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Abstract. (max,+)-linear functions are functions which can be expressed as the maximum
of a finite number of linear functions of one variable having the form f(x1, . . . , xh) =
max
j
(aj + xj), where aj , j = 1, . . . , h, are real numbers. Similarly (min,+)-linear functions

are defined. We will consider optimization problems in which the set of feasible solutions
is the solution set of a finite inequality system, where the inequalities have (max,+)-linear
functions of variables x on one side and (min,+)-linear functions of variables y on the other
side. Such systems can be applied e.g. to operations research problems in which we need
to coordinate or synchronize release and completion times of operations or departure and
arrival times of passengers. A motivation example is presented and the proposed solution
method is demonstrated on a small numerical example.

Keywords: nonconvex optimization; (max,+)/(min,+)-linear functions; OR - arrival-
departure coordination
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1. Introduction, motivation

The paper studies the properties of one class of optimization problems formulated

by means of the so-called tropical algebra, which has appeared in the literature since

the 1960s, sometimes under various different names, e.g. max-algebra, extremal al-

gebra (see e.g. [1], [3], [4]). This part of mathematics has found application since

its origin in various parts of operations research, fuzzy sets and others. The main

idea of this type of algebra consists in the replacement of addition and multiplica-

tion by a pair of two other operations. Addition is replaced by one of the extremal

operations max or min and multiplication is replaced by addition. In this way, new
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versions of “linearity” arise, e.g. (max,+)- or (min,+)-linearity. The (max,+)-linear

and (min,+)-linear functions of the form f(x) = max
j

(cj + xj), g(y) = min
k

(dk + yk),

where cj , dk are given constants, are called (max,+)-linear, (min,+)-linear func-

tions, respectively. In this paper we study the properties of inequality systems with

(max,+)-linear functions on one side and (min,+)-linear functions on the other side

and propose a method for solving one class of optimization problems whose set of

feasible solutions is described by such inequality system. The following example

shows a motivation for the research presented in this paper.

E x am p l e 1. Passengers travel from stations (cities) Sj , j = 1, . . . , n to sta-

tions Rj , j = 1, . . . , n, via transit stations Ti, 1, . . . ,m. The passangers must change

at the transit stations. Travelling times between Sj and Ti are equal to aij , travelling

times between Ti and Rj are bij . Departure times at Sj will be denoted xj , arrival

times to destinations Rj will be denoted yj. We have to find x and y such that

(i) every passenger will be able to get a connection at the transit stations (i.e. does

not miss a connection to the final destination);

(ii) no unnecessary delay (waiting time) at the transit stations will take place;

(iii) the departure-time vector x is as close as possible to a recommended fixed

vector x̃.

Condition (i) is satisfied if x, y satisfy the inequality system

max
16j6n

(aij + xj) 6 min
16k6n

(yk − bik), i = 1, . . . ,m.

Let the set of all solutions satisfying the inequality system above be denoted M .

Condition (ii) will be ensured for any y by the maximum element x(y), i.e.

(x, y) ∈ M implies that x 6 x(y).

Condition (iii) will be satisfied by the optimal solution of the problem

max
16j6n

|xj(y)− x̃j | → min subject to (x(y), y) ∈ M.

The aim of the paper is to propose a method for solving optimization problems of

the type given in Example 1.
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2. Notations, preliminary results

Let us introduce the following notations: R is the set of real numbers, I =

{1, . . . ,m}, J = {1, . . . , n}, A, B are matrices with elements aij , bij ∈ R for all

i ∈ I, j ∈ J ,

(A ◦ x)i = max
j∈J

(aij + xj), (B ◦′ y)i = min
j∈J

(bij + yj), i ∈ I,

x⊤ = (x1, . . . , xn), A◦x = ((A◦x)1, . . . , (A◦x)n)⊤, B◦′y = ((B◦′y)1, . . . , (B◦′y)n)⊤

(superscript ⊤ denotes transposition). The norm will be the Chebyshev norm,

i.e. ‖x‖ = max
j

|xj |.

Let

M1(A, b) = {x ∈ R
n ; A ◦ x 6 b}, M2(B, b) = (y ∈ R

n ; B ◦′ y > b),(1)

xj(A, b) = min
k∈I

(bk − akj), ŷj(B, b) = max
k∈I

(bk − bkj), j ∈ J,

Using the matrix-vector notation, we obtain

(2) x(A, b) = b⊤ ◦′ (−A), ŷ(B, b) = b⊤ ◦ (−B).

Let us summarize some known results, which were proved e.g. in [1], [2].

Lemma 1.

(a) x(A, b) is the maximum element of M1(A, b), i.e. x(A, b) ∈ M1(A, b) and x 6

x(A, b) for all x ∈ M1(A, b).

(b) ŷ(B, b) is the minimum element of M2(B, b), i.e. ŷ(B, b) ∈ M2(B, b) and y >

ŷ(B, b) for all y ∈ M2(B, b).

3. Problem formulation and solution

We will consider the two-sided inequality system

(3) max
j∈J

(aij + xj) 6 min
k∈J

(bik + yk), i ∈ I,

where I = {1, 2, . . . ,m}, J = {1, 2, . . . , n}, aij , bik ∈ R or in matrix-vector notation

(4) A ◦ x 6 B ◦′ y.
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The set of all solutions of system (3) will be denotedM . Let us set bi(y) = (B◦′y)i,

i ∈ I. Then the system can be written in the form

(5) max
j∈J

(aij + xj) 6 bi(y), i ∈ I.

The set M has in accordance with Lemma 1 a maximum element x(b(y)), which is

defined as follows:

(6) xj(b(y)) = min
i∈I

(bi(y)− aij) = min
i∈I

min
k∈J

(bik − aij + yk).

Interchanging the minimization operations in (6), we obtain

(7) xj(b(y)) = min
k∈J

min
i∈I

(bik − aij + yk), j ∈ J,

so that in matrix-vector notation we get

(8) x(b(y)) = B⊤ ◦ (−A) ◦′ y = Q ◦′ y,

where we set Q = B⊤ ◦′ (−A). We will solve the following optimization problem:

(9) ‖x(b(y))− x̃‖ → min subject to y ∈ R
n,

where x̃ ∈ R
n is a given fixed element. Taking (8) into account, the problem is

equivalent to the problem

(10) t → min subject to ‖Q ◦′ y − x̃‖ 6 t.

Let us note that since we can set xj(b(y)) := xj(b(y))− x̃j , j ∈ J , we can assume

w.l.o.g. that x̃ = 0. We will therefore further accept this asumption.

Taking into account, definition of the norm, problem (10) can be transformed

(under the assumption that x̃ = 0) as follows:

(11) t → min subject to − t 6 min
k∈J

(qjk + yk) 6 t, j ∈ J.

Let M(t) denote the set of feasible solutions of problem (11). To analyze the

structure of the set M(t), let us set

M1(t) = {y ∈ R
n ; min

k∈J
(qjk + yk) > −t, j ∈ J},(12)

M2(t) = {y ∈ R
n ; min

k∈J
(qjk + yk) 6 t, j ∈ J},(13)
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so that M(t) = M1(t) ∩M2(t). Let us note that using this notation, problem (11)

can be reformulated as follows:

(14) t → min subject to M(t) 6= ∅.

We will investigate the conditions under which M(t) 6= ∅.

Let us derive conditions under which y ∈ M1(t), i.e. solve the inequality system

Q ◦′ y > −t.

(15) y ∈ M1(t) ⇔ yk > −qjk − t ∀ k ∈ J, j ∈ J,

so that yk > max
j∈J

(−qjk)− t for all k ∈ J .

Using the matrix-vector notation we obtain

(16) y ∈ M1(t) ⇔ y > y − t,

where we set y
k
= max

j∈J
(−qjk), k ∈ J .

We investigate now the properties of the set M2(t). We have that

(17) y ∈ M2(t) ⇔ ∀ j ∈ J ∃ k(j) ∈ J such that qjk(j) + yk(j) 6 t.

Since M(t) = M1(t) ∩M2(t), we obtain

(18) y ∈ M(t) ⇔ ∀ j ∈ J ∃ k(j) ∈ J such that − t+ y
k(j)

6 yk(j) 6 −qjk(j) + t.

Let us set for all j, k ∈ J :

(19) Tjk(t) = {yk ; −t+ y
k
6 yk 6 −qjk + t}.

Then (18) can be reformulated as follows:

(20) y ∈ M(t) ⇔ ∀ j ∈ J ∃ k(j) ∈ J such that Tjk(j)(t) 6= ∅.

We will find the minimum t such that Tjk(t) 6= ∅. This minimum is equal to the

value τjk of t at which the left- and right-hand-side of the inequalities defining Tjk(t)

in (19) are equal, i.e. at which −t+ y
k
= −qjk + t so that

(21) τjk =
1

2
(y

k
− qjk).
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Taking into account relations (17)–(21), we obtain

(22) M(t) 6= ∅ ⇔ t > τ ≡ max
j∈j

min
k∈J

τjk.

It follows that the optimal value topt of t in optimization problem (14) is equal to τ .

It remains to find the corresponding optimal solution yopt of the original opti-

mization problem (9). As an optimal y solving (9) with x̃ = 0 can be accepted any

solution which satisfies the inequality system

(23) −topt 6 min
k∈J

(qjk + yk) 6 topt, j ∈ J.

Note that it follows from the theoretical results above that the set of solutions of

system (23) is always nonempty and if t < topt, the set of feasible solutions M(t) is

empty. If y satisfies system (23), then ‖x(b(y))‖ = topt. The vector x(b(y))+ x̃ is the

closest vector to any given x̃ and at the same time x(b(y)) is the maximum element

x satisfying the system A ◦x 6 B ◦′ y = b(y) for the chosen y satisfying system (23).

In the context of Example 2, the element x(y) + x̃ minimizes the distance from the

given (recommended) departure times x̃ and ensures no unnecessary delay at the

transit stations.

In the sequel, we will illustrate the theoretical results by a small numerical exam-

ple.

E x am p l e 2. Let x̃ = (0, 0)⊤,

A =

(
2 3

1 4

)
, B =

(
5 1

7 0

)
, Q = B⊤ ◦′ −A =

(
7 8

1 4

)
,

x1(b(y)) = (Q ◦′ y)1 = min(7+ y1, 8+ y2), x2(b(y)) = (Q ◦′ y)2 = min(1+ y1, 4+ y2).

Let us consider the inequality system t > (Q ◦′ y)1 − x̃1 = min(7 + y1, 8 + y2) > −t,

t > (Q ◦′ y)2 − x̃2 = min(1 + y1, 4 + y2) > −t. We have τ11 = 3, τ12 = 2, τ21 = 0,

τ22 = 0 so that

topt = max
i

min
j

τij = max(2, 0) = 2.

The system
2 > (Q ◦′ y)1 − x̃1 = min(7 + y1, 8 + y2) > −2,

2 > (Q ◦′ y)2 − x̃2 = min(1 + y1, 4 + y2) > −2

has solution y = (−3,−6)⊤, so that x(b(y)) = Q ◦′ y = (2,−2)⊤ and therefore

‖x(b(y))− x̃‖ = 2 = topt.
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4. Conclusion

We proposed an algorithm for finding the optimal solution of problem (9). The al-

gorithm needs to compute mn numbers τjk and after that to compute t
opt according

to formula (21). Example 1 shows a possible application to synchronization of activ-

ities. Since in real world conditions some input data of the synchronization problems

may be uncertain, further research may be oriented to problems with uncertain input

coefficients. For instance, we can consider problems with interval, fuzzy or stochastic

input matrices whose elements give the processing times of the activities.
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