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ON THE 2-CLASS GROUP OF SOME NUMBER FIELDS
WITH LARGE DEGREE

Mohamed Mahmoud Chems-Eddin, Abdelmalek Azizi,
and Abdelkader Zekhnini

Abstract. Let d be an odd square-free integer, m ≥ 3 any integer
and Lm,d := Q(ζ2m ,

√
d). In this paper, we shall determine all the fields

Lm,d having an odd class number. Furthermore, using the cyclotomic
Z2-extensions of some number fields, we compute the rank of the 2-class
group of Lm,d whenever the prime divisors of d are congruent to 3 or 5
(mod 8).

1. Introduction

Let K be an algebraic number field. For a prime integer p, let Clp(K) denote
the p-class group of K, that is the p-Sylow subgroup of its ideal class group
Cl(K) in the wide sense. The class group Cl(K), its subgroup Clp(K) and
their orders and structures have been investigated and studied in many papers
for a long time, and there are many interesting open problems related to these
topics which are the object of intense studies.

One classical and difficult problem in algebraic number theory is the deter-
mination of the rank of the p-class group of a number field K. When p = 2 and
K is a quadratic extension of a number field k having an odd class number, the
ambiguous class number formula can be used to determine this rank, involving
units of k which are norms in K/k and ramified primes in K/k (cf. [6]). This
fact is practically one of the most important means for structuring the 2-class
group of a given number field of small degree (cf. [1, 12]). Our contribution
in this article is to study the 2-rank of an infinite family of number fields,
with large degree over Q. Comparing with other papers tackling this problem,
the main novelty of this article is the combination of ramification theory,
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ambiguous class number formula and the theory of cyclotomic Z2-extensions
of some number fields.

Let d be an odd square-free integer, m ≥ 3 any integer and Lm,d :=
Q(ζ2m ,

√
d). In the present paper, we are interested in studying the parity of

the class number of all the fields Lm,d. Furthermore, we compute the rank of
the 2-class group of Lm,d assuming the prime divisors of d are congruent to 3
or 5 (mod 8). Since the unit group of Q(ζ2m), with m ≥ 7, is not described
until today, the methods using unit groups for computing the rank of the
2-class group of a given number field are not valid for treating such problem in
our case when m ≥ 7. For this, we will call some results from Iwasawa theory
to overcome the problem. In the appendix, we compute the rank of the 2-class
group of L+

m,d, the maximal real subfield of Lm,d, in terms of the number of
prime divisors of d.

Finally, to sum up, let us highlight the importance of some parts of the
present work. Note that the layers of the Z2-extensions of k = Q(

√
d,
√
−1)

were subject of some recent studies (e.g. [8, 10]); and in this paper, we give
more arithmetical properties of Lm,d (resp. L+

m,d), the layers of the cyclotomic
Z2-extension of k (resp. Q(

√
d)). Furthermore, we discuss the interesting

question of the parity of the class number of Lm,d, and we explicitly give the
rank of its 2-class group which is strongly related to the interesting problem of
the structure of the Iwasawa module (see for example Corollary 4.5 or [3]). The
authors of [3] used this paper with some other techniques of Iwasawa theory
to determine the structure of the 2-class group of some fields Lm,d.

Before quoting some preliminary results, let us fix the following notations
which will be used throughout this paper.

Notations

? d: An odd square-free integer,
? m: A positive integer ≥ 3,
? ζn: An n-th primitive root of unity,
? Km = Q(ζ2m),
? Lm,d = Km(

√
d),

? k+: The maximal real subfield of a number field k,
? Cl2(k): The 2-class group of a number field k,
? k∞: The Z2-extension of a number field k,
? kn: The nth layer of k∞/k,
? X∞: lim←−(Cl2(kn)),
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? Ok: The ring of integers of k,
? h(k): The class number of k,
? h2(k): The 2-class number of k,
? N : The norm map of the extension Lm,d/Km,
? Ek: The unit group of k,
? em,d: Defined by (EKm : EKm ∩N(Lm,d)) = 2em,d ,

?
(
α,d
p

)
: The quadratic norm residue symbol for Lm,d/Km,

? εl: The fundamental unit of the quadratic field Q(
√
l),

? h2(d): The 2-class number of the quadratic field Q(
√
d),

? rank2(Cl(Lm,d)): The rank of the 2-class group of Lm,d.

2. Preliminary results

Let us collect some results that will be used in the sequel. Let k be an
algebraic number field and k∞ a Z2-extension of k, that is a Galois extension
of k whose Galois group is topologically isomorphic to the 2-adic ring Z2. For
a non-negative integer n, denote by kn the intermediate field of k∞/k with
degree 2n over k. Begin by the following theorem which deals with ranks and
class numbers of the intermediate subextensions of k∞/k.

Theorem 2.1 ([5]). Let k∞/k be a Z2-extension and n0 an integer such that
any prime of k∞ which is ramified in k∞/k is totally ramified in k∞/kn0 .
1. If there exists an integer n ≥ n0 such that h2(kn) = h2(kn+1), then h2(kn) =
h2(km) for all m ≥ n.

2. If there exists an integer n ≥ n0 such that rank2(Cl(kn)) = rank2(Cl(kn+1)),
then rank2(Cl(km)) = rank2(Cl(kn)) for all m ≥ n.

Theorem 2.2 ([14, Theorem 10.1]). If an extension of number fields L/K
contains no unramified abelian subextensions F/K, with F 6= K, then h(K)
divides h(L).

Lemma 2.3 ([14, Lemma 8.1]). The cyclotomic units of Km (resp. K+
m) are

generated by ζ2m (resp. −1 ) and ξk,m = ζ
(1−k)/2
2m

1−ζk2m
1−ζ2m

, where k is an odd
integer such that 1 < k < 2m−1.

The following result is a consequence of ramification theory in a Kummer
extension.
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Theorem 2.4 ([7]). Let K/k be a quadratic extension and µ ∈ k prime to 2
such that K = k(√µ). The extension K/k is unramified at finite primes if and
only if µ verifies the following properties:
1. The principal ideal generated by µ is a square of a fractional ideal of k.
2. There exists ξ ∈ k such that µ ≡ ξ2 (mod 4).
Lemma 2.5 ([1]). Let p be a prime integer and pK3 a prime ideal of K3 lying
over p.
1. If p ≡ 3 mod 8, then

(
ζ8,p
pK3

)
= −1 and

(
ε2,p
pK3

)
= −1.

2. If p ≡ 5 mod 8, then
(
ζ8,p
pK3

)
= −1 and

(
ε2,p
pK3

)
= 1.

Proposition 2.6. Let m ≥ 3 be an integer and d an odd square-free integer.
The ring of integers of Lm,d is given by

OLm,d =
{
Z[ζ2m ,

1+
√
d

2 ] if d ≡ 1 mod 4 ,
Z[ζ2m ,

1+
√
−d

2 ] if d ≡ 3 mod 4 .
Furthermore, the relative discriminant of Lm,d/Km is δLm,d/Km = dOLm,d .

Proof. Assume that d ≡ 1 (mod 4), then δKm ∧ δQ(
√
d) = 1, so OLm,d =

OKmOQ(
√
d) = Z[ζ2m ,

1+
√
d

2 ] = OKm [ 1+
√
d

2 ]. So the relative discriminant of
Lm,d/Km is generated by discLm,d/Km(1, 1+

√
d

2 ) = ( 1+
√
d

2 − 1−
√
d

2 )2 = d. If
d ≡ 3 (mod 4), then −d ≡ 1 (mod 4). As we have OLm,d = OLm,−d , so by the
previous case we easily deduce the result. �

Proposition 2.7. Let m ≥ 4 be an integer and p a prime integer. Then, p
decomposes into the product of two prime ideals of Km if and only if p ≡ 3 or
5 (mod 8).
Proof. Let p be a rational prime and pOK4 = p1 . . . pg its factorization in OK4 .
Denote by f the residue degree of p in K4, and by k the positive integer less
than 16, such that p ≡ k (mod 16). Then, by the theorem of the cyclotomic
reciprocity law (see [14, Theorem 2.13]), we have:

k 1 3 5 7 9 11 13 15

f 1 4 4 2 2 4 4 2

g 8 2 2 4 4 2 2 4

It follows that the rational primes that decompose into the product of two prime
ideals of K4 are exactly those which are congruent to 3 or 5 (mod 8). So a prime
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p decomposes into the product of two prime ideals of Km, is congruent to 3 or 5
(mod 8). For the converse, assume that p ≡ 3 or 5 (mod 8) and pOKm = p1p2,
for m ≥ 4. As Km+1 = Km(

√
ζ2m), then

(
ζ2m
pi

)
=
( ζ2m−1

pi

)
= −1. So the result

comes by induction. �

Let us propose a new simple proof of the following well known result.

Theorem 2.8. For all m ≥ 2, the class number of Km = Q(ζ2m) is odd and
every unit of Km is a norm of an element of Km+1.

Proof. Note first that Km+1 = Km(
√
ζ2m). Suppose h(Km) is odd for some

m ≥ 2. As Km+1/Km is quadratic extension, so the well known ambiguous
class number formula (see [6]) implies that rank2(Km+1) = tm− 1− em, where
em is defined by (EKm : EKm ∩ NKm+1/Km(K∗m+1)) = 2em and tm is the
number of ramified primes in Km+1/Km. Since 2 is the only rational prime
that is ramified in Km+1 and it is totally ramified (in Km+1), hence tm = 1.
Thus, rank2(Km+1) = 1− 1− em = −em. From which we deduce that em = 0
and rank2(Km+1) = 0. So the result comes by induction. �

3. The parity of the class number of the fields Lm,d
In this section, we investigate the parity of the class number of fields Lm,d

without relying on results of Iwasawa theory.

Theorem 3.1. Let d be an odd square-free integer and m ≥ 3 any integer.
Then h(Lm,d) is odd if and only if d is a prime congruent to 3 or 5 (mod 8).

Proof. Suppose that d is odd, and denote by L∗m,d, Hm,d the genus field and
the Hilbert 2-class field of Lm,d respectively. It is known that:

[L∗m,d : Q] =
∏

p|δLm,d

e(p) and Cl2(Lm,d) = Gal(Hm,d/Lm,d) ,

where e(p) is the ramification index of p in Lm,d. So

[L∗m,d : Q] =
∏
p|2d

e(p) = [L∗m,d : Lm,d][Lm,d : Q] = 2m[L∗m,d : Lm,d] .

Since e(2) = 2m−1 and e(p) = 2 for any prime divisor p of d, we have∏
p|d

e(p) = 2.[L∗m,d : Lm,d] .

Hence, if d is not a prime, then Lm,d ( L∗m,d ⊆ Hm,d and h2(Lm,d) is even.
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Suppose now that d = p is a prime. We distinguish the following four cases:
• Assume d = p ≡ 1 (mod 8). Set p = a2 + 16b2 = e2 − 32f2 and π1 = a+ 4bi,
π2 = e+ 4f

√
2. As the ramified primes of Km in Lm,d are exactly the prime

divisors of p in Km, then the ideals of Lm,d generated by π1 and π2 are squares
of ideals of Lm,d. Note that as a and e are odd, then a ≡ e ≡ ±1 ≡ i2 (mod 4).
It follows that the equation πj ≡ ξ2 (mod 4), j = 1 or 2, has a solution. So
L1 = Lm,d(

√
π1) and L2 = Lm,d(

√
π2) are two distinct unramified quadratic

extensions of Lm,d. Thus h(Lm,d) is divisible by 4. Furthermore, Cl2(Lm,d) is
not trivial and not cyclic.
• Assume now d = p ≡ 7 (mod 8). We prove that h(Lm,p) is even for all
m ≥ 3 by induction on m. If m = 3, then h(L3,p) is even by [1, Theorem
4.4]. Suppose that h(Lm,p) is even for some m ≥ 3. We have Q(

√
−p)/Q is

unramified at 2 and Q(ζ2m)/Q is totally ramified at 2, then Lm+1,p/Lm,p is
a quadratic extension that is ramified at primes over 2. So h(Lm,p) divides
h(Lm+1,p), by Theorem 2.2. Hence, h(Lm+1,p) is even.

Q(√p, ζ2m+1 )

uuuuuuuuuuuuuuuu

Q(√p, ζ2m )

������������

55555555555
Q(ζ2m+1 )

�����������

Q(
√
−p)

,,,,,,,,,, Q(ζ2m )

�����������

Q

yyyyyyyyyyyyyy

• Assume that d = p ≡ 5 (mod 8). For m ≥ 3, we have p decomposes into the
product of two prime ideals of Km, denote by pKm one of them (such that
pKm−1 ⊂ pKm). Since ζ2

2m = ζ2m−1 , so the minimal polynomial of ζ2m over
Km−1 is X2 − ζ2m−1 and NKm/Km−1(ζ2m) = −ζ2m−1 . Then(ζ2m , p

pKm

)
=
(−ζ2m−1 , p

pKm−1

)
=
(ζ2m−1 , p

pKm−1

)
= · · · =

(ζ8, p

pK3

)
= −1 ,

hence em,d 6= 0 and rank2(Cl(Lm+1,p)) = 2 − 1 − em+1,p = 1 − em+1,p = 0.
Thus the 2-class group of Lm+1,p is trivial and h(Lm,d) is odd.
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• We treat the case d = p ≡ 3 (mod 8), similarly to the previous one and we
show that h(Lm,d) is odd. Which achieves the proof. �

Remark 3.2. Let d be a positive square-free integer, k∞ the cyclotomic
Z2-extension of k = Q(

√
−1,
√
d), kn the nth layer of k∞/k and X∞ =

lim←−(Cl2(kn)), thus X∞ = 0 if and only if d = p is a prime such that p ≡ 5 or 3
(mod 8).

4. The rank of the 2-class group of the fields Lm,d
Let d be an odd composite square-free integer of prime divisors congruent

to 3 or 5 (mod 8) and m ≥ 3 an integer. To state the main theorem of this
section, we need the following result.

Lemma 4.1. Let m ≥ 3 be an integer and d an odd composite square-free
integer. Let pKm denote a prime ideal of Km dividing d.
1. If d = p1, . . . , pr, such that for all i, pi ≡ 5 (mod 8) is a prime, then(ζ2m , d

pKm

)
= −1 and

(ξk,m, d
pKm

)
= 1 .

2. If d = p1, . . . , pr, such that for all i, pi ≡ 3 (mod 8) is a prime, then(ζ2m , d

pKm

)
= −1 and

(ξk,m, d
pKm

)
=
{
−1 , if k ≡ ±3 (mod 8)
1 , elsewhere.

3. If d = p1, . . . , ps, ps+1, . . . , pr, such that d is not prime, pi ≡ 5 (mod 8) for
1 ≤ i ≤ s and pj ≡ 3 (mod 8) for s+ 1 ≤ j ≤ r, then

(ζ2m , d

pKm

)
= −1 and

(ξk,m, d
pKm

)
=


−1 , if p ≡ 3 (mod 8) and

k ≡ ±3 (mod 8)
1 , elsewhere,

where p is the rational prime contained in pKm .

Proof. Denote by pK a prime ideal of a number field K lying over p. Each
case needs special computations:
1. Note that NKm/Km−1(ζ2m) = −ζ2m−1 , so(ζ2m , d

pKm

)
=
(ζ2m , p

pKm

)
=
(ζ2m−1 , p

pKm−1

)
= · · · =

(ζ8, p

pK3

)
= −1 , and

(1− ζk2m , d
pKm

)
=
(NKm/Km−1(1− ζk2m), d

pKm−1

)
= · · · =

(1− ζk8 , d
pK3

)
=
(1− ik, d

pK2

)
.
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Thus(ξk,m, d
pKm

)
=
(ζ(1−k)/2

2m , d

pKm

)( 1−ζk2m
1−ζ2m

, d

pKm

)
= (−1)(1−k)/2

( (1− ζk2m)(1− ζ2m), d
pKm

)
= (−1)(1−k)/2

(1− ζk2m , d
pKm

)(1− ζ2m , d

pKm

)
= (−1)(1−k)/2

(1− ik, d
pK2

)(1− i, d
pK2

)
=

−
(

1+i,d
pK2

)(
1−i,d
pK2

)
if k ≡ 3 (mod 4)(

1−i,d
pK2

)(
1−i,d
pK2

)
elsewhere

=
{
−
(

2,d
pK2

)
= −

(
2,p
pK2

)
= −

(
2
p

)
if k ≡ 3 (mod 4)

1 elsewhere
= 1 .

2. As in the previous case, we have
(
ζ2m ,d
pKm

)
= −1 and:

(ξk,m, d
pKm

)
=
(ζ(1−k)/2

2m , d

pKm

)( 1−ζk2m
1−ζ2m

, d

pKm

)
= (−1)(1−k)/2

( (1− ζk2m)(1− ζ2m), d
pKm

)
= (−1)(1−k)/2

(1− ζk2m , d
pKm

)(1− ζ2m , d

pKm

)
= (−1)(1−k)/2

(1− ζk8 , d
pK3

)(1− ζ8, d

pK3

)
= (−1)(3−k)/2

(ζ−1
8 , d

pK3

)(1− ζk8 , d
pK3

)(1− ζ8, d

pK3

)
(1)

=



(
ε2,p
pK3

)
, if k ≡ 3 (mod 8)(

1+ζ8,p
pK3

)(
1−ζ8,p

pK3

)
, if k ≡ 5 (mod 8) (see (1))

−
(

1−ζ−1
8 ,p

pK3

)(
1−ζ8,p

pK3

)
, if k ≡ 7 (mod 8) (see (1))(

1−ζ8,p
pK3

)(
1−ζ8,p

pK3

)
, if k ≡ 1 (mod 8) (see (1))
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=



−1, if k ≡ 3 (mod 8) (see Lemma 2.5)( 1−i,p
pK3

)
, if k ≡ 5 (mod 8)

−
( (1−ζ−1

8 )(1−ζ8),p
pK3

)
, if k ≡ 7 (mod 8)

1, if k ≡ 1 (mod 8)

=


−1, if k ≡ 3 (mod 8)( 1−i,p

pK2

)
=
( 2
p

)
, if k ≡ 5 (mod 8)

−
( 2−

√
2,p

pK3

)
= −

( 2−
√

2,p
p
Q(
√

2)

)
= −

( 2
p

)
, if k ≡ 7 (mod 8)

1, if k ≡ 1 (mod 8)

=
{
−1, if k ≡ ±3 (mod 8) ,
1, elsewhere.

3. We similarly prove the third assertion.
�

Remark 4.2. Keep the above hypothesis. We have
1. ζ2m is not a norm in Lm,d/Km.
2. ξk,m is not a norm in Lm,d/Km if and only if d is divisible by a prime

integer congruent to 3 (mod 8) and k ≡ ±3 (mod 8).

Now we are able to prove the main result of this section.

Theorem 4.3. Let d = p1, . . . , pr be an odd composite square-free integer such
that every prime divisor pi of d is congruent to 3 or 5 (mod 8) and m ≥ 3
is an integer. Then the rank of the 2-class group of Lm,d is 2r − 2 or 2r − 3.
More precisely, rank2(Cl(Lm,d)) = 2r − 2 if and only if all the prime divisors
of d are in the same coset (mod 8).

Proof. The ring of integers of Km is principal for m ∈ {3, 4, 5} (see [11]). So
h(K+

m) = 1. By [14, Theorem 8.2] and Lemma 2.3, the unit group EKm of Km

is generated by ζ2m and ξk,m = ζ
(1−k)/2
2m

1−ζk2m
1−ζ2m

, where k is an odd integer such
that 1 < k < 2m−1. So by the ambiguous class number formula (see [6]) and
Proposition 2.6, we have rank2(Cl(Lm,d)) = 2r − 1− em,d. Let p be a prime
divisor of d and pKm a prime ideal of Km lying over p. If all the prime divisors
of d are in the same coset (mod 8), then by Lemma 4.1 it is easy to see that
EKm/(EKm ∩N(Lm,d)) = {1, ζ2m}. Hence em,d = 1.
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Suppose now that the prime divisors of d are not in the same coset (mod 8).
By Lemma 4.1, we have ξk,m is a norm in Lm,d/Km, for all k ≡ ±1 (mod 8).

Let k 6= k′ be two odd positive integers such that 1 < k, k′ < 2m−1 and k,
k′ 6≡ ±1 (mod 8). Again by Lemma 4.1, we have:(ξk,mξk′,m, d

pKm

)
= 1 for all pKm of Km,

and: (ζ2mξk,m, d

ppK3

)
= −1 if pKm is lying over p ≡ 5 (mod 8) .

So ξk,m = ξk′,m and ξk,m 6= ζ2m in EKm/(EKm∩N(Lm,d)). Thus EKm/(EKm∩
N(Lm,d)) = {1, ζ2m , ξk,m, ζ2mξk,m}. Hence em,d = 2. So we have the theo-
rem for m ∈ {3, 4, 5}. Let π1 = 2, π2 = 2 +

√
2, . . . , πm = 2 + √πm.

Set k = Q(
√
d,
√
−1) and k1 = k(√π1) = L3,d, k2 = k(√π2) = L2,d,. . .,

km = k(√πm) = Lm,d. Thus, the cyclotomic Z2-extension k∞ of k is given by
∪∞m=0km. As we have proved Theorem 4.3 for the three layers k1, k2 and k3,
then Theorem 2.1 achieves the proof. �

By the previous results, it is easy to get the following interesting theorem.

Theorem 4.4. Let d be an odd square-free integer and m ≥ 3 an integer.
Suppose that d is not a prime congruent to 7 (mod 8). Then Cl2(Lm,d) is
cyclic non-trivial if and only if d = pq with p ≡ 5 (mod 8) and q ≡ 3 (mod 8).

Proof. In fact, by [1, Theorem 5.5] we have Cl2(L3,d) is cyclic non-trivial if
and only if d has one of the following forms:
1. d = q ≡ 7 (mod 8) is a prime integer.
2. d = qp, where q ≡ 3 (mod 8) and p ≡ 5 (mod 8) are prime integers.
Since rank2(Cl2(Lm,d)) ≥ rank2(Cl2(L3,d)), then we get the result by the
previous theorem. �

Corollary 4.5. Let d be an odd square-free integer and m ≥ 3. Suppose that d
is not a prime congruent to 7 (mod 8). Let k∞ be the cyclotomic Z2-extension
of k = Q(

√
−1,
√
d), kn the n-th layer of k∞/k and X∞ = lim←−(Cl2(kn)). Thus

1. X∞ is cyclic if and only if, d = pq with p ≡ 5 (mod 8) and q ≡ 3 (mod 8).
2. If d = pq with p ≡ 5 (mod 8) and q ≡ 3 (mod 8), then the Iwasawa
λ-invariant of k equals 0 or 1.

Remark 4.6. For any integer r ≥ 0 there are infinitely many imaginary
biquadratic number fields k such that rank(Cl2(kn))) = r, ∀n ≥ 1, where kn is
the n-th layer of k∞/k.
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5. Appendix

Let m ≥ 3 be an integer and d an odd positive square-free integer. Set
π3 = 2, π4 = 2 +

√
2, . . . , πm = 2 +√πm−1 and K+

m = Q(√πm). The maximal
real subfield of Lm,d is L+

m,d = K+
m(
√
d). Note that, for several cases of positive

square-free integers d, the rank of the 2-class group of L+
m,d is well known in

terms of the decomposition of those primes in the cyclotomic tower of Q that
ramify in Q(

√
d)/Q. In this appendix, we explicitly give the rank of the 2-class

group of L+
m,d according to the number of prime divisors of d assuming that

all the prime divisors of d are congruent to 3 or 5 (mod 8).

Lemma 5.1. Let p be a rational prime. Then for all m ≥ 3, p is inert in K+
m

if and only if p is congruent to 3 or 5 (mod 8).

Proof. For m = 3, p is inert in K3 = Q(
√

2) if and only if p is congruent to 3 or
5 (mod 8). Thus p is inert in K+

m, implies that p is congruent to 3 or 5 (mod 8).
We prove the converse by induction. Suppose that p is inert in K+

m and show
that it is inert in K+

m+1 = Q(√πm+1). Let p denote the prime ideal of K+
i

lying over p, for i ≤ m. We have
(πm+1

p

)
=
(NK+

m/K
+
m−1

(πm+1)

p

)
=
( 4−πm+1

p

)
=( 2−√πm

p

)
= · · · =

( 2
p

)
= −1. It follows that p is inert in K+

m+1. �

Remark 5.2. Let d = p1, . . . , pr be a square-free integer such that all the
prime divisors pi of d are congruent to 3 or 5 (mod 8) and m ≥ 3.

• If d ≡ 1 (mod 4), then we have r primes that ramify in L+
m,d/K

+
m, which

are exactly the prime divisors of d in K+
m.

• If d 6≡ 1 (mod 4), then we have r+1 primes that ramify in L+
m,d/K

+
m, which

are exactly the prime of K+
m lying over 2 and the prime divisors of d in K+

m.

Lemma 5.3. Let m ≥ 3 and d be a positive square-free integer such that all
the prime divisors of d are congruent to 3 or 5 (mod 8) and pK+

m
be a prime

ideal of K+
m dividing d. Then(ξk,m, d
pK+

m

)
=
{
−1 if p ≡ 3 (mod 8) and k ≡ ±3 (mod 8)
1 elsewhere,

where p is the rational prime in pK+
m

.

Proof. By Lemmas 2.7 and 5.1, pK+
m

decomposes into the product of two
primes of Km. Hence, the result follows directly from Lemma 4.1. �
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Theorem 5.4. Let m ≥ 3 and d = p1, . . . , pr be a positive square-free integer
such that every prime divisor pi of d is congruent to 3 or 5 (mod 8). Then

rank2(L+
m,d) =


r − 2 if d ≡ 1 (mod 4) and d is divisible by

a prime congruent to 3 (mod 4),
r − 1 elsewhere.

Proof. Similar to the proof of Theorem 4.3. �

Proposition 5.5. Let d = pq with p ≡ 5 (mod 8) and q ≡ 3 (mod 8). Then
for all m ≥ 3, we have:

h2(L+
m,d) = 2 .

Proof. Let εpq = a + b
√
pq with a, b ∈ Z (resp. ε2pq = x + y

√
2pq with x,

y ∈ Z ) be the fundamental unit of Q(√pq) (resp. Q(
√

2pq)). It is known that
N(εpq) = N(ε2pq) = 1. We have a2 − 1 = b2pq and x2 − 1 = y22pq. So a± 1
and x± 1 are not squares in N. In fact, if x± 1 is a square in N, then{

x± 1 = y2
1

x∓ 1 = 2pqy2
2 ,

for some integers y1 and y2 such that y = y1y2. So 1 =
(y2

1
p

)
=
(
x±1
p

)
=(

x∓1±2
p

)
=
(±2
p

)
=
( 2
p

)
= −1, which is absurd. Similarly a± 1 is not a square

in N. It follows by [2, Proposition 3.3] that {ε2, εpq,
√
εpqε2pq} is a fundamental

system of units of L+
3,d = Q(

√
2,
√
d). Note that by [4, Corollary 19.7], we

have h2(pq) = h2(2pq) = 2. So by Kuruda’s class number formula (see [9]), we
obtain

h2(L+
3,d) = 1

4 · 2 · h2(pq)h2(2pq)h2(2) = 2 .

Thus h2(d) = h2(L+
3,d) = 2. So the result by Theorem 2.1. �

Under the hypothesis of the previous proposition we deduce that the
µ-invariant and the λ-invariant vanishes for such field, as well we deduce
that the ν-invariant equals 1. For more results on the Iwasawa invariants of
real quadratic number fields see [13]. We close our paper by the following
beautiful result:

Theorem 5.6. Let n be an integer such that every prime p appearing in the
decomposition of n with an odd exponent is congruent to 1 (mod 16) or 7
(mod 8). Then the equation:

n = x2 − y2ζ8 ,

has a solution (x, y) in Q(ζ8)× Q(ζ8).
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Proof. We can suppose that n is a positive square-free integer of prime divisors
congruent to 1 (mod 16) or 7 (mod 8). Let p be a prime ideal of Q(ζ8). If
p does not divide n, then

(
ζ8,n

p

)
=
(
n,ζ8

p

)
= 1. If p is lying over a prime

divisor p of n, then we have
(
n,ζ8

p

)
=
(
ζ8,n

p

)
=
(
ζ8,p

p

)
= 1. So n is a norm in

K ′ = Q(
√
ζ8) = Q(ζ16). Let α = x + yζ16 be an element of Q(ζ16) such that

n = NK′/K(α) = (x+ yζ16)(x− yζ16) = x2− y2ζ8. Which gives the result. �
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