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Abstract. We examine various types of F-hypercyclic (F-topologically transitive) and
disjoint F-hypercyclic (disjoint F-topologically transitive) properties of binary relations
over topological spaces. We pay special attention to finite structures like simple graphs,
digraphs and tournaments, providing a great number of illustrative examples.
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1. Introduction and preliminaries

The notion of a continuous linear frequently hypercyclic operator acting on a

separable Fréchet space was introduced by Bayart and Grivaux in 2006 (see [1]).

From then on, a great number of authors working in the field of linear topological

dynamics have analyzed the notion of frequent hypercyclicity, various generalizations

of this concept and certain applications to abstract differential equations. Recently,

upper frequent hypercyclic linear operators and F -transitive linear operators have

been investigated by Bonilla, Grosse-Erdmann in [6] and Bès, Menet, Peris, Puig

in [3]. For more details on the subject, we refer the reader to [2], [3], [5], [??],

[13], [17] and references cited therein.

The main aim of this paper is to continue the research studies [8], [9] and [14], [15].

We analyze F -hypercyclic (F -topologically transitive) and disjoint F -hypercyclic
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(disjoint F -topologically transitive) properties of binary relations over topological

spaces, focusing special attention on finite topological spaces which do not have a

linear vector structure. Concerning similar problematic, one may refer e.g. to the

papers by Martínez-Avendaño (see [16]), where the author investigated hypercyclic

shifts on weighted Lp spaces of directed trees, Namayanja (see [20]), where chaotic

phenomena in a transport equation on a network have been studied with the use of

adjacency matrices of infinite line graphs. We present plenty of results and illustra-

tive examples for simple graphs, digraphs and tournaments. With the exception of

paper [15], where we have recently analyzed F -hypercyclic extensions and disjoint

F -hypercyclic extensions of binary relations over topological spaces, the notions of

F -hypercyclicity and F -topological transitivity have not been considered elsewhere

in such a general framework. And, more to the point, with the exception of paper

[15], disjoint F -hypercyclicity and disjoint F -topological transitivity seem to be not

considered elsewhere even for linear continuous operators acting on Banach spaces.

The organization and main ideas of the paper are briefly described as follows. In

Section 2, we introduce the notions of F -hypercyclicity and disjoint F -hypercyclicity

for binary relations, giving also a few noteworthy observations and elementary

consequences of definitions. We divide the third section of the paper in three

separate subsections. In Subsection 3.1, we analyze F -hypercyclicity and disjoint

F -hypercyclicity for general binary relations, on finite or infinite topological spaces,

having or not a certain number of loops. We slightly extend the implications

(a) ⇒ (b) ⇒ (c) ⇒ (d) of a recent result by Bonilla, Grosse-Erdmann (see [6],

Theorem 15) in this context, and reformulate the notions introduced in the second

section in terms of appropriate conditions on adjacency matrices (it is worth noting

that [6], Theorem 15 is exceptional in the existing theory of linear topological dy-

namics because it is a rare result in which the pivot spaces need not be equipped

with linear vector structures). In Subsection 3.2, we focus our attention on the sim-

ple graphs. In Proposition 3.5, we first prove that the notions of dF -hypercyclicity

(dF -topological transitivity) and strong dF -hypercyclicity (strong dF -topological

transitivity) coincide in the case that F = P (P (N)) \ {∅}, which is unquestionably

the best explored in the existing literature. For a simple graph G, we introduce the

index SG and give some upper bounds for SG in Theorem 3.7, concerning connected

bipartite graphs, and Theorem 3.9, concerning connected non-bipartite graphs. In

Theorem 3.11, we prove that connected non-bipartite graphs G1, G2, . . . , GN are

always (strongly) dF -hypercyclic (strongly dF -topologically transitive). Excluding

Proposition 3.18, almost all structural results from Subsection 3.3 are devoted to the

study of case F = P (P (N))\{∅}.We pay a special attention to the question whether

the dF -hypercyclicity (dF -topological transitivity) of a given digraph G (digraphs

G1, G2, . . . , GN ) automatically implies the strong dF -hypercyclicity (strong dF -
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topological transitivity) of G (G1, G2, . . . , GN ). In Proposition 3.14, we prove that,

if the number of nodes of a digraph G is less than or equal to 4, and G is equipped

with an arbitrary topology, then the F -hypercyclicity of G always implies the

strong F -hypercyclicity of G. For disjointness, we prove that the dF -hypercyclicity

of G1, G2, . . . , GN always implies the strong dF -hypercyclicity of G1, G2, . . . , GN

provided that the number of nodes of each digraph Gi is less than or equal to 3,

1 6 i 6 N . The main result of the paper is Theorem 3.17, where we completely solve

the above question for tournaments. In addition to the above, we propose several

open problems.

We use the standard notation henceforth. For any s ∈ R, we set ⌊s⌋ := sup{l ∈ Z :

s > l}. Suppose that X , Y , Z and T are given nonempty sets. Let us recall that

a binary relation between X into Y is any subset ̺ ⊆ X × Y. If ̺ ⊆ X × Y and

σ ⊆ Z × T with Y ∩ Z 6= ∅, then we define ̺−1 ⊆ Y × X and σ ◦ ̺ ⊆ X × T by

̺−1 := {(y, x) ∈ Y ×X : (x, y) ∈ ̺} and

σ ◦ ̺ := {(x, t) ∈ X × T : ∃ y ∈ Y ∩ Z such that (x, y) ∈ ̺ and (y, t) ∈ σ},

respectively. The domain and range of ̺ are defined by D(̺) := {x ∈ X : ∃ y ∈ Y

such that (x, y) ∈ ̺} and R(̺) := {y ∈ Y : ∃x ∈ X such that (x, y) ∈ ̺}, respec-

tively; ̺(x) := {y ∈ Y : (x, y) ∈ ̺} (x ∈ X), x ̺ y ⇔ (x, y) ∈ ̺. Assuming ̺ is a

binary relation on X and n ∈ N, we define ̺n inductively; ̺−n := (̺n)−1 and ̺0 :=

{(x, x) : x ∈ X}. Set D∞(̺) :=
⋂

n∈N

D(̺n), ̺(X ′) := {y : y ∈ ̺(x) for some x ∈ X ′}

(X ′ ⊆ X) and Nn := {1, . . . , n} (n ∈ N). By P (A) and χA(·), we denote the power

set of A and the characteristic function of A, respectively.

If X and Y are topological spaces and ̺ ⊆ X×Y, then we say that ̺ is continuous

if for every open subset V of Y there exists an open subset U of X such that

̺−1(V ) = U ∩ D(̺). This clearly holds provided that X is equipped with discrete

topology.

2. F-hypercyclicity and disjoint F-hypercyclicity of binary

relations: main definitions

Throughout the paper, we assume that X and Y are topological spaces, as well as

that N ∈ N and N > 2. Suppose that F is a nonempty collection of certain subsets

of N, i.e. F ∈ P (P (N)) and F 6= ∅. Observe that we do not require here that |A| = ∞

for all A ∈ F as well as that F satisfies the following property:

(I) B ∈ F whenever there exists A ∈ F such that A ⊆ B.

Let us recall that, if F ∈ P (P (N))\∅ satisfies (I), then it is said that F is a Fürstenberg

family (see [12]); if so, then we say that F is a proper Fürstenberg family if ∅ /∈ F .
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For the sequel, we also need the notion of an upper Fürstenberg family; that is, any

proper Fürstenberg family F satisfying the following two conditions:

(II) There exist a set D and a countable set M such that F =
⋃

δ∈D

⋂

ν∈M

Fδ,ν, where

for each δ ∈ D and ν ∈ M the following holds: If A ∈ Fδ,ν, then there exists

a finite subset F ⊆ N such that the implication A ∩ F ⊆ B ⇒ B ∈ Fδ,ν holds

true.

(III) If A ∈ F , then there exists δ ∈ D such that, for every n ∈ N, we have A− n ≡

{k − n : k ∈ A, k > n} ∈ Fδ, where Fδ ≡
⋂

ν∈M

Fδ,ν.

We would like to propose the following definition (observe that the introduced

notion can be further generalized by assuming that two nonempty families τX ∈

P (P (X)) and τY ∈ P (P (Y )) are given satisfying that (X, τX) and (Y, τY ) are not

necessarily topological spaces).

Definition 2.1. Let (̺n)n∈N be a sequence of binary relations between the

spaces X and Y, let ̺ be a binary relation on X , and let x ∈ X . Suppose that

F ∈ P (P (N)) and F 6= ∅. Then we say that:

(i) x is a strong F-hypercyclic element of the sequence (̺n)n∈N if x ∈
⋂

n∈N

D(̺n)

and for each n ∈ N there exists an element yn ∈ ̺n(x) such that for each

open nonempty subset V of Y we have {n ∈ N : yn ∈ V } ∈ F ; (̺n)n∈N is said

to be strongly F-hypercyclic if there exists a strong F -hypercyclic element of

(̺n)n∈N;

(ii) ̺ is strong F-hypercyclic if the sequence (̺n)n∈N is strong F -hypercyclic; x is

said to be a strong F-hypercyclic element of ̺ if x is a strong F -hypercyclic

element of the sequence (̺n)n∈N;

(iii) x is an F -hypercyclic element of the sequence (̺n)n∈N if x ∈
⋂

n∈N

D(̺n) and

for each open nonempty subset V of Y we have

S(x, V ) := {n ∈ N : ̺nx ∩ V 6= ∅} ∈ F ;

(̺n)n∈N is said to be F -hypercyclic if there exists an F -hypercyclic element of

(̺n)n∈N;

(iv) ̺ is F -hypercyclic if the sequence (̺n)n∈N is F -hypercyclic; x is said to be an

F -hypercyclic element of ̺ if x is an F -hypercyclic element of the sequence

(̺n)n∈N;

(v) (̺n)n∈N is said to be strongly F-topologically transitive if for every open non-

empty subset U ⊆ X and for every integer n ∈ N there exists an element

yn ∈ ̺n(U) such that for each open nonempty subset V of Y we have {n ∈

N : yn ∈ V } ∈ F ;
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(vi) ̺ is strongly F-topologically transitive if the sequence (̺n)n∈N is strongly F -

topologically transitive;

(vii) (̺n)n∈N is said to be F -topologically transitive if for every two open nonempty

subsets U ⊆ X and V ⊆ Y we have

S(U, V ) := {n ∈ N : ̺n(U) ∩ V 6= ∅} ∈ F ;

(viii) ̺ is F -topologically transitive if the sequence (̺n)n∈N is F -topologically tran-

sitive.

In any case set out above, the validity of (I) for F yields that the strong F -

hypercyclicity (topological transitivity) implies, in turn, the F -hypercyclicity (topo-

logical transitivity) of the considered sequence of binary relations (binary relation,

element). This condition also ensures that, for every dynamical property introduced

above, say F -hypercyclicity, any extension of an F -hypercyclic binary relation ̺ is

likewise F -hypercyclic (a similar statement holds for sequences of binary relations).

The notion introduced in [9] is recovered by setting that F is a collection of

all nonempty subsets of N (in this case, generally, the notion of F -hypercyclicity

cannot be connected to that of F -topological transitivity in any reasonable way).

It is worth noting that, in [9], the notion of strong F -hypercyclicity and strong F -

topological transitivity (as well as their disjoint analogues) are called hypercyclicity

and topological transitivity, respectively. So, the notions introduced in parts (iii)–(iv)

of Definition 2.1 as well as the notions introduced in parts (v)–(vi) of Definition 2.1

are new.

Definition 2.1 is rather general and covers some patological cases completely un-

ambiguous to be further explored. Furthermore, the following holds:

(1) The validity of (i), or (iii) ((ii), or (iv)), implies that
⋂

n∈N

D(̺n) 6= ∅ (D∞(̺) 6= ∅).

(2) The validity of (v) ((vi)) implies that D(̺n) 6= ∅ for all n ∈ N (D(̺n) 6= ∅ for all

n ∈ N) but not
⋂

n∈N

D(̺n) 6= ∅ (D∞(̺) 6= ∅). To illustrate this, consider first the

case that X = Y = {x, y} is equipped with discrete topology, ̺2n−1 := {(x, y)},

̺2n := {(y, x)} (n ∈ N) and {N, 2N, 2N + 1} ⊆ F . Then it can be easily seen

that the sequence (̺n)n∈N is strongly F -topologically transitive, D(̺n) 6= ∅ for

all n ∈ N and
⋂

n∈N

D(̺n) = ∅. For (vi), it is sufficient to consider any binary

relation ̺ onN = X = Y satisfying thatD(̺n) 6= ∅ for all n ∈ N andD∞(̺) = ∅;

then we can endow X and Y with the anti-discrete topology τ = {∅,N} and ̺

will be strongly F -topologically transitive provided that N ∈ F .

(3) In the case of considering parts (vii) and (viii), we do not need to have that

D(̺n) = ∅ for all n ∈ N (D(̺n) 6= ∅ for all n ∈ N); to see this, assume
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that X = Y = {x, y} is equipped with discrete topology, ̺ := {(x, y)} and

{∅, {1}} ⊆ F . Then ̺ is (not strongly) F -topologically transitive, D(̺n) = ∅

for all n > 2 and therefore D∞(̺) = ∅.

(4) Assume N /∈ F and D(̺n) 6= ∅ for all n ∈ N (D∞(̺) 6= ∅). Then we can easily

see by plugging (U = X and) V = Y that the sequence (̺n)n∈N (̺) cannot

satisfy any of the above introduced properties.

If X = Y and (̺n)n∈N is a sequence of symmetric binary relations on X, then for

each x ∈
⋂

n∈N

D(̺n) and for each open nonempty subset V of Y we have S(x, V ) +

2N ⊆ S(x, V ), so that (̺n)n∈N cannot be F -hypercyclic if for each subset A ∈ F the

assumption A 6= ∅ implies that A+2N is not a subset of A; furthermore, in this case,

for every two open nonempty subsets U ⊆ X and V ⊆ X, we have S(U, V ) = S(V, U).

R em a r k 2.2. Assume that x is a (strong) F -hypercyclic element of a binary

relation ̺ on X , l ∈ N and x ∈ ̺lz for some element z ∈ X. If (for each open

nonempty subset V of Y and for each sequence (ωn) in X) for each open nonempty

subset V of Y and for each ω ∈
⋂

n∈N

D(̺n) the supposition ({n ∈ N : ωn+l ∈ V } ∈ F

implies {n ∈ N : ωn ∈ V } ∈ F) {n ∈ N : ̺n+lω ∈ V } ∈ F implies {n ∈ N :

̺nω ∈ V } ∈ F , then z is likewise a (strong) F -hypercyclic element for ̺. This, in

particular, holds if F is a collection of all subsets of N which do have at least m

elements, where m ∈ N0.

In the next two definitions, we consider disjoint analogues of the notions introduced

in Definition 2.1:

Definition 2.3. Suppose that F ∈ P (P (N)), F 6= ∅, N > 2, (̺j,n)n∈N is a

sequence of binary relations between the spaces X and Y , 1 6 j 6 N , ̺j is a binary

relation on X , 1 6 j 6 N and x ∈ X . Then we say:

(i) x is a strong dF-hypercyclic element of the sequences (̺1,n)n∈N, . . . , (̺N,n)n∈N

if for each n ∈ N there exist elements yj,n ∈ ̺j,n(x), 1 6 j 6 N such that for ev-

ery open nonempty subsets V1, . . . , VN of Y, we have {n ∈ N : y1,n ∈ V1, y2,n ∈

V2, . . . , yN,n ∈ VN} ∈ F ; the sequences (̺1,n)n∈N, . . . , (̺N,n)n∈N are called

strongly dF-hypercyclic if there exists a strong dF -hypercyclic element of

(̺1,n)n∈N, . . . , (̺N,n)n∈N;

(ii) x is a strong dF-hypercyclic element of the binary relations ̺1, . . . , ̺N if x

is a strong dF -hypercyclic element of the sequences (̺n1 )n∈N, . . . , (̺
n
N )n∈N; the

binary relations ̺1, . . . , ̺N are called strongly dF-hypercyclic if there exists a

strong dF -hypercyclic element of ̺1, . . . , ̺N ;

(iii) x is a dF -hypercyclic element of the sequences (̺1,n)n∈N, . . . , (̺N,n)n∈N if x ∈
⋂

16j6N,n∈N

D∞(̺j,n) and for every open nonempty subsets V1, . . . , VN of Y, we
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have (V = (V1, V2, . . . , VN ))

S(x,V) := {n ∈ N : ̺1,nx ∩ V1 6= ∅, ̺2,nx ∩ V2 6= ∅, . . . , ̺N,nx ∩ VN 6= ∅} ∈ F ;

the sequences (̺1,n)n∈N, . . . , (̺N,n)n∈N are called dF -hypercyclic if there exists

a dF -hypercyclic element of (̺1,n)n∈N, . . . , (̺N,n)n∈N;

(iv) x is a dF -hypercyclic element of the binary relations ̺1, . . . , ̺N if x is a dF -

hypercyclic element of the sequences (̺n1 )n∈N, . . . , (̺
n
N )n∈N; the binary relations

̺1, . . . , ̺N are called dF -hypercyclic if there exists a dF -hypercyclic element of

̺1, . . . , ̺N .

Definition 2.4. Suppose that F ∈ P (P (N)), F 6= ∅, N > 2, (̺j,n)n∈N is a

sequence of binary relations between the spaces X and Y , 1 6 j 6 N , and ̺j is a

binary relation on X , 1 6 j 6 N . Then we say:

(i) the sequences (̺1,n)n∈N, . . . , (̺N,n)n∈N are strongly dF-topologically transitive

if for every open nonempty subset U ⊆ X and for every open nonempty subsets

V1, . . . , VN of Y, there exists an element x ∈ U such that, for every integers n ∈ N

and j ∈ NN , there exists an element yj,n ∈ ̺j,nx such that {n ∈ N : yj,n ∈ Vj

for all j ∈ NN} ∈ F ;

(ii) the binary relations ̺1, . . . , ̺N are called strongly dF-topologically transitive if

the sequences (̺n1 )n∈N, . . . , (̺
n
N )n∈N are strongly dF -topologically transitive;

(iii) the sequences (̺1,n)n∈N, . . . , (̺N,n)n∈N are dF -topologically transitive if for

every open nonempty subset U ⊆ X and for every open nonempty subsets

V1, . . . , VN of Y, we have {n ∈ N : (∃x ∈ U) ̺j,nx∩ Vj 6= ∅ for all j ∈ NN} ∈ F ;

(iv) the binary relations ̺1, . . . , ̺N are dF -topologically transitive if the sequences

(̺n1 )n∈N, . . . , (̺
n
N )n∈N are dF -topologically transitive.

If the binary relations ̺1, . . . , ̺N are (strongly) dF -hypercyclic ((strongly) dF -

topologically transitive), then we also say that the N -tuple (̺1, . . . , ̺N ) is strong

dF -hypercyclic ((strongly) dF -topologically transitive) and vice versa.

We have the following simple observations:

(1) Definition 2.3: The validity of (i), or (iii) ((ii), or (iv)), implies that

⋂

n∈N,j∈NN

D(̺j,n) 6= ∅ (
⋂

j∈NN

D∞(̺j) 6= ∅).

(2) Definition 2.4: The validity of (i) ((ii)) implies that
⋂

j∈NN

D(̺j,n) 6= ∅ for all

n ∈ N (
⋂

j∈NN

D(̺nj ) 6= ∅ for all n ∈ N) but not
⋂

n∈N

D(̺j,n) 6= ∅ for some j ∈ NN

(D∞(̺j) 6= ∅ for some j ∈ NN ).
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(3) Definition 2.4: The validity of (iii) ((iv)) does not imply that there exists j ∈ NN

such that D(̺j,n) 6= ∅ for all n ∈ N (D(̺nj ) 6= ∅ for all n ∈ N); to verify this, let

X = {x, y} be equipped with the topology τ1 = {∅, {x}, {x, y}}, let Y = {x, y}

be equipped with the topology τ2 = {∅, {y}, {x, y}}, and let ̺1 = ̺2 = {(x, y)}.

Suppose that F = P (P (N)) \ {∅}. Then D(̺n1 ) = ∅ for n > 2, ̺1 and ̺2 are

dF -topologically transitive but not strongly dF -topologically transitive (see also

Remark 3.16 below).

(4) Assume N /∈ F . If
⋂

j∈NN

D(̺j,n) 6= ∅ for all n ∈ N (
⋂

j∈NN

D(̺nj ) 6= ∅ for all n ∈ N),

then the sequences (̺1,n)n∈N, . . . , (̺N,n)n∈N (binary relations ̺1, . . . , ̺N ) cannot

satisfy any of the above introduced disjoint properties.

R em a r k 2.5.

(i) In parts (i) and (iii) of Definition 2.3, the topology on X does not play any role.

We can assume that Y is equipped with arbitrary topologies τY1 , . . . , τYN and

that, for every i ∈ NN , Vi is open for the topology τ
Y
i .

(ii) In parts (ii) and (iv) of Definition 2.3, we can assume that X = Y is equipped

with arbitrary topologies τX1 , . . . , τXN and that, for every i ∈ NN , Vi is open for

the topology τXi .

Similar observations can be given for Definition 2.4; albeit a great number of our

results continues to hold with this extended notion, we will analyze henceforth only

the usually considered case that X is equipped with exactly one topology and Y is

equipped with exactly one topology.

We round off this section by stating the following simple proposition, stated here

without a corresponding proof which can be left to the interested reader:

Proposition 2.6.

(i) Suppose that the sequences (̺1,n)n∈N, . . . , (̺N,n)n∈N of binary relations be-

tween the spaces X and Y , or the binary relations ̺1, ̺2, . . . , ̺N on X, are

dF -hypercyclic (or dF -topologically transitive). Then for each j ∈ NN the se-

quence (̺j,n)n∈N, or the binary relation ̺j , is F -hypercyclic (or F -topologically

transitive) provided that (̺1,n)n∈N = (̺2,n)n∈N = . . . = (̺N,n)n∈N, or ̺1 =

̺2 = . . . = ̺N , or that the condition (I) holds for F .

(ii) Suppose that the sequences (̺1,n)n∈N, . . . , (̺N,n)n∈N of binary relations between

the spaces X and Y , or the binary relations ̺1, ̺2, . . . , ̺N on X, are strongly

dF -hypercyclic (or strongly dF -topologically transitive). Then for each j ∈ NN

the sequence (̺j,n)n∈N, or the binary relation ̺j , is strongly F -hypercyclic (or

strongly F -topologically transitive) provided that the condition (I) holds for F .
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3. Results for general binary relations,

simple graphs and digraphs

As already mentioned, we will divide this section into three separate subsections.

In the first, we will present a few results about F -hypercyclicity of general binary

relations.

3.1. Results for general binary relations. For the sequel, set D :=
⋂

n∈N

D(̺n)

and ˇ̺n := {(x, y) ∈ ̺n : x ∈ D}, n ∈ N; ( ˇ̺ := {(x, y) ∈ ̺ : x ∈ D∞(̺)}). Then ˇ̺n

( ˇ̺) is a binary relation between D and Y, with D(ˇ̺n) = D for all n ∈ N (D∞(̺)

and Y , with D(ˇ̺) = D∞(̺)).

The following proposition holds true:

Proposition 3.1. Let (̺n)n∈N be a sequence of binary relations between the

spaces X and Y, let ̺ be a binary relation on X , and let x ∈ X . Then x is a

(strong) F -hypercyclic element of the sequence (̺n)n∈N if and only if x is a (strong)

F -hypercyclic element of the sequence (ˇ̺n)n∈N; in particular, (̺n)n∈N is (strongly)

F -hypercyclic if and only if (ˇ̺n)n∈N is (strongly) F -hypercyclic.

In a certain sense, the above proposition shows that it is sufficient to introduce

the notions of (strong) F -hypercyclicity only for binary relations whose domain is

the whole space X. But, this is actually not the case because we need to know some

further properties of D in X ; for example, in the next generalization of implications

(a) ⇒ (b) ⇒ (c) ⇒ (d) of [6], Theorem 15, we impose the condition that the sub-

space D of X is a Baire space, which particularly holds in the following two special

cases: X is a Baire space and D is open in X or X is a complete metric space and D

is a closed subspace of X :

Theorem 3.2. Let (̺n)n∈N be a sequence of binary relations between the topo-

logical spaces X and Y, let the subspace D of X be a Baire space, and let Y be

second-countable. Assume that ˇ̺n ⊆ D × Y is continuous for all n ∈ N. If F is a

Fürstenberg family and (II) holds, then we have (i) ⇒ (ii) ⇒ (iii) ⇒ (iv), where:

(i) For any nonempty open subset V of Y there is some δ ∈ D such that for any

nonempty open subset U of X such that U ∩ D 6= ∅ there is some x ∈ U ∩ D

such that {n ∈ N : ̺nx ∩ V 6= ∅} ∈ Fδ.

(ii) For any nonempty open subset V of Y there is some δ ∈ D such that, for any

nonempty open subset U of X such that U ∩D 6= ∅ and for every ν ∈ M there

is some x ∈ U ∩D such that {n ∈ N : ̺nx ∩ V 6= ∅} ∈ Fδ,ν.

(iii) The set consisting of all F -hypercyclic vectors of (̺n)n∈N is residual in D.

(iv) The sequence (̺n)n∈N is F -hypercyclic.
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P r o o f. The implications (i) ⇒ (ii) and (iii) ⇒ (iv) are trivial and all that we

need to show is that (ii) implies (iii). For this, we can repeat almost literally the

arguments given in the proof of the corresponding implication (b) ⇒ (c) of [6],

Theorem 15, with the sequence (Tn) and term Tnx ∈ Vk replaced therein by the

sequence of continuous relations (ˇ̺n)n∈N and the term ̺nx ∩ Vk 6= ∅, showing that

the set consisting of all F -hypercyclic vectors of (ˇ̺n)n∈N is residual in D. After that,

we can apply Proposition 3.1. �

In contrast to [6], we do not use the conditions that X and Y are metric spaces, as

well as the condition (III). Keeping in mind Proposition 3.1 and Theorem 3.2, it seems

plausible that the assertions of A-Hypercyclicity Criterion (see [6], Theorem 22) and

A-Hypercyclicity Criterion, second version (see [6], Theorem 26), can be extended to

continuous multivalued linear operators (see [8] for the notion of a multivalued linear

operator; the continuity is understood in the sense of continuity of a general binary

relation). It also seems plausible that a great number of other Hypercyclicity Criteria

known in the existing literature can be formulated for continuous multivalued linear

operators. We will not discuss these questions in more detail here.

Now we will turn our attention in another direction, by giving a few useful ob-

servations in the case that X is equipped with discrete topology or anti-discrete

topology. Suppose first that X carries the anti-discrete topology τ = {∅, X} and bi-

nary relations ̺, ̺1, . . . , ̺N on X are given. Then any vector x ∈ D∞(̺) is a strong

F -hypercyclic vector for ̺ (strong dF -hypercyclic vector for ̺1, . . . , ̺N ), so that

the notions of F -hypercyclicity and strong F -hypercyclicity (dF -hypercyclicity and

strong dF -hypercyclicity) coincide; the same holds for the notions of F -topological

transitivity and strong F -topological transitivity (dF -topological transitivity and

strong dF -topological transitivity). This is no longer true in the case that τ is not

the anti-discrete topology and we will illustrate this only for the F -hypercyclicity:

let X = {x1, x2}, ̺ = {(x1, x2), (x2, x2)} and τ = {∅, {x2}, {x1, x2}}. Then both x1

and x2 are F -hypercyclic vectors for ̺, while x2 is the only strong F -hypercyclic

vector for ̺.

If X = {x1, x2, . . . , xn} carries the discrete topology, then an element x ∈ X is an

F -hypercyclic vector for a binary relation ̺ on X if and only if for every nonempty

subset V of Nn we have {k ∈ N : (∃ i ∈ V )xi ∈ ̺kx} ∈ F . Since

{k ∈ N : (∃ i ∈ V )xi ∈ ̺kx} =
⋃

i∈V

{k ∈ N : xi ∈ ̺kx},

we have the following: Assume that F is closed under finite unions. Then x ∈ X

is an F -hypercyclic vector for ̺ if and only if x ∈ D∞(̺) and for each i ∈ Nn we

have {k ∈ N : xi ∈ ̺kx} ∈ F . Arguing similarly we can prove that, under the same
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assumption on F , x ∈ X is a dF -hypercyclic vector for binary relations ̺1, ̺2, . . . , ̺N
on X if and only if x ∈ D∞(̺j) for 1 6 j 6 N and for any choice of elements

xi1 , xi2 , . . . , xiN in X , 1 6 is 6 n for s ∈ NN we have
⋂

j∈NN

{k ∈ N : xij ∈ ̺kjx} ∈ F .

Consider the case that X = Y = {x1, x2, . . . , xn} is equipped with arbitrary

topology. For any binary relation ̺ on X, by [̺] we denote the adjacency matrix

of ̺, defined by aij := 1 if xi ̺ xj , and aij := 0 otherwise. By a ̺-walk, we mean

any finite sequence xi1xi2 . . . xis , where s ∈ N \ {1}, 1 6 ij 6 n for 1 6 j 6 s and

xij ̺ xij+1
for 1 6 j 6 s − 1; the length of xi1xi2 . . . xis is said to be s, while xi1

and xis are said to be the starting and the ending point of xi1xi2 . . . xis .We also say

that xi1xi2 . . . xis is an (xi1 − xis) ̺-walk. Set [̺]
k := [aki,j ]16i,j6n, k ∈ N. Arguing

as in the case of simple graphs (see [21]), we can simply conclude that the number

of different (xi − xj) ̺-walks of length k equals aki,j , 1 6 i, j 6 n, k ∈ N. This fact

enables one to simply reformulate the notion introduced in Definition 2.1 in terms

of appropriate conditions involving the adjacency matrix [̺]:

Proposition 3.3.

(i) xi is an F -hypercyclic vector for ̺, i ∈ Nn if and only if for every k ∈ N there

exists a ̺-walk of length k starting at xi and for each open nonempty subset V

of X we have {k ∈ N : (∃ j ∈ V ) akij > 1} ∈ F .

(ii) ̺ is F -topologically transitive if and only if for each pair of open nonempty

subsets U , V of X we have {k ∈ N : (∃ i ∈ U) (∃ j ∈ V ) akij > 1} ∈ F .

The situation is quite similar for disjointness. If [̺s] = [asij ]16i,j6n is the adjacency

matrix of a binary relation ̺s on X , then we denote [̺s]
k = [ak;sij ]16i,j6n, s ∈ NN ,

k ∈ N. We have the following:

Proposition 3.4. Let ̺s be a binary relation on X , 1 6 s 6 N .

(i) xi is a dF -hypercyclic vector for ̺1, ̺2, . . . , ̺N , i ∈ Nn if and only if for every

k ∈ N and s ∈ NN there exists a ̺s-walk of length k starting at xi and for

each open nonempty subsets Vs of Xs, 1 6 s 6 N we have {k ∈ N : (∀ s ∈ NN )

(∃ js ∈ Vs) a
k;s
ijs

> 1} ∈ F .

(ii) ̺1, ̺2, . . . , ̺N are dF -topologically transitive if and only if for each open non-

empty subsets U, V1, V2, . . . , VN of X we have {k ∈ N : (∃ i ∈ U) (∀ s ∈ NN )

(∃ js ∈ Vs) a
k;s
ijs

> 1} ∈ F .

3.2. Results for simple graphs. Let X = G = {x1, x2, . . . , xn} be finite, let

|G| > 1, and let ̺ be a symmetric relation on G such that, for every g ∈ G, we

have (g, g) /∈ ̺. As is well-known, (G, ̺) is said to be a simple graph (see [4], [7]
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and [21] for the basic theory of graphs). By E(G) we denote the set consisting of all

unoriented arcs of G. The notion of distance d(u, v) of two nodes u, v ∈ G, as well

as the notions of diameter d(G) of a graph G, walks, paths and closed contours in G

are defined as usual (let us only recall that d(u, u) = 0, u ∈ G). By [A(G)] we denote

the adjacency matrix of G. For more details about applications of the matrix theory

to graphs, we refer the reader to the monographs [10] and [11].

Suppose, for the time being, that F = P (P (N)) \ {∅}. Then it can be easily seen

that the graph G, equipped with discrete topology, is connected if and only if G

is (strongly) F -hypercyclic if and only if G is (strongly) F -topologically transitive

(see [9]); if this is the case, then any element of G is a (strong) hypercyclic element

of ̺. Furthermore, if G is equipped with arbitrary topology, then G is F -hypercyclic

(F -topologically transitive) if and only if G is strongly F -hypercyclic (strongly F -

topologically transitive). For disjointness, a similar statement holds true:

Proposition 3.5. Let F = P (P (N)) \ {∅}. Suppose that G1, G2, . . . , GN are

given graphs with the same set of nodes X = {x1, x2, . . . , xn}. Then G1, G2, . . . , GN

are dF -hypercyclic (dF -topologically transitive) if and only if G1, G2, . . . , GN are

strongly dF -hypercyclic (strongly dF -topologically transitive).

P r o o f. We will prove the statement only for dF -hypercyclicity and strong

dF -hypercyclicity. Since the condition (I) holds, we only need to show that dF -

hypercyclicity of G1, G2, . . . , GN implies their strong dF -hypercyclicity. Let x ∈ X

be a dF -hypercyclic vector of G1, G2, . . . , GN ; we will prove that x ∈ X is a strong

dF -hypercyclic vector of G1, G2, . . . , GN . Let an denote the number of open non-

empty subsets of Gi, which will be denoted by Vs, 1 6 s 6 an. Set rn := aNn . Let

the tuples (V1, V1, . . . , V1), . . . , (Van
, Van

, . . . , Van
) be listed in some alphabetic order.

For the tuple (V1, V1, . . . , V1), we know that there exist a positive integer k1 ∈ N

and elements y1,k1
∈ ̺k1

1 x ∩ V1, . . . , yN,k1
∈ ̺k1

N x ∩ V1. By the symmetry of rela-

tions ̺1, ̺2, . . . , ̺N , for the tuple (V1, V1, . . . , V1, V2), there exist a positive integer

k2 > k1 and elements y1,k2
∈ ̺k2

1 x∩V1, . . . , yN−1,k2
∈ ̺k2

N−1x∩V1, yN,k2
∈ ̺k2

N x∩V2.

Repeating this procedure, for the tuple (Van
, Van

, . . . , Van
), there exist a positive

integer krn > krn−1 and elements y1,krn
∈ ̺

krn

1 x ∩ Van
, . . . , yN,krn

∈ ̺
krn

N x ∩ Van
.

If k /∈ {k1, . . . , krn}, then we take elements y1,k ∈ ̺k1x, . . . , yN,k ∈ ̺kNx arbitrarily

(we know that such elements exist because x ∈
⋂

16j6N

D∞(̺j)). With the sequence

yj,k ∈ ̺j,k(x), 1 6 j 6 N , the requirements of Definition 2.3(i) are satisfied. �

We are returning to the case of general F ∈ P (P (N)) and F 6= ∅. If ∅ /∈ F , then the

F -hypercyclicity (F -topological transitivity) of G implies that G is connected. On

the other hand, if ∅ ∈ F and G is not connected, then G cannot be F -hypercyclic (F -

topologically transitive). In the sequel, we will consider only the case that E(G) 6= ∅,
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when we clearly have N ∈ F ; this will be our standing assumption in the rest of this

subsection. Since the associated binary relation ̺ is symmetric, we will also assume

that for each A ∈ F the assumption A 6= ∅ implies A + 2N ⊆ A. Observe also that

we have S(U, V ) = S(V, U) for any open nonempty subsets U and V of G.

As the next illustrative example shows, the notion of F -hypercyclicity for simple

graphs is far from being clear and easy understandable (see also [15]):

E x am p l e 3.6.

(i) Let G = {x1, x2, x3, x4} be equipped with discrete topology, let G be the un-

oriented square x1x2x3x4, and let F be the collection of all nonempty subsets

of N containing only odd elements. Then, for every i ∈ N4 and n ∈ 2N+ 1, we

have that xi /∈ ̺nxi, which simply implies that the corresponding symmetric

relation ̺ cannot possess any of the introduced F -dynamical properties from

Definition 2.1; furthermore, G is F -hypercyclic (F -topologically transitive) if

and only if {2N, 2N+ 1} ⊆ F .

(ii) Let the complete graph Kn be equipped with discrete topology. Then the

following holds:

(a) n = 2: Kn is F -hypercyclic (F -topologically transitive) if and only if

{2N, 2N+ 1} ⊆ F .

(b) n > 3: Kn is F -hypercyclic (F -topologically transitive) if and only if

N \ {1} ∈ F .

(iii) Let the complete graph Kn be equipped with discrete topology. Then the

following holds:

(a) n = 2: The graphsKn, . . . ,Kn, totally counted N times, are F -hypercyclic

(F -topologically transitive) if and only if {∅, 2N, 2N+ 1} ⊆ F .

(b) n > 3: The graphsKn, . . . ,Kn, totally counted N times, are F -hypercyclic

(F -topologically transitive) if and only if N \ {1} ∈ F .

Assume that G is equipped with a topology τ on X . Set

SG,τ := card({S(U, V ) : ∅ 6= U, ∅ 6= V, U, V ⊆ G}).

If τ is the discrete topology on X, then we simply write SG in place of SG,τ .

For connected bipartite graphs, the following result holds true:

Theorem 3.7. Let G be a connected bipartite graph. Then, for every two open

nonempty subsets U and V of X, we have

(3.1) S(U, V ) = L(U, V ) := {d(u, v) + 2k : u ∈ U, v ∈ V, k ∈ N0} ∩N
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and

(3.2) SG,τ 6 SG 6 d(G) + 1
4 (d(G))2 − 1

4χ2N+1(d(G)).

P r o o f. Let U and V be given. If n ∈ S(U, V ), then there exist nodes u ∈ U,

v ∈ V and a walk in G of length n ∈ N connecting u and v. If d(u, v) = n, then clearly

n ∈ L(U, V ); otherwise, d(u, v) < n and n− d(u, v) ∈ 2N, due to the fact that G is

bipartite, and we again have n ∈ L(U, V ). Conversely, if n ∈ L(U, V ), then there exist

two nodes u ∈ U, v ∈ V and a number k ∈ N0 such that n = d(u, v)+2k. If u = v, then

k ∈ N and there exists a walk in G of length 2k connecting u and v = u because G is

connected. Otherwise, u 6= v and there exists a walk in G of length d(u, v) connecting

u and v. By the connectivity of G, there exists a walk in G of length d(u, v)+2k = n,

so that n ∈ S(U, V ) and (3.1) holds. This implies that S(U, V ) is equal to some of

the sets 1 + 2N0, . . . , d(G) + 2N0 or some of their finite nonempty unions. Since

the inequality SG,τ 6 SG is trivial, for the proof of (3.2) it suffices to prove that

there exist at most 1
4 (d(G))2 − 1

4χ2N+1(d(G)) different finite nonempty unions of the

sets 1 + 2N0, . . . , d(G) + 2N0. But, this simply follows from the fact that any such

union is of the form Ai,j := {min(i, j),min(i, j) + 2, . . . ,max(i, j) − 1} ∪ {s ∈ N :

s > max(i, j)}, where 1 6 i, j 6 d(G), i is even, j is odd, the fact that any such two

sets Ai,j and Ai′,j′ differ if (i, j) 6= (i′, j′), 1 6 i, i′, j, j′ 6 d(G), i, i′ are even, j, j′ are

odd, and the product principle. The proof of the theorem is thereby complete. �

For the proof of the inclusion L(U, V ) ⊆ S(U, V ), we have not used the assumption

that G is bipartite. Therefore, we have:

Proposition 3.8. Let G be a connected graph. Then, for every two nonempty

subsets U and V of X, we have L(U, V ) ⊆ S(U, V ).

As Example 3.6(i) shows, the estimate (3.1) cannot be improved for connected

bipartite graphs having four nodes (let us recall that N ∈ F is our standing assump-

tion). The situation is quite similar in the general case because for the path Pn,

where n > 2, we have

d(Pn) = n− 1 and SG = n− 1 + 1
4 (n− 1)2 − 1

4χ2N+1(n− 1).

By ϑ(G) we denote the smallest number, if such exists, satisfying that any two

nodes u and v of G can be connected by an even walk of length 6 ϑ(G) and an odd

walk of length 6 ϑ(G); otherwise, we set ϑ(G) := ∞.

Theorem 3.9. Let G be a connected graph. Then we have

(3.3) SG 6
⌊

1
4 (ϑ

2(G) + 2ϑ(G) + 1)
⌋

.
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P r o o f. Clearly, it suffices to examine the case in which ϑ(G) < ∞. In this case,

we have

(3.4) B := {s ∈ N : s > ϑ(G)} ⊆ S(U, V )

for any two nonempty subsets U and V of G. Set mU,V := min(S(U, V )). If mU,V =

ϑ(G), then S(U, V ) = {s ∈ N : s > ϑ(G)}. If 1 6 i = mU,V < ϑ(G), then S(U, V ) =

(i + 2N0) ∪ B or there exists a natural number i′ ∈ (i, ϑ(G)) such that i′ − i is an

odd number and S(U, V ) = {s ∈ N : s ∈ i + 2N0, s < i′} ∪ {s ∈ N : s > i′}. Hence,

if ϑ(G)− i is an even number, we have at most 1
2 (ϑ(G)− i+2) different possibilities

for S(U, V ), while if ϑ(G) − i is an odd number, we have at most 1
2 (ϑ(G) − i + 1)

different possibilities for S(U, V ). Summa summarum,

(3.5) SG 6 1 +

ϑ(G)−1
∑

i=1

ϑ(G)− i+ 2

2
−
∑

i∈I

1

2
,

where I = {i ∈ Nϑ(G)−1 : ϑ(G)− 1− i is odd}. Then the estimate (3.3) follows from

a simple computation involving (3.5) and the equality ⌊ 1
4 (ϑ

2(G) + 2ϑ(G) + 1)⌋ =

⌊ 1
4 (ϑ

2(G) + 2ϑ(G))⌋, holding for even numbers ϑ(G). �

If a connected graph G is not bipartite, then it contains a closed contour of odd

length as a subgraph. If l ∈ N is any number such that the closed contour C2l+1 is a

subgraph of G, then it is very elementary to prove that ϑ(G) 6 max
u,v∈G

[2d(u,C2l+1) +

d(u, v) + 2l+ 1], where d(u,C2l+1) := inf{d(u,w) : w ∈ C2l+1}.

R em a r k 3.10. For a non-bipartite connected graph G, the estimate (3.4) fol-

lows immediately from the facts that the index of G is strictly greater than 1, any

component of the principal eigenvector of G is strictly positive, and by an application

of [11], Theorem 2.2.5; see [11] for the notion.

Let m,n ∈ N, let X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , ym}, and let Gi(X,Y ) be

a bipartite graph with colored classes X and Y , 1 6 i 6 N . Suppose that X ∪ Y

is equipped with discrete topology and F = P (P (N)) \ {∅}. As indicated in [9],

the graphs G1(X,Y ), G2(X,Y ), . . . , GN (X,Y ) cannot be strongly dF -hypercyclic

(strongly dF–topologically transitive); by Proposition 3.5, it readily follows that

G1(X,Y ), G2(X,Y ), . . . , GN (X,Y ) cannot be dF -hypercyclic (dF–topologically

transitive). On the other hand, by our comment from Remark 3.10, for arbitrary

non-bipartite connected graphs G1, G2, . . . , GN and for arbitrary nonempty subsets

V1, V2, . . . , VN of Nn, we always have the existence of a positive integer k0 ∈ N such

that

[k0,∞) ∩ N ⊆ {k ∈ N : (∀ i ∈ U) (∀ s ∈ NN ) (∀ js ∈ Vs) a
k;s
ijs

> 1}.
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Taking into account Proposition 3.4, the above immediately implies:

Theorem 3.11. Let G1, G2, . . . , GN be non-bipartite connected graphs, and let

F = P (P (N)) \ {∅}. Then G1, G2, . . . , GN are always (strongly) dF -hypercyclic

(strongly dF -topologically transitive) and any element of X is a (strong) dF -

hypercyclic vector of G1, G2, . . . , GN .

With the notion introduced in [9], we also have that G1, G2, . . . , GN are d-

topologically mixing.

We would like to propose the following problem:

Problem 1. Given a connected non-bipartite graph G with n > 2 nodes, find as

good as possible upper bound for SG in terms of d(G) and n.

Theorem 3.7 and Proposition 3.9 can be reconsidered for disjointness; Problem 1

can be reformulated in this context, as well. For the sake of brevity, we will skip all

related details about these questions.

3.3. Results for digraphs and tournaments. A digraph is any pair (G, ̺),

where G is a finite nonempty set and ̺ ⊆ (G×G) \∆G; hence, in our definition, we

do not allow G to contain any loop. We will consider only finite nontrivial digraphs

henceforth (|G| > 1). The elements in G and ̺ are called points (vertices, nodes)

and arcs respectively; if arc (x, y) ∈ ̺, then we say that x is adjacent to y and write

xy for arc(x, y). Two vertices x and y of a digraph G are said to be nonadjacent

if (x, y) /∈ ̺ and (y, x) /∈ ̺. If we replace each arc(x, y) in G by symmetric pairs

(x, y) and (y, x) of arcs, we obtain the underlying simple graph G associated to G.

The notions of outdegree d+(x), indegree d−(x) and degree d(x) := d+(x) + d−(x)

of a vertex x ∈ G as well as the notions of Hamiltonicity of G, a semi-walk in G,

a walk in G and their lengths are defined as usual (see [7]). A digraph G is called

asymmetric if ̺ is an anti-symmetric relation. If G is an asymmetric digraph and G

is F -hypercyclic (F -topologically transitive), then for each set A ∈ F we have 2 /∈ A.

Let us recall that a tournament T is a digraph in which any two different nodes are

connected by exactly one arc. The set of nodes of any digraph G (tournament T )

considered below will be X = V (G) = {x1, x2, . . . , xn}.

Let us recall that a digraph (G, ̺) is said to be strongly connected if for any two

different points x and y from G there is an oriented x − y walk, while (G, ̺) is

said to be weakly connected if for any two different points x and y from G there

is an x − y semi-walk, which is equivalent to saying that the underlying simple

graph G associated to G is connected (see [7]). For various generalizations, see [9].

By [A(G)]16i,j6n we denote the adjacency matrix of G.

For any digraph G (digraphs G1, . . . , GN ), denote by G (G1, . . . ,GN ) the asso-

ciated simple graphs defined as above. The notions introduced in Definition 2.1
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(Definition 2.3 and Definition 2.4) can be used to define Fw-hypercyclic and Fw-

topologically transitive properties (dFw-hypercyclic and dFw-topologically transitive

properties) ofG (G1, . . . , GN ). For example, we say that G is strongly Fw-hypercyclic

if the associated simple graph G is strongly F -hypercyclic, while G1, . . . , GN are said

to be dFw-topologically transitive if G1, . . . ,GN are dF -topologically transitive, and

so on and so forth. In such a way, we extend the notion of d-weakly connected

digraphs (see [9]). It is clear that any F -hypercyclic property (dF -hypercyclic prop-

erty) implies the corresponding Fw-hypercyclic property (dFw-hypercyclic property).

The same holds for topological transitivity.

The numbers SG,τ and SG are meaningful for digraphs, as well, but calculating

upper bounds for the number SG is not so simple task for digraphs. Let us only note

that in a primitive digraph G (this means that there is a positive integer k ∈ N such

that there is a walk of length k from each vertex u to each vertex v (possibly u again)

of G; the smallest integer k with this property is said to be the exponent ofG), for any

two open nonempty subsets U and V of X, we have {k ∈ N : k > exp(G)} ⊆ S(U, V ),

where exp(G) denotes the exponent of G. Unless stated otherwise, we assume hence-

forth that F = P (P (N)) \ {∅}.

The following result is closely connected with Proposition 3.5:

Proposition 3.12.

(i) If G is equipped with discrete topology, thenG is F -hypercyclic (F -topologically

transitive) if and only if G is strongly F -hypercyclic (strongly F -topologically

transitive).

(ii) Suppose that G1, G2, . . . , GN are given digraphs and Gi is equipped with dis-

crete topology on X , 1 6 i 6 N . Then G1, G2, . . . , GN are dF -hypercyclic

(dF -topologically transitive) if and only if G1, G2, . . . , GN are strongly dF -

hypercyclic (strongly dF -topologically transitive).

P r o o f. We present only the main points of the proof of (ii) for dF -hypercyclicity

and strong dF -hypercyclicity, which is very similar to that of Proposition 3.5. It

suffices to show that any dF -hypercyclic vector of G1, G2, . . . , GN is likewise a strong

dF -hypercyclic vector of G1, G2, . . . , GN . To see this, we can copy the arguments

given for simple graphs because we can always find a strictly increasing sequence

k1 < k2 < . . . < krn satisfying the properties stated in the proof of Proposition 3.5,

due to our assumption that any digraph Gi is equipped with discrete topology on X ,

1 6 i 6 N and the fact that for each dF -hypercyclic vector x of G1, G2, . . . , GN

there exists a positive integer k ∈ N such that, for every j ∈ NN , there exists an

(x− x) walk in Gj of length k. �
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Using Proposition 3.12, we can rephrase a great number of our results established

in [9] for strong F -hypercyclicity (strong F -topological transitivity) and strong dF -

hypercyclicity (strong dF -topological transitivity). For example, we have the follow-

ing result:

(i) Let G be a tournament equipped with discrete topology. Then G is strongly

F -hypercyclic if and only if the indegree of any vertex is strictly positive.

(ii) Let G be a digraph equipped with discrete topology, satisfying that for any two

vertices x, y in G such that xy is not an arc in G one has d+(x)+d−(y) > n−1.

Then ̺ is strongly F -hypercyclic if and only if the indegree of any vertex is

strictly positive.

(iii) Let n > 4, and let T1, T2, . . . , TN be tournaments equipped with discrete topolo-

gies. Then T1, T2, . . . , TN are strongly dF -topologically transitive if and only

if Tj is strongly connected for all j ∈ NN if and only if Tj is a Hamiltonian

tournament for all j ∈ NN .

It is worth noting that Proposition 3.12 does not hold if G (some of G′

is for

1 6 i 6 N) is equipped with a topology that is not discrete:

E x am p l e 3.13.

(i) Let n = 5 and let G be a digraph with the associated binary relation ̺ =

{(x3, x2), (x3, x5), (x2, x1), (x1, x4), (x4, x1)}. Suppose that G is equipped with

the topology τ = {∅, {x2}, {x5}, {x2, x5}, {x1, x2, x3, x4, x5}}. Then x3 is the

only F -hypercyclic vector of G and therefore G is F -hypercyclic. On the other

hand, G is not F -topologically transitive because there is no (x2−x5) walk in G.

In this concrete example, G is not strongly F -hypercyclic because x3 is not a

strong F -hypercyclic vector of G; this follows from the fact that for the sequence

(yn) satisfying the requirements from Definition 2.1(i) we need to have y1 = x2

and y1 = x5, which is a contradiction. If we consider N copies of the digraph G,

then it can be simply verified that the obtained tuple is dF -hypercyclic, not

strongly dF -hypercyclic and not dF -topologically transitive.

(ii) Let n = 4 and let G be a digraph with the associated binary relation ̺ =

{(x1, x2), (x1, x3), (x3, x4), (x4, x3)}. Suppose that G is equipped with the topol-

ogy τ = {∅, {x2}, {x3}, {x2, x3}, {x1, x2, x3, x4}}. Consider N copies of the di-

graph G; then x1 is the only dF -hypercyclic vector of the obtained tuple T,

which is dF -hypercyclic and not strongly dF -hypercyclic. Otherwise, x1 needs

to be a strong dF -hypercyclic vector of T, which is a contradiction because the

choices V1 = V2 = {x2} and V1 = {x2}, V2 = {x3} impose that, for the sequence

(yj,k)16j6N,k∈N in Definition 2.3(i), we must have y2,1 = x2 and y2,1 = x3. Ob-

serve also that G and T are, respectively, not F -topologically transitive and

dF -topologically transitive.
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The values n = 5 and n = 4 are optimal, as the next two propositions indicate:

Proposition 3.14. Let n 6 4 and let G be a given digraph. Then G is F -

hypercyclic if and only if G is strongly F -hypercyclic.

P r o o f. We will consider only the most complicated case n = 4; the proof for F -

hypercyclicity goes as follows. Let x = x1 be an F -hypercyclic vector for G and let

V1, . . . , Vm be all nonempty open subsets of X. Then there exist a natural number ki
and an element yki

∈ ̺kix ∩ Vi, 1 6 i 6 m. If there exists an (x1 − x1) walk in X,

it is clear that k1, . . . , ki can be chosen arbitrarily large and it is trivial to show

that, in this case, x1 needs to be a strong F -hypercyclic vector for G. Suppose that

there is no (x1 − x1) walk in X and x1 6= yki
for 1 6 i 6 m; since x ∈ D∞(̺), it

readily follows that the unoriented segments x2x3, x2x4 or x3x4 belong to ̺, with the

meaning clear, or a closed contour connecting x2, x3 and x4 belongs to ̺, again with

the meaning clear. The last case is trivial because we can reach the points x2, x3

and x4 by walks of arbitrarily large length, starting from x1, so that x1 needs to be

a strong F -hypercyclic vector for G by an elementary line of reasoning. Otherwise,

we may assume that the unoriented segment x3x4 belongs to ̺. If x3x2 or x4x2 is

an arc in G, then it is clear that we can reach the points x2, x3 and x4 by walks

of arbitrarily large lengths, starting from x1, so that the proof is complete. If this

is not the case, then x1x2 may or may not be an arc in G. In the former case, if

some of the elements y1, . . . , ym is equal to x2, then we may assume without loss of

generality that at most one of these elements is equal to x2 (because the set {x2} can

be listed in the sequence V1, . . . , Vm at most once and the points x3 and x4 can be

reached by walks from x1). In the latter case, any of elements y1, . . . , ym cannot be

equal to x2 and any of numbers k1, . . . , km can be chosen arbitrarily large because

the points x3 and x4 can be reached by walks of arbitrarily large lengths, starting

from x1. The proof of proposition is completed. �

Proposition 3.15. Let n 6 3 and let G1, G2, . . . , GN be given digraphs. Then

G1, G2, . . . , GN are dF -hypercyclic if and only if G1, G2, . . . , GN are strongly dF -

hypercyclic.

P r o o f. The proof is very similar to that of Proposition 3.5. Let x1 denote a dF -

hypercyclic vector of G1, G2, . . . , GN . Then some of the unoriented arcs x1x2, x1x3,

x2x3 or a closed oriented contour of length 3 is contained in any Gi, 1 6 i 6 N ; this

implies that, in the proof of Proposition 3.5, we can choose k2 > k1, because the

number k2 can be replaced therein, optionally, by any number k2 +6s, where s ∈ N.

Keeping this in mind, we can repeat literally the arguments given in the proof of

Proposition 3.5. �
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R em a r k 3.16. In our previous analyses, we have constructed a tournament

(two tournaments) having two nodes and equipped with a certain topology (topolo-

gies) which is F -topologically transitive but not strongly F -topologically transitive

(dF -topologically transitive but not strongly dF -topologically transitive). Hence, the

statements of Proposition 3.14 and Proposition 3.15 do not hold for F -topological

transitivity and strong F -topological transitivity.

No tournament (N tournaments) having two nodes can be F -hypercyclic because

the domain of the square of the associated binary relation (relations) is the empty

set. In the case that n > 3, we have the following result closely connected with

Proposition 3.14 and Proposition 3.15:

Theorem 3.17.

(i) Suppose that n > 3 and T is a given tournament. Then T is F -hypercyclic if

and only if T is strongly F -hypercyclic.

(ii) Suppose that n 6 4 and T1, T2, . . . , TN are given tournaments. Then T1, T2, . . . ,

TN are dF -hypercyclic if and only if T1, T2, . . . , TN are strongly dF -hypercyclic.

(iii) Suppose that n > 5. Then we can always find tournaments T1, T2, . . . , TN that

are dF -hypercyclic and not strongly dF -hypercyclic.

P r o o f. We will prove (i) by induction. If n = 3, then T is isomorphic to a

Hamiltonian contour, which is clearly strongly F -hypercyclic, or to the tournament

with the set of nodes x1x2, x1x3 and x2x3, which cannot be F -hypercyclic because

the cube of the associated binary relation has empty domain. Suppose that the

statement of proposition holds for each tournament having strictly less than n > 3

nodes and let us prove the statement for an arbitrary tournament T having n nodes.

Let xi1 be an F -hypercyclic vector of T. Due to the famous theorem of Rédei (see

e.g. [21]), there exists a Hamiltonian path, say x1 7→ x2 7→ x3 7→ . . . 7→ xn, in T. If

there exists adjacent nodes xj and xl for some j 6 i1 and l > i1, j, l ∈ Nn, then there

is a closed (xi1 −xi1)-walk in T and the statement trivially holds. Otherwise, the set

of nodes which can be reached from xi1 by a closed walk is X
′ ≡ {xi1+1, . . . , xn}. If

i1 > 1, then the subtournament T ′ induced by the set of nodes X ′ is F -hypercyclic

with respect to the subspace topology on X ′. By induction hypothesis, T ′ is strongly

F -hypercyclic, which clearly implies that T is strongly F -hypercyclic, as well. The

remaining case to be considered is i1 = 1. The result trivially follows if the initial

topology is anti-discrete or the set {x1} is an open set of the initial topology, because

then there exists a closed (x1 − x1)-walk in T. If this is not the case, set yi := xi+1

for 1 6 i 6 n− 1 and take yi ∈ ̺ix1 arbitrarily for i > n. Then for any open set V of

the initial topology there exists an integer i ∈ Nn \ {1} such that xi ∈ V. It is clear

that the set {k ∈ N : yk ∈ V } is nonempty because it contains the element xi−1. This
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completes the proof of (i). The proof of (ii) for n = 2 and n = 3 is simple. If n = 4,

assume that x1 is a dF -hypercyclic vector of T1, T2, . . . , TN . Then Proposition 2.6

and the fact that x1 ∈
⋂

16j6N,n∈N

D∞(̺j) implies that a closed oriented contour of

length 3 or a closed oriented contour of length 4 is contained in any Gi, 1 6 i 6 N .

Then we can argue as in the proofs of Proposition 3.5 and Proposition 3.15 because

we can construct a sequence (ks)16s6rn such that k1 < k2 < . . . < krn−1 < krn ; this

follows from the fact that any point reachable from x1 by a walk of length k is also

reachable from x1 by a walk of length k + 12s, where s ∈ N. For a counterexample

in (iii), let T1 be any tournament containing the following sets of arcs: {x1xi : 1 6

i 6 n}, {x2xi : 3 6 i 6 n}, {x3xi : i = 4 or 6 6 i 6 n}, {x4xi : 5 6 i 6 n} and

{x5xi : i = 3 or 6 6 i 6 n}. Let T2 be any tournament containing the following sets of

arcs: {x1xi : 1 6 i 6 n}, {x3xi : i = 2 or 4 6 i 6 n}, {x2xi : 4 6 i 6 n}, {x4xi : 5 6

i 6 n} and {x5xi : i = 2 or 6 6 i 6 n}. Let τ = {∅, {x2}, {x3}, {x2, x3}, X}. Then

it can be easily seen that x1 is a unique dF -hypercyclic vector of T1, T2, . . . , TN and

that T1, T2, . . . , TN are dF -hypercyclic but not strongly dF -hypercyclic because x1

is not a strong dF -hypercyclic vector of T1, T2, . . . , TN ; this can be seen by plugging

V1 = V2 = {x2} and V1 = V2 = {x3} in Definition 2.3(i), which immediately forces

that y1,1 = x2 and y1,1 = x3, a contradiction. �

The strong connectivity of a tournament T is equivalent to its irreducibility

(see [19]). Applying [19], Theorem 1, we get that the adjacency matrix [A(T )] of T

is primitive, i.e. there exists a natural number q ∈ N such that any element of the

matrix [A(T )]q is strictly positive. Due to the strong connectivity of T, we get that

any element of the matrix [A(T )]q
′

is strictly positive for all q′ > q (see also [9]). If

we denote by d and e the diameter and exponent of T , then d 6 e 6 d + 3 and we

can take e = q 6 d + 3 due to [18], Theorem 19; see [18], Section 12, Section 13 for

the notion and more details on the subject. This immediately implies the following

result:

Proposition 3.18.

(i) Let T be a strongly connected tournament with exponent e. If T is F -

hypercyclic (F -topologically transitive), then for each set A ∈ F we have

{n ∈ N : n > e} ⊆ A.

(ii) Let T1, . . . , TN be strongly connected tournaments, and let e be the largest

value of their exponents. If T1, . . . , TN are dF -hypercyclic (dF -topologically

transitive), then for each set A ∈ F we have {n ∈ N : n > e} ⊆ A.

It is a well known fact that the exponent e of a primitive tournament T satisfies

3 6 e 6 n + 2 if n > 5. Furthermore, if n > 6, then [18], Theorem 20 implies the

existence of a primitive tournament T with exponent e ∈ [3, n+2] given in advance.
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For such a tournament T, we have the existence of two elements xi and xj , for some

i, j ∈ Nn, such that there is no (xi−xj) walk in T of length e−1. This implies that xi

cannot be an F -hypercyclic vector of T if each set A ∈ F contains the number e− 1.

We close the paper by proposing some open problems and observations for tour-

naments having four vertices. There exist four non-isomorphic tournaments with

four vertices. The only one of them is transitive (acyclic) and this tournament

is F -topologically transitive for the discrete topology if and only if {∅, {1}, {2},

{1, 2, 3}} ⊆ F . The second (third) is obtained as the union of the closed contour

x2x3x4 and arcs x1x2, x1x3, x1x4 (x2x1, x3x1, x4x1), and these tournaments are

F -topologically transitive for discrete topology if and only if F contains the sets

∅, 3N, 1+ 3N, 2+ 3N and their finite unions. The fourth is obtained as the union of

the closed contour x1x2x3x4 and arcs x1x3, x2x4. Direct computation of powers of

the corresponding adjacency matrix shows that this tournament is F -topologically

transitive for the discrete topology if and only if F contains the sets N\{2}, N\{1, 4},

N \ {2, 3, 6}, N \ {1, 2, 3, 6}, N \ {1, 3, 4, 7}, N \ {1, 2, 4, 5, 8} and their finite unions.

The obtained results seem to be very dissociated and, because of that, we would like

to propose the following problem:

Problem 2. Let n > 2, and let Ai ⊆ N, 1 6 i 6 (2n − 1)(2n − 1) be given

sets. Find necessary and sufficient conditions for the existence of a tournament Tn

with n vertices such that {S(U, V ) : ∅ 6= U, ∅ 6= V, U, V ⊆ V (T )} = {Ai : 1 6 i 6

(2n − 1)(2n − 1)}.

It is also meaningful to ask the following question:

Problem 3. Set an := {STn
: Tn is a tournament with n vertices}, n > 2. Find

some upper bounds for an, n > 2 and the asymptotic behaviour of the sequence

(an)n>2.

Problem 4. Let n > 2. Construct a tournament Tn with n vertices such that

STn
= an. How many non-isomorphic tournaments with n vertices satisfy this equal-

ity?

Problem 5. Reconsider Problem 2, Problem 3 and Problem 4 for strongly con-

nected tournaments and some classes of asymmetric digraphs.
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