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Conservative algebras and superalgebras: a survey

Yury Popov

Abstract. We give a survey of results obtained on the class of conservative
algebras and superalgebras, as well as on their important subvarieties, such
as terminal algebras.

1 Introduction
In this section we define conservative algebras, which were introduced by Kantor as
a generalization of Jordan algebras that can be studied with the help of the TKK
construction. We consider the relation of the class of conservative algebras with the
known varieties of nonassociative algebras, and recall the basic properties of this
class. Throughout the paper, all spaces and algebras are assumed finite-dimensional
over an algebraically closed field F of characteristic 0, if not said otherwise.

1.1 Origins: the TKK constructions for Jordan algebras
The Tits–Koecher–Kantor construction (TKK construction) is one of the main tools
in the theory of Jordan algebras. The main idea of the original TKK construction
is to associate (in an invertible way) to a unital Jordan algebra (J, ◦) a Z-graded
Lie algebra TKK(J) = g = g−1 ⊕ g0 ⊕ g1 preserving many important structural
properties, such as simplicity and nilpotency, so that J can be studied with the aid
of the Lie algebra theory.

Let us briefly recall the details of this construction. Let P be a bilinear operator
on J be given by P (x, y) = x ◦ y. Let La be the operator of the left multiplication
by a in J. Let g−1 = J, let g0 be the subspace of End(J) spanned by the operators
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La, [La, Lb], a, b ∈ J, and let g1 be a subspace of Hom(J ⊗ J, J) spanned by
the operators P, [La, P ], a ∈ J, where the product [La, P ] (and other nonzero
products) are as follows:

[A, x] = A(x), [B, x](y) = B(x, y), (1)

[A,B](x, y) = A(B(x, y))−B(A(x), y)−B(x,A(y)). (2)

for x, y ∈ g−1, A ∈ g0, B ∈ g1.
One can verify that the elements e = 1 ∈ g−1, h = −L1 ∈ g0, f = −P ∈ g1

generate a subalgebra of g isomorphic to sl2, and the operator ad(h) only has
eigenvalues −2, 0, 2 in g. Such subalgebra is called a short subalgebra.

Conversely, one can show that if g = g−1 ⊕ g0 ⊕ g1 is a Z-graded Lie algebra
with a short subalgebra and P ∈ g1, then the formula a ◦ b = [[a, P ], b] defines a
structure of a Jordan algebra on g−1. One can prove that the TKK construction
induces an equivalence between the category of Jordan unital algebras and the
category of Lie algebras with a short subalgebra (both with surjective morphisms).
In particular, this construction preserves simplicity in both ways. For more details,
see, for example, [8].

The TKK construction was generalized and applied in various cases. For ex-
ample, in [9] Kac, using the classification of simple Lie superalgebras and the TKK
construction for Jordan superalgebras, classified simple finite-dimensional Jordan
superalgebras over an algebraically closed field of characteristic zero. Using the
same technique, in [24] the authors found the irreducible finite-dimensional repre-
sentations of simple Jordan superalgebras.

In 1972, wanting to study Lie algebras with more general Z-gradings, Kan-
tor introduced the notion of a conservative algebra as a generalization of Jordan
algebras [11]. In the next subsection we consider this definition.

1.2 Main definitions
Unlike other classes of non-associative algebras, the class of conservative algebras
is not defined by a set of identities.

For an algebra on a space V and with a multiplication · and an element x ∈ V we
denote by Lx the operator of left multiplication by x. Kantor defines conservative
algebras as follows:

Definition 1. An algebra with an underlying vector space V and a multiplication
P (x, y) = xy is called a (left) conservative algebra if there exists a new multipli-
cation P ∗(x, y) = x ∗ y (called an associated algebra structure) on the underlying
space of A such that

[Lb, [La, P ]] = −[La∗b, P ], for all a, b ∈ V, (3)

where the commutation is defined by (2).
Let us explain informally this definition. The relation (2) may be considered

as a transformation of a bilinear operator B under the action of an infinitesimal
transformation x 7→ x+tA(x). Indeed, the right-hand side of (2) is the coefficient at
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the first degree of t in the series eϕt(B(e−At(x), e−At(y))). Thus, {[La, P ] : a ∈ V }
is the set of all algebras which arise from the initial algebra P by the action of
left shifts La, a ∈ V . Thus, the definition of a conservative algebra given above
says that this set is transformed into itself under other actions of the left shifts La,
a ∈ V .

The relation (3) can be written explicitly as an identity of degree 4 with respect
to the multiplications · and ∗:

b
(
a(xy)− (ax)y − x(ay)

)
− a
(
(bx)y

)
+
(
a(bx)

)
y + (bx)(ay)

− a
(
x(by)

)
+ (ax)(by) + x

(
a(by)

)
= −(a ∗ b)(xy) +

(
(a ∗ b)x

)
y + x

(
(a ∗ b)y

)
.

Replacing the left multiplications with the right multiplications and modifying
correspondingly the above relation, we can define right conservative algebras and
obtain a similar theory.

Assuming that the underlying spaces are Z2-graded and introducing signs in
appropriate places, we can get a notion of a conservative superalgebra [21]. One
may also use the general approach to define conservative superalgebras. Namely,
let Γ := Γ0 ⊕ Γ1 be the Grassmann superalgebra in generators

1, ξi, i ∈ N,

Γ0 = 〈1, ξi1 . . . ξi2k : k ∈ N}〉 ,
Γ1 =

〈
ξi1 . . . ξi2k−1

: k ∈ N}
〉
.

Let A := A0 ⊕ A1 be a superalgebra and · and ∗ be two products on A. Consider
its Grassmann envelope Γ(A) := (A0 ⊗Γ0)⊕ (A1 ⊗Γ1), and extend the products ·
and ∗ to Γ(A) as follows:

(a⊗ f) · (b⊗ g) = (−1)abab⊗ fg,
(a⊗ f) ∗ (b⊗ g) = (−1)aba ∗ b⊗ fg

for all homogeneous a, b ∈ A, f, g ∈ Γ (p(a) = p(f), p(b) = p(g)). Then (A, ·) is a
conservative superalgebra with an associated multiplication ∗ if and only if (Γ(A), ·)
is a conservative algebra with an associated multiplication ∗.

1.3 Examples and relations with varieties of nonassociative algebras
The class of conservative algebras is very vast. Let us consider some examples.

Lie algebras give obvious examples of conservative algebras. Indeed, let g be a
Lie algebra with a product P. Then the Jacobi identity and the anticommutativity
imply that [La, P ] = 0 for all a ∈ g. Thus, the left and right-hand sides of (3)
are zero for arbitrary product P ∗ on g. Analogously one can show that any (left)
Leibniz algebra is conservative.

As another example we have associative algebras. In this case

[La, P ](x, y) = −xay; [Lb, [La, P ]](x, y) = xaby,

and (3) holds with x ∗ y := xy. Analogously, Jordan algebras and quasiassociative
algebras are quasiassociatve with the associatied multiplication equal to the original
one.
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The variety of Zinbiel algebras is defined by the relation x(yz) = (xy + yx)z.
Every Zinbiel algebra is conservative with the associated multiplicaton a ∗ b =
ab+ ba.

The relations of conservative algebras with other classes of nonassociative alge-
bras were studied in [20]. Note that for all nonassociatve varieties mentioned above
the associated multiplication can be expressed as a ∗ b = αab+ βba for α, β ∈ F.

As we have seen, associative and Jordan (super)algebras are conservative with
the associated multiplication P = P ∗. It is natural to ask what is the subclass of
conservative (super)algebras with this additional restriction.

Definition 2. An algebra A is called a noncommutative Jordan algebra if A is
flexible (that is, the identity (xy)x = x(yx) holds in A) and its symmetrized algebra
(the algebra on the space of A with the multiplication x◦y = 1

2 (xy+yx)) is Jordan.

For alternative definitions and more information on noncommutative Jordan
algebras see [26] and references therein.

Proposition 1 ([11]). A flexible conservative algebra with the product P whose
associated algebra has the same product P ∗ = P is noncommutative Jordan.

There is an example of a simple non-conservative noncommutative Jordan alge-
bra. Namely, the simple non-Lie Malcev algebra of dimension 7 is not conservative
[20].

The relation between conservative and noncommutative Jordan algebras is
made clear in the following proposition:

Proposition 2 ([11]). A conservative algebra with unity has associated product
equal to the original one and is a noncommutative Jordan algebra.

The following statement provides us with different examples of conservative
superalgebras.

Proposition 3 ([21]). Let Ω be a family of polynomial identities. Suppose that
there exist α, β ∈ F such that every Ω-algebra (A, ·) is conservative with the asso-
ciative multiplication given by a ∗ b = αa · b + βb · a. Then every Ω-superalgebra
(B, •) is conservative with the associated multiplication given by

a ∗ b = αa • b+ (−1)abβb • a.

It follows that associative, quasi-associative, Jordan, Lie, Leibniz, and Zinbiel
superalgebras are conservative.

1.4 Operator relations

Let V be a vector space. By U(V ) we denote the space of all bilinear operators on
V. Let P ∈ U(V ) be a conservative algebra on V (during the text we occasionally
identify a bilinear operator P with the algebra structure that it defines on V, and
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similarly for superalgebras). Considering both parts of (3) as operators acting on
y ∈ V, we obtain the following operator relation:

[Lb, [La, Lx]]− [Lb, Lax]− [La, Lbx] + La(bx) + [La∗b, Lx]− L(a∗b)x = 0. (4)

Therefore, the space U0(V ) := 〈La, [La, Lb] : a, b ∈ V 〉 is a subalgebra of gl(V ).
Moreover, since (2) gives an action of the Lie algebra gl(V ) on U(V ), we immedi-
ately get

[[Lb, La], P ] = [Lb∗a−a∗b, P ], (5)

which implies that U1(V ) := 〈P, [La, P ] : a ∈ V 〉 is a U0(V )-submodule of U(V ).
This also implies that the operators [Lb, La] − Lb∗a−a∗b, a, b ∈ V, are derivations
of P, called inner derivations.

Definition 3. Let P be a (super)algebra such that U1(P ) is a U0(P )-submodule
of U1(P ). Then P is called rigid or quasi-conservative [14].

In other words, an algebra (V, P ) is rigid if there exist a multiplication P ∗ and
a bilinear form ϕ on V such that

[La, [Lb, P ]] = −[Lb∗a, P ] + ϕ(a, b)P

for all a, b ∈ V. Analogously to the relation (1.2), this relation can be expanded to an
identity of degree 4 involving the initial multiplication, the associated multiplication
and the form ϕ. In [4] the 2-dimensional complex rigid algebras were classified.

1.5 Jacobi elements and quasiunities
Definition 4. An element a in an algebra M is called a Jacobi element provided
that

a(xy) = (ax)y + x(ay)

holds for all x, y ∈M .

In other words, a is a Jacobi element if La is a derivation of M . The relation
above can be rewritten in the following forms:

[La, Lx] = Lax for every x ∈M, (6)

[La,M ] = 0. (7)

Denote by J the space of all Jacobi elements of an algebra M . Let

N := {a ∈M : La = 0}

be the left annihilator of M . Obviously, N ⊆ J . An ideal I of M is called a Jacobi
ideal provided that I ⊆ J.

The following statement is immediate from the definitions and (6).

Lemma 1. Let M be an algebra, and let J and N be as above. Then J is a
subalgebra of M ; N is an ideal of J , and the quotient algebra J/N is isomorphic
to a subalgebra of the Lie algebra of derivations of M . If M possesses a unity then
J = 0; and if M is a Lie algebra then J = M .
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Definition 5. An element e ∈M is said to be a left quasiunity if the equality

e(xy) = (ex)y + x(ey)− xy

holds for all x, y ∈M .

This condition is equivalent to the relations

[Le, Lx] = Lex−x for every x ∈M,

[Le,M ] = −M.
(8)

Note that a left quasiunity is uniquely determined modulo a Jacobi element. Obvi-
ously, a left unity is a left quasiunity. But, in general, the converse is not true (see
examples in the next section). The importance of the Jacobi subspace is showed
by the following result:

Theorem 1. Let P be a conservative algebra. The associated algebra P ∗ is defined
up to an arbitrary algebra with values in J . Moreover, the following relations hold:

P ∗(a, b) ≡ 0 (mod J), a ∈ J,
P ∗(a, b) ≡ −ba (mod J), b ∈ J.

If P has a left quasiunity e, then

P ∗(e, a) ≡ a, P ∗(a, e) ≡ 2a− ea (mod J).

2 TKK construction for conservative algebras
Since the introduction of the original TKK construction, there have been many
attempts to generalize it for various algebraic systems of Jordan type, such as
structurable algebras [1], Jordan triple systems [25], Jordan pairs [23] and other
classes of systems. In [11] Kantor discovered a version of the TKK construction
that can be applied to any algebra. In this section we consider this construction
and show how it can be applied to the classification of simple conservative algebras
and other algebraic systems.

2.1 A universal graded Lie algebra
The general TKK construction is best formulated in terms of the other construction
also introduced by Kantor, that of a universal graded Lie algebra. Let us recall the
details of this construction, which is of independent interest.

Let V be a vector space of dimension n. In the paper [10] Kantor defined the
universal graded Lie algebra Ũ = Ũ (n) =

∑∞
i=−∞ Ũi. Let us recall the defini-

tion of Ũ . The graded component Ũ−1 is identified with V, and the subalgebra
Ũ− =

∑−1
i=−∞ Ũi is the free Lie algebra generated by Ũ−1 with the grading by de-

gree. The space Ũk−1, k > 0 is the space of all k-linear operators on the space Ũ−1.
The commutation between the spaced Ũk−1 and Ũl−1, where k, l > 0, is defined as
follows. Let

A = A(x1, . . . , xk) ∈ Ũk−1, B = B(x1, . . . , xl) ∈ Ũl−1.



Conservative algebras and superalgebras: a survey 237

Define
[A,B] = A�B −B �A, (9)

where

A�B(x1, . . . , xk+l−1) = A(B(x1, . . . , xl), xl+1, . . . , xl+k−1) +

k−1∑
s=1

l+s−1∑
i1<...<is

A(xi1 , . . . , xis , B(x1, . . . , x̂i1 , . . . , x̂is , . . . , xl+s), xl+s+1, . . . , xl+k−1),

where
∑l+s−1
i1<...<is

means the summation by all ordered sets of s indices, each of
them not greater than l+ s− 1. Note that this notion generalizes the formulas (1),
(2).

To define the commutator of the spaces Ũl−1 and Ũ−k recall that every element
a1 ∗ . . . ∗ ak of the free Lie algebra can be uniquely represented as a sum of the
monomials a1 . . . aik in the free associative algebra generated by the space Ũ−1
(for example, a1 ∗ a2 = a1a2 − a2a1). Define the commutator of an operator
A = A(x1, . . . , xl) ∈ Ũl−1 and an associative monomial β = b1 . . . bk by

[A, β] = A(b1, . . . , bk, x1, . . . , xl−k), l ≥ k,
[A, β] = A(b1, . . . , bl) ∗ bl+1 ∗ . . . ∗ bk, l < k.

For example, for a linear operator A ∈ Ũ0 and a1, a2 ∈ Ũ−1 we define

[A, a1 ∗ a2] = A(a1) ∗ a2 − a1 ∗A(a2).

One can show that Ũ is indeed a graded Lie algebra. Now let us formulate the
universal property of Ũ .

Definition 6. Let U =
∑∞
i=−∞ Ui be a graded Lie algebra. We say that U is an

algebra of type A, if the following conditions hold:

1. The subalgebra U− =
∑−1
i=−∞ Ui is generated by U−1;

2. There are no ideals of U contained in the subalgebra U+ =
∑∞
i=0 Ui.

If U satisfies as well the following conditions:

1. The subalgebra U+ is generated by U1;

2. There are no ideals of U contained in the subspace
∑−2
i=−∞ Ui,

then we say that U is an algebra of type α.

Let U =
∑∞
i=−∞ Ui be a graded Lie algebra such that U−1 = V. Consider

a graded mapping F : U+ → Ũ+ defined as follows: to a vector a ∈ Uk, k ≥ 0,
corresponds a (k + 1)-linear operator F (a) on V given by

F (a)(x1, . . . , xk+1) = [. . . [a, x1], . . .], xk+1].

The main result of the paper [10] is the following theorem:
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Theorem 2 ([10]). Let V be a vector space of dimension n, and denote Ũ = Ũ (n).
The following assertions hold:
1) The algebra Ũ is a Lie algebra of type A;
2) Let U =

∑∞
i=−∞ Ui be a graded Lie algebra of type A such that U−1 = V. Then

the mapping F : U+ → Ũ+ is an injective homomorphism with the image U∗+, the

subspace U∗+ + Ũ− is a subalgebra of Ũ , and U ∼= (U∗+ + Ũ−)/D, for some ideal D

of U∗+ + Ũ− contained in the subspace
∑−2
i=−∞ Ũi.

Moreover, every graded Lie algebra of type A can be obtained in this way. That
is, let U+ =

∑∞
i=0 Ui be a graded subalgebra of Ũ+ and be D ⊆

∑−2
i=−∞ Ũi be a

graded subspace such that

[U+, D] ⊆ D, [Uk, Ũ−1] ⊆ Uk−1 for all k > 0.

Then U = Ũ− + U is a subalgebra of Ũ , D is an ideal of U, and U/D is a graded
Lie algebra of type A.

Later on, this construction was generalized for the super case in [12].

2.2 The general TKK construction
Now we are ready to define the general TKK construction.

Definition 7. Let A be an algebra (of finite dimension n) with a product P. The Lie
algebra TKK(A) is defined as follows: TKK(A) = L0(A)/D, where L0(A) is the
subalgebra of the universal Lie algebra Ũ (n) generated by the subspace U−1 = A
and the element P ∈ U1, and D is the maximal ideal of L0(A) that is contained in
Ũ =

∑−2
i=−∞ Ũi.

By above, U = TKK(A) is a graded Lie algebra of type α with U−1 = A. By
construction, the space U0 is generated by operators [a, P ] = La, a ∈ A, that is, it
is spanned by the operators of the form

La, [La, Lb], [[La, Lb], Lc], . . . ,

and the space U1 is spanned by the bilinear operators

P, [La, P ], [La, [Lb, P ]], [La, [Lb, [Lc, P ]]] . . .

Conservative algebras behave well in relation to this construction. In particular,
the relations (4), (5) show that the spaces U0, U1 are the same as in the case of
Jordan algebras:

Lemma 2 ([11]). Let A be a conservative algebra. Then in TKK(A) we have

U0 = 〈La, [La, Lb], a, b ∈ A〉, U1 = 〈A, [La, A], a ∈ A〉.

The general TKK construction is functorial. Let ω : A � B be a surjective
homomorphsim of finite-dimensional algebras with kernel D. Consider the subspace
D∗ = D∗−+D∗+ of L0(A) given as follows. The subspace D∗− is an ideal of a free Lie

algebra Ũ− generated by the subspace D ⊆ Ũ−1 (hence, it is clear that Ũ−/D∗− is a

free Lie algebra generated by Ũ−1/D = B). The subspace D∗+ is the subspace of all
operators Ak(x1, . . . , xk), k > 0 such that Ak(x1, . . . , xk) ∈ D for all x1, . . . , xk ∈ A.
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Proposition 4. The space D is an ideal of L0(A), the quotient algebra of L0(A) by
D is isomorphic to L0(B), and quotienting by maximal ideals having only graded
components up to −2 we obtain the following commuting diagram:

A B

TKK(A) TKK(B)

ω

TKK TKK

ω∗

In general, this construction produces infinite-dimensional Lie algebras (but
with finite-dimensional graded pieces). We single out an important subclass of
algebras whose associated Lie algebras are finite-dimensional.

Definition 8. An algebra A is called an algebra of order k, if TKK(A) = U =⊕k
i=−k Ui. If A is of order k for some natural k, then we say that A is an algebra

of a finite order.

The finiteness conditions can often be expressed in purely algebraic terms. For
example, if TKK(A) =

∑∞
i=−1 Ui, then by definition the space

∑−2
i=−∞ Ũi must be

an ideal of L0(A). Therefore, for all a, b ∈ A the commutator

[A, a ∗ b] = A(a, b)−A(b, a)

must be zero, that is, A must be commutative. On the other hand, for a com-
mutative algebra A all algebra structures B = [La1 , [La2 , . . . , [Lak , A]]] which span
the space U1 ⊆ L0(A) are commutative, hence, they satisfy [B, a ∗ b] = 0 for all
a, b ∈ A. Therefore, the space

∑−2
i=−∞ Ũi is an ideal of L0(A). In other words, the

followings holds:

Lemma 3. An algebra A is commutative if and only if TKK(A) =
∑∞
i=−1 Ui.

It is interesting to note that one can define radicals for algebras of finite order:

Theorem 3 ([11]). A solvable algebra of a finite order is nilpotent. Any algebra
of finite order contains a maximal nilpotent ideal such that the quotient by it is a
sum of simple algebras.

Jordan algebras also have a natural characterization in terms of the TKK con-
struction:

Proposition 5 ([11]). An algebra A is Jordan if and only if TKK(A) =
∑1
i=−1 Ui.

Moreover, in this case the Kantor’s construction coincides with the original TKK
construction.

In other words, Kantor’s construction is a natural generalization on the original
TKK construction and Jordan algebras are exactly algebras of order 1.

As we have seen in Proposition 4, if TKK(A) is a simple algebra, then A must
be simple as well. In certain cases, the converse also holds:
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Proposition 6 ([11]). Let A be a simple conservative algebra with a left unit. Then
TKK(A) is a simple Lie algebra.

The condition of having a left unit is a rather strong one. However, it cannot
be relaxed without imposing other restrictions. Take, for example, a simple Lie
algebra g. Then the space U0 ⊆ TKK(g) consists of the operators of left multi-
plication La, a ∈ g, and U1 is spanned by g. In this case TKK(g) has an ideal∑0
i=−∞ Ui.
However, for algebras of finite order the simplicity is preserved by this construc-

tion:

Theorem 4 ([11]). LetA be a simple algebra such that TKK(A) is finite-dimensional.
Then TKK(A) is a simple Lie algebra.

Therefore, the classification of simple conservative algebras of finite order can
be done if one describes Z-gradings on simple finite-dimensional Lie algebras. This
is done in the following proposition:

Proposition 7. Let U =
∑k
i=−k Ui be a finite-dimensional simple Lie algebra of

type α over an algebraically closed field of characteristic 0. Then the algebra
U+ =

∑k
i=0 Ui is parabolic with respect to a subset Σ of the set of simple roots,

and the grading is defined as follows: Uk is the sum of root spaces Uα, where in
the decomposition of α in the sum of simple roots the sum of the coefficients with
indices in Σ is equal to k.

Therefore, to classify simple conservative algebras of finite order it suffices
to consider all possible simple root subsets in all irreducible root systems, con-
struct the corresponding graded Lie algebras and consider the conservative alge-
bras that may appear. Using the statements above, Kantor described simple finite-
dimensional conservative algebras of order 2 with a left unit over an algebraically
closed field of characteristic 0 (note that this generalizes the classification on simple
finite-dimensional Jordan algebras, which are of order 1 in this terminology).

Example 1. Consider the algebra Alk − Akl, l ≥ k. The underlying vector space
of Alk − Akl is the space of tetrads of the form (ϕ,ψ, a, b), where ϕ and ψ are
l × l-matrices, and a and b are (l − k)× l-matrices. Defining

ϕ1 = (ϕ, 0, 0, 0),

ϕ2 = (0, ϕ, 0, 0),

a1 = (0, 0, a, 0),

a2 = (0, 0, 0, a),

we can write the multiplication in this algebra as follows:

ϕ1ψ1 = (ϕψ + ψϕ)1, ϕ2ψ2 = (ϕψ + ψϕ)2,

ϕ1ψ2 = −(ϕTψ)2, ϕ2ψ1 = −(ϕTψ)1,

ϕia
j = ajϕi = δij(aϕ)j , a1b2 = −(aT b)2, a2b1 = −(aT b)1,

a1b1 = 0, a2b2 = 0.
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One can show that the algebra Alk −Akl is a simple conservative algebra of order
2 with left unit and its TKK algebra is a simple Lie algebra of type A. Moreover,
any simple conservative algebra of order 2 with left unit such that its TKK algebra
is a classical simple Lie algebra is a subalgebra of Alk −Akl for suitable l, k.

This construction can be easily generalized to the case of an arbitrary algebraic
system:

Definition 9 ([14]). Let ω be an algebraic system, that is, a set {ωα}α∈A of mul-
tilinear operations ωα on on a vector space V. The algebra TKK(ω) is the algebra
U∗/D, where U∗ is the subalgebra of the universal Lie algebra Ũ associated to
the space V generated by U−1 = V and all elements ωα (considered as multilinear
operations of the corresponding arity), and D is the maximal ideal of U∗ contained
in the space

∑−2
i=−∞ U∗i .

This construction is also functorial (in the sense above) and was later on used
in the classification of various simple algebraic systems. For example, Kac and
Cantarini classified simple linearly compact n-Lie superalgebras [6] and N = 6
3-algebras [7] constructing a TKK functor from these varieties to graded Lie alge-
bras and proving that it preserves simplicity [5].

2.3 Connection with structurable algebras
A unital algebra A with an involution τ is called structurable if it satisfies the
following identity:

[Vx,1, Vz,w] = VVx,1z,w − Vz,Vx,1w, where Vx,y(z) = (xτ(y))z + (zτ(y))x− (zτ(x))y.

Note that these operators are natural generalizations of the quadratic multiplica-
tion operators Ux,y on Jordan algebras [8]. Structurable algebras were defined by
Allison in [1] as a natural generalization of unital Jordan algebras. Apart from
Jordan algebras (with trivial involution) and unital associative algebras with invo-
lution, this class includes as well the tensor product of composition algebras and
the algebras of hermitian form (a generalization of the algebra of symmetric bilin-
ear form, where instead of the field F as “scalars” we take an associative algebra
with involution, and instead of a vector space V we take an A-module).

There exists a version of the TKK construction for structurable algebras, that
given a structurable algebra A returns a Z-graded algebra U =

∑2
i=−2 Ui. This

construction preserves simplicity in both ways, and every simple finite-dimensional
Lie algebra over an algebraically closed field of characteristic 0 can be realized as
TKK(A) for A structurable and simple.

There is a connection between the classes of structurable and conservative al-
gebras of order 2:

Proposition 8 ([2]). Let A be a structurable algebra with an involution τ. Then
the algebra (A, ∗), where x ∗ y = xy + y(x − τ(x)), is a conservative algebra of
order 2 with left unit 1. Moreover, for any conservative algebra B of order 2 with
left unit there exists a unique structurable algebra A such that B can be obtained
from A in the way above.
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This correspondence preserves simplicity in both ways. Moreover, this corre-
spondence preserves the TKK construction, that is, for a structurable algebra A we
have TKK(A) = TKK(A, ∗). The classification of simple finite-dimensional struc-
turable algebras over algebraically closed fields of characteristic 6= 2, 3, 5 (and the
correspondence of resulting simple algebras with simple finite-dimensional conser-
vative algebras of order 2) was obtained by Smirnov in [28].

3 Trace function and series of conservative algebras
A useful method of studying finite-dimensional nonassociative algebras is by means
of introducing trace functions and bilinear forms that express some properties of
the algebras (such as the Killing form for Lie algebras). In this section we consider a
trace function and a related bilinear form defined for finite-dimensional conservative
algebras by Kantor in [14]. Moreover, we consider a way to deform a given finite-
dimensional conservative algebra with a left unit using a trace function.

3.1 Trace function and bilinear form
Definition 10. The trace function on a finite-dimensional conservative algebra A
is the function Tr given by Tr(x) = 1

dimA trLx.

The normalization is chosen so that for a left unit e the equality Tr(e) = 1 holds.
The following result is an immediate consequence of (4):

Theorem 5 ([14]). Let A be a conservative algebra. Then for all a, b, c ∈ A we
have Tr(a(bc)− (a ∗ b)c) = 0.

The expression a(bc) − (a ∗ b)c is sometimes called the generalized associator
of a, b, and c.

Consider the bilinear form (x, y) = Tr(xy). This form is not always symmetric
and nondegenerate. For example, for any element a in the Jacobi subspace of A
by (6) we have

(a, x) =
1

dimA
trLax =

1

dimA
tr[La, Lx] = 0,

so the Jacobi subspace J always lies in the radical of the form (·, ·). However, for
the class of algebras of finite length we have the following result:

Theorem 6. Let A be a simple conservative algebra of a finite order with a left
unit. Then the bilinear form (x, y) = Tr(xy) on A is symmetric and nondegenerate.

In particular, a simple conservative algebra of a finite order with a left unit has
zero Jacobi subspace.

3.2 The algebras Aλ

Let A be a conservative algebra with multiplication A(x, y) = xy and left unit e.
Consider the family of algebras Aλ(x, y) = x′y, where x′ = x+ λTr(x)e.

Note that for λ 6= −1 the algebra Aλ has a let unit eλ = (1 + λ)−1e. The
following result can be obtained by a direct calculation:
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Theorem 7 ([14]). Let A(x, y) = xy be a conservative algebra with left unit e.
Then the algebras Aλ, λ 6= −1, are conservative with the associated multiplication
given by

A∗λ(a, b) = A∗(a, b) + λTr(a)b+ λTr(b)a− λ2

1 + λ
Tr(a) Tr(b)e− λ

1 + λ
Tr(ab)e.

Moreover, we have A∗λ(a, b)′ = A∗(a′, b′), so all associated algebras A∗λ are isomor-
phic.

The class of algebras Aλ cannot be extended by the same procedure. Particu-
larly, (Aλ)µ = Aλ+µ+λµ for λ, µ ∈ F. In particular, A = (Aλ)− λ

1+λ
for λ 6= −1.

In the case λ = −1 the algebra A−1 has no left unit and is not conservative. It
turns out that the algebra A−1 is rigid:

Theorem 8 ([14]). Let A(x, y) = xy be a conservative algebra with left unit e.
Then the algebra A−1 with the multiplication A−1(x, y) = xy − Tr(x)y is rigid
(quasi-conservative), and the multiplication in the associated algebra and the bi-
linear form ϕ are as follows:

A∗−1(a, b) = A∗(a, b)− Tr(a)b− Tr(A∗(a, b))e+ 2 Tr(a) Tr(b)e,

ϕ(a, b) = Tr(A(a, b))− Tr(a) Tr(b).

The algebra A−1 is not conservative, hence, is not isomorphic to other Aλ. The
non-isomorphism of all other algebras Aλ can be in many cases proved with the
help of the following result:

Theorem 9 ([14]). If A has a unique left unit and the operator R : x 7→ xe has
more than one nonzero eigenvalue (counted with multiplicity), then the algebras
Aλ are pairwise nonisomorphic.

Since in Jordan (more generally, noncommutative Jordan) algebras left units
are necessarily right units as well, we get the following corollary:

Corollary 1. If A is a Jordan (noncommutative Jordan) algebra, then all algebras
Aλ are pairwise nonisomorphic.

Corollary 2. If A is a simple conservative algebra of second order with a left unit,
then all algebras Aλ are pairwise nonisomorphic.

Let us compare the algebras TKK(Aλ) =
∑∞
i=−∞ Uλi with the algebra TKK(A).

All algebras Aλ are defined on the same space as A = A0, so we may identify the
spaces U−1 ≡ Uλ−1. Moreover, the components Uλ0 also coincide for all λ 6= −1.
Indeed, the operator Lλa of the left multiplication by a in Aλ is

Lλa = La + λTr(a) id .

As Le = id, the spaces Uλ0 coincide for all λ 6= −1. For λ = −1, the space U−10 is
of dimension dimU0 − 1 and consists of linear operators of trace zero.

We can also identify the spaces Uλ1 with the help of the following lemma:
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Lemma 4 ([14]). The mapping F : a 7→ a − λ
λ+1e identifies the Jacobi spaces J

and Jλ of the algebras A and Aλ.

As the space Uλ1 is spanned by the operators [Lλa , Aλ], by (7), we can identify
U1 with A/Nλ (we denote this mapping by a 7→ ã). Therefore, by the lemma above,
the mapping F identifies the spaces U1 and Uλ1 .

Moreover, by a direct computation we can get

Lb′F
−1(ã) = F−1Lb′(ã),

where F−1 : a 7→ a′ = a + λTr(a)e. As the algebra U0 is generated by operators
La, a ∈ A, this means that the representations of U0 on the spaces U1 and Uλ1 are
isomorphic.

However, the dimensions of the spaces Uλk , k ≥ 2, can be different from that of
Uk. Consider a unital Jordan algebra A of dimension n. Then

[Lλa , Aλ] = [La, A](x, y)− λTr(ax)y

and, since Uλ2 = [Uλ1 , U
λ
1 ], the formula (9) implies that Uλ2 is spanned by trilinear

operators of the form

[La, A](x, y)− λTr(ax)y − [La, A](y, x) + λTr(ay)x = λ(Tr(ay)x− Tr(ax)y).

If λ 6= 0, then this operator is zero if and only if x and y are in the radical
of the bilinear form (a, b) = Tr(ab). Therefore, dimU2 =

(
n
2

)
−
(
k
2

)
, where k is

the dimension of the radical of the form (·, ·). Generally, for λ 6= 0 the algebras
TKK(Aλ) are infinite-dimensional.

4 A universal conservative algebra
In the theory of conservative algebras of great importance is the conservative al-
gebra U(n) of bilinear mappings on an n-dimensional space. This algebra plays
a role analogous to the one the algebra gln plays in finite-dimensional Lie alge-
bra theory, that is, for any finite-dimensional conservative algebra A there exists
a homomorphism (with a known kernel) A → U(n) for certain n ≤ dimA. In this
section we consider the construction of the algebra U(n) introduced in [16], recall
basic properties of this algebra and state the universality theorem for U(n).

4.1 The algebra U(V )

Let V be a vector space over F. The space of the algebra U(V ) is the space of all
bilinear operators V ×V → V on V. To define the multiplication 4 in U(V ) we fix
a nonzero vector u ∈ V. Then for A,B ∈ U(V ) we set

(A4u B)(x, y) = [LAu , B](x, y) = A(u,B(x, y))−B(A(u, x), y)−B(x,A(u, y)),

where LAu : x 7→ A(u, x) is the left multiplication with respect to A. Consider the
natural action of the group GL(V ) on U(V ):

ϕ(A)(x, y) = ϕ(A(ϕ−1(x), ϕ−1(y))).
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A direct computation shows that the mapping A 7→ ϕ(A) is an isomorphism be-
tween (U(V ),4a) and (U(V ),4ϕ(a)). Therefore, different nonzero vectors a give
rise to isomorphic algebras, which we denote by U(V ). In particular (see [22]), we
have an injective homomorphism of a GL(V, a) = {ϕ ∈ GL(V ) : ϕ(a) = a} to
Aut(U(V ),4a). If V = Vn is a finite-dimensional space of dimension n, then we
denote U(V ) by U(n).

The square of the multiplication A in the algebra U(V ) is called the Kantor
square of A. The Kantor square gives us a map K from a variety V of algebras to
some class K(V ). The Kantor squares of multiplications satisfying certain condi-
tions (such as associativity, Leibniz identity and others) were studied in [17].

Let b ∈ V, and A,B,C be bilinear operators on V. The following relation in
(U(V ),4a) can be obtained by a direct computation:

[LA,4b](B,C) = B 4A(a,b) C. (10)

For n > 1 the algebra U(n) does not belong to a well-known class of algebras
(such as associative, Lie, Jordan, Leibniz algebras). However, with the help of the
relation (10) one easily proves the following result:

Theorem 10. Let V be a space, and let a ∈ V . The algebra (U(V ),4a) is conser-
vative, and the associated multiplication can be given by

A51
a B(x, y) = −B(a,A(x, y)), (11)

or

A52
a B(x, y) =

1

3
(A∗ 4a B + B̃ 4a A), (12)

where A∗(x, y) = A(x, y) +A(y, x) and B̃(x, y) = 2B(y, x)−B(x, y).

By (7) and (10), the Jacobi subspace J of (U(V ),4a) consists precisely of
those A(x, y) ∈ U(V ) for which A(a, a) = 0, so we may identify the spaces U(V )/J
and V by the mapping A 7→ A(a, a). In particular, for the algebra U(n) we have
codim(J) = n.

If the mapping U(V )→ gl(V ) given by A 7→ LAa , is surjective (which is always
the case if V is of countable dimension) then any operator A such that LAa = − id
is a left unity of (U(V ),4a).

Properties of the algebra U(2) were studied in various articles. For example, in
the paper [20] the authors described the derivations and subalgebras of codimension
one of U(2) and its simple terminal subalgebras W2, S2 (see in the next section), and
in the article [22] the one-sided ideals, automorphisms and idempotents of U(2) were
described. Note that by definition the classification of idempotents of (U(2),4u)
corresponds to the classification of 2-dimensional algebras with u as a left quasiunit.

4.2 Universality of the algebra U(n)

Let M be a conservative algebra on a space V with the Jacobi subspace J. Consider
the space W, which we define as W = V/J if M has a left quasiunity, and W =
V/J ⊕ E in the opposite case, where E is a one-dimensional space spanned by a
vector ε.
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Assume that M possesses a quasiunity. Define the adjoint mapping ad: M →
U(W ) as follows:

ad(a)(α, β) = (β ∗ a) ∗ α+ β ∗ (αa)− (β ∗ α) ∗ a.

If M does not have a quasiunity, we define the adjoint mapping ad: M → U(W )
by the formula above and the following equations:

ad(a)(α, ε) = a ∗ α+ αa− α ∗ a,
ad(a)(ε, β) = β ∗ a, ad(a)(ε, ε) = a.

Using (8), one can check that if M has a quasiunity e, then the uniquely de-
fined element ε = e mod J satisfies the relations above. One can verify that the
adjoint mapping is well-defined and does not depend on the choice of an associated
multiplication.

Theorem 11 ([16]). Let M be a conservative algebra on a vector space V with the
Jacobi subspace J. Let either W = V/J or W = V/J ⊕ 〈ε〉 as above. The adjoint
mapping ad: M → (U(W ),4−ε) is a homomorphism whose kernel is the maximal
Jacobi ideal. In particular, if V is finite-dimensional and J is of codimension n,
then we have a homomorphism ad: M → U(k), where k = n if M has a quasiunity
and k = n+ 1 otherwise.

In particular, every unital Jordan algebra of dimension n is a subalgebra of U(n).
The analog of this theorem for superalgebras was proved in [21].

The above theorem can be rewritten using the language of the category theory.
Let us call the subspace of the elements that satisfy the condition

a(xy) = (ax)y + x(ay)− µ(a)xy,

where µ is a scalar-valued function, the extended Jacobi subspace and denote it by
Ĵ . It is obvious that Ĵ = J ⊕ Fe if M is an algebra with a left quasiunity e, and
Ĵ = J otherwise.

Consider the category Sn of the conservative algebras that do not contain ideals
in the Jacobi subspace J and satisfy the condition codim Ĵ = n−1. The morphisms
in this category are embeddings.

Theorem 12 ([16]). The algebra U(n) is the final object in the category Sn.

Example 2. We check that the adjoint homomorphism applied to U(V ) itself is the
identity mapping. We have already seen that U(V ) has a left unity. It is also easy to
check that its maximal Jacobi ideal is zero (see, for example, [21]). Therefore, in our
case the space W is U(V )/J that we identify with V by the mapping A 7→ A(a, a).
Now, let A,B,C ∈ U(V ), and let B(a, a) = u, C(a, a) = v. We want to show
that ad(A)(B,C)(a, a) = A(u, v), which would establish the required isomorphism.
Recall that the adjoint mapping does not depend on the choice of the associated
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multiplication. Therefore, we choose as the associated multiplication the product
51 given by (11). Now, a direct computation shows the desired equality:

ad(A)(B,C)(a, a) =
(
(C 5a A)5a B + C 5a (B 4a A)− (C 5a B)5a A

)
(a, a)

=
(
B(a,A(a,C(a, a)))−

(
B(a,A(a,C(a, a)))−A(B(a, a), C(a, a))

−A(a,B(a,C(a, a)))
)
−A

(
a,B(a,C(a, a))

))
= A(B(a, a), C(a, a)) = A(u, v).

5 Terminal algebras
Since the class of conservative algebras is very large, it is hard to study from the
point of view of structure theory and for now even the basic general questions about
it remain unanswered (see next section), so it is a good idea to study its subclasses
which are sufficiently wide but have nice properties that make them easier to study
(for example, being an algebraic variety). One such class is conservative algebras
of finite order, considered in Section 2.2. In this section we consider another class,
that of terminal algebras [13], which is a subvariety of conservative algebras.

Let B and C be bilinear operations on a vector space V. Define their commutator
[B,C] as a trilinear operation given by

[B,C](x, y, z) = B(C(x, y), z) +B(x,C(y, z)) +B(y, C(x, z))

− C(B(x, y), z)− C(x,B(y, z))− C(y,B(x, z)) (13)

(note that this is a particular case of the formulas (9)).

Definition 11. An algebra (V, P ), where V is a vector space and P is a multipli-
cation, is called a terminal algebra if for all a ∈ V we have

[[[P, a], P ], P ] = 0.

Using the formulas (1), (2), (13), we can expand this relation, obtaining an
identity of degree 4. Therefore, the class of terminal algebras is a variety.

The following characterization of terminal algebras provides a description of
this class as a subclass of the class of conservative algebras.

Theorem 13 ([13]). Let A be an algebra with a multiplication P (x, y) = xy. The
following statements are equivalent:
1) A is terminal;
2) A is conservative and the multiplication in the associated superalgebra P ∗ can
be defined by

P ∗(x, y) =
2

3
P (x, y) +

1

3
P (y, x);

3) TKK(A) =
∑1
i=−∞ Ui.

The last point of the theorem suggests a way of constructing terminal algebras.
Take a Z-graded Lie algebra U =

∑1
i=−∞ Ui and let a ∈ U1. Then the space U−1
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with the product A(x, y) = [[x, a], y] is a terminal algebra, and in fact any terminal
algebra can be obtained in this way (particularly, U = TKK(A)).

Proposition 3 and Proposition 5 imply that the class of commutative terminal
algebras coincides with Jordan algebras. Aside from Jordan algebras, the class
of terminal algebras includes all Lie algebras, all (left) Leibniz algebras and some
other types of algebras. We give examples of terminal non-Jordan algebras, which
are subalgebras of the universal conservative algebra U(n):

• The algebra Wn is the subalgebra of U(n) whose space consists of all commu-
tative multiplications on Vn. The algebra Wn is terminal: for commutative
A,B the associated multiplication (12) reduces to

A52 B =
1

3

(
(A+AT )4B + (2B −BT )4A

)
=

1

3
(2A4B +B 4A).

(Wn,4a) has left units: these are the elements A ∈ Wn such that A(a, x) =
−x for all x ∈ Vn. The Jacobi space and the left units for Wn are the same
as for U(n) itself.

• The algebra Sn is the subalgebra of U(n) whose space consists of commutative
multiplications A on Vn such that tr(LAx ) = 0 for all x ∈ Vn.

• The algebra Hn is the subalgebra of U(2n) whose space consists of commu-
tative multiplications A on V2n “preserving” a nondegenerate bilinear skew-
symmetric form (·, ·), that is,

(A(x, y), z) = (x,A(y, z))

for all x, y, z ∈ V2n.
All assertions and calculations made for Wn hold also for Sn and Hn, except that
the latter two algebras have no left units (but have left quasiunits).

Kantor described simple finite-dimensional terminal algebras with left quasiu-
nits:

Theorem 14 ([13]). Let A be a simple finite-dimensional terminal algebra with
a left quasiunit over an algebraically closed field of characteristic 0. Then A is
either Jordan or isomorphic to one of the algebras Wn, Sn, Hn. In the last case,
the Lie algebras corresponding to these algebras are simple infinite-dimensional
Lie algebras with the same notation.

The algebraic and geometric classification of nilpotent terminal algebras in the
dimension up to 4 was obtained in the paper [18], and 5-dimensional one generated
nilpotent terminal algebras were classified in [19].

In the paper [15] Kantor considered the generalization of terminal algebras for
an arbitrary arity.

Definition 12. An l-linear operation A is said to be terminal if

TKK(A) =

l−1∑
i=−∞

Ui,

where TKK(A) is defined as in Definition 9.
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In particular, he considered terminal trilinear operations. He found an identity
equivalent to the definition of a terminal trilinear operation and described the
simple finite-dimensional terminal triple systems.

6 Open problems
In this section we formulate questions related to conservative algebras that are still
open.

As we have seen, conservative algebras are usually studied with the help of the
TKK construction and there is not many results regarding the structure theory of
conservative algebras. Many problems from the list below are consequences of the
fact that the class of conservative algebras does not form a variety.

• It is not clear if subalgebras and homomorphic images of conservative algebras
are conservative. As direct products of conservative algebras are conserva-
tive, the affirmative answer to this question would imply (by Birkhoff’s HSP
theorem [3]) that the class of conservative algebras forms a variety, which is
not true (see below). However, there is no explicit counterexample by now.
By definition of the general TKK construction and Proposition 4, the class
of conservative algebras of finite order is closed with respect to finite direct
products and homomorphic images, but it is not clear if it is closed with
respect to taking subalgebras.

• A related open problem is to study identities for certain subclasses of conser-
vative algebras. In particular, it is interesting if one can express the finiteness
conditions TKK(A) =

∑k
i=−k Ui for all k as identities with respect to the

original multiplication (this would imply that a subalgebra of a conservative
algebra of finite order also has finite order). Also, one can study the identities
of the algebras U(n), particularly, find the minimal degree of a nonassocia-
tive identity for U(n) and study if the variety generated by all U(n), n ≥ 1,
coincides with the class of all nonassociative algebras.

• At the present moment, no attempts have been made to study the structure
theory of conservative algebras in general, for example, to define a notion of
a radical (in the Kurosh-Amitsur sense) for the class of conservative algebras
and study the semisimple algebras with respect to this radical. The radical
was defined for algebras of finite order by Kantor in [11], see Section 2.2.
It seems an interesting task to construct a radical for terminal algebras and
other subclasses of conservative algebras.

• By now, there is no defined notion of a conservative representation. Consid-
ering a conservative algebra A as an algebraic system with two bilinear multi-
plications P and P ∗, we can define a conservative representation by extending
the operators of left and right multiplications with respect to P and P ∗ to
linear operators on a vector space V such that the split null extension A⊕V
is a conservative algebra (for this general approach see [8]). It would be in-
teresting to obtain the description of irreducible conservative representations
of certain classes of simple finite-dimensional conservative algebras and see



250 Yury Popov

if classical results such as complete reducibility of finite-dimensional repre-
sentations hold for these algebras. On the other hand, Theorem 11 suggests
defining a representation of a conservative algebra A as a homomorphism
A→ U(V ) for some vector space V. One can obtain upper bounds on n such
that J ↪→ U(n) for a simple finite-dimensional Jordan algebra J.

• It would also be interesting to study the algebraic properties of universal
conservative algebras U(n) for n > 2, continuing the work of the papers [20],
[22] (that is, to find one-sided ideals, automorphisms, maximal subalgebras,
etc. of these algebras)

• We can also study conservative algebras from a geometric point of view, that
is, to study their degenerations and deformations. Theorem 8 implies that the
set Consn of all conservative algebras, considered as a subset of an algebraic
variety V ∗n⊗V ∗n⊗Vn (see, for example, [18] for details) is not closed (therefore,
conservative algebras do not form a variety), so it is interesting to describe
its closure. Moreover, it is not clear if a degeneration of a conservative (or,
more generally, rigid) is always conservative (rigid).

• One can also study finite-dimensional conservative superalgebras. For ex-
ample, it would be interesting to obtain a classification of simple finite-
dimensional conservative superalgebras of order two and construct the super
version of the correspondence between structurable algebras and conserva-
tive algebras of order 2 with a left unit given in Proposition 8. Note that
the classification of simple finite-dimensional structurable algebras over an
algebraically closed field of characteristic 0 was obtained in [27].
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