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On left ϕ-biflat Banach algebras

Amir Sahami, Mehdi Rostami, Abdolrasoul Pourabbas

Abstract. We study the notion of left ϕ-biflatness for Segal algebras and semi-
group algebras. We show that the Segal algebra S(G) is left ϕ-biflat if and only if
G is amenable. Also we characterize left ϕ-biflatness of semigroup algebra l1(S)
in terms of biflatness, when S is a Clifford semigroup.
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1. Introduction and preliminaries

A Banach algebra A is called amenable, if there exists an element M ∈

(A ⊗p A)
∗∗ such that a · M = M · a and π∗∗

A (M)a = a for each a ∈ A. It is

well-known that an amenable Banach algebra has a bounded approximate iden-

tity. For the history of amenability, see [12].

In homological theory, the notion of biflatness is an amenability-like property.

In fact a Banach algebra A is biflat if there exists a Banach A-bimodule ̺ from A

into (A ⊗p A)
∗∗ such that π∗∗

A ◦ ̺(a) = a for each a ∈ A. It is well-known that

a Banach algebra A with a bounded approximate identity is biflat if and only if

A is amenable.

E. Kanuith et al. in [9] defined a version of amenability with respect to a nonzero

multiplicative functional ϕ. A Banach algebra A is called left ϕ-amenable if there

exists an element m ∈ A∗∗ such that am = ϕ(a)m and ϕ̃(m) = 1 for every a ∈ A.

Note that the Segal algebra S(G) is left ϕ-amenable if and only if G is amenable,

for further information see [1], [8] and [7].

Motivated by these considerations, M. Essmaili et al. in [2] defined a biflat-like

property related to a multiplicative linear functional, called the conditionW (here

called ϕ-biflatness).

Definition 1.1 ([2]). Let A be a Banach algebra and ϕ ∈ ∆(A). The Banach

algebraA is called left ϕ-biflat (right ϕ-biflat or is said to satisfy the conditionW ),

if there exists a bounded linear map ̺ : A→ (A⊗p A)
∗∗ such that

̺(ab) = ϕ(b)̺(a) = a · ̺(b) (̺(ab) = ϕ(a)̺(b) = ̺(a) · b)
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and

ϕ̃ ◦ π∗∗
A ◦ ̺(a) = ϕ(a)

for each a, b ∈ A, respectively.

They showed that a symmetric Segal algebra S(G) (on a locally compact

group G) is right ϕ-biflat if and only if G is amenable [2, Theorem 3.4]. As

a consequence of this result in [2, Corollary 3.5] authors characterized the right

ϕ-biflatness of Lebesgue-Fourier algebra LA(G), Weiner algebra M1 and Fe-

ichtinger’s Segal algebra S0(G) over a unimodular locally compact group.

In this paper, we extend [2, Theorem 3.4] for any Segal algebra (in left ϕ-biflat

case). In fact we show that the Segal algebra S(G) is left ϕ-biflat if and only if

G is amenable. Using this tool we characterize left ϕ-biflatness of the Lebesgue-

Fourier algebra LA(G). Also we characterize left ϕ-biflatness of second dual of

Segal algebra S(G)∗∗ in the term of amenability G. We study left ϕ-biflatness of

some semigroup algebras.

We recall some standard notations and definitions that we shall need in this

paper. Let A be a Banach algebra. If X is a Banach A-bimodule, then X∗ is also

a Banach A-bimodule via the following actions

(a · f)(x) = f(x · a), (f · a)(x) = f(a · x), a ∈ A, x ∈ X, f ∈ X∗.

Throughout, the character space of A is denoted by ∆(A), that is, all nonzero

multiplicative linear functionals on A. Let ϕ ∈ ∆(A). Then ϕ has a unique

extension ϕ̃ ∈ ∆(A∗∗) which is defined by ϕ̃(F ) = F (ϕ) for every F ∈ A∗∗.

Let A be a Banach algebra. The projective tensor product A⊗pA is a Banach

A-bimodule via the following actions

a · (b⊗ c)ab ⊗ c, (b ⊗ c) · a = b⊗ ca, a, b, c ∈ A.

The product morphism πA : A ⊗p A → A is given by πA(a ⊗ b) = ab for every

a, b ∈ A. Let X and Y be Banach A-bimodules. The map T : X → Y is called

A-bimodule morphism, if

T (a · x) = a · T (x), T (x · a) = T (x) · a, a ∈ A, x ∈ X.

2. Left ϕ-biflatness

In this section we give two criteria which show the relation of left ϕ-biflatness

and left ϕ-amenability.

Lemma 2.1. Suppose that A is a left ϕ-biflat Banach algebra with A kerϕ
‖·‖

=

kerϕ. Then A is left ϕ-amenable.
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Proof: Let A be left ϕ-biflat. Then there exists a bounded linear map ̺ : A →

(A⊗p A)
∗∗ such that ̺(ab) = a · ̺(b) = ϕ(b)̺(a) and ϕ̃ ◦ π∗∗

A ◦ ̺(a) = ϕ(a) for all

a ∈ A. We finish the proof in three steps:

Step 1: There exists a bounded left A-module morphism ξ : A→
(
A⊗p

A
kerϕ

)∗∗

which ξ(l) = 0 for each l ∈ kerϕ. To see this, we denote idA : A → A for the

identity map. Also we denote q : A→ A
kerϕ for the quotient map. Put

ξ := (idA ⊗ q)∗∗ ◦ ̺ : A→
(
A⊗p

A

kerϕ

)∗∗
,

where idA⊗q(a⊗b) = idA(a)⊗q(b) for every a, b ∈ A. Clearly idA⊗q : A⊗pA→

A⊗p
A

kerϕ is a bounded left A-module morphism, it follows that (idA⊗q)∗∗ is also

a bounded left A-module morphism. So ξ : A →
(
A⊗p

A
kerϕ

)∗∗
is a bounded left

A-module morphism. Let l be an arbitrary element of kerϕ. Since A kerϕ
‖·‖

=

kerϕ, there exist two sequences (an) in A and (ln) in kerϕ such that anln
‖·‖
−−→ l.

Then

ξ(l) = (idA⊗q)
∗∗◦̺(l) = lim

n
(idA⊗q)

∗∗◦̺(anln) = lim
n
ϕ(ln)(idA⊗q)

∗∗◦̺(an) = 0,

the last equality holds because (ln) is in kerϕ.

Step 2: There exists a bounded left A-module morphism η : A
kerϕ → A∗∗ such

that ϕ̃ ◦ η(a + kerϕ) = ϕ(a) for each a ∈ A. To see this, in Step 1 we showed

that ξ(kerϕ) = {0}. It induces a map ξ : A
kerϕ →

(
A ⊗p

A
kerϕ

)∗∗
which is defined

by ξ(a+ kerϕ) = ξ(a) for each a ∈ A. Define

θ := (idA ⊗ ϕ)∗∗ ◦ ξ :
A

kerϕ
→

(
A⊗p

A

kerϕ

)∗∗
,

where ϕ is a character on A
kerϕ given by ϕ(a + kerϕ) = ϕ(a) for each a ∈ A.

Clearly θ is a bounded left A-module morphism. On the other hand we know

that A
kerϕ

∼= C and A ⊗p
A

kerϕ
∼= A. Thus the composition of ϕ̃ and θ can be

defined. Since

ϕ̃ ◦ (idA ⊗ ϕ)∗∗ = (ϕ⊗ ϕ)∗∗, (ϕ⊗ ϕ)∗∗ ◦ ξ(a) = ϕ̃ ◦ π∗∗
A ◦ ̺(a), a ∈ A,

we have

ϕ̃ ◦ θ(a+ kerϕ) = ϕ̃ ◦ (idA ⊗ ϕ)∗∗ ◦ ξ(a+ kerϕ) = (ϕ⊗ ϕ)∗∗ ◦ ξ(a)

= ϕ̃ ◦ π∗∗
A ◦ ̺(a) = ϕ(a)

for each a ∈ A.

Step 3: We prove that A is left ϕ-amenable. To see that, choose an element a0
in A such that ϕ(a0) = 1. Put m = θ(a0 + kerϕ) ∈ A∗∗. Since aa0 − ϕ(a)a0 ∈
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kerϕ, we have aa0 + kerϕ = ϕ(a)a0 + kerϕ. Consider

am = aθ(a0 + kerϕ) = θ(aa0 + kerϕ) = θ(ϕ(a)a0 + kerϕ)

= ϕ(a)θ(a0 + kerϕ) = ϕ(a)m

and

ϕ̃(m) = ϕ̃ ◦ θ(a0 + kerϕ) = ϕ(a0) = 1

for every a ∈ A. It implies that A is left ϕ-amenable. �

Theorem 2.2. Let A be a Banach algebra with a left approximate identity and

ϕ ∈ ∆(A). Then A∗∗ is left ϕ̃-biflat if and only if A is left ϕ-biflat.

Proof: Suppose that A∗∗ is left ϕ̃-biflat. Then there exists a bounded linear

map ̺ : A∗∗ → (A∗∗⊗pA
∗∗)∗∗ such that ˜̃ϕ◦π∗∗

A∗∗ ◦̺(a) = ϕ̃(a) for all a ∈ A∗∗. On

the other hand, there exists a bounded linear map ψ : A∗∗ ⊗p A
∗∗ → (A⊗p A)

∗∗

such that for a, b ∈ A and m ∈ A∗∗ ⊗p A
∗∗, the following holds:

(i) ψ(a⊗ b) = a⊗ b;

(ii) ψ(m) · a = ψ(m · a), a · ψ(m) = ψ(a ·m);

(iii) π∗∗
A (ψ(m)) = πA∗∗(m),

see [4, Lemma 1.7]. Clearly

ψ∗∗ ◦ ̺|A : A→ (A⊗p A)
∗∗

is a bounded linear map for which

ψ∗∗ ◦ ̺|A(ab) = ϕ(b)ψ∗∗ ◦ ̺|A(a) = a · ψ∗∗ ◦ ̺|A(b)

and
˜̃ϕ ◦ π∗∗∗∗

A ◦ ̺(a) = ϕ̃(a), a, b ∈ A.

By a similar argument as in the previous lemma (Step 1), we can find a bounded

left A-module morphism ξ : A→
(
A⊗p

A
kerϕ

)∗∗∗∗
such that ξ(kerϕ) = {0}. Now

following the same course as in the previous lemma (Step 2) we can find a bounded

linear map θ : A
kerϕ → A∗∗∗∗ such that ˜̃ϕ ◦ θ(a + kerϕ) = ϕ(a) for each a ∈ A.

Choose a0 in A which ϕ(a0) = 1. Set m = θ(a0 + kerϕ). It is easy to see that

am = ϕ(a)m, ˜̃ϕ(m) = 1, a ∈ A.

Applying Goldestine’s theorem, we can find a bounded net (mα) in A
∗∗ such that

amα − ϕ(a)mα
w∗

−−→ 0 and ϕ̃(mα) → 1 for each a ∈ A. On the other hand (mα)

is a bounded net, therefore (mα) has a w∗-limit point, say M . It is easy to see

that aM = ϕ(a)M and ϕ̃(M) = 1 for each a ∈ A. Define η : A → (A⊗p A)
∗∗ by
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η(a) = ϕ(a)M ⊗M for each a ∈ A. It is easy to see that η is a bounded linear

map such that

η(ab) = a · η(b) = ϕ(b)η(a), ϕ̃ ◦ π∗∗
A ◦ η(a) = ϕ(a), a, b ∈ A.

It follows that A is left ϕ-biflat.

Conversely, suppose that A is left ϕ-biflat. Since A has a left approximate

identity, we have A kerϕ
‖·‖

= kerϕ. By the previous lemma A is left ϕ-amenable.

Applying [9, Proposition 3.4] A∗∗ is left ϕ̃-amenable. Thus there exists an element

m ∈ A∗∗∗∗ such that am = ϕ(a)m and ˜̃ϕ(m) = 1 for each a ∈ A∗∗. Define

γ : A → (A∗∗ ⊗p A
∗∗)∗∗ by γ(a) = ϕ(a)m ⊗m for each a ∈ A. It is easy to see

that γ is a bounded linear map such that

γ(ab) = a · γ(b) = ϕ(b)γ(a), ϕ̃ ◦ π∗∗
A∗∗ ◦ γ(a) = ϕ(a), a, b ∈ A.

It follows that A∗∗ is left ϕ̃-biflat. �

3. Segal and semigroup algebras

A linear subspace S(G) of L1(G) is said to be a Segal algebra on G if it satisfies

the following conditions:

(i) subspace S(G) is dense in L1(G);

(ii) subspace S(G) with a norm ‖·‖S(G) is a Banach space and ‖f‖L1(G) ≤

‖f‖S(G) for every f ∈ S(G);

(iii) for f ∈ S(G) and y ∈ G, we have Ly(f) ∈ S(G) and the map y 7→ Ly(f)

from G into S(G) is continuous, where Ly(f)(x) = f(y−1x);

(iv) ‖Ly(f)‖S(G) = ‖f‖S(G) for every f ∈ S(G) and y ∈ G.

For various examples of Segal algebras, we refer the reader to [11].

It is well-known that S(G) always has a left approximate identity. For a Segal

algebra S(G) it has been shown that

∆(S(G)) = {ϕ|S(G)
: ϕ ∈ ∆(L1(G))},

see [1, Lemma 2.2].

Theorem 3.1. Let G be a locally compact group. Then the following statements

are equivalent:

(i) subspace S(G)∗∗ is left ϕ̃-biflat;

(ii) subspace S(G) is left ϕ-biflat;

(iii) group G is amenable.
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Proof: (i) ⇒ (ii) Let S(G)∗∗ be left ϕ̃-biflat. Since S(G) has a left approximate

identity, by Theorem 2.2, S(G) is left ϕ-biflat.

(ii) ⇒ (iii) Suppose that S(G) is left ϕ-biflat. Since S(G) has a left approximate

identity, S(G) kerϕ
‖·‖

= S(G). Applying Lemma 2.1, it follows that S(G) is left

ϕ-amenable. Now by [1, Corollary 3.4] G is amenable.

(iii) ⇒ (i) Let G be amenable. By [1, Corollary 3.4] S(G) is left ϕ-amenable.

Thus S(G) is left ϕ-biflat. Using Theorem 2.2, S(G)∗∗ is left ϕ̃-biflat. �

Let G be a locally compact group. Define LA(G) = L1(G)∩A(G), where A(G)

is the Fourier algebra over G. For f ∈ LA(G) put

|||f ||| = ‖f‖L1(G) + ‖f‖A(G),

with this norm and the convolution product LA(G) becomes a Banach algebra

called Lebesgue–Fourier algebra. In fact LA(G) is a Segal algebra in L1(G),

see [3]. Following corollary is an easy consequence of the previous theorem:

Corollary 3.2. Let G be a locally compact group. Then the following statements

are equivalent:

(i) algebra LA(G)∗∗ is left ϕ̃-biflat;

(ii) algebra LA(G) is left ϕ-biflat;

(iii) group G is amenable.

Let G be a locally compact group and let Ĝ be its dual group, which con-

sists of all nonzero continuous homomorphism ζ : G → T. It is well-known that

∆(L1(G)) = {ϕζ : ζ ∈ Ĝ}, where ϕζ(f) =
∫
G
ζ(x)f(x) dx and dx is a left Haar

measure on G, for more details see [5, Theorem 23.7].

Using the previous corollary, we can easily show the following result.

Corollary 3.3. Let G be a locally compact group. Then the following statements

are equivalent:

(i) algebra L1(G)
∗∗

is left ϕ̃-biflat;

(ii) algebra L1(G) is left ϕ-biflat;

(iii) group G is amenable.

A discrete semigroup S is called inverse semigroup if for each s ∈ S there exists

an element s∗ ∈ S such that ss∗s = s∗ and s∗ss∗ = s. There is a partial order on

each inverse semigroup S, that is,

s ≤ t ⇔ s = ss∗t, s, t ∈ S.

Let (S,≤) be an inverse semigroup. For each s ∈ S, set (x] = {y ∈ S :

y ≤ x}. Semigroup S is called uniformly locally finite if sup{|(x]| : x ∈ S} < ∞.
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Suppose that S is an inverse semigroup and e ∈ E(S), where E(S) is the set of

all idempotents of S. Then Ge = {s ∈ S : ss∗ = s∗s = e} is a maximal subgroup

of S with respect to e. An inverse semigroup S is called Clifford semigroup if for

each s ∈ S there exists s∗ ∈ S such that ss∗ = s∗s, for more details see [6].

Proposition 3.4. Let S =
⋃

e∈E(S)Ge be a Clifford semigroup such that E(S)

is uniformly locally finite. Then the followings are equivalent:

(i) Algebra l1(S)
∗∗

is left ϕ̃-biflat for each ϕ ∈ ∆(l1(S)).

(ii) Algebra l1(S) is left ϕ-biflat for each ϕ ∈ ∆(l1(S)).

(iii) Each Ge is an amenable group.

(iv) Algebra l1(S) is biflat.

Proof: (i) ⇒ (ii) Suppose that l1(S)∗∗ is left ϕ-biflat for all ϕ ∈ ∆(l1(S)).

By [10, Theorem 2.16], l1(S) ∼= l1 −
⊕

e∈E(S) l
1(Ge). Since each l1(Ge) has an

identity, l1(S) ∼= l1 −
⊕

e∈E(S) l
1(Ge) has an approximate identity. Applying

Theorem 2.2 gives that l1(S) is left ϕ-biflat.

(ii) ⇒ (iii) Suppose that l1(S) is left ϕ-biflat for each ϕ ∈ ∆(l1(S)). Since

l1(S) ∼= l1 −
⊕

e∈E(S) l
1(Ge) has an approximate identity, Lemma 2.1 implies

that l1(S) is left ϕ-amenable for each ϕ ∈ ∆(l1(S)). We know that each l1(Ge)

is a closed ideal in l1(S), so every nonzero multiplicative linear functional ϕ ∈

∆(l1(Ge)) can be extended to l1(S). Thus by [9, Lemma 3.1] left ϕ-amenability

of l1(S) implies that each l1(Ge) is left ϕ-amenable. Using [1, Corollary 3.4]

each Ge is amenable.

(iv) ⇒ (i) It is clear by [10, Theorem 3.7]. �
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