous except at the point
x = e. If U is disjunctive, then there exist a t-norm T and a t-conorm S such that

U(x, y) =


e · T (x

e ,
y
e ), if x, y ∈ [0, e],

e + (1− e) · S
(

x−e
1−e ,

y−e
1−e

)
, if x, y ∈ [e, 1],

max(x, y), otherwise.

(9)

A uninorm of form (9) will be denoted by Umax
T,S,e.

Definition 4.26. (Baczyński et al. [2]) A function I : [0, 1]2 → [0, 1] is called a (U,N)-
implication, if there exist a disjunctive uninorm U and a fuzzy negation N such that

I(x, y) = U(N(x), y), x, y ∈ [0, 1].

If I is a (U,N)-implication generated from a disjunctive uninorm U and a negation N ,
then we will denote it by IUN .

Lemma 4.27. Let U be a uninorm with a neutral element e ∈ (0, 1). If IUN satisfies
(IP), then N(x) = 1 for all x ∈ [0, e].

P r o o f . Assume that IUN satisfy (IP), then IUN (x, x) = 1 for all x ∈ [0, 1], i.e,
U(N(x), x) = 1 for all x ∈ [0, 1]. Let x = e, then U(N(e), e) = 1, thus N(e) = 1.
Since N(x) is decreasing, then N(x) ≥ N(e) = 1 for x ∈ [0, e]. Hence N(x) = 1 for all
x ∈ [0, e]. �

Lemma 4.28. Let U = Umax
T,S,e. If IUN satisfies (IP), then

(i) N (−1)(e) = 1.

(ii) S
(

N(x)−e
1−e , x−e

1−e

)
= 1 for all x ∈ (e,N (−1)(e)).

(iii) If S is positive, i. e., S(x, y) = 1⇒ either x = 1 or y = 1, then N = ND2 .
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P r o o f . Let x ∈ [0, e], then N(x) = 1 by Lemma 4.27. Thus

U(N(x), x) = max(N(x), x) = N(x) = 1.

Let x ∈ (e, 1], then 0 ≤ N(x) ≤ N(e) = 1.

If e ≤ N(x) ≤ 1, namely, e < x < N (−1)(e), then

U(N(x), x) = e + (1− e) · S
(
N(x)− e

1− e
,
x− e

1− e

)
.

If 0 ≤ N(x) ≤ e, namely, N (−1)(e) ≤ x ≤ 1, then

U(N(x), x) = max(N(x), x) = x.

From above discussion, we get

IUN (x, x) =


1, if x ∈ [0, e],

e + (1− e) · S
(

N(x)−e
1−e , x−e

1−e

)
, if x ∈

(
e,N (−1)(e)

)
,

x, if x ∈ [N (−1)(e), 1].

Assume that IUN satisfies (IP), then

N (−1)(e) = 1, and S

(
N(x)− e

1− e
,
x− e

1− e

)
= 1 for all x ∈

(
e,N (−1)(e)

)
.

Assume that S is positive, then we get

N(x)− e

1− e
= 1 or

x− e

1− e
= 1.

Note that e < x < 1, then N(x)−e
1−e = 1, thus N(x) = 1 for all x ∈ (e, 1). Hence N = ND2

.
�

Proposition 4.29. (Baczyński et al. [5]) Let I ∈ FI and B be a semicopula. If JIB is
a fuzzy implication, then I satisfies (IP).

Proposition 4.30. Let I = IUN . If JIB is a fuzzy implication, then

(i) N(x) = 1 for all x ∈ [0, e].

(ii) If U = Umax
T,S,e, then N (−1)(e) = 1, and S

(
N(x)−e
1−e , x−e

1−e

)
= 1 for all x ∈ (e, 1).

(iii) If s is a fixed point of N , then s > e.

P r o o f . Straightforward from Lemmas 4.27, 4.28 and Proposition 4.29. �
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Remark 4.31. Let I = IUN . If N is strict, then there is no semicopula B such that JIB
is a fuzzy implication. Actually, suppose that JIB is a fuzzy implication, then N(x) = 1
for all x ∈ [0, e] by Proposition 4.30 (i), a contradiction to the hypothesis that N is
strict.

Proposition 4.32. Let U = Umax
T,S,e and I = IUN . If the t-conorm S is positive, then

JIB is a fuzzy implication if and only if N = ND2 .

P r o o f . (Sufficiency) Since JIB(1, 1) = U(N(1), B(1, 1)) = U(0, 1) = 1, then it suffices
to prove that JIB satisfies (I1).

Let x1, x2, y ∈ [0, 1] with x1 < x2. Since ND2(x) = 1 for all x ∈ [0, 1) and U(1, x) = 1
for all x ∈ [0, 1], then

JIB(x1, y)− JIB(x2, y) = U(ND2
(x1), B(x1, y))− U(ND2

(x2), B(x2, y))

= 1− U(ND2
(x2), B(x2, y))

≥ 0,

that is, JIB satisfies (I1).
(Necessity) Straightforward from Lemma 4.28 (iii). �

Theorem 4.33. Let I = IUN , U = Umax
T,S,e, and N be a fuzzy negation that satisfies

N(x) = 1 for all x ∈ [0, e], and N (−1)(e) = 1. Let B be a semicopula that satisfies
B(x, y) ≥ e for all x, y ∈ [e, 1]. Then JIB is a fuzzy implication if and only if the triple
(S,N,B) satisfies the following conditions:

(a) S
(

N(x)−e
1−e , B(x,y)−e

1−e

)
≥ y−e

1−e for all x ∈ (e, 1) and y ∈ (e, 1],

(b) S
(

N(x)−e
1−e , B(x,y)−e

1−e

)
is decreasing with respect to x ∈ (e, 1) for every y ∈ (e, 1].

P r o o f . Since JIB(1, 1) = U(N(1), B(1, 1)) = U(0, 1) = 1, then it suffices to prove that
JIB satisfies (I1) if and only if the conditions (a) and (b) hold.

Let x, y ∈ [0, 1]. Note that Umax(1, a) = 1 for all a ∈ [0, 1], then, for x ∈ [0, e] and
y ∈ [0, 1], JIB(x, y) = U(N(x), B(x, y)) = U(1, B(x, y)) = 1.

Since N (−1)(e) = 1, then N(x) ≥ e for all x ∈ [e, 1). Actually, suppose that there
exists an x0 ∈ (e, 1) such that N(x0) < e, then N(x) < e for all x ∈ [x0, 1]. Thus

N (−1)(e) = sup{x ∈ [0, 1]|N(x) ≥ e}
= sup{{x ∈ [0, x0)|N(x) ≥ e} ∪ {x ∈ [x0, 1]|N(x) ≥ e}}
= sup{x ∈ [0, x0)|N(x) ≥ e}.

Note that {x ∈ [e, x0)|N(x) ≥ e} ⊆ [e, x0), then sup{x ∈ [e, x0)|N(x) ≥ e} ≤ sup[e, x0).
Since sup[e, x0) ≤ x0, then

sup{x ∈ [e, x0)|N(x) ≥ e} ≤ x0 < 1, i. e., N (−1)(e) ≤ x0 < 1,

this contradicts the fact that N (−1)(e) = 1. That is, N(x) ≥ e for all x ∈ [e, 1).
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For x ∈ (e, 1) and y ∈ [0, e]. Note that B(x, y) ≤ min(x, y), then B(x, y) ≤ e. Hence

JIB(x, y) = U(N(x), B(x, y)) = max(N(x), B(x, y)) = N(x).

For x ∈ (e, 1) and y ∈ (e, 1]. Since B(x, y) ≥ e for all x, y ∈ [e, 1], then

JIB(x, y) = U(N(x), B(x, y)) = e + (1− e) · S
(
N(x)− e

1− e
,
B(x, y)− e

1− e

)
.

For x = 1 and y ∈ [0, e]. Note that B(1, y) = y ≤ e, then

JIB(x, y) = U(N(x), B(x, y)) = U(0, y) = e · T
(

0

e
,
y

e

)
= 0.

For x = 1 and y ∈ (e, 1]. Note that B(1, y) = y > e, then

JIB(x, y) = U(N(x), B(x, y)) = U(0, y) = max(0, y) = y.

From above discussion, we get

JIB(x, y) =



1, if x ∈ [0, e] and y ∈ [0, 1],

N(x), if x ∈ (e, 1) and y ∈ [0, e],

e + (1− e) · S
(

N(x)−e
1−e , B(x, y)−e

1−e

)
, if x ∈ (e, 1) and y ∈ (e, 1],

0, if x = 1 and y ∈ [0, e],

y, if x = 1 and y ∈ (e, 1].

Let x1, x2, y ∈ [0, 1] with x1 < x2. Consider the following cases:

Case 1. If x1 ≤ e, then JIB(x1, y) = 1 ≥ JIB(x2, y) for all y ∈ [0, 1].

Case 2. If e < x1 < x2 < 1 and y ∈ [0, e], then

JIB(x1, y) = N(x1) ≥ N(x2) = JIB(x2, y).

Case 3. If e < x1 < x2 < 1 and y ∈ (e, 1], then

JIB(x1, y) ≥ JIB(x2, y) ⇔ S
(

N(x1)−e
1−e , B(x1,y)−e

1−e

)
≥ S

(
N(x2)−e

1−e , B(x2,y)−e
1−e

)
,

i. e., S
(

N(x)−e
1−e , B(x,y)−e

1−e

)
is decreasing with respect to x ∈ [e, 1] for every y ∈ (e, 1].

Case 4. If e < x1 < x2 = 1 and y ∈ [0, e], then JIB(x1, y) = N(x1) ≥ e, JIB(x2, y) = 0.
Hence JIB(x1, y) ≥ JIB(x2, y).

Case 5. If e < x1 < x2 = 1 and y ∈ (e, 1], then JIB(x1, y) = S
(

N(x1)−e
1−e , B(x1,y)−e

1−e

)
,

JIB(x2, y) = y. Hence JIB(x1, y) ≥ JIB(x2, y) ⇔ S
(

N(x)−e
1−e , B(x,y)−e

1−e

)
≥ y−e

1−e for

all x ∈ (e, 1), y ∈ (e, 1].
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From above cases, JIB satisfies (I1) if only if the triple (S,N,B) satisfies the following
conditions:

(a) S
(

N(x)−e
1−e , B(x,y)−e

1−e

)
≥ y−e

1−e for all x ∈ (e, 1) and y ∈ (e, 1],

(b) S
(

N(x)−e
1−e , B(x,y)−e

1−e

)
is decreasing with respect to x ∈ (e, 1) for every y ∈ (e, 1].

Thus we complete the proof. �

To illustrate there exists a triple (S,N,B) such that the conditions (a) and (b) of
Theorem 4.33 hold, an example is given.

Example 4.34. Let N be a fuzzy negation defined as

N(x) =


1, if x ∈ [0, e],

−x + e + 1, if x ∈ (e, 1+e
2 ],

1+e
2 , if x ∈ ( 1+e

2 , 1),

0, if x = 1,

where e ∈ (0.5, 1). Obviously, N satisfies N(x) = 1 for all x ∈ [0, e], and N (−1)(e) = 1.

Let B = TnM . It is easy to see that TnM (x, y) ≥ e for all x, y ∈ [e, 1].

Let S = SN1

nM , that is

S(x, y) = SN1

nM (x, y) =

{
1, if x ≥ N1(y),

max(x, y), if x < N1(y),

where N1(y) = 1− y. Note that N(x)−e
1−e ≥ N1(x−e

1−e ) for all x ∈ (e, 1), then, for x ∈ (e, 1),
y ∈ (e, 1] with x ≤ y, we get

SN1

nM

(
N(x)− e

1− e
,
B(x, y)− e

1− e

)
= SN1

nM

(
N(x)− e

1− e
,
TnM (x, y)− e

1− e

)
= SN1

nM

(
N(x)− e

1− e
,
x− e

1− e

)
= 1.

Similarly, for x ∈ (e, 1), y ∈ (e, 1] with x > y, we get

SN1

nM

(
N(x)− e

1− e
,
B(x, y)− e

1− e

)
= SN1

nM

(
N(x)− e

1− e
,
y − e

1− e

)
.

Hence

SN1

nM

(
N(x)−e
1−e , B(x,y)−e

1−e

)
=

{
1, if x ≤ y, x ∈ (e, 1), y ∈ (e, 1],

SN1

nM

(
N(x)−e
1−e , y−e

1−e

)
, if x > y, x ∈ (e, 1), y ∈ (e, 1].

It easy to see that SN1

nM

(
N(x)−e
1−e , B(x,y)−e

1−e

)
is decreasing with respect to x ∈ (e, 1) for

every y ∈ (e, 1], and SN1

nM

(
N(x)−e
1−e , B(x,y)−e

1−e

)
≥ y−e

1−e , i. e., conditions (a) and (b) of

Theorem 4.33 hold.
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If the conditions on B are weakened, we obtain Theorem 4.38.

Definition 4.35. (Klement et al. [12]) Let e ∈ (0, 1) be a constant. A semicopula B is
G(e)-continuous if for every y ∈ [e, 1], there exists x ∈ [e, 1] such that B(x, y) = e.

Remark 4.36. (i) If a semicopula B is continuous, then B is G(e)-continuous.

(ii) A semicopula B may not be continuous even is G(e)-continuous.

Example 4.37. (i) Let e ∈ [0, 1] and B = TP . Obviously, B is continuous. For
each y ∈ [e, 1], there exists x = e

y ∈ [e, 1] such that B(x, y) = e, hence B is

G(e)-continuous.

(ii) Consider B = TnM , which is not continuous. However, let e = 0.7, for each y ∈
[0.7, 1], there exists x = 0.7 such that B(x, y) = 0.7, i. e., B is G(0.7)-continuous.

Theorem 4.38. Let I = IUN , U = Umax
T,S,e and N be a fuzzy negation that satisfies

N(x) = 1 for all x ∈ [0, e], and N (−1)(e) = 1. Let B be a semicopula that is G(e)-
continuous. Then JIB is a fuzzy implication if and only if the triple (S,N,B) satisfies
following conditions:

(a) S
(

N(x)−e
1−e , B(x,y)−e

1−e

)
≥ y−e

1−e for y ∈ (e, 1] and x ∈ {t ∈ [e, 1)|B(t, y) ≥ e},

(b) S
(

N(x)−e
1−e , B(x,y)−e

1−e

)
is decreasing with respect to x ∈ {t ∈ [e, 1)|B(t, y) ≥ e} for

every y ∈ (e, 1].

P r o o f . Similar to the proof of Theorem 4.33, it suffices to prove that JIB satisfies (I1)
if and only if the conditions (a) and (b) hold.

Let x, y ∈ [0, 1]. Note that Umax(1, a) = 1 for all a ∈ [0, 1], then, for x ∈ [0, e], we get

JIB(x, y) = U(N(x), B(x, y)) = U(1, B(x, y)) = 1 for all y ∈ [0, 1].

Note that N (−1)(e) = 1, then N(x) ≥ e for all x ∈ [e, 1).

(1) For x ∈ (e, 1) and y ∈ [0, e], since B(x, y) ≤ min(x, y) = y ≤ e, then

JIB(x, y) = U(N(x), B(x, y)) = max(N(x), B(x, y)) = N(x).

(2) For x ∈ (e, 1) and y ∈ (e, 1] such that B(x, y) ≤ e, then

JIB(x, y) = U(N(x), B(x, y)) = max(N(x), B(x, y)) = N(x).

(3) For x ∈ (e, 1) and y ∈ (e, 1] such that B(x, y) > e, then

JIB(x, y) = U(N(x), B(x, y)) = e + (1− e) · S
(
N(x)− e

1− e
,
B(x, y)− e

1− e

)
.
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(4) For x = 1 and y ∈ [0, e], since B(x, y) = y ≤ e, then

JIB(x, y) = U(N(x), B(x, y)) = U(0, y) = 0.

(5) For x = 1 and y ∈ (e, 1], since B(x, y) = y > e, then

JIB(x, y) = U(N(x), B(x, y)) = U(0, y) = max(0, y) = y.

From above discussion, we get

JIB(x, y) =



1, if x ∈ [0, e] and y ∈ [0, 1],

N(x), if x ∈ (e, 1), y ∈ [0, 1] and B(x, y) ≤ e,

e + (1− e) · S(N(x)−e
1−e , B(x, y)−e

1−e ), if x ∈ (e, 1), y ∈ (e, 1] and B(x, y) > e,

0, if x = 1 and y ∈ [0, e],

y, if x = 1 and y ∈ (e, 1].

Let x1, x2, y ∈ [0, 1] and x1 < x2. Consider the following cases:

Case 1. If x1 ≤ e, then JIB(x1, y) = 1 ≥ JIB(x2, y) for all y ∈ [0, 1].

Case 2. If e < x1 < x2 < 1 and y ∈ [0, e], note that B(x, y) ≤ min(x, y) ≤ y ≤ e, then
JIB(x1, y) = N(x1) ≥ N(x2) = JIB(x2, y).

Case 3. If e < x1 < x2 < 1 and y ∈ (e, 1]. Given y0 ∈ (e, 1], since B is G(e)-continuous,
then there exists an x0 ∈ [e, 1] such that B(x0, y0) = e.

Let A(y) = {t ∈ [e, 1)|B(t, y) ≥ e}, y ∈ (e, 1]. Obviously, A 6= ∅.

Case 3.1. x2 ≤ x0. Note that B(x1, y0) ≤ B(x2, y0) ≤ B(x0, y0) = e, then

JIB(x1, y0) = N(x1) ≥ N(x2) = JIB(x2, y0).

Case 3.2. x1 ≤ x0 < x2 < 1. Note that B(x1, y0) ≤ e and B(x2, y0) ≥ e, then
x2 ∈ A(y0), and

JIB(x1, y0) = N(x1),

JIB(x0, y0) = N(x0) = e + (1− e) · S
(

N(x0)−e
1−e , B(x0,y0)−e

1−e

)
,

JIB(x2, y0) = e + (1− e) · S
(

N(x2)−e
1−e , B(x2,y0)−e

1−e

)
.

Hence, for all x2 ∈ A(y0), we have

JIB(x1, y0) ≥ JIB(x2, y0)⇔ S
(

N(x0)−e
1−e , B(x0,y0)−e

1−e

)
≥ S

(
N(x2)−e

1−e , B(x2,y0)−e
1−e

)
Case 3.3. x0 ≤ x1 < x2 < 1. Note that e = B(x0, y0) ≤ B(x1, y0) ≤ B(x2, y0),

then x1 ∈ A(y0), x2 ∈ A(y0), and

JIB(x1, y0) = e + (1− e) · S
(

N(x1)−e
1−e , B(x1,y0)−e

1−e

)
,

JIB(x2, y0) = e + (1− e) · S
(

N(x2)−e
1−e , B(x2,y0)−e

1−e

)
.
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Thus JIB(x1, y0) ≥ JIB(x2, y0)⇔ S
(

N(x1)−e
1−e , B(x1,y0)−e

1−e

)
≥ S

(
N(x2)−e

1−e , B(x2,y0)−e
1−e

)
,

i. e., S
(

N(x)−e
1−e , B(x,y0)−e

1−e

)
is decreasing with respect to x ∈ A(y0).

From Cases 3.2 and 3.3, and the arbitrary of y0, we get JIB(x1, y) ≥ JIB(x2, y)⇔
S
(

N(x)−e
1−e , B(x,y)−e

1−e

)
is decreasing with respect to x ∈ {t ∈ [e, 1)|B(t, y) ≥ e} for

every y ∈ (e, 1].

Case 4. If e ≤ x1 < x2 = 1 and y ∈ [0, e], then JIB(x1, y) ≥ 0 = JIB(x2, y).

Case 5. If e ≤ x1 < x2 = 1 and y ∈ (e, 1]. Similarly, let y0 ∈ (e, 1], since B is G(e)-
continuous, then there exists an x0 ∈ (e, 1) such that B(x0, y0) = e.

Let A(y) = {t ∈ [e, 1)|B(t, y) ≥ e}, y ∈ (e, 1].

Case 5.1. x0 ≤ x1. Note that B(x1, y0) ≥ B(x0, y0) = e, i. e., x1 ∈ A(y0), then

JIB(x1, y0) = e + (1− e) · S
(

N(x1)−e
1−e , B(x1,y0)−e

1−e

)
.

Hence JIB(x1, y0) ≥ JIB(x2, y0)⇔ S
(

N(x1)−e
1−e , B(x1,y0)−e

1−e

)
≥ y0−e

1−e .

Case 5.2. e ≤ x1 < x0. Note that B(x1, y) ≤ B(x0, y) = e, then

JIB(x1, y0) = N(x1) ≥ N(x0) = e + (1− e) · S
(

N(x0)−e
1−e , B(x0,y0)−e

1−e

)
,

JIB(x2, y0) = y0.

Hence JIB(x1, y0) ≥ JIB(x2, y0)⇔ S
(

N(x0)−e
1−e , B(x0,y0)−e

1−e

)
≥ y0−e

1−e .

From Cases 5.1 and 5.2, and the arbitrary of y0, we get

JIB(x1, y) ≥ JIB(x2, y)⇔ S
(

N(x1)−e
1−e , B(x1,y)−e

1−e

)
≥ y−e

1−e for all x1 ∈ A(y),

i. e.,

S
(

N(x)−e
1−e , B(x,y)−e

1−e

)
≥ y−e

1−e for y ∈ (e, 1] and x ∈ {t ∈ [e, 1)|B(t, y) ≥ e}.

From above discussion, JIB satisfies (I1) if and only if the conditions (a) and (b) hold.�

To show the application of Theorem 4.38, an example is given.

Example 4.39. Let e ∈ (0, 1) and N be a fuzzy negation defined as

N(x) =


1, if x ∈ [0, e],

−x + e + 1, if x ∈ [e, 1),

0, if x = 1.

Obviously, N satisfies N(x) = 1 for all x ∈ [0, e], and N (−1)(e) = 1.
Let S = SLK , the Lukasiewicz t-conorm, i. e., S(x, y) = min(x + y, 1). Consider

B = TP . Obviously, B is G(e)-continuous.
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For e ≤ x < 1, e < y ≤ 1, we have

S

(
N(x)− e

1− e
,
xy − e

1− e

)
= 1 + x · y − 1

1− e
.

Then, given y ∈ (e, 1], the function S
(

N(x)−e
1−e , xy−e

1−e

)
is decreasing with respect to x.

Thus

S

(
N(x)− e

1− e
,
xy − e

1− e

)
> 1 +

y − 1

1− e
=

y − e

1− e
,

for all x ∈ [ ey , 1). This fact shows that there exists a triple (S,N,B) such that the

conditions (a) and (b) hold.

From (1) we get

JIB(x, y) =



1, if x ∈ [0, e] and y ∈ [0, 1],

1 + e− x, if x ∈ (e, 1), y ∈ [0, 1] and xy ≤ e,

1− x + xy, if x ∈ (e, 1), y ∈ [e, 1] and xy ≥ e,

0, if x = 1 and y ∈ [0, e],

y, if x = 1 and y ∈ (e, 1].

Hence JIB is a fuzzy implication by Theorem 4.38, see also Figure 2.

Fig. 2. The fuzzy implication JIB in Example 4.39.

5. PROPERTIES OF Φ-CONJUGATE WITH JIB

In this section, some trivial properties of Φ-conjugate with JIB are presented.

Proposition 5.1. Let ϕ ∈ Φ, I ∈ FI and B be a semicopula, then (JIB)ϕ = JIϕBϕ
.

P r o o f . Let x, y ∈ [0, 1], then (JIB)ϕ(x, y) = ϕ−1(JIB(ϕ(x), ϕ(y)))
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= ϕ−1(I(ϕ(x), B(ϕ(x), ϕ(y))))

= ϕ−1(I(ϕ(x), ϕ ◦ ϕ−1B(ϕ(x), ϕ(y))))

= Iϕ(x, ϕ−1(B(ϕ(x), ϕ(y))))

= Iϕ(x,Bϕ(x, y))

= JIϕBϕ(x, y). �

Proposition 5.2. Let ϕ ∈ Φ. If I satisfies (NP), then (JIB)ϕ satisfies (NP).

P r o o f . Straightforward from Proposition 2.9 (iii) and Proposition 1.3.6 in [2]. �

Proposition 5.3. Let ϕ ∈ Φ and N(JIB)ϕ be the natural negation of (JIB)ϕ. If I ∈ FI,
then N(JIB)ϕ is a fuzzy negation, and N(JIB)ϕ = (NI)ϕ.

P r o o f . Note that (JIB)ϕ(x, y) = ϕ−1(I(ϕ(x), B(ϕ(x), ϕ(y)))), then

N(JIB)ϕ = (JIB)ϕ(x, 0)

= ϕ−1(I(ϕ(x), B(ϕ(x), ϕ(0))))

= ϕ−1(I(ϕ(x), 0))

= ϕ−1(NI(ϕ(x)))

= (NI)ϕ.

Since I is a fuzzy implication, then NI is a fuzzy negation by Lemma 1.4.14 in [2]. Note
that ϕ ∈ Φ, thus (NI)ϕ is a fuzzy negation by Proposition 1.4.8 in [2]. Hence N(JIB)ϕ is
a fuzzy negation. �

Proposition 5.4. Let ϕ ∈ Φ and I be a fuzzy implication that satisfies (IP). If JIB is
2-increasing, then JIϕBϕ

is a fuzzy implication.

P r o o f . Let I satisfy (IP) and JIB is 2-increasing, then JIB is a fuzzy implication by
Theorem 4.6. Note that ϕ ∈ Φ, then (JIB)ϕ is a fuzzy implication by Proposition 1.1.8
in [2]. Thus JIϕBϕ

is a fuzzy implication by Proposition 5.1. �

6. CONCLUSION

In this paper, the research on the implication JIB is mainly carried out in two ways, one
is studying the relationship between the properties of JIB and I, another is studying the
conditions such that JIB is a fuzzy implication. The main results and research contents
are as follows:

• Implication JIB satisfies (NP) if and only if I satisfies (NP), so is (LF), but not
(IP), (OP), (CP), (EP), (LT) and (BL).

• Sufficient conditions under which JIB satisfies (IP) ((OP), (CP), (EP), (LT), (BL),
respectively) are studied and introduced.
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• If the implication JIB is 2-increasing ((r1, r2)-decreasing, respectively)), then JIB
is a fuzzy implication.

• Conditions under which JIB is a fuzzy implication when B is a special semicopula
(I is an (U,N)-implication, respectively)) are studied/introduced.

In our future work, we want to study the following problems:

? The open problems proposed in Section 4.1.

? The conditions under which JIB is a fuzzy implication when I is a QL-implication.

? The distributivity of JIB .
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[2] M. Baczyński and B. Jayaram: Fuzzy Implications. Studies in Fuzziness and Soft Com-
puting 231, Springer, Berlin Heidelberg 2008.
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