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K Y B E R N E T I K A — V O L U M E 5 6 ( 2 0 2 0 ) , N U M B E R 6 , P A G E S 1 0 6 3 – 1 0 8 0

GAUSSIAN APPROXIMATION
OF GAUSSIAN SCALE MIXTURES

Gérard Letac and Hélène Massam∗

For a given positive random variable V > 0 and a given Z ∼ N(0, 1) independent of V , we
compute the scalar t0 such that the distance in the L2(R) sense between ZV 1/2 and Z

√
t0 is

minimal. We also consider the same problem in several dimensions when V is a random positive
definite matrix.

Keywords: mormal approximation, Gaussian scale mixture, Plancherel theorem

Classification: 62H17, 62H10

1. INTRODUCTION

Let Z ∼ N(0, In) be a standard Gaussian random variable in Rn. Consider an inde-
pendent random positive definite matrix V of order n with distribution µ. We call the
distribution of V 1/2Z a Gaussian scale mixture, where V 1/2 is the unique positive defi-
nite matrix such that (V 1/2)2 = V. Denote by f the density of V 1/2Z in Rn. In many
practical circumstances, µ is not very well known, and f is complicated. On the other
hand, for n = 1, and

f(x) =

∫ ∞
0

e−
x2

2v
µ(dv)√

2πv
(1)

we note that, as the logarithm of a Laplace transform, log f(
√
x) is convex and thus the

histogram of the symmetric density (1) looks like that of a normal distribution. The
central aim of the present paper is to say something of the best normal approximation
N(0, t0) of f in the sense of L2(Rn).

In Section 2, we recall some known facts and examples about the pair (f, µ) when
n = 1. In Section 3, our main result, for n = 1, is Theorem 3.1 in which we show the
existence of t0, its uniqueness and the fact that t0 < E(V ). This theorem also gives the
equation, see (11), that has to be solved to obtain t0 when µ is known. In Section 4 we
consider the case n ≥ 2 and investigate the fact that several distributions of the random
positive definite matrix V can give the same Gaussian mixture V 1/2Z. In Section 5, we
consider the problem of the Gaussian approximation of a Gaussian mixture in the more
difficult case n ≥ 2. In that case, t0 is a positive definite matrix, and in Theorem 5.2,
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1064 G. LETAC AND H. MASSAM

we show the existence of t0. Proposition 5.3 considers the particular case where V is
concentrated on the multiples of In. A basic tool we use in this paper is the Plancherel
identity.

2. THE UNIDIMENSIONAL CASE: A REVIEW

A probability density f on R is called a discrete Gaussian scale mixture if there exist
numbers 0 < v1 < · · · < vn and p1, . . . , pn > 0 such that p1 + · · ·+ pn = 1 and

f(x) =

n∑
i=1

pi
1√

2πvi
e
− x2

2vi .

It is easy to see that if V ∼
∑n
i=1 piδvi is independent of Z ∼ N(0, 1) then the density

of ZV 1/2 is f. A way to see this is to observe that for all s ∈ R we have∫ ∞
−∞

esxf(x) dx =

n∑
i=1

pie
s2

2 vi = E(E(esZV
1/2

|V )) = E(esZV
1/2

).

More generally, we will say that the density f is a Gaussian scale mixture if there exists
a probability distribution µ(dv) on (0,∞) such that (1) holds. As in the finite mixture
case, if V ∼ µ is independent of Z ∼ N(0, 1) the density of ZV 1/2 is f. To see this
denote

LV (u) =

∫ ∞
0

e−uvµ(dv). (2)

Then ∫ ∞
−∞

esxf(x) dx = LV (−s2/2) = E(esZV
1/2

). (3)

For instance if a > 0 and if
f(x) =

a

2
e−a|x| (4)

is the double exponential density, then for |s| < a we have∫ ∞
−∞

esxf(x) dx =
a2

a2 − s2
= LV (−s2/2)

where

LV (u) =
a2

a2 + 2u
=
a2

2

∫ ∞
0

e−vu−
a2

2 v dv.

This means that the mixing measure µ(dv) is an exponential distribution with mean
2/a2.

There are other examples of pairs (f, µ) ∼ (ZV 1/2, V ) in the literature. For instance,
[7] offer an interesting list of univariate mixing measures, containing also some examples
with n > 1. Another such list can be found in [2]. Note that if f is known then the
distribution of logZ2 + log V is known and finding the distribution µ or the distribution
of log V is a problem of deconvolution. If its solution exists, it is unique, as shown for
instance by (3).
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An example of such a deconvolution is given by [9] who extends (4) to f(x) =

Ce−a|x|
2α

where 0 < α < 1 as follows: he recalls that for A > 0 and 0 < α < 1,
see [1], p. 424, there exists a probability density g, called a positive stable law, such
that, for θ > 0, ∫ ∞

0

e−tθg(t) dt = e−Aθ
α

. (5)

If in the equality above we make the change of variable t → v = 1/t, let θ = x2/2 and
define µ(dv) = C

√
2πg(1/v)v−3/2dv, where C is such that µ(dv) is a probability, we

obtain ∫ ∞
0

e−
1
2
x2

v
1√
2πv

µ(dv) = Ce−2−αA|x|2α . (6)

Integrating both sides of (6) with respect to x from −∞ to +∞, we obtain

C = α
A

1
2α

√
2

1

Γ( 1
2α )

.

If V ∼ µ, its Laplace transform LV cannot be computed except for α = 1/2. For
α = 1/2 and A arbitrary, one can verify that (5) is satisfied for

g(t) =
A

2
√
π
t−3/2e−

A2

4t .

Then

µ(dv) =
A2

4
e−

A2

4 v1(0,+∞)(v)dv,

that is the mixing distribution is an exponential distribution again.
Another elegant example of deconvolution is given by [8] and [6] with the logistic

distribution

f(x) =
ex

(1 + ex)2
=

∞∑
n=1

(−1)n+1ne−n|x|. (7)

Using the representation of (4) as an exponential mixture of scale Gaussians, i. e.

a

2
e−a|x| =

∫ +∞

0

e−
x2

2v

√
2πv

a2

2
e−

a2v
2 dv

and applying it to a = n in (7) above, we obtain

f(x) =

∞∑
n=1

(−1)n+1n2

∫ +∞

0

e−
x2

2v

√
2πv

e−
n2v
2 dv (8)

and thus, if µ exists here, it must be

µ(dv) =

( ∞∑
n=1

(−1)n+1n2e−
n2

2 v

)
1(0,+∞)(v)dv (9)
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which indeed exists since this is the Kolmogorov distribution ([4]), also called Kolmogorov–
Smirnov distribution. A direct proof that (9) defines a probability on (0,+∞) relies on
the following Jacobi formula (see [3]):

∞∏
n=1

(1− q2n−1)2(1− q2n) =

∞∑
n=−∞

(−1)nqn
2

. (10)

Taking q = e−x/2, (10) yields

∞∏
n=1

(1− e−(2n−1)x/2)2(1− e−nx) =

∞∑
n=−∞

(−1)ne−n
2x/2 := F (x).

We observe that F (0) = 0, F (+∞) = 1, and F is increasing as the product of increasing
positive factors. Moreover,

F ′(x) = −1

2

+∞∑
n−∞

(−1)nn2e−n
2x?2 =

+∞∑
n=1

(−1)n+1n2e−n
2x/2

is the density of (9).

3. THE NORMAL APPROXIMATION TO THE GAUSSIAN SCALE MIXTURE

The mixture f as defined in (1) keeps some characteristics of the normal distribution:

It is a symmetric density, f(x) = e−κ( x
2

2 ) where u 7→ κ(u) is convex since

e−κ(u) =

∫ ∞
0

e−u/v
µ(dv)√

2πv
=

∫ ∞
0

e−uwν(dw)

is the Laplace transform of the positive measure ν(dw) defined as the image of µ(dv)√
2πv

by

the map u 7→ w = 1/v.
As said in the introduction, in some practical applications, the distribution of V is

not very well known, and it is interesting to replace f by the density of an ordinary
normal distribution N(0, t0). The L2(R) distance is well adapted to this problem. See
[5] for an example of the utilisation of this idea. We are going to prove the following
result.

Theorem 3.1. If f is defined by (1), then

1. f ∈ L2(R) if and only if

E
(

1√
V + V1

)
<∞

when V and V1 are independent with the same distribution µ.

2. If f ∈ L2(R), there exists a unique t0 = t0(µ) > 0 which minimizes

t 7→ IV (t) =

∫ ∞
−∞

[
f(x)− 1√

2πt
e−

x2

2t

]2

dx.
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3. The scalar y0 = 1/t0 the unique positive solution of the equation∫ ∞
0

µ(dv)

(1 + vy)3/2
=

1

23/2
. (11)

In particular, if µλ is the distribution of λV , then t′ = t0(µλ) = λt0(µ).

4. The value of IV (t0) is

IV (t0) =

√
2

π

(
E
(

1√
V + V1

)
− 2E

(
1√

V + t0

)
+

1√
2t0

)
and

IλV (t′) =
1√
λ
IV (t0). (12)

5. Finally t0 ≤ E(V ).

P r o o f . Recall that if g ∈ L2(R)∩L1(R) and if ĝ(s) =
∫∞
−∞ eisxg(x) dx, then Plancherel

theorem says that
1

2π

∫ ∞
−∞
|ĝ(s)|2ds =

∫ ∞
−∞
|g(x)|2 dx. (13)

Furthermore if g ∈ L1(R), then g ∈ L2(R) if and only if ĝ ∈ L2(R).

Let us apply (13) first to g = f. From (1) and (3), we have f̂(s) = LV (s2/2). Then∫ ∞
−∞

f̂2(s) ds =

∫ ∞
−∞

L2
V (s2/2)ds =

√
2

∫ ∞
0

L(u)2 du√
u

=
√

2

∫ ∞
0

E(e−u(V+V1))
du√
u

=
√

2π E(
1√

V + V1

)

where the last equality is obtained by recalling that
∫ +∞

0
e−uv dv√

v
=
√
π√
u
. Thus statement

1. of the theorem is proved.

To prove 2., 3. and 4., we apply (13) to g(x) = f(x) − 1√
2πt

e−
x2

2t for which ĝ(s) =

L(s2/2)− e−ts2/2. As a consequence

IV (t) =
1

2π

∫ ∞
−∞

[
LV (s2/2)− e−ts

2/2
]2

ds =
1

π

∫ ∞
0

[
LV (u)− e−tu

]2 du√
2u

and

I ′V (t) =

√
2

π

∫ ∞
0

[
LV (u)− e−tu

]
e−tu
√
udu. (14)

Since
∫∞

0
e−2tu

√
udu = Γ(3/2)

(2t)3/2
and since∫ ∞

0

LV (u)e−tu
√
udu =

∫ ∞
0

∫ ∞
0

e−u(v+t)
√
uduµ(dv) = Γ(3/2)

∫ ∞
0

µ(dv)

(t+ v)3/2
,
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then I ′V (t) = 0 if and only if
∫∞

0
µ(dv)

(t+v)3/2
= 1

(2t)3/2
. We can rewrite this equation in t as

F (1/t) = 1/23/2 where F (y) =
∫∞

0
µ(dv)

(1+vy)3/2
. Thus (14) can be rewritten

I ′V (t) =

√
2

π

Γ(3/2)

t3/2

[
F

(
1

t

)
− 1

23/2

]
. (15)

Since 0 < 1/23/2 < 1, F (0) = 1, limy→∞ F (y) = 0 and

F ′(y) = −3

2

∫ ∞
0

vµ(dv)

(1 + vy)5/2
< 0,

it follows that I ′V has only one zero t0 on (0,∞) and from (15), it is easy to see from
the sign of I ′V that IV reaches its minimum at t0.

To show 5., we will apply Jensen inequality f(E(X)) ≤ E(f(X)) to the convex func-
tion f(x) = x−3/2 and to the random variable X = 1 + y0V . From

1

(1 + y0E(V ))3/2
≤ E

(
1

(1 + y0V )3/2

)
=

1

23/2

it follows that 2 ≤ 1 + y0E(V ) and t0 = 1/y0 < E(V ). �

Example 1. Suppose that Pr(V = 1) = Pr(V = 2) = 1/2. Let us compute t0 and
I(t0). With the help of Mathematica, we see that the solution of

1

2(1 + t)3/2
+

1

2(2 + t)3/2
=

1

(2t)3/2

is t0 = 1.39277. Finally

IV (t0) =

√
2

π

(
1

4
√

2
+

1

2
√

3
+

1

8
− 1√

1 + t0
− 1√

2 + t0
+

1√
2t0

)
= 0.00019,

which is very small.

Example 2. Suppose that V is uniform on (0, 1) Then

t0 = 0.36678, IV (t0) = 0.0182.

If V is uniform on [0, a], then from Part 4 of Proposition 3.1, we have t0 = a× 0.36678.

Example 3. If V follows the standard exponential distribution with density f(v) =
e−v1(0,+∞)(v), then

t0 = 0.524, IV (t0) = 0.0207.



Gaussian scale mixtures 1069

4. SCALE MIXTURES IN THE EUCLIDEAN CASE AND NON IDENTIFIABIL-
ITY

Denote by S the linear space of symmetric real matrices of dimension n equipped with the
scalar product 〈s, s1〉 = trace (ss1) and by P the convex cone of real positive definite

matrices of order n. Thus the norm of s is ||s|| =
√

trace s2. We denote by dv the
Lebesgue measure on S associated to its Euclidean structure, namely such that the
mass of a unit cube is one.

We use the symbol a∗ for the transposed matrix of any matrix a. As said before, if v ∈
P we denote by v1/2 the unique element of P whose square is v. It is sometimes considered
that any non singular matrix a such that v = aa∗ should be called a generalized square
root of v. The Cholesky decomposition v = tt∗ of v into a product of a upper triangular
matrix t with positive coefficients on the diagonal with its transposed matrix t∗ offers
an example of such a generalized square root. It can be remarked that in practice the
calculation of t is easier than the calculation of v1/2. We denote by O(n) the orthogonal
group of n× n matrices u such that u∗u = In.

In this section we define the scale mixtures of the standard normal distribution in Rn
and we observe the phenomena of non identifiability: that is, different distributions of
V can give the same mixture.

4.1. Scale mixtures of the normal distribution in Rn.

A scaled Gaussian mixture f on Rn is the density of a random variable X on Rn of the
form X = V 1/2Z where V ∼ µ is a random matrix in P independent of the standard
random Gaussian variable Z ∼ N(0, In). In the following proposition, we give properties
of a mixture of the form X = V 1/2Z where Z is invariant by rotation but not necessarily
Gaussian.

Proposition 4.1. Let A be a random nonsingular square matrix of order n, indepen-
dent of Z ∈ Rn \ {0} and such that uZ ∼ Z for all u ∈ O(n). Let V = AA∗. Then the
following holds.

1. AZ ∼ V 1/2Z, that is, if we replace V 1/2 by any generalized square root A of V ,
the distribution of AZ remains the same.

2. If AZ ∼ Z then Pr(V = In) = 1. In other terms, AZ ∼ Z if and only if Pr(AA∗ =
In) = 1, i.e A ∈ O(n) almost surely.

P r o o f . To prove 1., observe that U = V −1/2A is in the orthogonal group O(n). Let
µ(dv)K(v, du)ν(dz) denote the joint distribution of (V,U, Z).

Then if h is a bounded function on Rn,

E(h(AZ)) = E(h(V 1/2UZ))

=

∫
P
µ(dv)

∫
O(n)

K(v, du)

∫
Rn
h(v1/2uz)ν(dz)

=

∫
P
µ(dv)

∫
O(n)

K(v,du)

∫
Rn
h(v1/2z1)ν(dz1) (16)
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=

∫
P
µ(dv)

∫
Rn
h(v1/2z1)ν(dz1) = E(h(V 1/2Z)), (17)

where in (16), z1 = uz, and (17) follows from
∫
O(n)

K(v,du) = 1.

To prove 2., consider also ϕ(s) = E(ei〈s,Z〉). Since uZ ∼ Z for all u ∈ O(n) there
exists a real function g defined on [0,∞) such that ϕ(s) = g(‖s‖2). Since Z ∼ AZ we
can write

g(‖s‖2) = E(g(s∗V s)) . (18)

Next, let us show that if R ≥ 0 is independent of Z = (Z1, . . . , Zn) and if Z1R ∼ Z1

then Pr(R = 1) = 1. Indeed, for t ≥ 0 we have that E(|Z1|it) = E(|Z1|it)E(Rit).
Since there exists 0 < t0 ≤ ∞ such that E(|Z1|it) 6= 0 for 0 ≤ t < t0, it holds that
E(Rit) = 1 for 0 ≤ t < t0. This implies that Pr(R > 0) = 1 and 0 = 1 − <(E(Rit)) =
E(1 − cos(t logR)) or Pr(t logR ∈ 2πZ) = 1 for 0 ≤ t < t0. We deduce easily that
Pr(R = 1) = 1.

Now denote V = (Vij)1≤i,j≤n and apply the above observation to R =
√
V11 by taking

s = (t, 0, . . . , 0) in (18). We obtain

E(eitZ1) = ϕ((t, 0, . . . , 0)) = g(t2) = E(g(t2V11)) = E(eit
√
V11Z1)

which implies Z1 ∼ V11Z1 and Pr(V11 = 1) = 1. Similarly Pr(Vii = 1) = 1 for all
i = 2, · · · , n.

Finally, we consider R =
√

1 + V12 and we take s = (t/
√

2, t/
√

2, . . . , 0) in (18). Using
the fact that (Z1 + Z2)/

√
2 ∼ Z1 we write

E(eitZ1) = E(eit(Z1+Z2)/
√

2) = ϕ((t/
√

2, t/
√

2, . . . , 0))

= E(g(
1

2
t2(V11 + V22 + 2V12)) = E(g(t2(1 + V12))

= E(eitZ1

√
1+V12)

and we get Pr(V12 = 0) = 1. Similarly Pr(Vij = 0) = 1 for i 6= j and finally Pr(V =
In) = 1 as desired. �

4.2. Nonidentifiability

In Example 4 below, we show that for n ≥ 2, the measure µ which generates a given f
as in (1) may not be unique. Theorem 4.2 gives a more general result. We denote by
ω the uniform probability, or Haar probability, on O(n) and by D the set of diagonal
matrices b = diag(b1, . . . , bn) such that 0 < b1 ≤ b2 ≤ . . . ≤ bn. It is a well known fact
that if V = U∗BU with U ∈ O(n) and B ∈ D then u∗V u ∼ V for all u ∈ O(n) if and
only if U ∼ ω and B are independent (in this case, the distribution of V is determined
by the distribution of its set of eigenvalues determined by B). While the ’if’ part is
clear, a short proof of the ’only if ’ part is as follows: consider α(db)K(b, du) ∼ (B,U)
and µ ∼ V. For any h bounded continuous on P and any u0 ∈ O(n) we write∫

P
h(v)µ(dv) =

∫
P
h(u∗0vu0)µ(dv)
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=

∫
D

(∫
O(n)

h(u∗0u
∗buu0)K(b,du)

)
α(db)

=

∫
D

(∫
O(n)

h(u∗bu)K(b,d(uu∗0)

)
α(db)

This shows that, α almost surely, the probability K(b, du) on O(n) is invariant by
u 7→ uu∗0 for all u0 ∈ O(n) and is equal to ω by uniqueness of the Haar probability on
O(n).

Finally, for a1, . . . an > 0 given, we recall the definition of the Dirichlet distribution
D(a1, . . . , an)) of the variable (X1, . . . , Xn) on the simplex

Tn = {(x1, . . . , xn) ∈ (0,∞)n ; x1 + · · ·+ xn = 1} :

the density of (X2, . . . , Xn) is proportional to

(1− (x2 + · · ·+ xn)a1−1xa2−1
2 . . . xan−1

n .

Theorem 4.2. Suppose that a probability µ(dv) on P is invariant by the transforma-
tions v 7→ uvu∗ for any u ∈ O(n). Then we have the following.

1. Let V ∼ µ. Then there exists a unique probability νµ(dλ) on (0,∞) such that if
Λ ∼ νµ and if V and Λ are independent of Z ∼ N(0, In), then

V 1/2Z = Λ1/2Z.

2. In the special case where b = diag(b1. . . . , bn) ∈ D is fixed let µb be the distribution
in P of U∗bU where U ∼ ω . For (X1, . . . , Xn) ∼ D( 1

2 ,
1
2 , . . . ,

1
2 ), denote by ρb(dλ)

the distribution of b1X1 + · · ·+ bnXn. Then

ρb = νµb . (19)

3. If α(db) is a probability on D, denote by µ the distribution of V = U∗BU where
B ∼ α and U ∼ ω are independent. Then

νµ(dλ) =

∫
D
α(db)ρb(dλ). (20)

P r o o f . We begin with a remark. Consider the Fourier transform of V 1/2Z defined for

s ∈ Rn by ϕ(s) = E(eis
∗V 1/2Z) = E(e−

1
2 s
∗V s). For u ∈ O(n) the fact that u∗V u ∼ V

implies that ϕ(us) = ϕ(s). This implies in turn that ϕ(s) is a function of ‖s‖ only, or
that there exists a function L such that ϕ(s) = L( 1

2 ‖s‖
2). Recall that we intent to show

the existence of a positive random variable Λ such that L( 1
2 ‖s‖

2) = E(e−
1
2 Λ‖s‖2) that

is, that L is a Laplace transform. Actually this point is not immediate, and we start the
proof of the theorem by showing (19) first.
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Let V = U∗bU with U ∼ ω and consider the Fourier transform ϕ(s) of V 1/2Z, namely

ϕ(s) = E(e−
1
2 (Us)∗bUs) = E(e−

1
2 (b1(Us)21+···+bn(Us)2n)) (21)

where Us = ((Us)1, . . . , (Us)n). Now we observe that (Us)/‖s‖ is uniformly distributed
on the unit sphere of Rn. If Y = (Y1, . . . , Yn) ∼ N(0, In) then Y/‖Y ‖ is also uniformly
distributed on the sphere and it is a classical fact that

(X1, . . . , Xn) =
(Y 2

1 , . . . , Y
2
n )

Y 2
1 + · · ·+ Y 2

n

∼ D(
1

2
, . . . ,

1

2
).

Therefore
1

‖s‖2
(Us)∗b(Us) ∼ b1X1 + · · ·+ bnXn ∼ ρb

and ϕ(s) =
∫∞

0
e−

1
2 ‖s‖

2λρb(dλ), which is a reformulation of (19). Note that in this
particular case where V = U∗bU then L is the Laplace transform of ρb.

To prove 3., we simply condition by B and use (19) to obtain

ϕ(s) = E(e−
1
2 (Us)∗B(Us)) =

∫
D

(∫ ∞
0

e−
1
2 ‖s‖

2λρb(dλ)

)
α(db)

which proves (20).
Recall that any random variable V on P such that u∗V u ∼ V for all u ∈ O(n) has

the above form U∗BU where B ∼ α(db) is random and independent of U ∼ ω. This
shows that 3. implies 1. �

Corollary 4.3. If V ∼ uV u∗ for any u ∈ O(n) and has distribution µ then the density
f of V 1/2Z where Z ∼ N(0, In) is independent of V has the form f(x) = L1(‖x‖2/2).
More specifically

f(x) =

∫ ∞
0

e−
‖x‖2
2λ

νµ(dλ)√
2πλ

. (22)

Remarks.

1. Note that in Corollary 4.3 the function L1 is the Laplace transform of the image

m(dy) of the measure
νµ(dλ)√

2πλ
by the map λ 7→ y = 1/2λ. Since in general (20) is

not easy to apply, this offers, in some cases, a way to compute νµ(dλ), when f and
L1 are known, and when m is obvious. Example 4 below will be obtained by this
technique with L1(s) = (1 + 2s)−p with p > n/2.

2. For n ≥ 3 it is difficult to give the density of ρb(dλ) explicitly. For n = 2 it is the
image of the beta distribution on (0, 1) with parameters (1/2,1/2) by the affinity
t 7→ λ = (1− t)b1 + tb2 :

ρb(dλ) =
1

π
√

(b2 − λ)(λ− b1)
1(b1,b2)(λ)dλ.
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For instance if α(db1, db2) = α1(db1)K(b1, db2) is the joint distribution of B =
diag(B1, B2), formula (20) implies νµ(dλ) has density

1

π

∫ λ

0

(∫ ∞
λ

K(b1,db2)√
b2 − λ

)
α1(db1)√
λ− b1

.

3. Another approach to formula (19) is possible using zonal polynomials.

Indeed for any symmetric matrices a and b of order n we can write∫
O(n)

e traceu∗buaω(du) =
∑
κ

Cκ(a)Cκ(b)

|κ|!Cκ(In)
.

Equality (21) suggests to apply this identity to the matrices a = −ss∗/2 and b ∈ D.
Fortunately the zonal polynomials are simple when computed on a, a matrix of
rank one. More specifically Cκ(a) = 0 except when κ = (m, 0, 0, . . . , 0) where m
is a non negative integer. In this case, by a reasoning similar to that in the proof
of (19), we have

Cκ(a)

|κ|!Cκ(In)
=

(−1)m

2mm!

∫
O(n)

(us)2m
1 ω(du) =

(−1)m‖s‖2m

2mm!
E(Xm

1 )

where X1 ∼ β( 1
2 ,

1
2 (n− 1)). However, the computation of

cm(b1, . . . , bn) = C(m,0,0,...,0)(diag(b1, . . . , bn))

is the real difficulty and using the Pochhammer symbol (x)n = Γ(n+x)/Γ(x), one
can only write

E(e−
1
2 (Us)∗bUs) =

∞∑
m=0

(−1)m‖s‖2m(1/2)m
2m(n/2)mm!

cm(b1, . . . , bn).

4. An interesting question is the following: suppose that more generally V ∼ µ and

V1 ∼ µ1 in P are such that V 1/2Z ∼ V
1/2
1 Z with Z ∼ N(0, In) independent of

V and V1. We do not assume here that µ and µ1 are invariant by O(n). Consider
the Laplace transforms Lµ(a) =

∫
P e
− trace (av)µ(dv) and Lµ1

defined at least on

the closed convex cone P of the semi positive definite matrices of order n. Then

V 1/2Z ∼ V 1/2
1 Z implies that for any s ∈ Rn we have

Lµ(
1

2
ss∗) = Lµ1

(
1

2
ss∗)

which means that Lµ and Lµ1
coincide on the matrices a ∈ P of rank one. As we

have just seen in Theorem 4.2 it does not imply µ = µ1. This raises the following
problem: given µ, describe the extreme points of the convex set of probabilities µ1

such that Lµ and Lµ1 coincide on the matrices a ∈ P of rank one.
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4.3. An explicit example of non identifiability.

We will now give an example of two different measures µ1 and µ2 giving the same scale
mixture of Gaussian variables.

Example 4. Let p > n/2 and consider the probability on Rn with density

f(x) =
C

(1 + ||x||2)p
, (23)

where C will be computed below. Then consider two probability measures µ1 and µ2.
The first is

µ1(dv) =
(det(v))−p+

1
2−

n+1
2

2n(p− 1
2 )ΓP(p− 1

2 )
exp{−1

2
trace (v−1)}1Pdv, (24)

where ΓP(t) = (2π)
1
2 n(n−1)

∏d
j=1 Γ(t− j−1

2 ). Therefore V −1 follows a Wishart distribu-

tion with shape parameter p − 1
2 . The second is defined by µ2(dv) ∼ ΛIn where Λ has

density

λ−p+
n
2−1

2p−
n
2 Γ(p− n

2 )
e−

1
2λ1(0,+∞)(λ),

i. e. Λ−1 follows a Gamma distribution, with shape parameter p− 1
2 n. For x ∈ Rn and

i = 1, 2, we now show that

∫
P

e−
x∗v−1x

2

(2π)n/2(det v)1/2
µi(dv) = f(x) (25)

where f is defined by (23). For i = 1, making the change of variable y = v−1, the
left-hand side of (25) becomes

∫
P

(det y)1/2e−
x∗yx

2

(2π)n/2
(det(y))p−

1
2−

n+1
2

2n(p− 1
2 )ΓP(p− 1

2 )
exp{−1

2
trace y}dy

=

∫
P

(det(y))p−
n+1
2

(2π)n/22n(p− 1
2 )ΓP(p− 1

2 )
e−

1
2 trace (y,In+xx∗)dy

=
2npΓP(p)

(2π)n/22n(p− 1
2 )ΓP(p− 1

2 )
det(In + xx∗)−p

=
2npΓP(p)

(2π)n/22n(p− 1
2 )ΓP(p− 1

2 )

1

(1 + ||x||2)p

=
1

(2π)n/2
Γ(p)

2−
n
2 Γ(p− n

2 )

1

(1 + ||x||2)p
,
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yielding C = 1
(2π)n/2

Γ(p)

2−
n
2 Γ(p−n2 )

. For i = 2, making the change of variable y = 1
λ , the

left-hand side of (25) becomes

∫ +∞

0

e−
xtx
2λ

(2π)n/2λ
n
2

λ−p+
n
2−1

2p−
n
2 Γ(p− n

2 )
e−

1
2λ1(0,+∞)(λ)

=
1

(2π)n/2Γ(p− n
2 )

∫ +∞

0

λ−p−1

2p−
n
2
e−

1
2λ (1+||x||2)dλ

=
1

(2π)n/2Γ(p− n
2 )

∫ +∞

0

yp−1

2p−
n
2
e−

y
2 (1+||x||2)dy

=
Γ(p)

(2π)n/22−
n
2 Γ(p− n

2 )

1

(1 + ||x||2)p
(26)

Therefore, with the notation of Theorem 4.2 we have proved that if µ2 ∼ ΛIn then
Λ ∼ νµ1

.

5. EXISTENCE OF THE BEST NORMAL APPROXIMATION IN THE EUCLIDEAN
CASE

In this section, we study the conditions that the distribution µ(dv) on P must satisfy to
garantee that the density f of V 1/2Z is in L2(Rn) when V ∼ µ and Z ∼ N(0, In) are
independent. We also find a Gaussian law N(0, t0) on Rn which is the closest to f in
the L2(Rn) sense. We consider also the particular case where V 1/2Z = Λ1/2Z where Λ
is a random scalar.

5.1. Best approximation

We first recall two simple formulas.

Lemma 5.1. Let A ∈ P. Then∫
Rn
e−

1
2 s
∗Asds =

(2π)n/2√
detA

,

∫
Rn
e−

1
2 s
∗Asss∗ds =

(2π)n/2√
detA

A−1.

P r o o f . Without loss of generality, we may assume that A is diagonal, and the proof
is obvious in this particular case. �

We next state that there exists a matrix v = t0 such that the L2 distance between the
multivariate Gaussian mixture f(x) and the Gaussian distribution N(0, t0) is minimum.

Theorem 5.2. Let µ(dv) be a probability distribution on the convex cone P. Let f(x)
denote the density of the random variable X = V 1/2Z of Rn where V ∼ µ is independent
of Z ∼ N(0, In). Then
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1. f ∈ L2(Rn) if and only if E
(

1
det
√
V+V1

)
< ∞ where V and V1 are independent

with the same distribution µ.

2. For f ∈ L2(Rn), consider the function I defined on P by

t 7→ I(t) =

∫
Rn

[
f(x)− 1√

(2π)n det t
e−

1
2 x
∗t−1x

]2

dx. (27)

Then I reaches its minimum at some t0, and this t0 is a solution in P of the
following equation in t ∈ P :∫

P

(v + t)−1√
det(v + t)

µ(dv) =
1

21+ 1
2 n

t−1

√
det t

. (28)

P r o o f . We have

f̂(s) =

∫
Rn
ei〈s,x〉f(x) dx = E(ei〈V

1/2Z,s〉) = E(e−
1
2 s
∗V s). (29)

Now using Plancherel Theorem and Lemma 5.1, we prove part 1. as follows:∫
Rn
f2(x)dx =

1

(2π)n

∫
Rn
f̂(s)2 ds =

1

(2π)n

∫
Rn

E(e−
1
2 s
∗(V+V1)s) ds

=
1

(2π)n/2
E
(

1

det
√
V + V1

)
.

To prove part 2, we use Plancherel theorem again for the function

g(x) = f(x)− e−
x∗t−1x

2

(2π)n/2(det t)1/2

and obtain

I(t) =
1

(2π)n

∫
Rn

[
f̂(s)− ht(s)

]2
ds,

where ht = e−
1
2 s
∗ts. From Lemma 4.1 applied to A = 2t we have ‖ht‖2 = πn/2/

√
det t.

Expanding the square in I(t) we obtain

(2π)nI(t)− ||f̂ ||2 =
(π)n/2√

det t
− 2〈f̂ , ht〉 := I1(t),

where ht = e−
1
2 s
∗ts. We now want to show that the minimum of I1(t) is reached at some

t0 ∈ P.
We show that

K1 = {y ∈ P; I1(y−1) ≤ 0}
is non empty and compact. Writing

I2(y) = 〈f̂ , hy−1〉 1

(2π)n/2
√

det y
,
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we see that y ∈ K1, i. e. I1(y−1) ≤ 0 if and only if 1

21+ 1
2
n
≤ I2(y). From (29), the

definition of ht(s) and Lemma 4.1, we have that

I2(y) =
1

(2π)n/2
√

det y

∫
Rn

E(e−
s∗V s

2 )e−
s∗y−1s

2 ds =
1

(2π)n/2
√

det y
E
(∫

Rn
e
s∗(V+y−1)s

2 ds
)

=
1√

det y
E
( 1√

det(V + y−1)

)
=

∫
P

µ(dv)√
det(In + vy)

.

For 0 < C ≤ 1 let us show that

K2 = {y ∈ P; I2(y) ≥ C}

is compact. Note that K1 = K2 for C = 1/21+ 1
2 n. Since I2 is continuous, K2 is closed.

The set K2 is not empty since I2(y) ≥ 1. Let us prove that K2 is bounded. Recall
‖y‖ = ( trace y2)1/2. Suppose that y(k) ∈ K2 is such that ‖y(k)‖ →k→∞ ∞ and let us
show that for such a y(k), I2(y(k))→ 0, which is a contradiction.

Indeed, trace (vy(k))→k→∞ ∞ if v ∈ P . To see this, assume that v = diag(v1, . . . , vn).
Then

trace (vy(k)) = v1y
(k)
11 + · · ·+ vny

(k)
nn

≥ trace (y(k))×min
i
vi ≥ ‖y(k)‖ ×min

i
vi →k→∞ ∞,

where the last inequality is due to the fact that if λ1, . . . , λn are positive, then√
λ2

1 + . . . ,+λ2
n ≤ λ1 + . . .+ λn. Moreover, if (λ1. . . . , λn) are the eigenvalues of vy(k),

det(In + vy(k)) = (1 + λ1) . . . (1 + λn) ≥ 1 + λ1 + · · ·+ λn = 1 + trace (vy(k))→k→∞ ∞

By dominated convergence, it follows that I2(y(k))→k→∞ 0 and this proves that K2 is
bounded. We have therefore shown that K1 is compact. This proves that the minimum
of I1(t) and thus of I(t) is reached at some point t0 of P.

The last task is to show that t0 is a solution of equation (28). Since I(t) is differentiable
and reaches its minimum on the open set P, the differential of I(t) must cancel at t0.
The differential of I is the following linear form on S

h ∈ S 7→ I ′(t)(h) =
1

(2π)n/2

∫
Rn

[
f̂(s)− e− 1

2 s
∗ts
]
e−

1
2 s
∗tss∗hsds.

The equality I ′(t) = 0 is equivalent to∫
Rn
f̂(s)e−

1
2 s
∗tsss∗ds =

∫
Rn
e−s

∗tsss∗ ds.

Using the second formula in Lemma 4.1 and the fact that f̂(s) = E(e−
1
2 s
∗V s), we obtain∫

P

(v + t)−1√
det(v + t)

µ(dv) =
(2t)−1√
det(2t)

=
1

21+ 1
2 n

t−1

√
det t

,

which proves (28). �
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Remarks.

1. We note that (28) can also be written in terms of y = t−1 as∫
P

(1 + vy)−1√
det(1 + vy)

µ(dv) =
1

21+n
2
In.

2. While it is highly probable that the value t0 at which I(t) reaches its minimum is
unique, it is difficult to show for n ≥ 2 that equation (28) has a unique solution:
there is no reason to think that the function t 7→ I(t) is convex. However a case
of uniqueness is proved in Proposition 5.3 below.

5.2. Best approximation for a scalar mixture.

Proposition 5.3. Let ν(dλ) be a probability on (0,∞) such that

E((Λ + Λ1)−n/2) <∞

where Λ and Λ1 are independent with distribution ν, and let µ be the distribution of
V = ΛIn. Then t 7→ I(t) defined in (27) reaches its minimum at a unique point t0.
Furthermore t0 is a multiple of In.

P r o o f . From Theorem 4.2, I reaches its minimum at least at one point t0 ∈ P.Without
loss of generality by choosing a suitable orthonormal basis of Rn, we can assume that
t0 = diag(λ0

1, . . . , λ
0
n). We are going to show that λ0

1 = . . . = λ0
n. Consider the restriction

I∗ of I to the set of diagonal matrices with positive entries, namely

I∗(t1, . . . , tn) = I∗(diag(t1, . . . , tn)).

Of course (t1, . . . , tn) 7→ I∗(t1, . . . , tn) reaches its minimum on (λ0
1, . . . , λ

0
n). By a com-

putation which imitates the proof of Theorem 4.2 we consider

I∗1 (t1, . . . , tn) = (2π)nI∗(t1, . . . , tn)− ‖f̂‖2

=
πn/2√
t1 . . . tn

− 2

∫ ∞
0

ν(dλ)∏n
i=1(ti + λ)1/2

.

Since I∗1 (t1, . . . , tn) reaches its minimum at t0, its gradient is zero at (λ0
1, . . . , λ

0
n). We

have
∂

∂tj
I∗1 (t1, . . . , tn) = − πn/2

2tj
√
t1 . . . tn

+

∫ ∞
0

ν(dλ)

(tj + λ)
∏n
i=1(ti + λ)1/2

and as a consequence, for all j = 1, . . . , n∫ ∞
0

λ0
j

λ0
j + λ

× ν(dλ)∏n
i=1(λ0

i + λ)1/2
=

πn/2

2
√
λ0

1 . . . λ
0
n

. (30)

The important point of (30) is the fact that the right hand side does not depend on j.
Suppose now that there exists j1 and j2 such that λ0

j1
< λ0

j2
. This implies that for all

λ > 0 we have
λ0
j1

λ0
j1

+ λ
<

λ0
j2

λ0
j2

+ λ
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and the left hand sides of (30) cannot be equal for j = j1 and j = j2. As a consequence
t0 = λ0In for some λ0 > 0.

To see that λ0 is unique, we imitate the proof of Theorem 3.1. We omit the details
here. �

We will finish by giving an example of a scalar Gaussian mixture, actually built on
the univariate Kolmogorov–Smirnov measure (9) with density

k1(λ) =
+∞∑
n=1

(−1)n+1n2e−
n2λ
2 1(0,+∞)(λ).

Example 5. Let us verify first that

gn(x) = Cn
e||x||

(1 + e||x||)2
,

where Cn is the normalizing constant, is a density in Rn. Indeed, using polar coordinates
in Rn with r = ||x||, we have 1

Cn
= Sn−1J(n− 1) where Sn−1 = nπn/2/Γ(1 + n

2 ) is the
area of the unit sphere in Rn and where

J(t) =

∫ +∞

0

e−rrt

(1 + e−r)2
dr.

Of course J(0) = 1/2 and by integration by part J(1) = log 2. For t > 1 we have

J(t) =

∞∑
k=1

(−1)k−1k

∫ ∞
0

e−krrt dr = Γ(t+ 1)

∞∑
k=1

(−1)k−1

kt

= Γ(t+ 1)(1− 21−t)ζ(t),

where ζ(t) =
∑∞
k=1

1
kt is the Riemann function and the last equality is a well-known

formula. Thus for instance

C1 = 1, C2 = 1/(2π log 2), C3 = 3/(2π3).

Next, writing

kn(λ) = Cn(2πλ)
n−1
2 k1(λ)1(0,+∞)(λ)

let us show that kn is a density such that∫ +∞

0

e−
||x||2
2λ

(2πλ)n/2
kn(λ)dλ = gn(x). (31)

This means, of course, that gn is a scale mixture of multivariate normal N(0, λIn)
distributions. We have

1 =

∫
Rn
gn(x)dx = Cn

∫
Rn

∫ +∞

0

e−
||x||2
2λ

(2πλ)n/2
(2πλ)(n−1)/2k1(λ) dλ dx
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= Cn

∫ +∞

0

(2πλ)(n−1)/2k1(λ)

(∫
Rn

e−
||x||2
2λ

(2πλ)n/2
dx

)
dλ

= Cn

∫ +∞

0

(2πλ)(n−1)/2k1(λ) dλ.
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