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Abstract. Let Hy and Hg be the Sweedler’s and Kac-Paljutkin Hopf algebras, respectively.
We prove that any Hopf algebra which factorizes through Hg and Hy (equivalently, any
bicrossed product between the Hopf algebras Hg and H,4) must be isomorphic to one of the
following four Hopf algebras: Hg ® Hga, H32 1, H32,2, H32 3. The set of all matched pairs
(Hg, Hy,>,<) is explicitly described, and then the associated bicrossed product is given by
generators and relations.
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1. INTRODUCTION

The factorization problem stemmed from the group theory and was first considered
in [11] by Maillet. This problem aims at the description and classification of all
groups GG which factor through two given groups N and H, i.e. G = NH, and
NN H = {1}. In [7], the group X is called the bicrossed product of N and G.
However, although the statement of the problem seems very simple and natural, no
major progress has been made so far since we still have not commanded exhaustive
methods to handle it. For example, even the description and classification of groups
which factor through two finite cyclic groups is still an open problem.

An important step in dealing with the factorization problem for groups was the
bicrossed product construction introduced in the paper by Zappa, see [21], later on,
Takeuchi discovered the same construction in the paper [16], where the terminology
bicrossed product was brought up for the first time. The main ingredients in this
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construction are the so-called matched pairs of groups. Subsequently, Majid in [12]
generalized this notion to the context of Hopf algebras, and considered a more com-
putational approach of the problem. The present paper is a contribution to the
factorization problem for Hopf algebras.

In papers [3], [4] the authors proposed a strategy for classifying the bicrossed
products of finite groups and Hopf algebras following Majids construction. The
method proposed in [3] was followed in [5] to classify bicrossed products of two
Sweedler’s Hopf algebras, in [9], [10] to compute the automorphism of Drinfeld dou-
bles of a purely nonabelian finite group and quasitriangular structure of the doubles
of a finite group, respectively; then in [1] to classify bicrossed products of two Taft
algebras, and finally in [2] to classify bicrossed products of Taft algebras and group
algebras, where the group is a finite cyclic group.

In the 1960’s, Kac and Paljutkin in [8] discovered a non-commutative, non-
cocommutative semisimple Hopf algebra Hg which is 8-dimensional. Later, in [13]
Masouka showed that there is only one (up to isomorphisms) semisimple Hopf al-
gebra of dimension 8, and presented it under the perspective of biproducts and
bicrossed products. Ore extension is an important tool to study Hopf algebras,
see [14], [17], [18], [19], [20], recently Pansera in [15] constructed Hg from the point
of view of Ore extension in the classification of the inner faithful Hopf actions of Hg
on the quantum plane.

As we all know, the 4-dimensional Sweedler’s Hopf algebra H, is the simplest non-
commutative, non-cocommutative semisimple Hopf algebra. In this paper, we will
describe all the bicrossed products between Hg and Hy, and prove that any Hopf
algebra which factorizes through Hg and H4 must be isomorphic to one of the four
Hopf algebras Hs ® Hy, Hsa 1, H3a,2, Hsa 3 given explicitly in Theorem 5.1.

This paper is organized as follows. In Section 1, we recall the basic definitions
and facts needed in our computations. In Section 2, we determine when H, becomes
a left Hg-module coalgebra, and in Section 3, we determine when Hg becomes a right
Hy-module coalgebra. In Section 4, we find the suitable mutual actions between Hy
and Hg such that they could make up matched pairs. And the bicrossed products
are also given.

Throughout this paper, k& will be an arbitrary algebraically closed field of char-
acteristic zero. Unless otherwise specified, all algebras, coalgebras, bialgebras, Hopf
algebras, tensor products and homomorphisms are over k.

960



2. PRELIMINARIES

In this section, we will recall some basic definitions and facts.
Recall that Sweedler’s 4-dimensional Hopf algebra, Hy, is generated by two ele-
ments G and X subject to the relations

G?*=1, X?’=0, XG=-GX.
The coalgebra structure and the antipode are given by
AG)=GeG, G)=1, S(G)=4aG,
AX)=XRG+10X, eX)=0, SX)=GX.

It is well known that the set of group-like elements G(H,) and the set of primitive
elements P, 1, (H,) are given as

G(Hy) ={1,G}, Pi1(Hs) = Pg,c(Hs) = {0},
Por(Hy) = k(G — 1)@ kX, Prc(Hi)=k(G 1)@ kGX.

The Hopf algebra Hg is generated by three elements g, h and z subject to the

relations
¢*=1, h*=1, gh=hyg,

The coalgebra structure and antipode are given by

Alg) =9g®g, e(g) =1, S(g) =y,
A(h) =h® h, e(h)=1, S(h)=h,
Alz)=J(z®z2), ez)=1, S(z)=z,
where J = %(1 ®1+g®14+1®h—g®h). Obviously Hs is 8-dimensional with the

basis {g'h/zF: 0 < 4,5,k < 1,4,5,k € N}. Tt is easy to verify that the element z is
invertible with 2* = 1.

A matched pair of Hopf algebras is a quadruple (4, H,>, <), where A and H are
Hopf algebras,>: H® A — A and <: H ® A — H are coalgebra maps such that A
is a left H-module coalgebra, H is a right A-module coalgebra and the following
compatible conditions hold:

(2.1) hola=¢e(h)la, lg<a=c(a)ly,
(2.2) h (ab) = (h1>a1)((ha <az) >b),
(2.3) (gh) 90 = (g 4 (b b a1))(hs < a2),
(2.4) hi<a1 @ ho>as = ha<das @ hy>ay,

forall a,b€ A, g,h € H.
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3. THE LEFT Hg-MODULE COALGEBRA STRUCTURES ON H,

In this section we will find all the actions > : Hg ® H4 — H, such that as a vector
space, Hy is made into a left Hs-module coalgebra satisfying z > 1 = ()1 for all
r € Hg.

First of all, g>1=hr1=2>1=1. Then g>G € G(Hy). We have g>G # 1 for
otherwise G = ¢g? > G = 1. Therefore g> G = G. Similarly h> G = G. Since

AzrG) =3 GR20bG+920GR20G+ 2GR hz>G — gz>G @ hz b G
=1pG®20G+2h>GR20G+20G® 29> G — 2h>G ® 29> G
=20G®z> G,

hence z> G € G(H4). We have z> G # 1 for otherwise
l=z20(2>G)=2G=L11+g+h—gh)>G=0G.
Therefore z> G = G.
By computation we have g X € Pg 1(Hy), thus g> X = a1(G—1) + 1 X for any
a1, f1 € k. Since the action of g is compatible with g2 = 1, we have
X=¢">X=gv(g>X)=(1+pf)a(G-1)+FX.
Thus (1 + 31)a; = 0 and 32 = 1. Therefore
(3.1) gr X =(G—-1)—X or grX=X.
Similarly for any ay € k
(3.2) ho X =a2(G—-1)—X or hpX =X.
Because the actions of g and h on X should be compatible with gh = hg, we need

to check the actions given in (3.1) and (3.2). For example if g> X = a1(G —1) — X,
he X = OéQ(G— 1) - X,

gh> X =gp (e(G—-1) - X)
hgr X =hp (a1 (G—-1) — X)

OéQ(G— 1) —Oél(G— 1) + X,
Oél(G— 1) — OéQ(G— 1) + X.

Then gh = hg forces a1 = ae. The other three cases can also be checked easily. Now
we give the actions of g, h on G, X in the following tables:
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b1 G X >2 |1 G X
111 G X 1 (1 G X
g |1l G X g |l G X
Ll G X hll G aG-1)-X
gh|l G X gh|l G afG-1)—-X
> |1 G X pt |1 G X
1 (1 G X 1 ({1 G X
g |1l G afG-1)— g |1 G aG-1)—-X
Ll G X hll G aG-1)-X
gh|l G ofG-1)— gh|1l G X

For the action z > X, we have

ApX) =1 X0G+1020 X +92p X ®G+1020 X +20X®G
+1®@hzp X —g20 X QG —1Q hzp> X]
=2 XRG+1®2>X,

hence z> X € Pg1(Hys), and 2> X = (G — 1) + X for 8,7 € k. On one hand,
22X =20 (B(G—1)+9X) =1 +7)(G—1) ++2X.

On the other hand,
2o X=31+g+h—gh)>X.

Therefore the element z > X is determined by the actions of g, h on X, and we will
consider every case.
For the action b!, we obtain 3(1 +7)(G — 1) +v2X = X. Then
b X=X, or zpX=08(G-1)-X.
It is straightforward to see that both the actions are compatible with the relation
(3.3) gz =zh, hz=zg.
For the action 2, we have

b X=X, or z>pX=0(G-1)-X.

However, both the actions are not compatible with the relation (3.3). Similarly the
action >3 does not hold either.
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For the action >*, we have
a(G—1)— X =p(1+7)(G—-1)+~*X.
Thus vy =i, a=(1+1)f or vy =—i, a = (1 —1)B. Since
gz> X =i[f(G—-1)+ X]=zh> X,

the action >* is well defined. So till now we have four actions, which are redenoted
by ! and >2, as follows:

pl]1 G X 21 G X
111 G X 111 G X
g |1l G X g |1l G X
hll G X h|l G X
z |1 G X z |1 G alG-1)—-X
1 G X pY 1 G X
111 G X 111 G X
g |1 G alG-1)—-X g |1 G a(G—-1)—-X
hl1l G alG-1)—-X hl1l G a(G—-1)—-X
« . (07 .
z |1 G —1+i(G—1)+1X z |1 G 1—1(G_1)_1X
Similarly we have the action of g, h and z on GX as follows:
> | GX Y GX
1 |GX 1 GX
g | GX g GX
h | GX h GX
z | GX z | B(G—-1)—GX
B¢ GX >4 GX
1 GX 1 GX
9| BG-1)-GX g | BG-1)-GX
h| B(G-1)—GX h B(G—-1)—-GX
o B .
— 1) +i ~ 1) —iGX
z 1—|—i(G 1) +iX z 1—i(G ) —iG

Proposition 3.1. There are 16 kinds of actions of Hg on H,4 defined as above.
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4. THE RIGHT H4-MODULE COALGEBRA STRUCTURES ON Hjg

In this section we will find all actions < : Hg ® Hy — Hg such that as a vector
space, Hg is made into a right Hy-module coalgebra satisfying 1 <a = (z)1 for all
r € Hy.

Lemma 4.1.
(2) Pyini gmpn (Hg) = Qijmn (g'h? — g™h™) for 0 < i,j,m,n < 1 and Qijmn € k.

1 . . 1 . .
Proof. (1) Suppose that x = > fijg"h? + > e;;9"h’ 2 is a group-like element
ij=0 ij=0
of Hs. Then by A(z) = z ® x, we have

1 1
S fiifong' W @ gmh Y eijfmng'hiz @ g h"

i,5,m,n=0 i,5,m,n=0
1 1
+ Y ennfud'W @g"E 2+ D eijemng'hz @ g™ A"z
i,5,m,n=0 i,5,m,n=0

1 1
= fig'W @g'h + ) eijlg'h! @ g'h) I (2 @ 2).
,j=0 i,j=0

By comparison, we obtain that

1 1
> eufungWz@ g =0, Y enafyghl © gz =0.
i,j,m,n=0 i\j,m,n=0

Hence for all 0 < 4,7, m,n <1, €5 fm,n =0, and

foo = foor  fio=fo, [fov=Ffor, fir=fun,
foofor =0, foofio=0, foofir =0, fiofor =0, forfi1 =0, [fiof11=0.

From the above relations, we can see that f;; =0 or f;; =1, and if f;; = 1 for some
pair i, 7, the rest must be 0.

If fi; =0 for 0 <4,j <1, since z is invertible, we have

1 1
> eijemng'h? @ g"h" = eij(g'h! @ g'h7)J.
i,4,m,n=0 i,j=0
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By comparison of the coefficients, we get the relations

2
€00 = 2€50, €00 = 2€00€10, €00 = 2€00€01, €00 = —2€10€01,
2
e10 = 2e7g, €10 = 2€po€10, €10 = 2€10€11, €10 = —2€00€11,
2
eo1 = 2e51, e€o1 = 2ep1€11, €p1 = 2€p1€00, €01 = —2€11€q0,
2
e11 = 2e7y, e11 = 2e11€01, €11 = 2€11€10, €11 = —2€10€01-
We claim that egg = 0 for otherwise e1g = egg = €91 = %, which contradicts egg =

—2e1p€p1. In the same manner, we obtain that eg; = e;g = €11 = 0.

L o 1 Lo
(2) Suppose that © = 37 fijg'h’/ + 3 eijg'h’z is a (g°h', g™h™)-primitive ele-
ment of Hg. We have /=0 4,J=0

1 1 1
S g @g*ht+ > fiig"h" @ g'h + > eijg'hiz @ g*h!

1,j=0 1,j=0 1,j=0

1 1 1

+ Y eug"h @ gz =" fig'h @g'h + Y eii(g'h @ g'h)J (2 © 2).
2,j=0 1,7=0 1,7=0

By comparison of the coefficients, e;; =0 (0 <4,j < 1), and f;; = 0 except fost, fmn

with fs¢ = — fiun. Therefore z = fg(g°ht — g"™h"™). The proof is completed. |

Now we will analyze the actions of G on the basis (1, g, h, gh, 2,9z, hz, ghz). It is
obvious that elements g<G, h<G and gh<G are all group-like elements of Hg. First,
g<G # 1 for otherwise 1 = g<aG? = g. Also h<G # 1, gh< G # 1. Now we will list
all possible cases:

(a) If g< G = g, then h <G # g for otherwise h = h<G? = g<aG = g. On the one
hand assume that h <G = h, since (gh < G) <G = gh, we obtain gh <G = gh.
On the other hand, if h <G = gh, then gh <G = h<G? = h.

(b) If g<«G = h, then h<« G = g and gh< G = gh.

(c) If g<a G = gh, then gh<G =g and h< G = h.

Assume that

1 1
224G = Z fijg'h? + Z eijg'hiz

i,j=0 ij=0
for fij,ei; € k, 0 <4,5 < 1. Then we have
1 1
z= Z (fijg'h < G) + Z (eijg'W 2z < G).
,j=0 i,j=0

966



Clearly fi; =0 (0 <4,j < 1), and z could be linearly represented by z <G, gz <G,
hz <G, ghz <G which are linearly independent. So are gz, hz, ghz. Therefore there
exists an invertible matrix A = (a;;) = (a1, a2, oz, ) of order 4 such that

(24G,92<4G, hz<G,ghz<G) = (2,92, hz, ghz) A.

Since G? =1, we get A2 = E. For 249G = a11%2 + a219% + as1hz + as1ghz, on the
one hand
A(z<G)=anJ(z®2)+an(g®g9)J(z®z) +az1(h@h)J(z ® z)
+ as(gh ® gh)J(z ® 2)
=1a11(2®24+92® 24+ 2® hz — g2 ® hz)

—|—%agl(gz®gz+z®gz+gz®ghz—z®ghz)

+ 2azi(hz @ hz+ ghz @ hz+ hz® 2 — ghz ® z)

+ a41(ghz ® ghz + hz ® ghz + ghz ® gz — hz ® g2)
= [(z,9z,hz,ghz) ® (2,92, hz, ghz)]

1 T
X §(a117a21;a117 —ag1,011, 21, —A11, A21, A31, —041, A31, G41, —G31, 041, A31, 041) -
On the other hand

A(z<G)=3(29G® 249G+ 924G ® 249G+ 2<4G @ hz<4G — g2<G @ hz<G)
= [(z,92, hz, ghz) ® (2, g2, hz, gh)]
X o1 ®@ar + a2 @1 + a1 ® ag — az ® ag].

Hence we have the relation

-
(4.1) (ai1,a21,a11, —ag1,a11, G21, —G11, A21, A31, —A41, A31, A41, —A31, G41, 431, A41)
=1 ®a; +as®@a; + a1 ®az — ay ®as.

Similarly for gz <G, hz <G, ghz < G, we have the relations

T
(4.2)  (ai2,a22,a12, —a22,a12, A22, —G12, A22, A32, —A42, 432, A42, —A32, 042, (32, 042)
=y ®as + a1 ®ag+ as®ag — a1 Q oy,
4.3 — — — — T
( . ) (a13,a23,a13, a23, @13, a23, —a13, 23, @33, —0A43, A33, 043, 61337@437@33,@43)
=az3R@ag+as®asz+az3®a; —ayg Qag,
4.4 — — — — T
( . ) (a14,a24,a14, 24, A14, 24, —Q14, 024, @34, —A44, A34, A44, a34,a44,a34,a44)
=y ®ag+a3@ag+ a4 Q@ ag —az®as.
Lemma 4.2. In order to make Hg be a right Hy module coalgebra, the matrix A

associated to the actions of G on the basis (z, gz, hz, ghz) must satisfy the conditions
A% = E and the identities (4.1)—(4.4).
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Example 4.3.
(1) Let A = E, then clearly A must satisfy the relations (4.1)—(4.4).

(2) Let A be the matrix

That is, z< G = ghz, g2 <G = hz, h2< G = gz, ghz <G = z. By a long and
tedious verification, A?> = E and satisfies the relations (4.1)—(4.4).

Next we will consider the actions of X on the basis of Hg. Since

Alg<aX)=g<X®9g<aG+gRg<X,
Ah<X)=haXh<aG+h®haX,
A(gh<X)=gh<aX ®gh<aG+ gh® gh< X,

we need to consider all the cases for the actions of G on g, h, gh.
(a) When g<G =g, h<aG =h, gh<G = gh, then g< X =h<aX =gh<X =0.
(b) When g<«G =g, h<G = gh, gh<G = h, then g< X =0, and

haX =a(h—gh), gh<X =p(h—gh).

Moreover, GX = —XG, X? = 0 implies o = .
(¢) When g<G =h, h<G =g, gh<aG = gh, then gh< X =0, and

g<X =alg—h), haX =alg—nh).
(d) When g<«G = gh, h<G = h, gh<G = g, then h< X =0, and

99X =a(g—gh), ghaX =alg—gh).
Suppose that z<X = Y~ fi;g"h? + > ei;g'h 2.
ij=0 ij=0
1 1
S fiifeng W @ g+ Y eijfmng’h 2@ g™ h"
%,5,m,n=0 %,5,m,n=0
1 1
+ Z emnfijg'h’ @ g™ h"z + Z eijemng W’z ® g"h"z
%,5,m,n=0 %,5,m,n=0

=14 X®29G+ 924X ® 249G+ 24X @hz<4CG —gz< X @hz <G
+2024X +92R2<4X4+20hz<aX —gz® hz<X].
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Because the items like g'h? ® ¢™h"™ will not appear on the right hand side, fij =0
for all 0 < 4,5 < 1. Thus 2< X is a linear combination of z, gz, hz, ghz; so are gz< X,

hz <X, ghz<X. Therefore there exists a matrix B = (81, (2, 83, 84) of order 4 such
that

(2<9X,92<4X,hz< X, ghz<X) = (2,92, hz,ghz)B.

The relations GX = —XG, X2 =0 imply AB = —BA, B? = 0, respectively.
Now we will consider A(z<X),A(gz<X),A(hz<X) and A(ghz<X). On the one
hand,

Az<aX)=b1J(2®2) +b21(g®9)J(2® 2) + b31(h® h)J (2 ® 2)
+b41(gh ® gh)J(z ® 2)
= %bn(z@z—l—gz@z—l—z@hz—gz@hz)
+ %bgl(gz@)gz—f—z@gz—i—gz@ghz—z®ghz)
+ 2b31(hz @ hz + ghz @ hz + hz ® 2 — ghz ® z)
+ %b41(ghz ®ghz+ hz® ghz+ ghz® gz — hz® gz)
= [(z,9z,hz, ghz) ® (2, 9z, hz, ghz)]

X %(b117 b21) b117 _b21) b117 b21) _b117 b21) b317 _b41) b317 b41) _b31) b417 b317 b41)T'

On the other hand,

A(zaX)=3[29X®24G+ 924X ®24G+ 24X @h2<9G — 924X @ hz <G
+2024X 492024 X+20hz1X —gz®hzaX]
[(z,92,hz,ghz)® (2, gz, hz, ghz)]
X %[51®041+52®041+51 ®az—PrRag+e @B +e® P
+e1® Pz — e @ P

Therefore

(4.5)  (b11,ba1,b11, — b21, b1y, bar, —bi1, ba1, ba1, —ba1, b3, bay, —bs1, bar, b3y, bar) "
=@ +fR@a+fiRaz—F@az+er @B +e® B
+e1® B3 — e ® B,
(4.6)  (b12,b22,b12, — boa, b1z, bao, —b12,bao, bsa, —baz, bsa, baz, —bsa, baz, b32, bao) '
=fh@a+tfi@at+fe@as—F1R@as+e®Br+e1® B
+e2® By —e1 @ P,
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(4.7)  (bis, bas, bis, — bag, b1z, bas, —b13, bas, bss, —bas, bss, baz, —bss, baz, b33, bas) |
=BQas;+B1®@az+P3Qa1 —f1@ar +e3® B3+ e4® B3
+e3® b1 —es @ P,
(4.8)  (b1a,b2a,b1a, — baa, bia, baa, —b1a, boa, bsa, —bas, baa, bas, —bsa, baa, b3a, bag) "
=B1®a+ B3R+ 1@ar—P3R@az+es®Py+e3® Py
+e4® B2 —e3 @ Pa.
Lemma 4.4. In order to make Hg be a right Hy module coalgebra, the matrix B

associated to the actions of X on the basis (z, gz, hz, ghz) must satisfy the conditions
B? =0 and the identities (4.5)—(4.8).

5. THE MATCHED PAIRS BETWEEN Hg AND Hy

In this section, we will find the suitable actions which make Hg and H, matched
pairs. We first check the relation (2.4) for the pairs (g, X), (h, X), (gh, X), which
should satisfy the identities

gAXRG+gRgp X =g<X®1+9g<G®Rg> X,
h<sX®G+hoh> X =haX®1+h<GRh>X,
ghaX G+ gh®@ght X =gh<X®1+gh<G®gh>X.
When only ¢g< G = g, h<aG = h, gh <G = gh, the above identities hold. At this
moment, <X =haX =gh<s<X =0.
1=20G>=1[(zpG)((29G)>G) + (92> G)((2 9G) > G) + (2> G)((hz2<1G) > G)
— (92> G)((hz < G) > G)]
=G((249G)>G) = a1 +az +az1 + aq.

For the pairs (¢°h?, G), (¢g*h? 2z, G) the relation (2.4) is trivial.
On the one hand

ZAG=114+g+h—gh)<G="72".
On the other hand by relation (2.3)

22AG=1[(24(2>Q))(2<4G) + (2 (92> G))(29G) + (2 < (2> G))(hz < G)
—(2<(gz> Q))(hz < Q)]
= (2<4G)(2<G) = (a112 + a219z + as1hz + a4lghz)2.
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By the comparison of coefficients, we have

a?, + 2az1a31 +a3; =1,
(5.1) (a11 + aa1)(az1 + as1) =0,
a3, + 2ar1a41 + a3 = 0.

924G = (g<4G)(2<4G) = a119z + a1z + asighz + ashz = (2 <G)h = zh < G,
which is compatible with gz = zh. Thus
@119z + a1z + as1ghz + ag1hz = a122 + a9z + azahz + aseghz.

Similarly, we have
(a) hz<G = zg<G, a11hz+ as1ghz+ az1z+ a4192 = a132 + as39z + agshz + assghz.
(b) ghz<G = zgh<G, a11ghz+as1hz+az192+a412 = a1az2+agsgz+agshz+asaghz.
So we get
11 = A22 = G33 = G44, (21 = Q12 = 443 = 434,
(31 = G42 = Q13 = G24, Q41 = A32 = d23 = G14.

Therefore the matrix A has the form

a b ¢ d
b a d c
c d a b’
d ¢ b a

where a, b, c,d € k. Since A2 = E, plus the relation (5.1), we have the set of equations

a+b+c+d=1,
A+ +E+d=1,

ac+bd =0,
ab+cd =0,
ad + bc =0,

a? +2bc+d? =1,
(a+d)(b+c) =0,
b% + 2ad + 2 = 0.

We obtain four solutions for the above set of equations:

(1) az%vb:%ac:%7d:_%7
(2)@2—%,b:%762%, :%7
3) a=1,b=c=d=0,
(4) a=b=c=0,d=1.
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Now we will verify the actions g’h? > GX and ¢g'h?z 1> GX. For the action >!
g>GEX =(grG)((9<G) > X) = GX,
g XG = (9> X)((g<4G)>G) + (9> 1) ((99 X) > G) = XG,

which is compatible with the relation XG = —GX. Similarly h> GX = ghp
GX =GX.

2 GX =120 G)((2<4G) > X) + (92> G)((2<1G) > X) + (2> G)((hz < G) > X)
— (92> G)((hz < G) > X)]
=1G[(z<9G) > X + (24G) > X + (hz<G)> X — (hz<G) > X]
= G((ZQG)DX) = (au “+ ag1 + as1 —|—a41)GX = GX,

and
2 XG =120 X)((24G)>G) + (29 X)>G) + (92> X)((2<G) > G)
+((2<X)pG)+ (20 X)((hz<aG)>G) + (hz< X) > G)
—(gz> X)((hz<G)>G) — (hz< X) > G)]
=X((2<G)r @)+ (z<aX)> G
= (a11 + a21 + as1 + a41) X G + (b11 + bo1 + b31 + bs1)G
= XG+ (b11 + bo1 + b31 + ba1)G.

Hence we obtain b1y + boy + b31 + by = 0. That is, 2> GX = GX.

g'h > X% = (g'h > X)((¢'h < G) > X) + (¢"h > 1) (' <« X) b X) = X2 =0,
20 X2 =Lz X)((29G) > X) + ((29X) > X) + (92> X)((2 < G) > X)

+((z<X)p X))+ (20 X)((hz2<aG)> X) + ((hz< X)> X)

—(gz> X)((hz<G)> X) — (hz < X) > X))

X(z<a@)pX)+ (< X)p X+ X((2<G) > X))+ (29 X)> X

+ X((hz<G)>X)+ (hz<X)> X) - X((hz<G) > X)

—((hz< X)> X)]

=X((24G)>X)+ (29X)> X = (by1 + ba1 +b31 +b41)X =0,

1
2

which naturally holds.
Since 224X =1(14+g+h—gh)<X =0,

229X = (24X)(2<G) +2(2<X)
= (b112 + ba1gz + bs1hz 4+ by1ghz)(az + bgz + chz + dghz)
+ 2(b112 + ba1gz + bs1hz + byaghz) = 0.
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When the solution of matrix A is (1), by the comparison of coefficients we have

2b11 + b21 + b31 =0,
(5.2)

b11 = ba1.
924X = (g1 X)(2<G)+g(2<9X)=9g(z<X) = (29 X)h =zh < X,
b12z + baagz + byohz 4+ bioghz = b1192z + ba12 + bs1ghz 4+ by hz.

Similarly it is straightforward to verify that hz < X = 2g< X, ghz< X = zgh< X,
and we obtain the relations

b13z + bazgz + b3zhz + byzghz = bi1hz 4 ba1ghz 4 b312 + bai gz,
biaz + b24gZ + b3ahz + b44th = bllghz + borhz + b31gz + by1 2.

Hence we have

b11 = bag = b33 = baa, bo1 = b12 = byz = b3y,

b31 = b42 = b13 = b24; b41 = b14 = b23 = b32-

So the matrix B has the form

p g r s
g p s r
r s p ql’
s r g p

where p, ¢, 7, s € k. Since B? = 0, plus the relation (5.3), we have the set of equations

2p+q+r=0,
p=s,

(5.3) PP+ ¢+ s =0,
pq+rs =0,

ps+qr = 0.

Then p=q=1r =s=0, that is, B =0.
Now when the pair (z, X) satisfies the relation (2.4), we have

2@ X =2<1G® X.

The above identity implies z < G = z, which is a contradiction to our assumption.
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By the same analysis, the second solution of A does not hold either. When A = E,
it is easy to see that B = 0, and the relation (2.4) holds for the pair (z, X). The
Hopf algebras (Hg, H4) form a matched pair under the matrix A = E, B = 0.

For the fourth solution of A, it is easy to see that B = 0. However, since z <G =
ghz, the relation (2.4) is not valid for the pair (z, X).

For action 52, g GX = h>GX = gh>GX = GX.

ZDGX:G((ZQG)DX): (a11+a21+a31+a41)G(z>X):a(l—G)—GX,
20 XG= (20 X)((2<G)> Q) + (2<X)> G
=a(l = G) — XG + (b1 + ba1 + b31 + ba1)G,

therefore by1 + ba1 + b31 + bay = 0.

> X2=(2o X) (24> X)+ (29 X)p X) = (20 X) (20 X))+ (29 X)> X
= (ZDX)2+(b11+b21+b31 +b41)ZDX= (ZI>X)2 = 2042(1—G)+204X.

Since X2 =0, we have o = 0. That is, 2> X = —X.

Whatever solutions of A, we can get B = 0, and by the relation (2.3), when A = E,
Hg and H4 make a matched pair.

For the action >3,

grGX =(grG)((g<1G@)pX)=Ga(G-1)—X)=0a(l -G) — GX,
g>XG=(grX)(9<@>G)+ (9> 1)((g<aX)>G) =a(l - G) — XG.

Then a(l — G) — GX = —a(l — G) — GX, which implies that & = 0 and
g X ==X, hrX=-X, 2>X=1iX, ¢grGX=-GX.
Similarly we can get h>GX = —GX.

2 GX =G((2<2G)> X) = Glaz> X +bgz> X + chz> X + dghzp X)
= G(aiX — biX — ciX + diX) = (a — b— ¢ + d)iGX,
2 XG =320 X)((29G)p Q)+ (29 X)pG) — (20 X)((2<G) > G))
F+((z<aX)p G+ (20 X)((hz<G)> Q) + (hz< X) > G)
+ (> X)(hz<aG)>G) — (hz< X) > G)]
=(zaX)pG+ (2> X)((hz<G) > G)
= (by1 +bo1 +b31 +041)G + (a + b+ c+ d)iXG.
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Therefore b1 + boy +b31 +b41 =0, and a+ b+ c+d =a — b — c+ d, which implies
b+c=0. Hence we havea=1,b=c=d=0,ora=0b=c=0,d = 1. This is easy
to check that 2> X2 = (2> X)((hz<4G) > X) = 0.

229X =2(2aX) +i(z<aX)(hz<aG) = 0.

Whena=1,b=c=d =0,
2(b112 + ba1gz + bs1hz + byaghz) + (112 + ba1gz + bs1hz + by1ghz)hz = 0,

which implies b11 + bg1 = 0,b21 + b31 = 0. By the relation (2.3)

g(z<X)=gz<aX =zh<aX = —(2< X)h,

h(zaX)=hz<aX =29<X =—(2<X)g,

gh(z<4X) =ghz<X = zgh< X = (2 < X)gh,
we obtain that B = 0. However, the pair (z, X) does not satisfy the relation (2.4).
When a =b=c¢=0,d =1, we also get B = 0, and it is routine to verify that

all the pairs satisfy the relation (2.4). Therefore Hs and H, make a matched pair

under the matrix A.

For the action >*, by a similar computation, we have
g X =ho X =-X, zpX=-iX,
g GX =h>GX = -GX, z>pGX =-iX,
a=b=c=0, d=1.

In summary, by direct computations we have the main result.

Theorem 5.1. A Hopf algebra FE factories through Hs and H, if and only if
(1) EX2 Hg® Hy.
(2) E = Hsz1 subject to the relations:

¢?=h*=G*=1, gh=hg, gz==zh, hz=:zg,
322%(1+g+h—gh), X?=0, GX =-XG,
9gG =Gg, hG=Gh, 2G=Gz, gX=Xg, hX=Xh, 2X=-Xz.

(3) E = Hsy 9 subject to the relations:

¢?=h*=G*=1, gh=hg, gz==zh, hz=zg,
22=2114g+h—gh), X*=0, GX=-XG,
9gG =Gg, hG=Gh, ¢gzG=Ghz, gX=-Xg, hX =-Xh, 2X=iXgz.
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(4) E = Hsz 3 subjecting to the relations:

gG

¢?=h*=G*=1, gh=hg, gz==zh, hz=:zg,
Z?=21(14g+h—gh), X*=0, GX=-XG,
=Gg, hG=Gh, ¢g2G=Ghz, gX=-Xg, hX=-Xh, 2zX=-iXgz.
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