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Abstract. In this work, we address the problem of fluid-structure interaction (FSI) with
moving structures that may come into contact. We propose a penalization contact algorithm
implemented in an unfitted numerical framework designed to treat large displacements. In
the proposed method, the fluid mesh is fixed and the structure meshes are superimposed
to it without any constraint on the conformity. Thanks to the Extended Finite Element
Method (XFEM), we can treat discontinuities of the fluid solution on the mesh elements
intersecting the structure. The coupling conditions at the fluid-structure interface are en-
forced via a discontinuous Galerkin mortaring technique, which is a penalization method
that ensures the consistency of the scheme with the underlining problem. Concerning the
contact problem, we consider a frictionless contact model in a master/slave approach. By
considering the coupled FSI-contact problem, we perform some numerical tests to assess
the sensitivity of the proposed method with respect to the discretization and contact pa-
rameters and we show some examples in the case of contact between a flexible body and a
rigid wall and between two deformable structures.

Keywords: fluid-structure interaction; contact; extended finite element method; discon-
tinuous Galerkin; Nitsche’s method
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1. Introduction

Many engineering applications involve the interaction between a fluid and moving

structures, see e.g. [31], [62], [54], [10], [9], [61]. The numerical simulation of such

phenomena is very challenging, since the structures are subject to large displacements
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and deformations and special numerical methods are required to handle the move-

ment of the computational grids. Some applications involve the interaction between

structures that may come into contact, see e.g. [51], [45], [44], [49]. A well-established

approach to deal with the fluid-structure interaction (FSI) problem is the Arbitrary

Lagrangian Eulerian approach (ALE), see e.g. [30], [41], [32]. Its basic idea is to

introduce a new reference framework for the fluid domain that follows the movement

of the boundary induced by the displacement of the structures. At the discrete level,

this permits the fluid mesh to deform in accordance with the structures maintaining

its conformity with the interface. However, when the displacements are too large,

this approach may fail, since inverted fluid elements may appear, or may lead to an

inaccurate solution due to the presence of very stretched fluid elements. The same

argument can be applied when two structures approach each other. A possible rem-

edy is to remesh or to locally adapt the fluid mesh, see e.g. [58], [8]. An alternative

is to use the so-called unfitted methods. Unfitted methods rely on a fixed back-

ground grid for the fluid, while the structural elements are overlapped to it without

any constraint and they are able to move independently from the fluid mesh. This

class of methods includes, for example, the Immersed Boundary method [51], [52],

[47], [12], [14], [16], [38], [15], the Fictitious Domain method [37], [50], [7], [13], the

Fully-Eulerian approach [57], [53], [55], [35], the Extended Finite Element method

(XFEM) [36], [20], [4], [64], [59], the Cut-Finite Element method [46], the Polygo-

nal Discontinuous Galerkin method [5]. Hybrid approaches that combine the ALE

method and the unfitted technology have been proposed, see e.g. [40], [19], where

the ALE approach is used for dealing with the movement of the structure and the

Nitsche’s approach allows to weakly couple the fluid and solid at the interface.

Regarding the contact problem, several models have been proposed in the context

of pure contact mechanics, see e.g. [42], [60]. A possible simple model describes the

contact via the Karush-Kuhn-Tucker conditions

∆ > 0, λ 6 0, λ∆ = 0,

where ∆ is the distance between structures and λ is the normal traction at the

structure interface. It requires to introduce variational inequalities and the resulting

constraints can be imposed, for instance, via a penalization approach, see e.g. [27].

Recent works use an augmented Lagrangian/Nitsche’s approach to include the con-

tact in the discrete formulation, which is a penalization approach with the advantage

that it leads to a consistent formulation, see e.g. [26], [25], [28], [29], [23], [24]. How-

ever, only few results have been proposed regarding the contact in the fluid-structure

interaction framework, see e.g. [34], [21], [1], [2]. In the present work we employ the

XFEM [48], [11], [39] in combination with the discontinuous Galerkin (DG) mortar-

ing [6], [18] to discretize a FSI problem with contact. The XFEM is based on the
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classical Finite Element Method (FEM) with the advantage of enriching the numer-

ical approximation on the fluid elements crossed by the structure. In particular, it

allows to treat discontinuities within an element and, for example, to represent jumps

in the numerical solution. The DG approach allows to couple the fluid and structure

problems at the unfitted interface, where we prescribe no-slip coupling conditions.

To handle the contact between the immersed structures, we employ a penalization

method that prescribes the non-penetration condition at the solid-solid interface.

Notice that in [21], the authors have presented a consistent Nitsche’s method for

the contact model, resulting in a full Nitsche’s approach for the treatment of both

the FSI coupling terms and the contact one. Moreover, they formulate the FSI-

contact problem in two different ways, namely, by considering either no-slip or slip

coupling conditions at the fluid-structure interface. Though in our work we consider

only a penalty approach for the contact model and no-slip conditions for the FSI

coupling, we present some extensions in the numerical tests, in particular:

(i) the employment of unfitted meshes;

(ii) a non-linear equation for the fluid and a non-linear constitutive law for the solid;

(iii) the two-bodies contact case.

The aim of this work is to illustrate the XFEM/DG procedure and present some

preliminary results in the context of FSI problem with contact. In Section 2, we in-

troduce the fluid-structure interaction model and its XFEM/DG formulation; in

Section 3, we present the contact model and the discrete approximation in the

XFEM/DG framework; in Section 4, we show some numerical test cases; finally

in Section 5, we draw the conclusions and discuss possible future developments.

2. Unfitted approach for fluid-structure interaction

In this section, we introduce the governing equations for the fluid-structure inter-

action problem and its discretization in the XFEM/DG formulation.

2.1. Fluid-structure interaction model. We consider the fluid and solid

domains Ωf (t) and Ωs(t) and we partition their boundaries ∂Ωf (t) and ∂Ωs(t),

equipped with the outward unit normal nf (t) and ns(t), as ∂Ωf (t) = Σ(t) ∪ Γf

and ∂Ωs(t) = Σ(t) ∪ Γs, where Σ(t) = Ω
f
(t) ∩ Ω

s
(t) is the fluid-structure interface

with the time dependent unit normal n(t) = ns(t) = −nf(t), and Γf and Γs are

the portions of the boundaries fixed in time, see Figure 1. Moreover, we denote

Ω = Ωf (t) ∪Ωs(t).

The FSI problem in d-dimensions (with d = 2, 3) reads as follows:
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Ωf (t)

Ωs(t)

Γs

Σ(t)

Γf

n(t)

Figure 1. Sketch of the fluid and structure domains Ωf (t) (white) and Ωs(t) (grey) with
the fluid-structure interface Σ(t) (red).

Find, for any t ∈ (0, T ], the fluid velocity u(t) : Ωf (t) → R
d, the fluid pressure

p(t) : Ωf (t) → R, the solid displacement d̂(t) : Ω̂s → R
d, such that:





̺f∂tu+ ̺fu · ∇u−∇ ·Tf (u, p) = ff in Ωf (t),

∇ · u = 0 in Ωf (t),

u = 0 on Γf ;

(2.1)

{
̺s∂ttd̂−∇ · T̂s(d̂) = f̂s in Ω̂s,

d̂ = 0 on Γ̂s;
(2.2)

{
u = ḋ on Σ(t),

Tf (u, p)n = Ts(d)n on Σ(t).
(2.3)

Notice that we consider the fluid problem (2.1) and the coupling conditions (2.3)

in the Eulerian configuration, while the structure problem (2.2) is written in the

Lagrangian framework. We use the ·̂ notation to indicate the Lagrangian quantities,

recalling that we can pass from the reference to the current configuration with the

Lagrangian map L̂(t) : Ω̂s → Ωs(t) and that we can relate a function f in the current

configuration with its reference counterpart as follows:

f(x, t) = f ◦ L̂(t) = f̂(x̂, t).

For the fluid problem (2.1), we consider the Navier-Stokes equations for an incom-

pressible fluid with density ̺f and Cauchy stress tensor Tf (u, p) = −pI+2µfD(u),

where µf is the dynamic viscosity and

D(v) =
∇v +∇v⊤

2
.

For the solid problem (2.2), we consider the equations of elastodynamics, denoting

by ̺s the density of the material and by T̂s(d̂) the Piola-Kirchhoff stress tensor,
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linked to the Cauchy stress tensor Ts(d) by the following formula:

T̂s = JTsF−⊤.

Here, J = det(F) and F = ∇L̂ = I+∇d̂ is the deformation gradient. In particular,

for the tests performed in Section 4 we use the Saint Venant-Kirchhoff material law,

i.e.

(2.4) T̂s = (2µsE+ λstr(E)I)F⊤,

where E = 1
2 (F

⊤F− I) is the Green-Lagrange strain tensor and µs, λs are the Lamé

parameters, which can be written as functions of the Young’s modulus E and the

Poisson’s ratio ν:

µs =
E

2(1 + ν)
, λs =

Eν

(1 + ν)(1 − 2ν)
.

We indicate the external forces acting on the fluid and on the solid by ff and f̂s,

respectively, and we apply homogeneous Dirichlet boundary conditions on Γf and Γ̂s.

Finally, to close system (2.1)–(2.3), we define the initial conditions for fluid veloc-

ity, solid displacement and solid velocity:

u(x, 0) = u0(x) in Ωf (0),

d̂(x̂, 0) = d̂0(x̂), ∂td̂(x̂, 0) = v̂0(x̂) in Ω̂s.

2.2. Numerical discretization. We introduce the background mesh Th that dis-

cretizes the entire domain Ω and the solid mesh T s
h (t) that covers the domain Ω

s(t).

The background mesh Th is fitted to ∂Ω but in general not to Σ(t). The mesh T s
h (t)

overlaps Th, as shown in Figure 2.

Th

T s

h
(t)

Figure 2. The structure mesh T
s
h (t) (grey elements with blue edges) overlaps the back-

ground mesh Th.
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Notice that there are some elementsK ∈ Th that are partially overlapped by T s
h (t),

and thus split by Σ(t) into two or more polyhedra PK , see Figure 3. We denote these

elements as cut-elements and we collect them in the set Gh(t) defined as:

Gh(t) = {K ∈ Th : K ∩Σ(t) 6= ∅}.

The Extended Finite Element method allows to duplicate the set of degrees of free-

dom (dofs) associated with any element K ∈ Gh(t) and, for each set, to compute

a numerical solution on a polyhedron PK of the element K that belongs to the fluid

domain. It is important to point out that although the background mesh Th is fixed,

the intersection with the foreground mesh T s
h (t) changes in time due to the move-

ment of the solid body, so the background fluid elements crossed by Σ(t) may change

from a time step to the following one. We denote by FG,h(t) the set of faces F of

the elements in Gh(t), see Figure 3. The elements K ∈ Th completely overlapped

by T s
h (t) do not contribute to the numerical formulation, since they do not represent

a physical portion of the domain. Further details can be found in [33], [64].

Figure 3. Representation (in green) of the set of background elements partially overlapped
Gh(t) and the corresponding set of faces FG,h(t).

The presence of cut-elements may compromise the stability of the numerical for-

mulation. Indeed, the intersection between the background and the solid meshes

may generate small polyhedral elements and hamper the conditioning of the result-

ing discrete formulation. A possible remedy is to introduce a stabilization term, the

so-called ghost penalty term, see e.g. [17], which prevents the ill-conditioning of the

discrete problem.

The space discretization is based on linear finite elements for the fluid velocity,

pressure and solid displacement, defined as follows:

Vh(t) = {vh ∈ [Xf
h (t)]

d : vh|Γf = 0}, Qh(t) = {qh ∈ Xf
h (t)},

Ŵh = {ŵh ∈ [X̂s
h]

d : ŵ
h|Γ̂s = 0},
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where the finite element space for the fluid Xf
h (t) is the direct sum of two spaces,

one for the standard FEM part, i.e. for all the elements K /∈ Gh(t), and one for the

“extended” part, i.e. for all K ∈ Gh(t), namely

Xf
h (t) = Xf,std

h (t)
⊕

Xf,XFEM
h (t),

Xf,std
h (t) = {vh ∈ C0(Ωf (t)) : vh|K ∈ P1(K) ∀K ∈ Th \ Gh(t)},

Xf,XFEM
h (t) = {vh ∈ C0(Ωf (t)) : vh|PK

∈ P1(PK) ∀PK ∈ K, ∀K ∈ Gh(t)},

while

X̂s
h = {ŵh ∈ C0(Ω̂s) : ŵh|K ∈ P1(K) ∀K ∈ T̂ s

h }.

The proposed semi-discrete formulation of the problem described by equa-

tion (2.1)–(2.3) reads as follows:

For any t > 0, find (uh(t), ph(t), d̂h(t)) ∈ Vh(t)×Qh(t)× Ŵh such that:

(2.5) ̺f (∂tuh,vh)Ωf (t) + af (uh,vh) + b(ph,vh)− b(qh,uh)

+ c(uh,uh,vh) + ̺s(∂ttd̂h, ŵh)Ω̂s + as(d̂h, ŵh)

+ sh(uh, ph;vh, qh) + gh(uh,vh)

− (αTf (uh, ph)n
f + (1− α)Ts(dh)n

f ,vh −wh)Σ(t)

− (uh − ḋh, αT
f (vh,−qh)n

f + (1 − α)Ts(wh)n
f )Σ(t)

+
γΣµ

f

h
(uh − ḋh,vh −wh)Σ(t)

= (ff ,vh)Ωf (t) + (f̂s, ŵh)Ω̂s ,

for all (vh(t), qh(t), ŵh) ∈ Vh(t)×Qh(t)× Ŵh.

We have denoted

af (u,v) = 2µf(D(u),∇v)Ωf (t),

as(d̂, ŵ) = (T̂s(d̂),∇ŵ)Ω̂s
,

b(p,v) = −(p,∇ · v)Ωf (t),

c(z,u,v) = ̺f (z · ∇u,v)Ωf (t),

and sh(uh, ph;vh, qh) is the bilinear form that collects the stabilization terms for

the Navier-Stokes equation and ensures the discrete inf-sup condition and the

control of the velocity oscillations at high Reynolds number. In this work, the

term sh(uh, ph;vh, qh) represents the continuous interior penalty stabilization, see

e.g. [22]. On FG,h(t) we have applied the ghost penalty stabilization term defined as

gh(uh,vh) = γg
∑

F∈FG,h(t)

µfhF

∫

F

[[∇uh]]n · [[∇vh]]n,
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where γg > 0, [[S]] = S+−S− is the trace operator representing the jump of a tensor-

value function S across the interface between the elements K+ and K−, while on

the faces belonging to the fluid-structure interface Σ(t) we have weakly imposed the

continuity of the velocity via a Discontinuous Galerkin approach. In particular, we

have employed the symmetric interior penalty method, see e.g. [6], [18], [20], with

γΣ > 0 the penalty parameter and α ∈ [0, 1]. We set the parameter α = 1 to ensure

numerical stability of the FSI problem, see e.g. [40], [20], [4].

Regarding the discretization in time, we employ the implicit Euler scheme for both

fluid and solid problems with time step ∆t. Note that the fluid integrals appearing

in formulation (2.5) should be integrated on the current configuration which is itself

an unknown. To handle this issue, we use a zero order extrapolation in time for the

fluid domain, which coincides by taking the fluid domain at the previous time step,

i.e. Ωf (tn) ≈ Ω̃f (tn) = Ωf (tn−1).

Another issue related to the movement of the structure is how to treat the numer-

ical solution uh(t) on the fluid elements from one step to the next one. Indeed, the

solution uh(t
n) computed at time tn on the domain Ω̃f (tn) needs to be defined on

the domain Ω̃f (tn+1) at time tn+1 in order to compute the right-hand term coming

from the approximation formula of the time derivatives. We indicate this solution

with ũh(t
n) and to define it, we proceed as follows, depending on the geometric

configuration:

(i) the fluid element K remains the same from one step to the next one, i.e. if it is

fully uncovered/overlapped at time tn, it remains fully uncovered/overlapped at

time tn+1. In this case, if K is uncovered, then ũh(t
n)|K = uh(t

n)|K , otherwise

the fluid solution is not defined and thus ignored;

(ii) the uncovered portion of the fluid element K, denoted by K+, decreases from

one time step to the next one. In this case the solution is restricted on the new

K+, i.e. ũh(t
n)|K+(tn+1) = (uh(t

n)|K+(tn))|K+(tn+1);

(iii) the uncovered portion of the fluid element K, denoted by K+, increases from

one time step to the next one. In this case the solution is linearly extrapolated

on the new K+, i.e. ũh(t
n)|K+(tn+1) = EK+(tn+1)(uh(t

n)|K+(tn)), where E is an

extension operator.

Further details of this procedure have been presented in [64].

The resulting fully-discrete formulation represents a non-linear system of equations

which is linearized with an inexact Newton algorithm, where the fluid convective term

is linearized with the Picard’s method and the linearization of the solid stress tensor

at the interface is approximated as follows (see [59]):

∂Ts

∂F
=

∂(J−1T̂sF⊤)

∂F
≈ J−1 ∂T̂

s

∂F
F⊤.
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3. Contact model in the unfitted framework

In this section, we consider the numerical framework presented in Section 2 in the

case where both fluid-structure interaction and contact occur. We first introduce the

contact model and then we consider XFEM/DG formulation for the FSI problem

with contact. The contact model we present is a master-slave approach, i.e. the

contact conditions are applied only to the slave body which undergoes the contact

exerted by the master body. Moreover, we assume that the contact is frictionless,

i.e. the tangential component of the contact traction is zero, by prescribing only the

non-penetration condition.

3.1. Penalty contact model. To ease the presentation of the contact model,

we consider two bodies described by the domains Ωs(t) and Ωm(t), where the slave

body Ωs(t) is subject to the elastodynamics equation, while the master body Ωm(t)

is considered rigid and fixed in time, i.e. Ωm(t) = Ωm. In particular, we assume

that the boundary of Ωm is modeled as a rigid plane Γw characterized by a given

unit normal nw pointing inwards Ωm. We denote by ns(t) and nm the outward unit

normals of Ωs(t) and Ωm, respectively, noticing that nm = −nw.

We introduce a decomposition into normal and tangential components in the frame

of reference of the rigid plane Γw for a vector field v and for a stress tensor T:

v = vnn
w + vt, Tn = Tnn

w +Tt,

where Tn and vn stands for the normal components, i.e.:

vn = v · nw, Tn = Tn · nw.

We introduce ∆: ∂Ωs(t) → R as the current gap function, defined as the distance

from a point xs of the boundary of the slave body to the plane Γw, i.e. the length

of the projection on the rigid plane Γw of any point of the current solid position,

namely,

∆ = (xw − xs) · nw ∀xs ∈ ∂Ωs(t),

where xw is a generic point of Γw, see Figure 4. We also indicate by Γs
C(t) the

portion of ∂Ωs(t) where the contact occurs.

For an elastic body the unilateral frictionless contact constraints in a master-slave

approach are formulated as follows:

∆ > 0, λ 6 0, λ∆ = 0 on ∂Ωs(t),(3.1a)

ϕ = 0 on ∂Ωs(t),(3.1b)

where λ = T s
n and ϕ = Ts

t
are the normal and tangential components of the contact

traction, respectively.
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Γw

Ωs(t)

n
w

n
s(t)

∆

x
w

x
s

Figure 4. Sketch of the flexible body Ωs(t) and the rigid wall Γw (red).

The first inequality in equation (3.1a) ensures that the solid does not cross the

plane Γw; the second one describes that the normal component of the contact traction

is zero (in absence of contact) or negative (during contact), i.e. it acts as a compres-

sion for the slave body; the third condition is the complementarity condition that

guarantees that at least one of the two constraints is zero. No constraint is imposed

along the tangential direction, so the contact is friction-less. Note that these condi-

tions are the classical unilateral contact conditions (Karush-Kuhn-Tucker conditions)

in the case of contact mechanics, see e.g. [42], [60], [26], [3]).

Following [27], for an arbitrary positive function γC defined on ∂Ω
s(t), the condi-

tions of equation (3.1) can be approximated in a single non-linear relation

(3.2) λ = −γC [−∆]R+ ,

where the notation [·]R+ stands for the projection onto R+, namely,

[x]R+ =
1

2
(|x|+ x) =

{
x, x > 0,

0, x 6 0.

R em a r k 3.1. Notice that the relation given by equation (3.2) is not equiv-

alent to the contact conditions of equation (3.1) and indeed it will yield a non-

consistent formulation. In fact, a consistent formulation can be recovered replacing

relation (3.2) with

λ = −γC

[
−∆−

1

γC
λ
]
R+

,

see e.g. [26], [25], [28], [29].

In the variational setting, the contact conditions lead to the introduction of the

traction λ on the boundary of the slave body. In particular, relation (3.2) leads to
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the following variational penalty contact term:

(3.3) −

∫

∂Ωs(t)

λwn = +γC

∫

∂Ωs(t)

[−∆]R+wn = −γC

∫

Γs
C
(t)

∆wn.

3.2. XFEM/DG formulation for FSI-contact model. In what follows, we

consider a slave structure Ωs(t) fully immersed in a fluid Ωf (t) and a master struc-

ture Ωm(t), by assuming that the slave body Ωs(t) is subject to the elastodynamics

equation while the master one Ωm(t) is considered rigid, fixed in time and its bound-

ary coincides with a boundary of the fluid domain indicated with Γw, see Figure 5.

We denote by Σs(t) the fluid-structure interface between the fluid and the slave body.

Notice that Σs(t) = ∂Ωs(t).

Γw

Σs(t)

Ωs(t)

n
w

n
s(t)

∆

Ωf (t)

Figure 5. Sketch of the fluid and structure domains Ωf (t) (white) and Ωs(t) (grey) and the
boundary of the master body Γw (red).

The coupling between the FSI problem introduced in Section 2.1 with the contact

model presented in Section 3.1 leads to the following problem:

Find, for any t ∈ (0, T ], the fluid velocity u(t) : Ωf (t) → R
d, the fluid pressure

p(t) : Ωf (t) → R, the solid displacement d̂s(t) : Ω̂s → R
d, such that:

(3.4)





̺f∂tu+ ̺fu · ∇u−∇ ·Tf (u, p) = ff in Ωf (t),

∇ · u = 0 in Ωf (t),

u = 0 on Γf ∪ Γw;

(3.5) ̺s∂ttd̂
s −∇ · T̂s(d̂s) = f̂s in Ω̂s;

(3.6)





u = ḋs on Σs(t),

Tf (u, p)n = Ts(ds)n on Σs(t),

∆ > 0, λ 6 0, λ∆ = 0 on Σs(t),

ϕ = 0 on Σs(t).
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By using the same discrete functional spaces for the approximation of the fluid

velocity, fluid pressure and solid displacement introduced in Section 2.2, and by

applying the penalty contact model given by equation (3.1), we write the semi-

discrete formulation of the problem given by equations (3.4)–(3.6) as follows:

For any t > 0, find (uh(t), ph(t), d̂
s
h(t)) ∈ Vh(t)×Qh(t)× Ŵs

h such that

(3.7) ̺f (∂tuh,vh)Ωf (t) + af (uh,vh) + b(ph,vh)− b(qh,uh)

+ c(uh,uh,vh) + ̺s(∂ttd̂
s
h, ŵ

s
h)Ω̂s + as(d̂s

h, ŵ
s
h)

+ sh(uh, ph;vh, qh) + gh(uh,vh)

− (αTf (uh, ph)n
f + (1− α)Ts(ds

h)n
f ,vh −ws

h)Σs(t)

− (uh − ḋs
h, αT

f (vh,−qh)n
f + (1 − α)Ts(ws

h)n
f )Σs(t)

+
γΣµ

f

h
(uh − ḋs

h,vh −ws
h)Σs(t)

+
γC
h

∫

Σs(t)

[−∆]R+ws
n,h

= (ff ,vh)Ωf + (f̂s, ŵh)Ω̂s

for all (vh(t), qh(t), ŵh) ∈ Vh(t) ×Qh(t) × Ŵs
h, where γC > 0 is a positive penalty

parameter.

Notice that the contact term in (3.7) is non null only when the argument of the

projection function is positive, i.e. only when contact happens. In this case we can

define a subset Γs
C(t) ⊂ ∂Ωs(t) which identifies the contact surface

Γs
C(t) = {x ∈ ∂Ωs(t) : ∆ < 0}.

R em a r k 3.2. For practical purposes, it may be convenient to relax the contact

conditions by introducing a small parameter ε > 0, such that we can consider that

the slave body comes into contact with the master one only if the distance between

them is lower than ε, i.e. ∆ < ε. This choice allows to avoid penetration between

the bodies during the iterative procedure in the numerical solver. Hence, we can

reformulate the contact condition as

∆− ε > 0, λ 6 0, λ(∆− ε) = 0 on ∂Ωs(t),

ϕ = 0 on ∂Ωs(t),

and the variational penalty contact term given by equation (3.3) becomes

−

∫

∂Ωs(t)

λws
n = +γC

∫

∂Ωs(t)

[ε−∆]R+ws
n = +γC

∫

Γs
C
(t)

(ε−∆)ws
n.
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By applying the time discretization as described in Section 2.2, the fully-discrete

formulation reads as follows:

For any n = 0, . . . , T/∆t−1, T > 0, find (un+1
h , pn+1

h , d̂s,n+1
h ) ∈ Vn+1

h ×Qn+1
h ×Ŵs

h

such that

̺f

∆t
(un+1

h ,vh)Ωf,n + af (un+1
h ,vh) + b(pn+1

h ,vh)

− b(qh,u
n+1
h ) + c(un+1

h ,un+1
h ,vh)

+
̺s

∆t2
(d̂s,n+1

h , ŵs
h)Ω̂s + as(d̂s,n+1

h , ŵs
h)

+ sh(u
n+1
h , pn+1

h ;vh, qh) + gh(u
n+1
h ,vh)

− (αTf (un+1
h , pn+1

h )nf + (1− α)Ts(ds
h)n

f ,vh −ws
h)Σs,n

−
(
un+1
h −

d
s,n+1
h

∆t
, αTf (vh,−qh)n

f + (1− α)Ts(ws
h)n

f
)
Σs,n

+
γΣµ

f

h

(
un+1
h −

d
s,n+1
h

∆t
,vh −ws

h

)
Σs,n

+
γC
h

∫

Σs,n

[−∆n+1]R+ws
n,h

=
̺f

∆t
(un

h,vh)Ωf,n +
2̺s

∆t2
(d̂s,n

h , ŵs
h)Ω̂s −

̺s

∆t2
(d̂s,n−1

h , ŵs
h)Ω̂s

+
(ds,n

h

∆t
, αTf (vh,−qh)n

f + (1− α)Ts(ws
h)n

f
)
Σs,n

−
γΣµ

f

h

(ds,n
h

∆t
,vh −ws

h

)
Σs,n

+ (ff ,vh)Ωf,n + (f̂s, ŵs
h)Ω̂s

for all (vh, qh, ŵh) ∈ Vn+1
h ×Qn+1

h × Ŵs
h.

To extend the formulation presented above for the case of contact between flexible

bodies, i.e. when also Ωm(t) is subject to the elastodynamics equation, we have

to generalize the definition of the current gap function ∆. First, we introduce the

projection map Π: ∂Ωs(t) → ∂Ωm(t) that, given a point on the boundary of the slave

body xs ∈ ∂Ωs(t), returns its projection on the boundary of the master domain. The

current gap function ∆ is now given by

∆ = (Π(xs)− xs) · ñw ∀xs ∈ ∂Ωs(t),

where ñw is the unit normal pointing inwards Ωm(t) of Π(xs), i.e. ñw = nw ◦Π(xs).

Notice that, by denoting xm = Π(xs), we have nm(xm) = −ñw.

The fully-discrete formulation in the case of two elastic bodies reads as follows:
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For any n = 0, . . . , T/∆t− 1, T > 0, find (un+1
h , pn+1

h , d̂s,n+1
h , d̂m,n+1

h ) ∈ Vn+1
h ×

Qn+1
h × Ŵs

h × Ŵm
h such that

̺f

∆t
(un+1

h ,vh)Ωf,n + af (un+1
h ,vh) + b(pn+1

h ,vh)− b(qh,u
n+1
h )

+ c(un+1
h ,un+1

h ,vh) +
∑

i=s,m

( ̺i

∆t2
(d̂i,n+1

h , ŵi
h)Ω̂i + ai(d̂i,n+1

h , ŵi
h)
)

+ sh(u
n+1
h , pn+1

h ;vh, qh) + gh(u
n+1
h ,vh)

−
∑

i=s,m

(αTf (un+1
h , pn+1

h )nf + (1− α)Ti(di
h)n

f ,vh −wi
h)Σi,n

−
∑

i=s,m

(
un+1
h −

d
i,n+1
h

∆t
, αTf (vh,−qh)n

f + (1− α)Ti(wi
h)n

f
)
Σi,n

+
∑

i=s,m

γΣµ
f

h

(
un+1
h −

d
i,n+1
h

∆t
,vh −wi

h

)
Σi,n

+
γC
h

∫

Σs,n

[−∆n+1]R+(ws
n,h − wm

n,h)

=
̺f

∆t
(un

h,vh)Ωf,n +
∑

i=s,m

( 2̺i

∆t2
(d̂i,n

h , ŵi
h)Ω̂i −

̺i

∆t2
(d̂i,n−1

h , ŵi
h)Ω̂i

)

+
∑

i=s,m

(di,n
h

∆t
, αTf (vh,−qh)n

f + (1− α)Ti(wi
h)n

f
)
Σs,n

−
∑

i=s,m

γΣµ
f

h

(di,n
h

∆t
,vh −wi

h

)
Σi,n

+ (ff ,vh)Ωf,n +
∑

i=s,m

(f̂ i, ŵi
h)Ω̂i

for all (vh, qh, ŵh) ∈ Vn+1
h ×Qn+1

h × Ŵs
h × Ŵm

h .

4. Numerical examples

In this section, we present four numerical examples concerning the penalty contact

model for FSI presented in Section 3. For all the numerical tests, we consider an elas-

tic ball (described by the constitutive law in equation (2.4)) immersed in a fluid that

comes into contact with the ground. As a preliminary test, we check the sensibility

of the proposed contact method with respect to the discretization parameters and

the contact ones, see Section 4.1. Then we consider the moving elastic ball coming

in contact with:

(i) a virtual barrier immersed in the fluid, see Section 4.2;

(ii) a rigid ground, see Section 4.3;

(iii) an elastic ground, see Section 4.4.
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We introduce some quantities that will be used throughout the following examples:

dmin(t) is the minimum distance between the ball and the ground at time t, respec-

tively; uy(t) and ay(t) are the y-velocity and y-acceleration of the ball at time t; db

is the amplitude of the bounce of the ball, i.e. the difference between the maximum

height reached by the ball after the bounce and the minimum distance between the

ball and the ground during the contact phase; ub
y is the maximum y-velocity reached

by the ball after the bounce; (dmax − dmin)(t) defines the compression of the ball,

computed as the difference between the maximum distance between the ball and the

ground and the minimum one at time t.

At each time step, we treat the non-linearities via the inexact Newton method

presented in [59] and the resulting linear system is solved monolithically via the

GMRES iterative solver with a block Gauss-Seidel preconditioner, see [63].

The XFEM/DG approach has been developed in the finite elements library

LifeV [43]. For further details on the implementation and on some results that as-

sess the effectiveness of the proposed XFEM/DG approach as well as a comparison

of this method with respect to the ALE one in the case of FSI problem (with no

contact), see [64].

Γw

Ω
s

Ω
f f̂

s

Figure 6. The ball Ωs (grey) is immersed in the fluid domain Ωf (white) and Γw is the
bottom boundary of the fluid domain.

4.1. Sensitivity test on the contact model. The goal of this numerical ex-

ample is to show how the choice of the discretization parameters, namely h and ∆t,

and the contact ones, namely γC and ε (see Remark 3.2), influences the dynamics of

the system. We consider a background domain Ω = (0, 0.5) cm× (0, 0.325) cm and

a solid domain Ω̂s defined by a disk of radius 0.05 cm with center in (0.25, 0.175).

The fluid domain is then defined as Ωf = Ω \ Ωs. The fluid represents the air with

a dynamic viscosity µf = 1.81 ·10−4 dyne s and density ̺f = 1.225 ·10−3 g/cm2. The
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solid domain represents an elastic ball with density ̺s = 0.1 g/cm2, Young’s mod-

ulus E = 103 dyne/cm and Poisson’s ratio ν = 0.45. The ball is subject to a force

f̂s = ̺s · (0,−103) cm/s2 that moves the ball towards the bottom boundary of the

fluid domain Γw = {(x, y) ∈ R
2 : y = 0}, see Figure 6. We study the dynamics of

the system by considering a final time T = 0.03 s.

For the numerical simulations, we set as default values

h = 0.015 cm, ∆t = 2 · 10−4 s, ε = 0.015 cm, γC = 104, γg = 1 and γΣ = 105.

For the sensitivity analysis, we consider the following values:

h = {0.01, 0.015, 0.02} cm, ∆t = {0.5, 1, 2, 5} · 10−4 s, ε = {0.2, 0.5, 1, 1.5, 2} h and

γC = {103, 104, 105}.
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Figure 7. Minimum distance of the ball with respect to the ground as a function of
time. Sensitivity with respect to: h (top-left); ∆t (top-right); ε (bottom-left);
γC (bottom-right). “Sensitivity” test case.

In Figure 7, we report the evolution of dmin through time for the four selected pa-

rameters. We see that different values of the spatial discretization h lead to a different

dynamics of the bounce of the ball: as h decreases the maximum height reached by

the ball after the bounce increases, see Figure 7 (top-left). A similar behaviour is
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achieved when∆t decreases, see Figure 7 (top-right). This is an expected result, since

as soon as h and ∆t approach zero, the numerical dissipation is reduced. Regarding

the sensibility with respect to ε, see Figure 7 (bottom-left), as far as ε tends to zero,

the amplitude of the bounce db, as well as the maximum y-velocity reached after the

rebound ub
y, decrease, and drop sensibly when ε becomes lower than h, see Table 1

and Figure 8. Regarding the penalty constant γC , if it is too low, i.e. γC = 103,

the non-penetration condition is violated, see Figure 7 (bottom-right). On the other

hand, if γC is too high, i.e. γC = 105, a “sticky” effect may happen between the ball

and the ground inhibiting the release from the contact phase, see Figure 7.

ε db[cm] ub
y[cm/s]

2h 0.0242 7.5815

1.5h 0.0236 7.4215

h 0.0222 7.4335

0.5h 0.0140 5.5355

0.2h 0.0072 3.7293

Table 1. Amplitude of the bounce of the ball and its maximum y-velocity reached after the
rebound for different values of ε. “Sensitivity” test case.
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Figure 8. y-velocity of the ball for different values of ε. “Sensitivity” test case.

Finally, in Figure 9, we show the distance dmin when both h and ε decrease, with

h = ε, i.e. by maintaining one layer of elements in between the ball and the ground.

We can see that for decreasing values of h, the contact happens later and the release

of the ball is accordingly delayed, by maintaining a similar amplitude of the bounce.

From this analysis, we found that a good choice for the contact relaxation param-

eter is to set ε ≈ h, while the contact penalty parameter γC can be set ≈ 104, though

we expect that it may depend on the material properties or on the forces affecting

the system.
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Figure 9. Minimum distance of the ball with respect to the ground as a function of time,
for different values of h = ε. “Sensitivity” test case.

4.2. Contact of an elastic ball with a virtual barrier. To test the proposed

contact algorithm implemented in the XFEM/DG method, we consider a 2D elastic

ball immersed in a fluid moving towards a planar rigid ground, see Figure 6. Here,

we are interested to show that the ball is subjected to a repulsive force when it

reaches a specific distance from the rigid ground. To assess this without considering

the geometric contact between the ball and the ground, we model the presence of

a virtual barrier by setting ε ≫ 0. We expect that the ball stops moving towards

the rigid ground when it reaches the virtual barrier. The solid domain Ω̂s is a disk

of radius 4 cm with center located at (0, 10) cm. The solid is fully immersed in

a fluid domain Ωf (t) and moves towards the boundary of the fluid domain Γw =

{(x, y) ∈ R
2 : y = 0}, due to the force f̂s = ̺s · (0,−103) cm/s2. We denote with Ω =

(−10, 10) cm×(0, 15) cm the domain given by the union of the solid and fluid domains.

Moreover, to model the virtual barrier we set ε = 3 cm. Initially both the fluid and

the solid are at rest. On the boundary Γw, we apply a zero velocity condition, while

on the other part of the boundary fluid domain we apply a homogeneous Neumann

condition.

For the physical parameters, we use the Lamé parameters µs = 2 · 106 dyne/cm,

λs = 8 ·106 dyne/cm, the fluid dynamic viscosity µf = 10−2 dyne s, and the fluid and

solid densities ̺s = ̺f = 1 g/cm2.

Due to the low Reynolds number and the symmetry of the problem, we expect

to obtain a symmetric solution with respect to the vertical axis. For this reason,

we decide to simulate only half of the domain to reduce the computational cost, by

imposing symmetry boundary conditions on the plane of symmetry, i.e. d̂s · n̂ = 0

and u · n = 0 for the solid and fluid, respectively, see Figure 10 (left).

We use a non-uniform isotropic background mesh with a space resolution of 0.5 cm

in the upper part of the domain and of 0.1 cm in the proximity of the wall Γw. For
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the solid mesh we use a uniform isotropic grid of size 0.1 cm. In Figure 10 (right),

we sketch the background and foreground meshes used in the simulations. For the

numerical setting, we choose γg = 1, γΣ = 105, γC = 108 and ∆t = 10−3 s.

Γw

Ωs

Ωf

d
s
· n=0

u · n=0

Figure 10. Sketch of the reduced domain (left) and the corresponding mesh (right). “Virtual
barrier” test case.

In Figure 11, we plot the minimum distance dmin over time, the compression

dmax − dmin of the ball over time, the y-velocity and y-acceleration related to the

point at minimum distance between the ball and Γw. We observe that the solid is

pulled down by the body force f̂s until it reaches the virtual barrier at time 0.111 s.

Since the virtual barrier is non physical, the ball does not feel its presence until

it touches the barrier and the contact penalty term activates. For this reason, the

ball arrives in contact with the virtual barrier without any previous compression,

i.e. there is not a significant increase of the pressure at the bottom of the ball. Then,

at time 0.126 s, the ball is released from contact and it reaches its maximum height

at time 0.182 s, i.e. dmin ≈ 3.8 cm. From this point the ball moves again towards the

bottom due to body force f̂s.

During contact, the maximum violation of the non-penetration condition below ε

corresponds to about 1% of the local mesh size.

From Figure 11 (bottom-left), we observe that the compression concerning the

ball during the contact phase causes the activation of some vibration modes in the

structure, which are then damped. Note that the strong variations in the velocity uy

correspond to the collision and release of the ball with the virtual barrier, see Fig-

ure 11 (top-right), and the peaks in the acceleration ay are due to the discontinuities
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in the velocity, see Figure 11 (bottom-right). As stated above, since the ball does not

feel the presence of the virtual barrier, it does not exhibit a significant decrease of

the velocity and its acceleration remains constant until the ball touches the virtual

barrier.
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Figure 11. Top-left: minimum distance from Γw of the ball over time. Bottom-left: com-
pression of the ball over time. Top-right: velocity over time of the solid point
at the minimum distance from Γw. Bottom-right: acceleration over time of the
solid point at minimum distance from Γw. “Virtual barrier” test case.

4.3. Contact of an elastic ball with a rigid ground. In this examples, we

consider the configuration and parameters used for the test in Section 4.2. The

difference is that we set ε = h to model the contact with the rigid ground.

In Figure 12, we plot the evolution in time of the minimum distance dmin (top-left,

top-right), the velocity uy (bottom-left), and the compression dmax−dmin of the ball

(bottom-right). We notice that, differently from the case of the virtual barrier, in

this case when the ball approaches Γw, it is already compressed due to the high fluid

pressure generated by the presence of Γw.

In Figure 13, we plot the vorticity isolines and fluid velocity vectors at t = 0.177 s,

i.e. when the ball comes into contact with the ground.
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Figure 12. Top-left: minimum distance from Γw of the ball over time. Top-right: zoom
of the minimum distance during the contact phase. Bottom-left: velocity over
time of the ball at the point at the minimum distance from Γw. Bottom-right:
compression of the ball over time. Results for time step ∆t = 10−3 s. “Rigid
ground” test case.

∆t = 2 · 10−3 s ∆t = 10−3 s ∆t = 2 · 10−4 s

Contact time [s] 0.176 0.177 0.1904

Maximum height [cm] 0.122 0.127 0.153

Maximum height time [s] 0.192 0.193 0.2072

Table 2. Contact time, the maximum height reached by the ball after the rebound and the
corresponding time for three different time steps. “Rigid ground” test case.

To investigate the influence of the time step, we perform two simulations with

a different value of ∆t, namely 2 · 10−3 s and 2 · 10−4 s. Table 2 shows the time at

which the contact happens (first row of the table), the maximum elevation reached

by the ball after the rebound (second row of the table) and the corresponding time

(third row of the table), for the three time steps. We observe that the times increase

by refining the time step. For the larger time step, i.e. ∆t = 2 · 10−3 s, we have

noticed that the ball drops out of the fluid domain at the second bouncing with
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the rigid ground. This means that the time step is not sufficiently fine to resolve

correctly the contact dynamics. Moreover, we see that the maximum height reached

after the rebound increases slightly, as time step decreases: from the greater to the

finer time step, the maximum height increases of about 50% of the resolution grid in

that region.
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Figure 13. Vorticity isolines and fluid velocity vectors at the instant of contact t = 0.177 s.
Results for time step ∆t = 10−3 s. “Rigid ground” test case.
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Figure 14. Comparison of the compression between the case ∆t = 2 · 10−3 s and ∆t =
2 · 10−4 s. “Rigid ground” test case.

In Figure 14, we show the compression dmax−dmin for the smaller and larger time

step. We notice that, for the finer time step, the peaks are delayed in time with
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a greater magnitude and the solution exhibits some oscillations before the contact.

In Figure 15, we plot the fluid velocity field and the vorticity isolines just after the

contact for the case ∆t = 2 · 10−3 s and for the case ∆t = 2 · 10−4 s.
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Figure 15. Vorticity and velocity field just after the contact. Top: results for ∆t = 2·10−3 s.
Bottom: results for ∆t = 2 · 10−4 s. “Rigid ground” test case.

We point out that this test is the same as the one presented in [56]. Notice that to

reduce the difference in the orders of magnitude between the values of the physical

parameters used in [56], we have applied a scaling to these quantities by introducing

a similarity coefficient Ksim = 1
10 . By denoting by ·∗ the quantities defined in [56],

our quantities are scaled as:

L = KsimL
∗, T = KsimT

∗, g =
g∗

Ksim
,

where L and T represent the spatial and temporal scales, respectively, and g is the

acceleration appearing in f̂s.

Comparing the results that we obtain with the ones shown in [56], we get a very

similar contact time. Regarding the maximum height of the ball after the bounce,

we see that in our case it is one order of magnitude smaller. However, we have

considered a coarser mesh (h = 0.1 cm in our case, h = 0.031 cm in [56]) and, as

shown in [56], the mesh size has a significant effect on the bounce of the ball.

4.4. Contact of an elastic ball with a flexible ground. In this test, we

consider a similar configuration to the one used in the test in Section 4.2. The two

major differences are that the ground is now elastic, governed by the constitutive

205



law (2.4) with the same elastic parameters of the ball, and that the initial position of

the ball is closer to the ground. In particular, we have a flexible master domain Ω̂m of

size 20 cm×2 cm with the bottom left corner placed in (−10, 0) and the center of the

slave domain Ω̂s located at the point (0, 7) cm. We denote with Ω = (−10, 10) cm×

(0, 15) cm the union of the fluid and solid domains. Notice that the initial distance

between the master and slave is 1 cm.

As in the previous tests, a body force fs = ̺s·(0,−103) cm/s2 acts on the ballΩs(t).

The flexible ground Ωm(t) is clamped at the bottom and at the lateral boundaries,

while the upper side is free to move. No body-force acts on the master body. Due

to the symmetry with respect to the vertical axis, in the numerical simulations we

consider only half of the domain, see Figure 16. We use the physical parameters

described in Section 4.2, where the Lamé coefficients are the same for the slave and

master bodies.

Ωs

Ωm

Ωf

d
m
· n=0

d
s
· n=0

u · n=0

Figure 16. Left: sketch of the reduced domain with the boundary conditions at the sym-
metry axis (red for the fluid, green for the solids). Right: sketch of the slave
body (green) and master one (red). “Flexible ground” test case.

For the background mesh, we use a spatial resolution of about 0.5 cm in the upper

part and of 0.05 cm in the lower part. For the slave mesh, we use a space discretization

of 0.1 cm, while for the master body of 0.3 cm. We use a time step ∆t = 10−3 s.

Finally, we set the same penalty parameters as are reported in Section 4.2 and

ε = h.

In Figure 17 (left), we show the compression of the ball. As for the case of contact

with a rigid ground, the ball slows down before the activation of the contact due to

the high fluid pressure. At time 0.081 s the two bodies come into contact. As for the
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case of the rigid ground, the ball does not show any further compression at contact

but, due to the insufficient internal energy, at time 0.089 s, the ball shows a further

compression due to the inability to bounce off the flexible wall. From this point on,

the two bodies stay in contact.
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Figure 17. Left: compression of the ball. Right: minimum thickness of the ground. “Flex-
ible ground” test case.

In Figure 18, we plot the displacement isolines at the instant of contact. During

contact, the minimum distance between the two bodies is about 50% of the local

mesh size.
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Figure 18. Slave (left) and master (right) vertical displacement isolines at the instant of
contact. “Flexible ground” test case.

This example shows how the flexibility of the wall dissipates some of the kinetic

and internal energy of the ball, stopping it from bouncing away.

207



5. Conclusions

In this work, we have proposed a penalization contact method in a XFEM/DG

numerical framework for the study of FSI problems with contact in the case of large

deformations and large displacements. This approach is relatively easy to implement

and is very effective. However, it does not guarantee consistency of the numerical

method and the formulation requires the penalty term to be sufficiently high in

order to ensure numerical stability, possibly leading to an ill-conditioned matrix.

A possible way to overcome these issues is to consider a Nitsche’s approach for the

contact model. Indeed, it produces a consistent formulation and allows to achieve

stability with a lower penalty coefficient, see e.g. [21].

Through the sensitivity analysis, we found that the relaxation parameter ε can be

set approximately equal to h. On the contrary, the contact penalty parameter γC
seems to be more arbitrary and may depend on the considered physical setting.

Further studies in this direction are under investigation.

We have shown three examples of increasing geometrical complexity: the contact

algorithm performs correctly for the “virtual barrier” test case, although the con-

tact with the rigid and flexible ground test cases present some issues in properly

reproducing the bouncing of the ball. In fact, the nature of contact requires to have

both a sufficiently high spatial and temporal resolutions to catch the correct be-

haviour. Moreover, the contact model and the coupling conditions with the fluid on

the contact region can be improved to obtain a more physical representation of the

phenomena, as proposed in [21] and [1].

Even though the numerical tests are performed on 2D geometrical configurations,

the proposed algorithm is suited also for simulating more complex scenarios in 3D.
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