Communications in Mathematics

Mikhail V. Ignatyev; Aleksandr A. Shevchenko
On tangent cones to Schubert varieties in type E

Communications in Mathematics, Vol. 28 (2020), No. 2, 179-197

Persistent URL: http://dml.cz/dmlcz/148702

Terms of use:

© University of Ostrava, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

On tangent cones to Schubert varieties in type \boldsymbol{E}

Mikhail V. Ignatyev, Aleksandr A. Shevchenko

Abstract

We consider tangent cones to Schubert subvarieties of the flag variety G / B, where B is a Borel subgroup of a reductive complex algebraic group G of type E_{6}, E_{7} or E_{8}. We prove that if w_{1} and w_{2} form a good pair of involutions in the Weyl group W of G then the tangent cones $C_{w_{1}}$ and $C_{w_{2}}$ to the corresponding Schubert subvarieties of G / B do not coincide as subschemes of the tangent space to G / B at the neutral point.

1 Introduction and the main result

Let G be a complex reductive algebraic group, T a maximal torus in G, B a Borel subgroup in G containing T, and U the unipotent radical of B. Let Φ be the root system of G with respect to T, Φ^{+}the set of positive roots with respect to B, Δ the set of simple roots, and W the Weyl group of Φ (see [4], [10] and [11] for basic facts about algebraic groups and root systems).

Denote by $\mathcal{F}=G / B$ the flag variety and by $X_{w} \subseteq \mathcal{F}$ the Schubert subvariety corresponding to an element w of the Weyl group W. Denote by $\mathcal{O}=\mathcal{O}_{p, X_{w}}$ the local ring at the point $p=e B \in X_{w}$. Let \mathfrak{m} be the maximal ideal of \mathcal{O}. The decreasing sequence of ideals

$$
\mathcal{O} \supseteq \mathfrak{m} \supseteq \mathfrak{m}^{2} \supseteq \ldots
$$

[^0]is a filtration on \mathcal{O}. We define R to be the graded algebra
$$
R=\operatorname{gr} \mathcal{O}=\bigoplus_{i \geq 0} \mathfrak{m}^{i} / \mathfrak{m}^{i+1}
$$

By definition, the tangent cone C_{w} to the Schubert variety X_{w} at the point p is the spectrum of $R: C_{w}=\operatorname{Spec} R$. Obviously, C_{w} is a subscheme of the tangent space $T_{p} X_{w} \subseteq T_{p} \mathcal{F}$. A hard problem in studying geometry of X_{w} is to describe C_{w} [5, Chapter 7].

In 2011, D.Yu. Eliseev and A.N. Panov computed tangent cones C_{w} for all $w \in W$ in the case $G=\mathrm{SL}_{n}(\mathbb{C}), n \leq 5[8]$. Using their computations, A.N. Panov formulated the following Conjecture.

Conjecture 1 (A.N. Panov, 2011). Let w_{1}, w_{2} be involutions, i.e., $w_{1}^{2}=w_{2}^{2}=\mathrm{id}$. If $w_{1} \neq w_{2}$, then $C_{w_{1}} \neq C_{w_{2}}$ as subschemes of $T_{p} \mathcal{F}$.

One can easily check that it is enough to prove the Conjecture for irreducible root systems (see Remark 2 below). In 2013, D.Yu. Eliseev and the first author proved this Conjecture in types A_{n}, F_{4} and G_{2} [9]. In [3], M.A. Bochkarev and the authors proved the Conjecture in types B_{n} and C_{n}. In [12], we proved that the Conjecture is true if Φ is of type D_{n} and w_{1}, w_{2} are so-called basic involutions. In this paper, we prove that the Conjecture is true for so-called good pairs of involutions (see Definition 4) for $\Phi=E_{6}, E_{7}$ and E_{8}. Precisely, our main result is as follows.

Theorem 1. Assume that every irreducible component of Φ is of type E_{6}, E_{7} or E_{8}. Let w_{1}, w_{2} be a good pair of involutions in the Weyl group of Φ. Then the tangent cones $C_{w_{1}}$ and $C_{w_{2}}$ do not coincide as subschemes of $T_{p} \mathcal{F}$.

Remark 1. One can also consider reduced tangent cones. Let \mathcal{A} be the symmetric algebra of the vector space $\mathfrak{m} / \mathfrak{m}^{2}$, or, equivalently, the algebra of regular functions on the tangent space $T_{p} X_{w}$. Since R is generated as \mathbb{C}-algebra by $\mathfrak{m} / \mathfrak{m}^{2}$, it is a quotient ring $R=\mathcal{A} / I$. By definition, the reduced tangent cone $C_{w}^{\text {red }}$ to X_{w} at the point p is the common zero locus in $T_{p} X_{w}$ of the polynomials $f \in I \subseteq \mathcal{A}$. Clearly, if $C_{w_{1}}^{\mathrm{red}} \neq C_{w_{2}}^{\mathrm{red}}$, then $C_{w_{1}} \neq C_{w_{2}}$. It was proved in [3] that if Φ is of type B_{n} or C_{n} and w_{1} and w_{2} are distinct involutions in W, then $C_{w_{1}}^{\mathrm{red}}$ and $C_{w_{2}}^{\mathrm{red}}$ do not coincide as subvarieties of $T_{p} \mathcal{F}$. In [12], the similar result was obtained for basic involutions in type D_{n}. For type E, this question still remains open even for good pairs of involutions.

The paper is organized as follows. In Section 2, we introduce the main technical tool used in the proof of Theorem 1. Namely, to each element $w \in W$ one can assign a polynomial d_{w} in the algebra of regular functions on the Lie algebra of the maximal torus T. These polynomials are called Kostant-Kumar polynomials [1], [13], [14], [15]. In [15] S. Kumar showed that if w_{1} and w_{2} are arbitrary elements of W and $d_{w_{1}} \neq d_{w_{2}}$, then $C_{w_{1}} \neq C_{w_{2}}$. We give three equivalent definitions of Kostant-Kumar polynomials and formulate their properties needed for the sequel. In Section 3, we recall basic definitions and facts about root systems of type E and
prove the main technical fact about divisibility of Kostant-Kumar polynomials, see Proposition 1. Finally, Section 4 contains the notion of a good pair of involutions and the proof of our main result, Theorem 1, based on Proposition 1 and detailed consideration of configurations of roots, see Proposition 2.

2 Kostant-Kumar polynomials

Let w be an element of the Weyl group W. Here we recall the precise definition of the Kostant-Kumar polynomial d_{w}, explain how to compute it in combinatorial terms, and show that it depends only on the scheme structure of C_{w}, see [15] for the details.

The torus T acts on the Schubert variety X_{w} by left multiplications (or, equivalently, by conjugations). The point p is invariant under this action, hence there is the structure of a T-module on the local ring \mathcal{O}. The action of T on \mathcal{O} preserves the filtration by powers of the ideal \mathfrak{m}, so we obtain the structure of a T-module on the algebra $R=\operatorname{gr} \mathcal{O}$. By [15, Theorem 2.2], R can be decomposed into a direct sum of its finite-dimensional weight subspaces:

$$
R=\bigoplus_{\lambda \in \mathfrak{X}(T)} R_{\lambda}
$$

Here \mathfrak{h} is the Lie algebra of the torus $T, \mathfrak{X}(T) \subseteq \mathfrak{h}^{*}$ is the character lattice of T and $R_{\lambda}=\{f \in R \mid t \cdot f=\lambda(t) f\}$ is the weight subspace of weight λ. Let Λ be the \mathbb{Z}-module consisting of all (possibly infinite) \mathbb{Z}-linear combinations of linearly independent elements $e^{\lambda}, \lambda \in \mathfrak{X}(T)$. The formal character of R is an element of Λ of the form

$$
\operatorname{ch} R=\sum_{\lambda \in \mathfrak{X}(T)} m_{\lambda} e^{\lambda}
$$

where $m_{\lambda}=\operatorname{dim} R_{\lambda}$.
Now, pick an element $a=\sum_{\lambda \in \mathfrak{X}(T)} n_{\lambda} e^{\lambda} \in \Lambda$. Assume that there are finitely many $\lambda \in \mathfrak{X}(T)$ such that $n_{\lambda} \neq 0$. Given $k \geq 0$, one can define the polynomial

$$
[a]_{k}=\sum_{\lambda \in \mathfrak{X}(T)} n_{\lambda} \cdot \frac{\lambda^{k}}{k!} \in S=\mathbb{C}[\mathfrak{h}]
$$

Denote $[a]=[a]_{k_{0}}$, where k_{0} is minimal among all non-negative numbers k such that $[a]_{k} \neq 0$. For instance, if $a=1-e^{\lambda}$, then $[a]_{0}=0$ and $[a]=[a]_{1}=-\lambda$ (here we denote $1=e^{0}$).

Let A be the submodule of Λ consisting of all finite linear combinations. It is a commutative ring with respect to the multiplication $e^{\lambda} \cdot e^{\mu}=e^{\lambda+\mu}$. In fact, it is just the group ring of $\mathfrak{X}(T)$. Denote the field of fractions of the ring A by Q. To each element of Q of the form $q=a / b, a, b \in A$, one can assign the element

$$
[q]=\frac{[a]}{[b]} \in \mathbb{C}(\mathfrak{h})
$$

of the field of rational functions on \mathfrak{h}. Note that this element is well-defined [15].

There exists an involution $q \mapsto q^{*}$ on Q defined by

$$
e^{\lambda} \mapsto\left(e^{\lambda}\right)^{*}=e^{-\lambda} .
$$

It turns out [15, Theorem 2.2] that the character ch R belongs to Q, hence $(\operatorname{ch} R)^{*} \in Q$, too. (One can consider the field Q of rational functions as a subring of the ring Λ.) Finally, we put

$$
c_{w}=\left[(\operatorname{ch} R)^{*}\right], \quad d_{w}=(-1)^{l(w)} \cdot c_{w} \cdot \prod_{\alpha \in \Phi^{+}} \alpha .
$$

Here $l(w)$ is the length of w in the Weyl group W with respect to the set of simple roots Δ. Evidently, c_{w} and d_{w} belong to $\mathbb{C}(\mathfrak{h})$; in fact, d_{w} is a polynomial, i.e., it belongs to the algebra $S=\mathbb{C}[\mathfrak{h}]$ of regular functions on \mathfrak{h}, see [14] and [5, Theorem 7.2.6].

Definition 1. Let w be an element of the Weyl group W. The polynomial $d_{w} \in S$ is called the Kostant-Kumar polynomial associated with w.

It follows from the definition that c_{w} and d_{w} depend only on the canonical structure of a T-module on the algebra R of regular functions on the tangent cone C_{w}. Thus, to prove that the tangent cones corresponding to elements w_{1}, w_{2} of the Weyl group are distinct, it is enough to check that $c_{w_{1}} \neq c_{w_{2}}$, or, equivalently, $d_{w_{1}} \neq d_{w_{2}}$.

On the other hand, there is a purely combinatorial description of Kostant--Kumar polynomials. To give this description, we need some more notation. Let w, v be elements of W. Fix a reduced decomposition of the element $w=s_{i_{1}} \ldots s_{i_{l}}$. (Here $\alpha_{1}, \ldots, \alpha_{n} \in \Delta$ are simple roots and $s_{i}=s_{\alpha_{i}}$ is the simple reflection corresponding to α_{i}.) Put

$$
c_{w, v}=(-1)^{l(w)} \cdot \sum \frac{1}{s_{i_{1}}^{\epsilon_{1}} \alpha_{i_{1}}} \cdot \frac{1}{s_{i_{1}}^{\epsilon_{1}} s_{i_{2}}^{\epsilon_{2}} \alpha_{i_{2}}} \cdot \ldots \cdot \frac{1}{s_{i_{1}}^{\epsilon_{1}} \ldots s_{i_{l}}^{\epsilon_{l}} \alpha_{i_{l}}}
$$

where the sum is taken over all sequences $\left(\epsilon_{1}, \ldots, \epsilon_{l}\right)$ of zeroes and units such that $s_{i_{1}}^{\epsilon_{1}} \ldots s_{i_{l}}^{\epsilon_{l}}=v$. Actually, the element $c_{w, v} \in \mathbb{C}(\mathfrak{h})$ depends only on w and v, not on the choice of a reduced decomposition of $w[15$, Section 3].

Example 1. Let $\Phi=A_{n}$. Put $w=s_{1} s_{2} s_{1}$. To compute $c_{w, \text { id }}$, we should take the sum over two sequences, $(0,0,0)$ and $(1,0,1)$. Hence

$$
c_{w, \mathrm{id}}=(-1)^{3} \cdot\left(\frac{1}{\alpha_{1} \alpha_{2} \alpha_{1}}+\frac{1}{-\alpha_{1}\left(\alpha_{1}+\alpha_{2}\right) \alpha_{1}}\right)=-\frac{1}{\alpha_{1} \alpha_{2}\left(\alpha_{1}+\alpha_{2}\right)} .
$$

A remarkable fact is that $c_{w, \text { id }}=c_{w}$, hence to prove that the tangent cones to Schubert varieties do not coincide as subschemes, we need only combinatorics of the Weyl group. Note also that for classical Weyl groups, elements $c_{w, v}$ are closely related to Schubert polynomials [1].

Finally, we will present an original definition of elements $c_{w, v}$ using so-called nil--Hecke ring (see [15] and [5, Section 7.1]). The group W naturally acts on $\mathbb{C}(\mathfrak{h})$ by
automorphisms. Denote by Q_{W} the vector space over $\mathbb{C}(\mathfrak{h})$ with basis $\left\{\delta_{w}, w \in W\right\}$. It is a ring with respect to the multiplication

$$
f \delta_{v} \cdot g \delta_{w}=f v(g) \delta_{v w}
$$

This ring is called the nil-Hecke ring. To each i from 1 to n put

$$
x_{i}=\alpha_{i}^{-1}\left(\delta_{s_{i}}-\delta_{\mathrm{id}}\right) .
$$

Let $w \in W$ and $w=s_{i_{1}} \ldots s_{i_{l}}$ be a reduced decomposition of w. Then the element

$$
x_{w}=x_{i_{1}} \ldots x_{i_{l}}
$$

does not depend on the choice of a reduced decomposition of w [13, Proposition 2.1].
Moreover, it turns out that $\left\{x_{w}, w \in W\right\}$ is a $\mathbb{C}(\mathfrak{h})$-basis of $Q_{W}[13$, Proposition 2.2], and

$$
x_{w}=\sum_{v \in W} c_{w, v} \delta_{v} .
$$

Actually, if $w, v \in W$, then
a) $x_{v} \cdot x_{w}= \begin{cases}x_{v w}, & \text { if } l(v w)=l(v)+l(w), \\ 0, & \text { otherwise },\end{cases}$
b) $c_{w, v}=-v\left(\alpha_{i}\right)^{-1}\left(c_{w s_{i}, v}+c_{w s_{i}, v s_{i}}\right)$, if $l\left(w s_{i}\right)=l(w)-1$,
c) $c_{w, v}=\alpha_{i}^{-1}\left(s_{i}\left(c_{s_{i} w, s_{i} v}\right)-c_{s_{i} w, v}\right)$, if $l\left(s_{i} w\right)=l(w)-1$.

The first property is proved in [13, Proposition 2.2]. The second and the third properties follow immediately from the first one and the definitions (see also the proof of [15, Corollary 3.2]).

Remark 2. Suppose Φ is a union of its subsystems Φ_{1} and Φ_{2} contained in mutually orthogonal subspaces. Let W_{1}, W_{2} be the Weyl groups of Φ_{1}, Φ_{2} respectively, so $W=W_{1} \times W_{2}$. Denote $\Delta_{1}=\Delta \cap \Phi_{1}=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ and $\Delta_{2}=\Delta \cap \Phi_{2}=$ $\left\{\beta_{1}, \ldots, \beta_{s}\right\}$, then

$$
\mathbb{C}[\mathfrak{h}] \cong \mathbb{C}\left[\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}, \ldots, \beta_{s}\right]
$$

Given $v \in W_{i}, i=1,2$, denote by d_{v}^{i} its Kostant-Kumar polynomial. We can consider d_{v}^{1} (respectively, d_{v}^{2}) as an element of $\mathbb{C}[\mathfrak{h}]$ depending only on $\alpha_{1}, \ldots, \alpha_{r}$ (respectively, on $\beta_{1}, \ldots, \beta_{s}$). We define $c_{v}^{i} \in \mathbb{C}(\mathfrak{h}), i=1,2$, by a similar way. Let $w \in W, w_{1} \in W_{1}, w_{2} \in W_{2}$ and $w=w_{1} w_{2}$. Repeating literally the proof of [9, Proposition 1.6], we obtain the following:

$$
d_{w}=d_{w_{1}}^{1} d_{w_{2}}^{2}, \quad c_{w}=c_{w_{1}}^{1} c_{w_{2}}^{2} .
$$

Thus, to prove Theorem 1 it is enough to prove this theorem for irreducible root systems of type E, because $\mathbb{C}[\mathfrak{h}]$ is a unique factorization domain.

3 Divisibility in $\mathbb{C}[\mathfrak{h}]$

Throughout this section, Φ denotes an irreducible root system of type E_{6}, E_{7} or E_{8}. Below we briefly recall some facts about Φ. (We follow the notation from [4].) Let $\epsilon_{1}, \ldots, \epsilon_{n}$ be the standard basis of the Euclidean space \mathbb{R}^{n}. As usual, we identify the set Φ^{+}of positive roots with the following subset of \mathbb{R}^{n} :

$$
\begin{aligned}
E_{6}^{+}= & \left\{\left(\pm \epsilon_{i}+\epsilon_{j}\right), 1 \leq i<j \leq 5\right\} \\
& \cup\left\{\frac{1}{2}\left(\epsilon_{8}-\epsilon_{7}-\epsilon_{6}+\sum_{i=1}^{5}(-1)^{\nu(i)} \epsilon_{i}\right), \sum_{i=1}^{5} \nu(i) \text { is even }\right\}, \\
E_{7}^{+}= & \left\{\left(\pm \epsilon_{i}+\epsilon_{j}\right) 1 \leq i<j \leq 6\right\} \cup\left\{\left(\epsilon_{7}-\epsilon_{8}\right)\right\} \\
& \cup\left\{\frac{1}{2}\left(\epsilon_{7}-\epsilon_{8}+\sum_{i=1}^{6}(-1)^{\nu(i)} \epsilon_{i}\right), \sum_{i=1}^{6} \nu(i) \text { is even }\right\}, \\
E_{8}^{+}= & \left\{ \pm \epsilon_{i}+\epsilon_{j} 1 \leq i<j \leq 8\right\} \cup\left\{\frac{1}{2} \sum_{i=1}^{8}(-1)^{\nu(i)} \epsilon_{i}, \sum_{i=1}^{8} \nu(i) \text { is even }\right\},
\end{aligned}
$$

so W can be considered as a subgroup of the orthogonal group $O\left(\mathbb{R}^{n}\right)$.
The simple roots have the following form.

$$
\begin{array}{rlrl}
\Phi=E_{6}: \alpha_{1} & =\frac{1}{2}\left(\epsilon_{1}+\epsilon_{8}\right)-\frac{1}{2}\left(\epsilon_{2}+\epsilon_{3}+\epsilon_{4}+\epsilon_{5}+\epsilon_{6}+\epsilon_{7}\right), \\
\alpha_{2} & =\epsilon_{1}+\epsilon_{2}, & \alpha_{3}=\epsilon_{2}-\epsilon_{1}, \\
\alpha_{4} & =\epsilon_{3}-\epsilon_{2}, & \alpha_{5}=\epsilon_{4}-\epsilon_{3}, \\
\alpha_{6} & =\epsilon_{5}-\epsilon_{4} ; & \\
\Phi=E_{7}: \alpha_{1} & =\frac{1}{2}\left(\epsilon_{1}+\epsilon_{8}\right)-\frac{1}{2}\left(\epsilon_{2}+\epsilon_{3}+\epsilon_{4}+\epsilon_{5}+\epsilon_{6}+\epsilon_{7}\right), \\
\alpha_{2} & =\epsilon_{1}+\epsilon_{2}, & \alpha_{3}=\epsilon_{2}-\epsilon_{1}, \\
\alpha_{4} & =\epsilon_{3}-\epsilon_{2}, & \alpha_{5}=\epsilon_{4}-\epsilon_{3}, \tag{2}\\
\alpha_{6} & =\epsilon_{5}-\epsilon_{4}, & \alpha_{7}=\epsilon_{6}-\epsilon_{5}, \\
\Phi=E_{8}: \alpha_{1} & =\frac{1}{2}\left(\epsilon_{1}+\epsilon_{8}\right)-\frac{1}{2}\left(\epsilon_{2}+\epsilon_{3}+\epsilon_{4}+\epsilon_{5}+\epsilon_{6}+\epsilon_{7}\right), \\
\alpha_{2} & =\epsilon_{1}+\epsilon_{2}, & \alpha_{3}=\epsilon_{2}-\epsilon_{1}, \\
\alpha_{4} & =\epsilon_{3}-\epsilon_{2}, & \alpha_{5}=\epsilon_{4}-\epsilon_{3}, \\
\alpha_{6} & =\epsilon_{5}-\epsilon_{4}, & \alpha_{7}=\epsilon_{6}-\epsilon_{5}, \\
\alpha_{8} & =\epsilon_{7}-\epsilon_{6} . &
\end{array}
$$

We say that v is less or equal to w with respect to the Bruhat order, written $v \leq w$, if some reduced decomposition for v is a subword of some reduced decomposition for w. It is well-known that this order plays the crucial role in many geometric aspects of theory of algebraic groups. For instance, the Bruhat order encodes the incidences among Schubert varieties, i.e., X_{v} is contained in X_{w} if and only if $v \leq w$. It turns out that $c_{w, v}$ is non-zero if and only if $v \leq w[15$, Corollary 3.2]. For example, $c_{w}=c_{w, \text { id }}$ is non-zero for any w, because id is the smallest
element of W with respect to the Bruhat order. Note that given $v, w \in W$, there exists $g_{w, v} \in S=\mathbb{C}[\mathfrak{h}]$ such that

$$
\begin{equation*}
c_{w, v}=g_{w, v} \cdot \prod_{\substack{\alpha>0, s_{\alpha} v \leq w}} \alpha^{-1} \tag{3}
\end{equation*}
$$

see [7] and [5, Theorem 7.1.11]
Since we fixed the order on the set of simple roots, one can consider the lexicographic total order on the set of positive roots: given $\alpha=\sum a_{i} \alpha_{i}$ and $\beta=\sum b_{i} \alpha_{i}$, we write $\alpha \prec \beta$ if there exists j such that $a_{i}=b_{i}$ for all $i<j$ and $a_{i}<b_{i}$. Let w be an involution in the Weyl group W of Φ. Denote by s_{α} the reflection in W corresponding to a root α. Denote by β_{1} the maximal (with respect to the order \preceq) root among all roots $\beta \in \Phi^{+}$for which $w(\beta)=-\beta$. Next, for $i \geq 1$, denote by β_{i+1} the maximal root among all roots $\beta \in \Phi^{+}$such that $w_{i}(\beta)=-\beta$, where

$$
w_{i}=s_{\beta_{i}} \circ s_{\beta_{i-1}} \circ \ldots \circ s_{\beta_{1}} \circ w
$$

One can easily check that w_{k} coincides with the identity element of W for certain k.
Definition 2. The set $\operatorname{Supp}(w)=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ is called the support $\operatorname{Supp}(\sigma)$ of w. It turns out that $\operatorname{Supp}(w)$ is an orthogonal subset of $\Phi^{+}[16$, Theorem 5.4]. Note that

$$
w=\prod_{\beta \in \operatorname{Supp}(w)} s_{\beta},
$$

where the product is taken in any fixed order.
Lemma 1. Let w_{1}, w_{2} be involutions in W. If $\operatorname{Supp}\left(w_{1}\right) \subset \operatorname{Supp}\left(w_{2}\right)$ then $w_{1} \leq w_{2}$.
Proof. The well-known Strong Exchange Condition (see, e.g., [6, Proposition 3.1 (ii)]) implies that, given $w \in W$ and $\alpha \in \Phi$, one has $l\left(w s_{\alpha}\right)>l(w)$ if and only if $w \alpha \in \Phi^{+}$. On the other hand (see, e.g., [2, Definition 2.1.1]), $l\left(w s_{\alpha}\right)>l(w)$ if and only if $w s_{\alpha}>w$. Hence, $w(\alpha) \in \Phi^{+}$if and only if $w s_{\alpha}>w$. Let

$$
\operatorname{Supp}\left(w_{2}\right) \backslash \operatorname{Supp}\left(w_{1}\right)=\left\{\beta_{1}, \ldots, \beta_{k}\right\},
$$

then

$$
w_{2}=w_{1} \cdot \prod_{\beta \in \operatorname{Supp}\left(w_{2}\right) \backslash \operatorname{Supp}\left(w_{1}\right)} s_{\beta}=w_{1} s_{\beta_{1}} \ldots s_{\beta_{k}} .
$$

Next, denote $v_{i}=w_{1} s_{\beta_{1}} \ldots s_{\beta_{i}-1}$ for $1 \leq i \leq k+1$, so that $v_{1}=w_{1}$ and $v_{k+1}=w_{2}$. Then, clearly, $v_{i}\left(\beta_{i}\right)=\beta_{i} \in \Phi^{+}$, thus, $w_{1}=v_{1}<v_{2}<\ldots<v_{k+1}=w_{2}$, as required.

Definition 3. The subset $\mathcal{C}_{1}=\left\{\beta \in \Phi^{+} \mid \alpha_{1} \preceq \beta\right\}$ is called the first column of Φ^{+}.
We will essentially use the following standard fact about parabolic subgroups of the Weil group W.

Theorem 2. [11, Proposition 1.10 (c)] Let I be a subset of the set Δ of simple roots. Denote by W_{I} the parabolic subgroup of W generated by the simple reflections s_{α}, $\alpha \in I$. Put also

$$
W^{I}=\left\{w \in W \mid l\left(w s_{\alpha}\right)>l(w) \text { for all } \alpha \in I\right\}
$$

Given $w \in W$, there exist unique $u \in W^{I}$ and $v \in W_{I}$ such that $w=u v$. Their lengths satisfy $l(w)=l(u)+l(v)$.

The following proposition plays the crucial role in the proof of the main result (cf. [9, Lemmas 2.4, 2.5], [3, Lemma 2.6] and [12, Lemma 2.7]).

Proposition 1. Let $w \in W$ be an involution. Assume that $\operatorname{Supp}(w) \cap \mathfrak{C}_{1}=\{\beta\}$ and the reflection s_{β} has a reduced decomposition of the form $s_{\beta}=u_{\beta} v_{\beta}$ for a certain element v_{β} from the subgroup \widetilde{W} of W generated by the reflections $s_{i}, i \neq 1$, so that $u_{\beta}=v_{\beta}^{-1} s_{1}$ and $l\left(u_{\beta} s_{i}\right)=l(u)+1$ for all $i \neq 1$. Then β does not divide d_{w} in $\mathbb{C}[\mathfrak{h}]$.

Proof. Denote

$$
\begin{aligned}
\widetilde{W}^{1} & =\left\{w \in W \mid l\left(w s_{i}\right)=l(w)+1 \text { for all } i \neq 1\right\} \\
& =\left\{w \in W \mid w\left(\alpha_{i}\right) \in \Phi^{+} \text {for all } i \neq 1\right\} .
\end{aligned}
$$

Applying Theorem 2 to the subset $I=\Delta \backslash\left\{\alpha_{1}\right\}$, we see that there exist unique $u \in \widetilde{W}^{1}=W^{I}$ and $v \in \widetilde{W}=W_{I}$ such that $w=u v$. We claim that in fact $u=u_{\beta}$. Indeed, denote $w^{\prime}=\prod_{\alpha \in \operatorname{Supp}(w), \alpha \neq \beta} s_{\alpha}$, then one can write

$$
w=\prod_{\alpha \in \operatorname{Supp}(w)} s_{\alpha}=s_{\beta} w^{\prime}=u_{\beta} v_{\beta} w^{\prime}
$$

But $v_{\beta} w^{\prime} \in \widetilde{W}$, while $u_{\beta} \in \widetilde{W}^{1}$, which means that $u=u_{\beta}$ and $v=v_{\beta} w^{\prime}$.
We claim that

$$
\begin{align*}
c_{w} & =-\frac{c_{u s_{1}, g_{0}} g_{0}\left(c_{v, g_{0}^{-1}}\right)}{\beta}-\sum_{\substack{g \leq u, g^{-1} \leq v, g \neq g_{0}}} \frac{c_{u s_{1}, g} g\left(c_{v, g^{-1}}\right)}{g\left(\alpha_{1}\right)} \tag{4}\\
& =\beta^{-1} \cdot g_{0}\left(c_{v, g_{0}^{-1}}\right) \cdot \frac{K}{L}+\frac{M}{N}
\end{align*}
$$

Here $g_{0}=u s_{1}$ and K, L and $M, N \in \mathbb{C}[\mathfrak{h}]$ are pairs of coprime polynomials such that the root β (considered as an element of $\mathbb{C}[\mathfrak{h}])$ divides neither K nor N.

Indeed, one can prove (4) using (1) and arguing as in the proof of [9, Lemma 2.5]. Namely, since $l(w)=l(u)+l(v)$, formula (1)a shows that

$$
\begin{aligned}
x_{w} & =\sum_{s \in W} c_{w, s} \delta_{s}=x_{u} x_{v}=\sum_{g, h \in W} c_{u, g} \delta_{g} \cdot c_{v, h} \delta_{h} \\
& =\sum_{g, h \in W} c_{u, g} g\left(c_{v, h}\right) \delta_{g h}=\sum_{s \in W}\left(\sum_{g \in W} c_{u, g} g\left(c_{v, g^{-1} s}\right)\right) \delta_{s} .
\end{aligned}
$$

Thus, for any $s \in W$, the coefficient of δ_{s} is equal to

$$
c_{w, s}=\sum_{g \in W} c_{u, g} g\left(c_{v, g^{-1} s}\right),
$$

in particular,

$$
c_{w}=c_{w, \mathrm{id}}=\sum_{g \in W} c_{u, g} g\left(c_{v, g^{-1}}\right) .
$$

Moreover, since $c_{p, q} \neq 0$ if and only if $p \geq q$, the sum in the right hand side is taken over permutations g such that $u \geq g$ and $v \geq g^{-1}$. Denote the set of such permutations by U. Note that $g \in U$ implies that g is obtained from $u=v_{\beta}^{-1} s_{1}$ by deleting s_{1} and, possibly, some other simple reflections. (If s_{1} is not deleted, then the condition $v \geq g^{-1}$ does not hold.) Hence

$$
c_{w}=c_{w, \mathrm{id}}=\sum_{g \in U} c_{u, g} g\left(c_{v, g^{-1}}\right) .
$$

Using (1)b) and the fact that $l\left(u s_{1}\right)=l(u)-1$, we obtain

$$
c_{u, g}=-g\left(\alpha_{1}\right)^{-1}\left(c_{u s_{1}, g}+c_{u s_{1}, g s_{1}}\right)=-g\left(\alpha_{1}\right)^{-1} c_{u s_{1}, g},
$$

because $u s_{1} \nsupseteq g s_{1}$ and so $c_{u s_{1}, g s_{1}}=0$. Thus,

$$
c_{w}=-\sum_{g \in U} \frac{c_{u s_{1}, g} g\left(c_{v, g^{-1}}\right)}{g\left(\alpha_{1}\right)} .
$$

It is easy to check that there is at most one element g such that $g\left(\alpha_{1}\right)=\beta$ and $g \in U$, namely, the element $g_{0}=u s_{1}=v_{\beta}^{-1}$. Indeed,

$$
s_{\beta}=v_{\beta}^{-1} s_{1} v_{\beta}=s_{v_{\beta}^{-1}\left(\alpha_{1}\right)},
$$

hence $v_{\beta}^{-1}\left(\alpha_{1}\right)= \pm \beta$. But v_{β}^{-1} belongs to \widetilde{W}, consequently,

$$
v_{\beta}^{-1}\left(\alpha_{1}\right)=\alpha_{1}+\ldots \in \Phi^{+}
$$

We conclude that $g_{0}=v_{\beta}^{-1}$ sends α_{1} to β. On the other hand, if $g\left(\alpha_{1}\right)=\beta$ for some $g \neq v_{\beta}^{-1}$ from U, then $s_{\beta}=v_{\beta}^{-1} s_{1} v_{\beta}$ is not a reduced decomposition of s_{β}, a contradiction.

Assume for a moment that g_{0} belongs to U, i.e., $v \geq g_{0}^{-1}$. Then

$$
\begin{equation*}
c_{w}=-\frac{c_{u s_{1}, g_{0}} g_{0}\left(c_{v, g_{0}^{-1}}\right)}{\beta}-\sum_{\substack{g \in U, g \neq g_{0}}} \frac{c_{u s_{1}, g} g\left(c_{v, g^{-1}}\right)}{g\left(\alpha_{1}\right)} . \tag{5}
\end{equation*}
$$

By S^{\prime} (resp. Q^{\prime}) denote the subalgebra of $S=\mathbb{C}[\mathfrak{h}]$ (resp. the subfield of $\mathbb{C}(\mathfrak{h})$) generated by $\alpha_{i}, i \neq 1$, then $c_{v, g_{0}^{-1}} \in Q^{\prime}$ because $v, g_{0}^{-1} \in \widetilde{W}$. Since $g \in \widetilde{W}$, $g\left(c_{v, g_{0}^{-1}}\right) \in Q^{\prime}$, too. In particular, if $g\left(c_{v, g_{0}^{-1}}\right)=G_{1} / G_{2}$ and $G_{1}, G_{2} \in S^{\prime}$ are
coprime, then β does not divide G_{1}. On the other hand, $c_{u s_{1}, g_{0}} \in Q^{\prime}$, because both $u s_{1}=g_{0}$ belongs to \widetilde{W}. We conclude that the first summand in (5) has the form $g_{0}\left(c_{v, g_{0}^{-1}}\right) \cdot K / \beta L$ for some coprime $K, L \in \mathbb{C}[\mathfrak{h}]$. Finally, if $g \in U$ and $g \neq g_{0}$, then $g\left(c_{v, g^{-1}}\right) \in Q^{\prime}$. Again, since $u s_{1}$ and g belong to \widetilde{W}, one has $c_{u s_{1}, g} \in Q^{\prime}$. We see that if the latter sum in (5) is equal to M / N, where $M, N \in \mathbb{C}[\mathfrak{h}]$ are coprime, then β does not divide N.

To prove that β does not divide d_{w}, it is enough to show that $c_{v, g_{0}^{-1}} \neq 0$, i.e., $v \geq g_{0}^{-1}$ (or, equivalently, $v^{-1} \geq g_{0}$). By Lemma $1, s_{\beta} \leq w$, According to [2, Chapter 2, Exercise 21], this is equivalent to $v_{\beta} \leq v$. Hence, $g_{0}=v_{\beta}^{-1} \leq v^{-1}$, which concludes the proof.

4 Good pairs of involutions

In this section, we formulate and prove the main result of the paper, Theorem 1. To do this, we need to introduce the notion of a good pair of involutions. Recall the set of simple roots from (2). We will order the simple roots as follows.

Type of Φ	Order of simple roots
E_{6}	$\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}$ or $\alpha_{2}, \alpha_{6}, \alpha_{3}, \alpha_{5}, \alpha_{4}, \alpha_{1}$
E_{7}	$\alpha_{3}, \alpha_{7}, \alpha_{4}, \alpha_{6}, \alpha_{5}, \alpha_{2}, \alpha_{1}$
E_{8}	$\alpha_{4}, \alpha_{8}, \alpha_{5}, \alpha_{7}, \alpha_{6}, \alpha_{3}, \alpha_{2}, \alpha_{1}$

Since the set of simple roots is ordered, the support of an involution and the first column are well-defined.

Definition 4. Let w_{1}, w_{2} be involutions in W. We say that they form a good pair of involutions if $\operatorname{Supp}\left(w_{i}\right) \cap \mathfrak{C}_{1}=\left\{\beta_{i}\right\}$ for $i=1,2$ such that $\beta_{1} \neq \beta_{2}$, both β_{1} and β_{2} are not maximal in C_{1} for $\Phi=E_{8}$, and $s_{\beta_{1}} \not \leq w_{2}$ or $s_{\beta_{2}} \not \leq w_{1}$.

Now we are ready to prove our main result, Theorem 1, which claims that if w_{1}, w_{2} is a good pair of involutions then the corresponding tangent cones $C_{w_{1}}$ and $C_{w_{2}}$ do not coincide. This follows immediately from the following proposition.

Proposition 2. Let w_{1}, w_{2} be a good pair of involutions in W. Then $d_{w_{1}} \neq d_{w_{2}}$.
Proof. Let $\beta=\beta_{1}$ or β_{2}, and $s_{\beta}=u v_{\beta}$ be as in Proposition 1. In the tables below we list the elements u for all possible β. The first (respectively, the second) column of the table contains the sequence $\left(c_{1}, \ldots, c_{8}\right)$ (respectively, $\left(b_{1}, \ldots, b_{n}\right)$) if

$$
\beta=\sum_{i=1}^{8} c_{i} \epsilon_{i}=\sum_{i=1}^{n} \alpha_{i}, n=\operatorname{rk} \Phi
$$

The third column contains a reduced decomposition of u.

Case $\Phi=E_{6}$ with the order $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}$		
$\left(c_{1}, \ldots, c_{8}\right)$	$\left(b_{1}, \ldots, b_{6}\right)$	Reduced decomposition of u
$\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	100000	s_{1}
$\left(-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	101000	$s_{3} s_{1}$
$\left(-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	101100	$s_{4} s_{3} s_{1}$
$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	111100	$s_{2} s_{4} s_{3} s_{1}$
$\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	101110	$s_{5} s_{4} s_{3} s_{1}$
$\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	101111	$s_{6} s_{5} s_{4} s_{3} s_{1}$
$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	111110	$s_{5} s_{2} s_{4} s_{3} s_{1}$
$\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	111210	$s_{4} s_{5} s_{2} s_{4} s_{3} s_{1}$
$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	111111	$s_{6} s_{5} s_{2} s_{4} s_{3} s_{1}$
$\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	112210	$s_{3} s_{4} s_{5} s_{2} s_{4} s_{3} s_{1}$
$\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	111211	$s_{6} s_{4} s_{5} s_{2} s_{4} s_{3} s_{1}$
$\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	112211	$s_{3} s_{6} s_{4} s_{5} s_{2} s_{4} s_{3} s_{1}$
$\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	111221	$s_{5} s_{6} s_{4} s_{5} s_{2} s_{4} s_{3} s_{1}$
$\left(-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	112221	$s_{3} s_{5} s_{6} s_{4} s_{5} s_{2} s_{4} s_{3} s_{1}$
$\left(-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	112321	$s_{4} s_{3} s_{5} s_{6} s_{4} s_{5} s_{2} s_{4} s_{3} s_{1}$
$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	122321	$s_{2} s_{4} s_{3} s_{5} s_{6} s_{4} s_{5} s_{2} s_{4} s_{3} s_{1}$

Case $\Phi=E_{6}$ with the order $\alpha_{2}, \alpha_{6}, \alpha_{3}, \alpha_{5}, \alpha_{4}, \alpha_{1}$		
$\left(c_{1}, \ldots, c_{8}\right)$	$\left(b_{1}, \ldots, b_{6}\right)$	Reduced decomposition of u
$(0,0,0,-1,1,0,0,0)$	000001	s_{6}
$(0,0,-1,0,1,0,0,0)$	000011	$s_{5} s_{6}$
$(0,-1,0,0,1,0,0,0)$	000111	$s_{4} s_{5} s_{6}$
$(1,0,0,0,1,0,0,0)$	010111	$s_{2} s_{4} s_{5} s_{6}$
$(-1,0,0,0,1,0,0,0)$	001111	$s_{3} s_{4} s_{5} s_{6}$
$\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	101111	$s_{1} s_{3} s_{4} s_{5} s_{6}$
$(0,1,0,0,1,0,0,0)$	011111	$s_{2} s_{3} s_{4} s_{5} s_{6}$
$(0,0,1,0,1,0,0,0)$	011211	$s_{4} s_{2} s_{3} s_{4} s_{5} s_{6}$
$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	111111	$s_{1} s_{2} s_{3} s_{4} s_{5} s_{6}$
$(0,0,0,1,1,0,0,0)$	011221	$s_{5} s_{4} s_{2} s_{3} s_{4} s_{5} s_{6}$
$\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	111211	$s_{4} s_{1} s_{2} s_{3} s_{4} s_{5} s_{6}$
$\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	112211	$s_{3} s_{4} s_{1} s_{2} s_{3} s_{4} s_{5} s_{6}$

$\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	111221	$s_{5} s_{4} s_{1} s_{2} s_{3} s_{4} s_{5} s_{6}$
$\left(-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	112221	$s_{3} s_{5} s_{4} s_{1} s_{2} s_{3} s_{4} s_{5} s_{6}$
$\left(-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	112321	$s_{4} s_{3} s_{5} s_{4} s_{1} s_{2} s_{3} s_{4} s_{5} s_{6}$
$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	122321	$s_{2} s_{4} s_{3} s_{5} s_{4} s_{1} s_{2} s_{3} s_{4} s_{5} s_{6}$

Case $\Phi=E_{7}$ with the order $\alpha_{3}, \alpha_{7}, \alpha_{4}, \alpha_{6}, \alpha_{5}, \alpha_{2}, \alpha_{1}$		
$\left(c_{1}, \ldots, c_{8}\right)$	$\left(b_{1}, \ldots, b_{7}\right)$	Reduced decomposition of u
$(0,0,0,0,-1,1,0,0)$	0000001	s_{7}
($0,0,0,-1,0,1,0,0)$	0000011	$s_{6} s_{7}$
($0,0,-1,0,0,1,0,0)$	0000111	$s_{5} s_{6} s_{7}$
($0,-1,0,0,0,1,0,0)$	0001111	$s_{4} s_{5} s_{6} s_{7}$
(1, 0, 0, 0, 0, 1, 0, 0)	0101111	$s_{2} s_{4} s_{5} s_{6} s_{7}$
$(-1,0,0,0,0,1,0,0)$	0011111	$s_{3} s_{4} s_{5} s_{6} s_{7}$
($0,1,0,0,0,1,0,0$)	0111111	$s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$
$\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	1011111	$s_{1} s_{3} s_{4} s_{5} s_{6} s_{7}$
$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	1111111	$s_{2} s_{1} s_{3} s_{4} s_{5} s_{6} s_{7}$
($0,0,1,0,0,1,0,0$)	0112111	$s_{4} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$
$\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	1112111	$s_{1} s_{4} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$
$(0,0,0,1,0,1,0,0)$	0112211	$s_{5} s_{4} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$
$\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	1112211	$s_{5} s_{1} s_{4} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$
($0,0,0,0,1,1,0,0$)	0112221	$s_{6} s_{5} s_{4} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$
$\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	1122111	$s_{3} s_{1} s_{4} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$
$\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	1112221	$s_{6} s_{5} s_{1} s_{4} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$
$\left(-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	1122211	$s_{3} s_{5} s_{1} s_{4} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$
$\left(-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	1123211	$s_{4} s_{3} s_{5} s_{1} s_{4} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$
$\left(-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	1122221	$s_{6} s_{3} s_{5} s_{1} s_{4} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$
$\left(-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	1123221	$s_{4} s_{3} s_{5} s_{1} s_{4} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$
$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	1223211	$s_{2} s_{4} s_{3} s_{5} s_{1} s_{4} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$
$\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	1123321	$s_{5} s_{4} s_{3} s_{5} s_{1} s_{4} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$
$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	1223221	$\begin{gathered} s_{6} s_{2} s_{4} s_{3} s_{5} s_{1} \\ s_{4} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7} \end{gathered}$
$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	1223321	$\begin{aligned} & s_{5} s_{6} s_{2} s_{4} s_{3} s_{5} s_{1} \\ & s_{4} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7} \end{aligned}$

$\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	1224321	$s_{4} s_{5} s_{6} s_{2} s_{4} s_{3} s_{5} s_{1}$
$\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$	1234321	$s_{4} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$
$(0,0,0,0,0,0,-1,1)$	2234321	$s_{3} s_{4} s_{5} s_{6} s_{2} s_{4} s_{3} s_{5} s_{1}$
	$s_{4} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7}$	

Case $\Phi=E_{8}$ with the order $\alpha_{4}, \alpha_{8}, \alpha_{5}, \alpha_{7}, \alpha_{6}, \alpha_{3}, \alpha_{1}, \alpha_{1}$		
$\left(c_{1}, \ldots, c_{8}\right)$	$\left(b_{1}, \ldots, b_{7}\right)$	Reduced decomposition of u
$(0,0,0,0,0,-1,1,0)$	00000001	s_{8}
$(0,0,0,0,-1,0,1,0)$	00000011	$s_{7} s_{8}$
$(0,0,0,-1,0,0,1,0)$	00000111	$s_{6} s_{7} s_{8}$
($0,0,-1,0,0,0,1,0)$	00001111	$s_{5} s_{6} s_{7} s_{8}$
($0,-1,0,0,0,0,1,0)$	00011111	$s_{4} s_{5} s_{6} s_{7} s_{8}$
$(-1,0,0,0,0,0,1,0)$	00111111	$s_{3} s_{4} s_{5} s_{6} s_{7} s_{8}$
(1, $0,0,0,0,0,1,0)$	01011111	$s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$
$\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	10111111	$s_{1} s_{3} s_{4} s_{5} s_{6} s_{7} s_{8}$
$(0,1,0,0,0,0,1,0)$	01111111	$s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$
($0,0,1,0,0,0,1,0$)	01121111	$s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$
$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	11111111	$s_{1} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$
$(0,0,0,1,0,0,1,0)$	01122111	$s_{5} s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$
$\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	11121111	$s_{1} s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$
$\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	11122111	$s_{5} s_{1} s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$
$\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	11221111	$s_{3} s_{1} s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$
($0,0,0,0,1,0,1,0$)	01122211	$s_{6} s_{5} s_{1} s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$
$\left(-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	11222111	$s_{5} s_{3} s_{1} s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$
$(0,0,0,0,0,1,1,0)$	01122221	$s_{7} s_{6} s_{5} s_{1} s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$
$\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	11122211	$\begin{gathered} s_{1} s_{6} s_{5} s_{1} s_{4} s_{3} s_{2} \\ s_{4} s_{5} s_{6} s_{7} s_{8} \end{gathered}$
$\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	11122221	$\begin{gathered} s_{7} s_{1} s_{6} s_{5} s_{1} s_{4} s_{3} \\ s_{2} s_{4} s_{5} s_{6} s_{7} s_{8} \end{gathered}$
$\left(-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	11222211	$\begin{gathered} s_{3} s_{1} s_{6} s_{5} s_{1} s_{4} s_{3} \\ s_{2} s_{4} s_{5} s_{6} s_{7} s_{8} \end{gathered}$

$\left(-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	11232111	$\begin{aligned} & s_{4} s_{5} s_{3} s_{1} s_{4} s_{3} \\ & s_{2} s_{4} s_{5} s_{6} s_{7} s_{8} \end{aligned}$
$\left(-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	11232211	$\begin{gathered} s_{6} s_{4} s_{5} s_{3} s_{1} s_{4} \\ s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{7} \end{gathered}$
$\left(-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	11222221	$\begin{gathered} s_{7} s_{3} s_{1} s_{6} s_{5} s_{1} s_{4} s_{3} \\ s_{2} s_{4} s_{5} s_{6} s_{7} s_{8} \end{gathered}$
$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	12232111	$\begin{gathered} s_{2} s_{4} s_{5} s_{3} s_{1} s_{4} s_{3} s_{2} \\ s_{4} s_{5} s_{6} s_{7} s_{8} \end{gathered}$
$\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	11233211	$\begin{gathered} s_{5} s_{6} s_{4} s_{5} s_{3} s_{1} s_{4} s_{3} \\ s_{2} s_{4} s_{5} s_{6} s_{7} s_{8} \end{gathered}$
$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	12232211	$\begin{gathered} s_{6} s_{2} s_{4} s_{5} s_{3} s_{1} s_{4} s_{3} \\ s_{2} s_{4} s_{5} s_{6} s_{7} s_{8} \end{gathered}$
$\left(-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	11232221	$s_{7} s_{6} s_{4} s_{5} s_{3} s_{1} s_{4} s_{3}$ $s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$
$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	12233211	$\begin{gathered} s_{5} s_{6} s_{2} s_{4} s_{5} s_{3} s_{1} s_{4} \\ s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8} \end{gathered}$
$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	12232221	$\begin{gathered} s_{2} s_{7} s_{6} s_{4} s_{5} s_{3} s_{1} s_{4} \\ s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8} \end{gathered}$
$\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	11233221	$s_{7} s_{5} s_{6} s_{4} s_{5} s_{3} s_{1} s_{4}$ $s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$
$\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	11233321	$s_{6} s_{7} s_{5} s_{6} s_{4} s_{5} s_{3} s_{1}$ $s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$
$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	12233221	$s_{5} s_{2} s_{7} s_{6} s_{4} s_{5} s_{3} s_{1}$ $s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$
$\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	12243211	$s_{4} s_{5} s_{6} s_{2} s_{4} s_{5} s_{3} s_{1}$ $s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$
$\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	12343211	$\begin{gathered} s_{3} s_{4} s_{5} s_{6} s_{2} s_{4} s_{5} s_{3} s_{1} \\ s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8} \end{gathered}$
$\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	12243221	$\begin{gathered} s_{7} s_{4} s_{5} s_{6} s_{2} s_{4} s_{5} s_{3} s_{1} \\ s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8} \end{gathered}$
$\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	12233321	$\begin{gathered} s_{6} s_{5} s_{2} s_{7} s_{6} s_{4} s_{5} s_{3} s_{1} \\ s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8} \end{gathered}$
$\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	12243321	$\begin{aligned} & s_{4} s_{6} s_{5} s_{2} s_{7} s_{6} s_{4} s_{5} s_{3} \\ & s_{1} s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{6} s_{7} s_{8} \end{aligned}$

$(0,0,0,0,0,-1,0,1)$	22343211	$s_{1} s_{3} s_{4} s_{5} s_{6} s_{2} s_{4} s_{5}$ $s_{3} s_{1} s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$
$\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	12343221	$s_{7} s_{3} s_{4} s_{5} s_{6} s_{2} s_{4} s_{5}$
$s_{3} s_{1} s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$		
$(0,0,0,0,-1,0,0,1)$	22343221	$s_{1} s_{7} s_{3} s_{4} s_{5} s_{6} s_{2} s_{4} s_{5}$
$s_{3} s_{1} s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$		

$(0,0,0,0,1,0,0,1)$	23465421	$s_{6} s_{5} s_{4} s_{2} s_{3} s_{1} s_{4} s_{5}$
$s_{6} s_{7} s_{3} s_{4} s_{5} s_{6}$		
$(0,0,0,0,0,1,0,1)$	23465431	$s_{2} s_{4} s_{5} s_{3} s_{1} s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$
	$s_{7} s_{6} s_{5} s_{4} s_{2} s_{3} s_{1} s_{4}$	
$s_{5} s_{6} s_{7} s_{3} s_{4} s_{5} s_{6}$		
$s_{2} s_{4} s_{5} s_{3} s_{1} s_{4} s_{3} s_{2} s_{4} s_{5} s_{6} s_{7} s_{8}$		

All these tables were generated using computer algebra system SAGE [17]; the listing of the code can be found in the Appendix.

One can immediately check that s_{β} and u satisfy the conditions of Proposition 1. Hence, according to this proposition, β_{i} does not divide $d_{w_{i}}$ in $\mathbb{C}[\mathfrak{h}]$ for $i=1,2$. On the other hand, formula (3) implies that, given $w \in W$, there exists $g \in \mathbb{C}[\mathfrak{h}]$ such that

$$
d_{w}=c_{w} \cdot \prod_{\alpha \in \Phi^{+}} \alpha=g \cdot \prod_{\substack{\alpha \in \Phi^{+}, s_{\alpha} \nsubseteq w}} \alpha,
$$

hence if $s_{\alpha} \neq w$ then α divides d_{w}. But if, for example, $s_{\beta_{1}} \not \leq w_{2}$ then β_{1} divides $d_{w_{2}}$. At the same time, β_{1} does not divide $d_{w_{1}}$, thus, $d_{w_{1}} \neq d_{w_{2}}$. The proof is complete.

Appendix

Below we present the listing of the code generating tables from the proof of Proposition 2 using computer algebra system SAGE.

```
rank=8 # the rank of the root system
column_number=8 # the number of the first column
W=WeylGroup(['E',rank],prefix='s', implementation='permutation')
ref=W.reflections()
s=W.simple_reflections()
R=RootSystem(['E',rank]).ambient_space();
simple_roots=R.simple_roots()
phi_plus=W.positive_roots()
C1=[]
C1el=[]
for i in range(0,len(phi_plus)):
    if phi_plus[i][column_number-1]!=0:
        C1.append(phi_plus[i])
        C1el.append(ref[i+1])
U=[s[column_number]]
Ulistver=[[column_number]]
for i in range(1,len(C1)):
    u=copy(Ulistver[i-1])
    index=-1
```

```
    difference=C1[i]-C1[i-1]
    difference_abs=[abs(ele) for ele in difference]
    if sum(difference_abs)!=1:
        b=0
        for j in range(i-2,1,-1):
            difference1=C1[i]-C1[j]
            difference_abs1=[abs(ele) for ele in difference1]
            if sum(difference_abs1)==1 and b==0:
                b=1
            difference=C1[i]-C1[j]
            difference_abs=[abs(ele) for ele in difference]
            u=copy(Ulistver[j])
    if sum(difference)==1:
        for j in range(0,len(difference)):
            if difference[j]==1:
                index=j
    u1= []
    u2=s[column_number]*s[column_number]
    if index!=-1:
    u1=[index+1]
    u2=s[index+1]
    for j in range(0,len(u)):
            u1.append(u[j])
            u2=u2*s[u[j]]
    U.append(u2)
    Ulistver.append(u1)
list_of_indexes=[]
for i in range(1,rank+1):
    if i!=column_number:
        list_of_indexes.append(i)
for u in U:
    b=1
    for i in list_of_indexes:
        u1=u*s[i]
        if u1.length()<u.length():
            b=0
        if b==0:
            print('false')
            print(u)
V=[s[column_number]*s[column_number]]
Vlistver=[[]]
for i in range(1,len(Ulistver)):
    u=copy(Ulistver[i])
    v1=[]
    v2=s[column_number]*s[column_number]
    for j in range(len(u)-2,-1,-1):
```

```
    v1.append(u[j])
    v2=v2*s[u[j]]
    V.append(v2)
    Vlistver.append(v1)
C1roots=[R.simple_root(column_number)]
for i in range(1,len(Vlistver)):
    root=R.simple_root(column_number)
    for j in range(0,len(Vlistver[i])):
        root=root+R.simple_root(Vlistver[i][j])
    C1roots.append(root)
for i in range(0,len(U)):
    u=U[i]
    v=V[i]
    r=C1el[i]
    if (u*v!=r) or (u.length()+v.length()!=r.length()):
        print(false)
for i in range(0,len(U)):
    print(C1roots[i],C1[i],U[i])
```


References

[1] S.C. Billey: Kostant polynomials and the cohomology ring for G / B. Duke Mathematical Journal 96 (1) (1999) 205-224.
[2] A. Bjorner, F. Brenti: Combinatorics of Coxeter groups. Springer Science \& Business Media (2005). Graduate Texts in Mathematics 231.
[3] M.A. Bochkarev, M.V. Ignatyev, A.A. Shevchenko: Tangent cones to Schubert varieties in types A_{n}, B_{n} and C_{n}. Journal of Algebra 465 (2016) 259-286.
[4] N. Bourbaki: Lie groups and Lie algebras. Chapters 4-6. Translated from the 1968 French original. (2002).
[5] I.G. Sarason, S. Billey, S. Sarason, V. Lakshmibai: Singular loci of Schubert varieties. Springer Science \& Business Media (2000).
[6] V.V. Deodhar: On the root system of a Coxeter group. Communications in Algebra 10 (6) (1982) 611-630.
[7] M.J. Dyer: The nil Hecke ring and Deodhar's conjecture on Bruhat intervals. Inventiones Mathematicae 111 (1) (1993) 571-574.
[8] D.Yu. Eliseev, A.N. Panov: Tangent cones of Schubert varieties for A_{n} of lower rank (in Russian). Zapiski Nauchnykh Seminarov POMI 394 (2011) 218-225. English transl.: Journal of Mathematical Sciences 188 (5) (2013), 596-600.
[9] D.Yu. Eliseev, M.V. Ignatyev: Kostant-Kumar polynomials and tangent cones to Schubert varieties for involutions in A_{n}, F_{4} and G_{2} (in Russian). Zapiski Nauchnykh Seminarov POMI 414 (2013) 82-105. English transl.: Journal of Mathematical Sciences 199 (3) (2014), 289-301.
[10] J.E. Humphreys: Linear algebraic groups. Springer (1975).
[11] J.E. Humphreys: Reflection groups and Coxeter groups. Cambridge University Press (1992).
[12] M.V. Ignatyev, A.A. Shevchenko: On tangent cones to Schubert varieties in type D_{n} (in Russian). Algebra i Analiz 27 (4) (2015) 28-49. English transl.: St. Petersburg Mathematical Journal 27 (4) (2016), 609-623.
[13] B. Kostant, S. Kumar: The nil Hecke ring and cohomology of G / P for a Kac-Moody group G. Proceedings of the National Academy of Sciences 83 (6) (1986) 1543-1545.
[14] B. Kostant, S. Kumar: T-equivariant K-theory of generalized flag varieties. Journal of Differential Geometry 32 (2) (1990) 549-603.
[15] S. Kumar: The nil Hecke ring and singularity of Schubert varieties. Inventiones Mathematicae 123 (3) (1996) 471-506.
[16] T.A. Springer: Some remarks on involutions in Coxeter groups. Communications in Algebra 10 (6) (1982) 631-636.
[17] W.A. Stein et al.: Sage Mathematics Software (Version 9.1). Available at http://www.sagemath.org. (2020).

Received: 11 April 2020
Accepted for publication: 12 June 2020
Communicated by: Ivan Kaygorodov

[^0]: 2020 MSC: 14M15, 17B22
 Key words: flag variety, Schubert variety, tangent cone, involution in the Weyl group, Kostant-Kumar polynomial

 The authors were supported by the Foundation for the Advancement of Theoretical Physics and Mathematics "BASIS", grant no. 18-1-7-2-1. The first author was also partially supported by RFBR grant no. 20-01-00091a. These foundations are gratefully acknowledged.

 Affiliation:
 Mikhail V. Ignatyev - Samara National Research University, Ak. Pavlova 1, 443011, Samara, Russia
 E-mail: mihail.ignatev@gmail.com
 Aleksandr A. Shevchenko - Samara National Research University, Ak. Pavlova 1, 443011, Samara, Russia
 E-mail: shevchenko.alexander.1618@gmail.com

