
Czechoslovak Mathematical Journal

Ahmed Boughammoura; Yousra Braham
Homogenization of a three-phase composites of double-porosity type

Czechoslovak Mathematical Journal, Vol. 71 (2021), No. 1, 45–73

Persistent URL: http://dml.cz/dmlcz/148729

Terms of use:
© Institute of Mathematics AS CR, 2021

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/148729
http://dml.cz


Czechoslovak Mathematical Journal, 71 (146) (2021), 45–73

HOMOGENIZATION OF A THREE-PHASE COMPOSITES

OF DOUBLE-POROSITY TYPE

Ahmed Boughammoura, Yousra Braham, Monastir

Received April 1, 2019. Published online July 1, 2020.

Cordially dedicated to Professor Mongi Mabrouk

Abstract. In this work we consider a diffusion problem in a periodic composite having
three phases: matrix, fibers and interphase. The heat conductivities of the medium vary
periodically with a period of size εβ (ε > 0 and β > 0) in the transverse directions of the
fibers. In addition, we assume that the conductivity of the interphase material and the
anisotropy contrast of the material in the fibers are of the same order ε2 (the so-called
double-porosity type scaling) while the matrix material has a conductivity of order 1. By
introducing a partial unfolding operator for anisotropic domains we identify the limit prob-
lem. In particular, we prove that the effect of the interphase properties on the homogenized
models is captured only when the microstructural length scale is of order εβ with 0 < β 6 1.
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1. Introduction

It is well known that the effective mechanical and thermal properties of a combina-

tion of fibers, which have highly-anisotropic characteristics, with matrix materials of

a completely different nature is strongly influenced by the presence of an inevitable

interphase between these two phases (see e.g. [8] and [12]). As a consequence, the

fiber-matrix interphase has a crucial impact on the behavior and properties of the

fiber-reinforced composites.

In recent years, by applying numerical homogenization techniques, several studies

have shown the influence of the interphase material parameters on the overall me-

chanical behavior of fibrous composites (see e.g. [2], [10], [11]). However, it should
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be noted that a few mathematical results have been established rigorously in the

analysis of those effects.

To the author’s knowledge, probably one of the first papers performing a rigorous

mathematical analysis of the effects of the interphase in the overall behavior of fiber-

reinforced composites was published in 2009 by the first author (see [3]). Using

the two-scale convergence method, the author studied the homogenization of a heat

transfer problem in a fiber-reinforced composite taking into account the combined

effects of the fiber-matrix interphase together with the high anisotropy of the material

in the fibers. More precisely, he considered a degenerate elliptic-parabolic equation

in a composite, whose physical properties oscillate rapidly on the scale of order ε

(ε is a small dimensionless parameter). The most interesting results concerned the

critical case, where the conductivity of the interphase material and the anisotropy

contrast in the fiber are of the same order ε2 (the so-called double-porosity type

scaling). Those results showed, in particular, that the homogenized problem is an

integro-differential one displaying nonlocality along the fibers.

More recently, in 2015, the first author has also studied, using the same method

applied in [3], an elastostatic problem in a periodic medium having three phases:

matrix, fibers, and fiber coatings (see [4]). He particularly has shown that, as a result

of the soft interphase material competing with the highly anisotropic fibers, the

effective transverse traction and the longitudinal stress in the fibers account for an

unconventional behavior in the homogenized model.

The purpose of the present work is twofold. First, we shall introduce the con-

cept of partial unfolding operator which maps functions defined on domain, depend-

ing on small parameter ε in some specific directions, onto functions defined on the

whole fixed domain. In particular, this partial unfolding operator allows us to ana-

lyze directly some highly anisotropic fiber-reinforced composites, where the physical

properties are only relevant in the transversal directions. Second, to continue the

previous work [3] by investigating the homogenization of composites involving three

materials, with double-porosity type scaling, taking into account the microstructural

length scale. To this purpose, we shall assume that the physical properties of the

composite vary periodically with a period cell of size εβ , β > 0 in the cross section.

To end this section, let us comment on how our study is related to previous works

in homogenization of three-phase composites. Although our work is one of a few

papers, along with [3] and [4], that treat the homogenization of an elliptic equation

involving high contrast, of double porosity type, between the coefficients; it would be

interesting to compare our results with those in [3] and [4]. Especially if noted that

the homogenized model derived, in the critical scale (i.e. β = 1), is the same as the

one obtained in [3], Theorem 3.2 and in [4], Theorem 4.1, in the nonstationary setting

and in the context of linear elasticity, respectively. Moreover, in this critical scale,
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the effects of the interphase on the homogenized problem are obvious. However, the

novelty of the present study is the result given in Section 4, which shows clearly that

the effect of the interphase properties on the homogenized limit is captured, in the

subcritical scale (i.e. β < 1), via the term |Ỹ3| in (4.6); whereas, in the supercritical

scale (i.e. β > 1) it is not observed.

2. Statement of the problem and a priori estimates

2.1. Formulation of the problem. Let Ω̃ be a bounded open set in R
2 with

Lipschitz boundary. We consider the following cylindrical domain:

Ω = Ω̃× I, where I =]0, 1[.

To introduce the reference periodic medium we shall denoted by Y and Ỹ the unit

cube in R3 and R2, respectively (i.e. Ỹ :=]0, 1[2 and Y := Ỹ ×I). We assume that Ỹ

is partitioned as

Ỹ = Ỹ1 ∪ Ỹ13 ∪ Ỹ3 ∪ Ỹ23 ∪ Ỹ 2,

where Ỹ1, Ỹ2, Ỹ3 are three connected open subsets such that Ỹ1∩ Ỹ2 = ∅, ∂Ỹ ∩ Ỹ3 = ∅

and where Ỹα3, α ∈ {1, 2} is the interface between Ỹα and Ỹ3 (see Figure 1). We

denote by χi the characteristic function of Yi, i = 1, 2, 3.

⊕
x3

y1

y2

Ỹ1 Ỹ3

Ỹ2

ỹ := (y1, y2)

Figure 1. The transversal geometry of the medium

For ε > 0, β > 0, i ∈ {1, 2, 3} and α = 1, 2, we set Ωε
i = [εβ(Ỹi + Z

2) × I] ∩ Ω

and Γε
α3 = [εβ(Ỹα3 + Z

2) × I] ∩ Ω. Thus, the boundaries ∂Ωε
i of Ω

ε
i , i = 1, 2, 3 are

given by

∂Ωε
1 = Γε

13∪(Ω̃
ε
1×{0, 1}), ∂Ωε

2 = Γε
23∪(Ω̃

ε
2×[0, 1]), ∂Ωε

3 = Γε
13∪Γ

ε
23∪(Ω̃

ε
3×{0, 1}).
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The regions Ωε
1, Ω

ε
2 and Ωε

3 represent, respectively, the fibers, the so-called matrix

material and the interphase.

Now, for i = 1, 2, 3 let ai be the heat conductivity of the material in the ith phase.

They are Ỹ -periodic functions given on the basic cell Ỹ and satisfying the following

assumptions:

⊲ ai ∈ L∞(R3),

⊲ a0 6 ai(ỹ) a.e ỹ ∈ Ỹ with a0 > 0, independent of ỹ.

In what follows, x = (x̃, x3) denotes points of R
3 and the corresponding εβỸ -periodic

coefficients are then defined by

aεi (x) = ai

( x̃
εβ

)

for every x ∈ Ωε
i , i = 1, 2, 3. Hence, the global conductivity of the material in Ω is

given by

Aε(x) =

3∑

i=1

χε
i (x)A

ε
i (x), χε

i (x) := χi

( x̃
εβ

)
,

where

Aε
1(x) := aε1(x)

(
ε2I2 0

0 1

)
, Aε

2(x) := aε2(x)I3, Aε
3(x) := ε2aε3(x)I3

with I2 and I3 being the identity matrices in R
2 and R

3, respectively. Let us as-

sume that the temperature is maintained fixed (homogeneous Dirichlet conditions)

on both the lateral and bottom boundaries of Ω while the top boundary is insulted

(homogeneous Neumann condition). Then the temperature filed uε is governed by

the following elliptic boundary value problem:

(P ε)





−div(Aε∇uε) = f ε in Ω,

uε = 0 on ΓD := ∂Ω̃× [0, 1[,

Aε∇uεn = 0 on ∂Ω \ ΓD,

where f ε ∈ L2(Ω) and n denotes the outer normal to Ω.

As an immediate consequence of the Lax-Milgram Theorem for any ε > 0, prob-

lem (P ε) has a unique solution uε in

H1
D(Ω) := {u ∈ H1(Ω), u = 0 on ΓD}.

48



Let us mention that the variational formulation of problem (P ε) is:

(2.1) Find uε ∈ H1
D(Ω) such that

∫

Ωε
1

aε1(x)

(
ε2∇x̃u

ε

∂x3
uε

)(
∇x̃ψ

∂x3
ψ

)
dx+

∫

Ωε
2

aε2(x)∇u
ε∇ψ dx

+ ε2
∫

Ωε
3

aε3(x)∇u
ε∇ψ dx =

∫

Ω

f εψ dx ∀ψ ∈ H1
D(Ω).

Furthermore, let us emphasize that our approach to study the asymptotic behavior

of the solution uε as ε passes to zero is based on a peculiar Poincaré-type inequality,

involving the double-porosity type scaling, and the use of the periodic unfolding

method. In particular, we prove that the limit problem depend on the value of

the power scale εβ. Moreover, in the most interesting case β = 1, we derive some

corrector results. The paper is organized as follows: In Section 2 we present some

crucial a priori estimates. In Section 3 we introduce the partial unfolding operator

and we give some useful proprieties. Further, we obtain some convergence results.

In Section 4 we summarize the main results of this work. All proofs are presented in

Section 5. In Section 6 we proved some corrector results.

Throughout the paper, by C we denote a constant not depending on ε, whose

value may vary from one line to another. From a bounded sequence in L2-space

we can take a subsequence that converges weakly but in effect all the subsequences

converge to the same limit as the limiting equations have a unique solution, so we

generally ignore to mention the expression “a subsequence”.

2.2. A priori estimates. First, we shall prove the following a priori estimates

for uε the solution of problem (2.1).

Lemma 2.1. Let uε be the solution of problem (2.1). Then there exists a constant

C > 0 independent of ε such that

(∥∥∥
(
ε∇x̃u

ε

∂x3
uε

)∥∥∥
L2(Ωε

1
)
, ‖∇uε‖L2(Ωε

2
), ‖ε∇u

ε‖L2(Ωε
3
)

)
6 C,(2.2)

‖uε‖L2(Ω) 6 C.(2.3)

P r o o f. We choose ψ = uε as a test function in (2.1) to obtain

∫

Ωε
1

aε1

(
ε∇x̃u

ε

∂x3
uε

)(
ε∇x̃u

ε

∂x3
uε

)
dx+

∫

Ωε
2

aε2∇u
ε∇uε dx

+ ε2
∫

Ωε
3

aε3∇u
ε∇uε dx =

∫

Ω

f εuε dx.
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By using Young’s inequality one has

∫

Ω

f εuε dx 6
α2

2
‖f ε‖2L(Ω)

2 +
1

2α2
‖uε‖2L2(Ω) ∀α > 0.

Since 0 < a0 6 ak(ỹ), k = 1, 2, 3, we have

∥∥∥∥
(
ε∇x̃u

ε

∂x3
uε

)∥∥∥∥
2

L2(Ωε
1
)

+‖∇uε‖2L2(Ωε
2
)+‖ε∇uε‖2L2(Ωε

3
) 6

α2

2a0
‖f ε‖2L2(Ω)+

1

2a0α2
‖uε‖2L2(Ω).

It is known (see [3], Lemma 2.1) that there exists C > 0 independent of ε such that

(2.4) ‖uε‖2L2(Ω) 6 C(‖δx3
uε‖2L2(Ωε

1
) + ‖∇uε‖2L2(Ωε

2
) + ε2β‖∇uε‖2L2(Ωε

3
)).

From (2.4) we deduce

∥∥∥∥
(
ε∇x̃u

ε

∂x3
uε

)∥∥∥∥
2

L2(Ωε
1
)

+ ‖∇uε‖2L2(Ωε
2
) + ‖ε∇uε‖2L2(Ωε

3
)

6
Cα2

2a0
+

C

2a0α2
(‖∂x3

uε‖2L2(Ωε
1
) + ‖∇uε‖2L2(Ωε

2
) + ε2β‖∇uε‖2L2(Ωε

3
)).

We take α2 = C/2a0 and notice that in the case β > 1 we have ε2β 6 ε2, thus

∥∥∥∥
(
ε∇x̃u

ε

∂x3
uε

)∥∥∥∥
2

L2(Ωε
1
)

+ ‖∇uε‖2L2(Ωε
2
) + ‖ε∇uε‖2L2(Ωε

3
) 6 C

and (2.2) follows. In view of (2.4) we deduce (2.3).

However, for the case β < 1 we need a particular scaling in Ωε
3 of the function f

ε

to prove the a priori estimate. For this reason we shall assume that

f ε(x) =
(
χε
1(x) + χε

2(x) +
ε

εβ
χε
3(x)

)
f(x), f ∈ L2(Ω).

Under this assumption and by a similar manner as above we obtain the desired

estimates (2.2) and

(2.5) ‖uε‖2L2(Ω) 6 C + C
ε2β

ε2
.

This finishes the proof. �

By the way, let us point out that the basic assumption in the proof of (2.4) is the

Dirichlet condition on the lateral and bottom boundaries of Ω. Nevertheless, we may

conjecture that the Poincaré’s inequality (2.4) continues to hold true even if we have

only the Dirichlet condition on the top or the bottom of Ω. We postpone the proof

of this conjecture to a subsequent work.
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3. Partial unfolding in L2-space

3.1. The partial unfolding operator Tx̃,εβ . The unfolding operator Tε was

introduced in 2002 by Damlamian, Cioranescu and Griso (see [5]) for ε-periodic

domains. The disadvantage of this unfolding operator is, that in general, it does not

conserve the integral, i.e.
∫

Ω×Ỹ

Tε(φ)(x, ỹ) dxdỹ 6=

∫

Ω

φ(x) dx.

To overcome this problem, Franců and Svansted proposed in [9] a modified op-

erator Tε(φ) which conserves the integral. In this work we shall use this approach.

Nevertheless, in our case, the material of the composite is highly heterogeneous only

in the transverse directions. So, we need to define a partial unfolding operator with

respect to the relevant transverse vector x̃, which enables us to simplify the homog-

enization process significantly.

The coordinates of any vector x in Ω can be split into a “fast” part x = (x̃, x3) and

a “slow” part ỹ := x̃/εβ. Based on the εβ-periodicity assumption, for each x̃ ∈ R
2

one has the unique decomposition

x̃ = εβ
([

x̃

εβ

]

Ỹ

+

{
x̃

εβ

}

Ỹ

)
,

where for any z ∈ R
2 we denote by [z]

Ỹ
the unique integer combination such that

z − [z]
Ỹ
belongs to Ỹ . The following notations are also used:

(3.1) Ξε = {ξ ∈ Z
2, Y ε

ξ = εβ(ξ + Ỹ )× I ⊂ Ω},

Ω̂ε = interior

{ ⋃

ξ∈Ξε

εβ(ξ + Ỹ )× I

}
,

Λε = Ω \ Ω̂ε.

The set Ω̂ε is the largest union of ε
β(ξ + Ỹ ) × I cells included in Ω, while Λε

is the subset of Ω containing the parts from εβ(ξ + Ỹ ) × I cells intersecting the

boundary ∂Ω. To define the partial unfolding operator with respect to the transverse

vector x̃, we introduce the following two-scale mapping tε : Ω× Ỹ → Ω:

tε(x, ỹ) =





(
εβ
[
x̃

εβ

]

Ỹ

+ εβ ỹ, x3

)
if (x, ỹ) ∈ Ω̂ε × Ỹ ,

x if (x, ỹ) ∈ Λε × Ỹ .

Now, we shall define the partial unfolding operator in the x̃-directions and of

power β, which will be denoted Tx̃,εβ , that maps measurable functions defined in Ω

into measurable functions in Ω× Ỹ .
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Definition 3.1. Let ε, β > 0. For any function φ Lebesgue-measurable on Ω,

the partial unfolding operator Tx̃,εβ is defined by

(3.2) Tx̃,εβ (φ)(x, ỹ) = φ(tε(x, ỹ)) for (x, ỹ) ∈ Ω× Ỹ .

We start by summarizing the most important properties of this unfolding opera-

tor Tx̃,εβ . The proofs of the majority of these results follow easily from the above

definition and we shall omit them.

3.2. Fundamental properties of Tx̃,εβ .

Proposition 3.2.

(1) The operator Tx̃,εβ conserves the integral: for all φ ∈ L1(Ω) we have

∫

Ω×Ỹ

Tx̃,εβ (φ)(x, ỹ) dxdỹ =

∫

Ω

φ(x) dx.

Moreover, if φ ∈ L2(Ω), one has

‖Tx̃,εβ (φ)‖L2(Ω×Ỹ ) = ‖φ‖L2(Ω).

(2) The operator Tx̃,εβ is linear and continuous from L2(Ω) to L2(Ω× Ỹ ) and

Tx̃,εβ (ψφ) = Tx̃,εβ (ψ)Tx̃,εβ (φ) ∀ψ, φ ∈ L2(Ω).

(3)

Tx̃,εβ (ψ)
(
x,
{ x̃

εβ

})
= ψ(x) ∀ψ ∈ L2(Ω).

3.3. Asymptotic properties of Tx̃,εβ .

Proposition 3.3.

(1) Let wε be a bounded sequence in L
2(Ω). Then there exists w ∈ L2(Ω× Ỹ ) such

that

Tx̃,εβ (wε)⇀ w weakly in L2(Ω× Ỹ ).

(2) For w ∈ L2(Ω) we have Tx̃,εβ (w) → w strongly in L2(Ω× Ỹ ).

(3) Let wε be a sequence in L
2(Ω) such that wε → w strongly in L2(Ω). Then

Tx̃,εβ (wε) → w strongly in L2(Ω× Ỹ ).
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(4) If wε ∈ L2(Ω) satisfies Tx̃,εβ (wε)⇀ ŵ weakly in L2(Ω× Ỹ ), then

wε ⇀ w =

∫

Ỹ

ŵ dỹ weakly in L2(Ω).

(5) Let {wε} ⊂ L2(Ω) such that Tx̃,εβ (wε)⇀ u, weakly in L2(Ω× Ỹ ), and for every

{vε} ⊂ L2(Ω) with Tx̃,εβ (vε) → v, strongly in L2(Ω× Ỹ ). Then for all φ ∈ D(Ω)

we have
∫

Ω

wε(x)vε(x)φ(x) dx→

∫

Ω

∫

Ỹ

u(x, ỹ)v(x, ỹ)φ(x) dxdỹ.

Now, to achieve the asymptotic analysis of the solution of problem (2.1) we need

the following technical lemma:

Lemma 3.4. Let uε be a bounded sequence in L2(Ω). Then

∫

Ω

uε(x)χε
i (x) dx =

∫

Ω×Ỹi

Tx̃,εβ (u
ε)(x, ỹ) dxdỹ +O(εβ).

P r o o f. Firstly, we recall that Λε is the subset of Ω containing the parts from

εβ(ξ + Ỹ ) × I cells intersecting the boundary ∂Ω. Since the number of cells in the

boundary is of order εβ−2β (see [7], page 35), we have |Λε| = O(εβ). Secondly, we

note that
∫

Ω

uε(x)χε
i (x) dx =

∫

Ω×Ỹ

Tx̃,εβ (u
ε)(x, ỹ)Tx̃,εβ (χ

ε
i )(x, ỹ) dxdỹ

=

∫

Ω̂ε×Ỹ

Tx̃,εβ (u
ε)(x, ỹ)χi(ỹ) dxdỹ +

∫

Λε×Ỹ

uε(x)χε
i (x) dxdỹ

=

∫

Ω×Ỹ

Tx̃,εβ (u
ε)(x, ỹ)χi(ỹ) dxdỹ −

∫

Λε×Ỹ

Tx̃,εβ (u
ε)(x, ỹ)χi(ỹ) dxdỹ

+

∫

Λε×Ỹ

uε(x)χε
i (x) dxdỹ

=

∫

Ω×Ỹ

Tx̃,εβ (u
ε)(x, ỹ)χi(ỹ) dxdỹ −

∫

Λε×Ỹ

uε(x)χi(ỹ) dxdỹ

+

∫

Λε

uε(x)χε
i (x) dx.

On the other hand, uε is bounded in L2(Ω) and
∫
Λε
χε
i (x) dx = O(εβ), so we deduce

that

−

∫

Λε×Ỹ

uε(x)χi(ỹ) dxdỹ +

∫

Λε

uε(x)χε
i (x) dx = O(εβ),

which finishes the proof. �
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Corollary 3.5. Let ψ ∈ L2(Ỹ ) be a Ỹ -periodic function. Then for all (x, ỹ) ∈

Ω× Ỹ one has

(3.3) Tx̃,εβ (ψε)(x, ỹ) =





ψ(ỹ) if (x, ỹ) ∈ Ω̂ε × Ỹ ,

ψ
( x̃
εβ

)
if (x, ỹ) ∈ Λε × Ỹ ,

and

(3.4) Tx̃,εβ (ψε) → ψ in L2(Ω× Ỹ ).

P r o o f. From the definition of the partial unfolding operator we derive (3.3). The

convergence in (3.4) follows by similar argument as in the proof of Lemma 3.4. �

Remark 3.6. For φ ∈ (L2(Ω))N , Tx̃,εβ (φ) is defined componentwise:

Tx̃,εβ (φ)(x, ỹ) :=




Tx̃,εβ (φ1)(x, ỹ)

Tx̃,εβ (φ2)(x, ỹ)
...

Tx̃,εβ (φN )(x, ỹ)


 ∀ (x, ỹ) ∈ Ω× Ỹ .

3.4. Partial unfolding of gradients. Due to Definition 3.1 for any w ∈ H1(Ω)

we have

(3.5) Tx̃,εβ (∇w) =





( 1

εβ
∇ỹTx̃,εβ (w)

∂x3
Tx̃,εβ (w)

)
on Ω̂ε × Ỹ ,

∇w on Λε × Ỹ .

In particular, one has obviously the following commutative property between Tx̃,εβ

and ∂x3
:

(3.6) Tx̃,εβ ◦ ∂x3
= ∂x3

◦ Tx̃,εβ .

Theorem 3.7. Let {wε} be a sequence in H1(Ω) which converges weakly

to w. Then there exists a subsequence still denoted {wε} and there exists ŵ in

L2(Ω;H1
per(Ỹ )) such that

Tx̃,εβ (∇wε)⇀

(
∇x̃w +∇ỹŵ

∂x3
w

)
in L2(Ω× Ỹ )3.

Moreover,

M
Ỹ
(ŵ) :=

∫

Ỹ

ŵ dỹ = 0.

The space H1
per(Ỹ ) is the closure with respect to the H1-norm, of the space C∞

per(Ỹ )

of infinitely differentiable Ỹ -periodic functions.
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P r o o f. The proof of this theorem follows along the same general lines as the

proof of Theorem 3.5 in [6] and we shall omit it. �

Corollary 3.8. Let {wε} be a sequence in H1(Ω) such that {wε} is a bounded

sequence in L2(Ω). Moreover, we assume that

ε‖∇x̃wε‖L2(Ω) 6 C, ‖∂x3
wε‖L2(Ω) 6 C.

Then there exists a subsequence {wε} (still denoted wε) and

w ∈ L2(Ω;H1
per(Ỹ )) ∩ L2(Ω̃;H1(I))

such that
Tx̃,εβ (wε)⇀ w(x, ỹ),

Tx̃,εβ (∂x3
wε)⇀ ∂x3

w(x, ỹ) in L2(Ω× Ỹ ).

Moreover,

εTx̃,εβ (∇x̃wε)⇀ 0 and εβTx̃,εβ (∇x̃wε)⇀ ∇ỹw(x, ỹ) in L2(Ω× Ỹ )

when β < 1 and β > 1, respectively.

P r o o f. Since ‖wε‖L2(Ω) 6 C and in view of Proposition 3.3, there exists a sub-

sequence {wε} and w ∈ L2(Ω× Ỹ ) such that

Tx̃,εβ (wε)⇀ w(x, ỹ) in L2(Ω× Ỹ ).

It follows from ‖∂x3
wε‖L2(Ω) 6 C that there exists u ∈ L2(Ω× Ỹ ) such that

Tx̃,εβ (∂x3
wε)⇀ u(x, ỹ) in L2(Ω× Ỹ ).

From (3.6) we deduce that

w ∈ L2(Ω;H1
per(Ỹ )) ∩ L2(Ω̃;H1(I)) and u(x, ỹ) = ∂x3

w(x, ỹ).

Now, to derive the last convergence we note that there exists ζ ∈ L2(Ω × Ỹ ) such

that

Tx̃,εβ (ε∇x̃wε)⇀ ζ(x, ỹ) in L2(Ω× Ỹ ),

since

ε‖∇x̃wε‖L2(Ω) 6 C.

In order to identify ζ we choose the test function ψ(x) = ϕ(x)ψ(x̃/εβ), where

ϕ ∈ D(Ω) and ψ ∈ H1
per(Ỹ ).
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Since we have the conservation of the integral,

∫

Ω

ε∇x̃u
ε(x)ϕ(x)ψε(x̃) dx =

∫

Ω×Ỹ

εTx̃,εβ (∇x̃u
ε)Tx̃,εβ (ϕ)Tx̃,εβ (ψ

ε) dxdỹ

→

∫

Ω×Ỹ

ζ(x, ỹ)ϕ(x)ψ(ỹ) dxdỹ.

After integration by parts, we get

∫

Ω

ε∇x̃u
ε(x)ϕ(x)ψε(x̃) dx = −

∫

Ω

uε(x)
[
εdivx̃ϕ(x)ψ

ε(x̃) +
ε

εβ
ϕ(x)divỹψ

ε(x̃)
]
dx.

Then, if β < 1 and ε tends to zero, we obtain

0 =

∫

Ω×Ỹ

ζ(x, ỹ)ϕ(x)ψ(ỹ) dxdỹ.

Thus

ζ = 0 and εTx̃,εβ (∇x̃wε)⇀ 0.

Finally, if β > 1, then

εβ‖∇wε‖L2(Ω) 6 ε‖∇wε‖L2(Ω) 6 C,

moreover,

εβTx̃,εβ (∇wε) = ∇ỹ(Tx̃,εβ (w)).

By a similar argument as above, one has

εβTx̃,εβ (∇x̃wε)⇀ ∇ỹw(x, ỹ) in L2(Ω× Ỹ ).

This completes the proof. �

3.5. The partial averaging operator. We shall now introduce the following

partial averaging operator.

Definition 3.9. The partial averaging operator Ux̃,εβ : L
2(Ω × Ỹ ) 7→ L2(Ω) is

defined as

Ux̃,εβ (φ)(x) =





∫

Ỹ

φ
((
εβ
[ x̃
εβ

]
Ỹ
+ εβ z̃, x3

)
,
{ x̃
εβ

}
Ỹ

)
dz̃ for x ∈ Ω̂ε,

∫

Ỹ

φ(x, ỹ) dỹ for x ∈ Λε.
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Let us first note that we have the following duality-like formula between Ux̃,εβ

and Tx̃,εβ . Indeed, for any ψ ∈ L2(Ω), φ ∈ L2(Ω× Ỹ ) one has

(3.7)

∫

Ω×Ỹ

φ(x, ỹ)Tx̃,εβ (ψ)(x, ỹ) dxdỹ =

∫

Ω

Ux̃,εβ (φ)(x)ψ(x) dx.

Using successively the change of variables x̃ = εβξ + εβ z̃ and x̃ = εβξ + εβ ỹ one

gets

∫

Ω×Ỹ

Tx̃,εβ (ψ)(x, ỹ)φ(x, ỹ) dxdỹ

=

∫

Ω̂ε×Ỹ

Tx̃,εβ (ψ)(x, ỹ)φ(x, ỹ) dxdỹ +

∫

Λε×Ỹ

Tx̃,εβ (ψ)(x, ỹ)φ(x, ỹ) dxdỹ

=
∑

ξ∈Ξε

∫

εβ(ξ+Ỹ )×I×Ỹ

ψ(εβξ + εβ ỹ, x3)φ(x, ỹ) dxdỹ +

∫

Λε×Ỹ

ψ(x)φ(x, ỹ) dxdỹ

= ε2β
∑

ξ∈Ξε

∫

Ỹ×I×Ỹ

ψ(εβξ + εβ ỹ, x3)φ((ε
βξ + εβ ỹ, x3), z̃) dx3 dz̃ dỹ

+

∫

Λε×Ỹ

ψ(x)φ(x, ỹ) dxdỹ

=
∑

ξ∈Ξε

∫

ε(ξ+Ỹ )×I×Ỹ

ψ(x)φ
((
ε
[ x̃
ε

]
Ỹ
+ εz̃, x3

)
,
{ x̃
ε

}
Ỹ

)
dxdz̃

+

∫

Λε×Ỹ

ψ(x)φ(x, ỹ) dxdỹ

=

∫

Ω̂ε

ψ(x)

(∫

Ỹ

φ
((
εβ
[ x̃
εβ

]
Ỹ
+ εβ z̃, x3

)
,
{ x̃
ε

}
Ỹ

)
dz̃

)
dx

gr +

∫

Λε

ψ(x)

(∫

Ỹ

φ(x, ỹ) dỹ

)
dx =

∫

Ω

ψ(x)Ux̃,εβ (φ)(x) dx.

This establishes the above formula (3.7).

Proposition 3.10. The operator Ux̃,εβ is linear and continuous from L2(Ω× Ỹ )

to L2(Ω) and satisfies the following properties:

(1) ‖Ux̃,εβ (φ)‖L2(Ω)
6 ‖φ‖

L2(Ω×Ỹ ).

(2) Ux̃,εβ (Tx̃,εβ (φ))(x) = φ(x) ∀x ∈ Ω.

(3)

Tx̃,εβ (Ux̃,εβ (φ))(x, ỹ) =





∫

Ỹ

φ
((
εβ
[ x̃
εβ

]
Ỹ
+ εβ z̃, x3

)
, ỹ
)
dz̃ if (x, ỹ) ∈ Ω̂ε × Ỹ ,

∫

Ỹ

φ(x, ỹ) dỹ if (x, ỹ) ∈ Λε × Ỹ .
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(4) Let (wε) be a sequence in L
2(Ω× Ỹ ) such that wε → w strongly in L2(Ω× Ỹ ).

Then

Tx̃,εβ (Ux̃,εβ (wε)) → w strongly in L2(Ω× Ỹ ).

(5) Let (wε) be a sequence in L
2(Ω). Then

Tx̃,εβ (wε) −→ ŵ in L2(Ω× Ỹ ) ⇔ wε − Ux̃,εβ (ŵ) −→ 0 in L2(Ω).

P r o o f. For item (1) let ψ ∈ L2(Ω), φ ∈ L2(Ω× Ỹ ). One has

∫

Ω×Ỹ

φ(x, ỹ)Tx̃,εβ (ψ)(x, ỹ) dxdỹ =

∫

Ω

Ux̃,εβ (φ)(x)ψ(x) dx.

Now, we take ψ(x) = Ux̃,εβ (φ)(x), then by using Hölder inequality we obtain

∣∣∣∣
∫

Ω

(Ux̃,εβ (φ))
2(x) dx

∣∣∣∣ =
∣∣∣∣
∫

Ω×Ỹ

φ(x, ỹ)Tx̃,εβ (Ux̃,εβ (φ))(x, ỹ) dxdỹ

∣∣∣∣,

‖Ux̃,εβ (φ)‖
2
L2(Ω) 6 ‖φ‖

L2(Ω×Ỹ )‖Tx̃,εβ (Ux̃,εβ (φ))‖L2(Ω×Ỹ )

= ‖φ‖
L2(Ω×Ỹ )‖Ux̃,εβ (φ)‖L2(Ω),

‖Ux̃,εβ (φ)‖L2(Ω) 6 ‖φ‖
L2(Ω×Ỹ ).

For item (2) we observe that

Ux̃,εβ (Tx̃,εβ (φ))(x) =





∫

Ỹ

Tx̃,εβ (φ)
((
εβ
[ x̃
εβ

]
Ỹ
+ εβ z̃, x3

)
,
{ x̃
εβ

}
Ỹ

)
dz̃ if x ∈ Ω̂ε,

∫

Ỹ

Tx̃,εβ (φ)(x, ỹ) dỹ if x ∈ Λε,

=





∫

Ỹ

φ
(
εβ
[ x̃
εβ

]
Ỹ
+ εβ

{ x̃

εβ

}
Ỹ
, x3

)
dz̃ if x ∈ Ω̂ε,

∫

Ỹ

φ(x) dỹ if x ∈ Λε,

hence, Ux̃,εβ (Tx̃,εβ (φ))(x) = φ(x) ∀x ∈ Ω.

Item (3) is a direct consequence of the definition of the partial operator. Item (4)

follows from Proposition 3.3. Finally, let us prove the “if” part of item (5). First,

from Proposition 3.3 we deduce

‖wε − Ux̃,εβ (ŵ)‖L2(Ω) = ‖Ux̃,εβ (Tx̃,εβ (wε))− Ux̃,εβ (ŵ)‖L2(Ω)

= ‖Ux̃,εβ (Tx̃,εβ (wε)− ŵ)‖L2(Ω)

6 ‖Tx̃,εβ (wε)− ŵ‖
L2(Ω×Ỹ ) → 0.
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Conversely, one has

wε − Ux̃,εβ (ŵ) → 0 in L2(Ω),

then

Tx̃,εβ (wε − Ux̃,εβ (ŵ)) → 0 in L2(Ω× Ỹ )

and consequently

Tx̃,εβ (wε) → ŵ in L2(Ω× Ỹ ).

�

Remark 3.11. An important feature of this partial averaging operator is that

we have for any φ ∈ L2(Ω) the following identity: Ux̃,εβ (Tx̃,εβ (φ))(x) = φ(x) which

holds true not only in Ω̂ε but for every x ∈ Ω.

In the following section we state the main results of this paper.

4. Main results

The asymptotic behavior of the solution uε is characterized by a critical power of

the scale εβ, namely β = 1. In order to describe the main results of the present work

it is convenient to split them up into three different scales.

⊲ Supercritical scale: β > 1.

⊲ Critical scale: β = 1.

⊲ Subcritical scale: β < 1.

First, let us introduce function

s2 = (s12, s
2
2, s

3
2) ∈ (H1

per(Ỹ ))3,

where for k = 1, 2, 3, sk2 is the unique solution of the so-called cellular problem

(4.1) − divỹ[a2(ỹ)[∇ỹs
k
2(ỹ) + ek]] = 0 in Ỹ2,

a2(ỹ)[∇ỹs
k
2(ỹ) + ek]n2(ỹ) = 0 on Ỹ23,

a2(ỹ)∇ỹs
k
2n2(ỹ)|∂Ỹ2∩∂Ỹ

Ỹ -periodic.

Now, we define the following homogenized matrix:

A2,hom
kj =

∫

Ỹ2

a2(ỹ)[ek +∇ỹs
k
2(ỹ)][ej +∇ỹs

j
2(ỹ)] dỹ, k, j = 1, 2, 3.
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1. Supercritical scale: β > 1.

Theorem 4.1. Let uε be the solution of (2.1). Then, there exists

(u, ṽ2) ∈ H1
D(Ω)× L2(Ω;H1

per(Ỹ2)/R)

such that

uε(x)⇀ u(x) in L2(Ω)

and (u, ṽ2) is the unique solution of the homogenized problem

(4.2) − divx(A
2,hom∇u)− a1,hom∂2x3

u = f in Ω,

∂x3
u(x̃, 1) = 0, x̃ ∈ Ω̃,

a2(ỹ)(∇u(x̃, 1) +∇ỹ ṽ2((x̃, 1), ỹ)) = 0, x̃ ∈ Ω̃, a.e. ỹ ∈ Ỹ2,

a1,hom =

∫

Ỹ1

a1(ỹ) dỹ,

ṽ2(x, ỹ) =

3∑

k=1

∂xk
u(x)sk2(ỹ).

2. Critical scale: β = 1.

Theorem 4.2. Let uε be the solution of (2.1). Then there exists

(u2, ṽ1, ṽ2) ∈ H1
D(Ω)× [L2(Ω;H1(Ỹ1)/R) ∩ L

2(Ω̃;H1(I))] × L2(Ω;H1
per(Ỹ2)/R),

w3 ∈ L2(Ω;H1(Ỹ3)/R)

such that

uε ⇀

∫

Ỹ1

ṽ1(x, ỹ) dỹ + (1− |Ỹ1|)u2(x) +

∫

Ỹ 3

w3(x, ỹ) dỹ weakly in L2(Ω)

and (u2, ṽ1, ṽ2, w3) is the unique solution of the two-scale homogenized problem

(4.3) − divx(A
2,hom∇u2)−

∫

Ỹ23

a3(ỹ)∇ỹw3(x, ỹ)n3(ỹ) ds(ỹ) = |Ỹ2|f in Ω,

a2(ỹ)(∇u2(x̃, 1) +∇ỹ ṽ2((x̃, 1), ỹ)) = 0 x̃ ∈ Ω̃, a.e. ỹ ∈ Ỹ2,

ṽ2(x, ỹ) =
3∑

k=1

∂xk
u2(x)s

k
2(ỹ)
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(4.4) − divỹ[a1(ỹ)∇ỹ ṽ1(x, ỹ)]− a1(ỹ)∂
2
x3
ṽ1(x, ỹ) = f(x) in Ỹ1,

a1(ỹ)∇ỹ ṽ1(x, ỹ)n1(ỹ) = a3(ỹ)∇ỹw3(x, ỹ)n1(ỹ) on Ỹ13,

∂x3
ṽ1(x̃, 1, ỹ) = 0, x̃ ∈ Ω̃, a.e. ỹ ∈ Ỹ2

(4.5) − divỹ[a3(ỹ)∇ỹw3(x, ỹ)] = f(x) in Ỹ3,

w3(x, ỹ) = 0 on Ỹ23,

w3(x, ỹ) = ṽ1(x, ỹ)− u2(x) on Ỹ13.

3. Subcritical scale: β < 1.

Theorem 4.3. Let uε be the solution of (2.1). Then there exists

(u2, ṽ1, ṽ2) ∈ H1
D(Ω)× [L2(Ω;H1(Ỹ1)/R) ∩ L

2(Ω̃;H1(I))]× L2(Ω;H1
per(Ỹ2)/R)

such that

uε(x)χ1

( x̃
εβ

)
⇀

∫

Ỹ 1

ṽ1(x, ỹ) dỹ weakly in L2(Ω),

uε(x)χ2

( x̃
εβ

)
⇀ |Ỹ2|u2(x) weakly in L2(Ω)

and (u2, ṽ1, ṽ2) is the unique solution of the two-scale homogenized problem

(4.6) − divx(A
2,hom∇u2)− ∂2x3

∫

Ỹ1

a1(ỹ)ṽ1(x, ỹ) dỹ = (1− |Ỹ3|)f(x) in Ω,

a2(ỹ)(∇u2(x̃, 1) +∇ỹ ṽ2((x̃, 1), ỹ)) = 0 x̃ ∈ Ω̃, a.e. ỹ ∈ Ỹ2,

ṽ2(x, ỹ) =

3∑

k=1

∂xk
u2(x)s

k
2(ỹ),

(4.7) − a1(ỹ)∂
2
x3
ṽ1(x, ỹ) = f(x) in Ω, a.e. ỹ ∈ Ỹ1,

∂x3
ṽ1(x̃, 1, ỹ) = 0, x̃ ∈ Ω̃, a.e. ỹ ∈ Ỹ1.

5. Proofs of the main results

In this section, we shall prove the main results stated in Section 4. Let us now

begin with:

5.1. Supercritical scale. Before proving theorem 4.1, we first establish the fol-

lowing lemma which gives some convergence results.
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Lemma 5.1. Let uε be the solution of problem (2.1). Then there exist u ∈ H1
D(Ω)

and ṽ2 ∈ L2(Ω;H1
per(Ỹ2)/R) such that:

Tx̃,εβ (u
ε)⇀ u(x) in L2(Ω× Ỹ ),(5.1)

uε ⇀ u(x) in L2(Ω),(5.2)

εβTx̃,εβ (∇x̃u
ε
|Ωε

1

) → 0 in L2(Ω× Ỹ1),(5.3)

Tx̃,εβ (∇u
ε
|Ωε

2

)⇀

(
∇x̃u(x) +∇ỹ ṽ2(x, ỹ)

∂x3
u(x)

)
in L2(Ω× Ỹ2),(5.4)

εβTx̃,εβ (∇u
ε
|Ωε

3
) →

(
0

0

)
in L2(Ω× Ỹ3),(5.5)

Tx̃,εβ (∂x3
uε|Ωε

1

)⇀ ∂x3
u(x) in L2(Ω× Ỹ1).(5.6)

P r o o f. First, we note that

εβ∇x̃u
ε(x)|Ωε

1
=
εβ

ε
ε∇x̃u

ε(x)|Ωε
1
,

using the boundedness of ε‖∇x̃u
ε‖L2(Ωε

1
) 6 C, we deduce that εβ∇x̃u

ε(x)|Ωε
1
con-

verges strongly to zero in L2(Ω). Thus εβTx̃,εβ (∇x̃u
ε
|Ωε

1
) → 0 in L2(Ω× Ỹ1). From

εβ‖∇x̃u
ε‖L2(Ωε

1
) 6 ε‖∇x̃u

ε‖L2(Ωε
1
) 6 C

and Corollary 3.8 there exists

ṽ1 ∈ L2(Ω;H1(Ỹ1))

such that

εβTx̃,εβ (∇x̃u
ε
|Ωε

1

)⇀ ∇ỹ ṽ1(x, ỹ) in L2(Ω× Ỹ1).

Thus ∇ỹ ṽ1(x, ỹ) = 0, then ṽ1(x, ỹ) = u1(x). As before, we deduce moreover the

existence of

w ∈ L2(Ω;H1(Ỹ3))

such that

εβTx̃,εβ (∇x̃u
ε
|Ωε

3
)⇀ ∇ỹw(x, ỹ) in L2(Ω× Ỹ3),

thus ∇ỹw(x, ỹ) = 0. This proves (5.3)–(5.5).

On the other hand, for all φε(x) = ϕ(x)ψε(x̃), where ϕ ∈ D(Ω), ψ ∈ H1
per(Ỹ ) and

by using Proposition 3.2 one has

(5.7)

∫

Ω

εβ∇x̃u
ε(x)ϕψε(x̃) dx

=

∫

Ω×Ỹ

εβTx̃,εβ (∇x̃u
ε)Tx̃,εβ (ϕ)(x, ỹ)Tx̃,εβ (ψ

ε)(x, ỹ) dxdỹ.
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It follows from Corollary 3.5 and Corollary 3.8 that

(5.8)

∫

Ω×Ỹ1

∇ỹ ṽ1(x, ỹ)ϕ(x)ψ(ỹ) dxdỹ +

∫

Ω×Ỹ3

∇ỹw(x, ỹ)ϕ(x)ψ(ỹ) dxdỹ = 0.

By integration by parts, we deduce

∫

Ω

εβ∇x̃u
ε(x)ϕ(x)ψε(x̃) dx = −

∫

Ω

uε(x)[εβdivx̃ϕ(x)ψ
ε(x̃) + ϕ(x)divỹψ

ε(x̃)] dx

= −

∫

Ω×Ỹ

Tx̃,εβ (u
ε)[εβTx̃,εβ (divx̃ϕ)Tx̃,εβ (ψ

ε) + Tx̃,εβ (ϕ)Tx̃,εβ (divỹψ
ε)] dxdỹ

=: Iε1 + Iε2 .

Then passing to the limit and using the fact that Tx̃,εβ (divỹψ
ε) → divỹψ(ỹ) in

L2(Ω× Ỹ ) and integrating by parts, we obtain:

Iε1 → 0,

(5.9) Iε2 → I2 = −

∫

Ω×Ỹ13

u1(x)ϕ(x)ψ(ỹ)n1(ỹ) ds(ỹ) dx

+

∫

Ω×Ỹ23

u2(x)ϕ(x)ψ(ỹ)n2(ỹ) ds(ỹ) dx

−

∫

Ω×(∂Ỹ2∩∂Ỹ )

u2(x)ϕ(x)ψ(ỹ)n2(ỹ) ds(ỹ) dx

+

∫

Ω×Ỹ13

w(x)ϕ(x)ψ(ỹ)n1(ỹ) ds(ỹ) dx

−

∫

Ω×Ỹ23

w(x)ϕ(x)ψ(ỹ)n2(ỹ) ds(ỹ) dx.

Finally, we set w3 = w − u2, we deduce

w3(x, ỹ) = 0, ỹ ∈ Ỹ23,

w3(x, ỹ) = u1(x) − u2(x), ỹ ∈ Ỹ13.

Since ∇ỹw(x, ỹ) = 0, ∇ỹw3(x, ỹ) = 0 and w3(x, ỹ) does not depend on ỹ (Ỹ3 is

connected), as a consequence w3(x, ỹ) = 0 and u1(x) = u2(x) = u(x). Conver-

gences (5.1), (5.4) and (5.6) are proved from Corollary 3.5 and Theorem 3.7, from

Proposition 3.3 we get immediately (5.2). �

P r o o f of Theorem 4.1. Let D1
D(Ω̄) := {φ ∈ D(Ω̄), φ = 0 on ΓD}.

We choose as test function ψε(x) = ϕ(x) + εβφ2(x)Ψ2(x̃/ε
β) in (2.1), where

φ2 ∈ D(Ω), ϕ ∈ D1
D(Ω̄), Ψ2 ∈ H1

per(Ỹ ).
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We split the integral over Ω into integrals over Ωε
i , i = 1, 2, 3, and from Lemma 3.4,

we obtain:
∫

Ω

Aε(x)∇uε(x)∇ψε(x) dx =: Iε11 + Iε12 + Iε2 + Iε3 +O(εβ),

where

Iε11 =

∫

Ω×Ỹ1

Tx̃,εβ (a
ε
1)εTx̃,εβ (∇x̃u

ε) ε
(
Tx̃,εβ (∇x̃ϕ) + εβTx̃,εβ (∇x̃φ2)Tx̃,εβ

(
Ψ2

( x̃
εβ

))

+ Tx̃,εβ (φ2)Tx̃,εβ
(
∇ỹΨ2

( x̃
εβ

)))
dxdỹ,

Iε12 =

∫

Ω×Ỹ1

Tx̃,εβ (a
ε
1)Tx̃,εβ (∂x3

uε)(Tx̃,εβ (∂x3
ϕ) + εβTx̃,εβ (∂x3

φ2)Tx̃,εβ (Ψ2)) dxdỹ,

Iε2 =

∫

Ω×Ỹ2

Tx̃,εβ (a
ε
2)Tx̃,εβ (∇u

ε)
(
Tx̃,εβ (∇ϕ) + εβTx̃,εβ (∇φ2)Tx̃,εβ

(
Ψ2

( x̃
εβ

))

+ Tx̃,εβ (φ2)Tx̃,εβ
(
∇ỹΨ2

( x̃
εβ

)))
dxdỹ,

Iε3 =

∫

Ω×Ỹ3

Tx̃,εβ (a
ε
3)Tx̃,εβ (ε∇u

ε)ε
(
Tx̃,εβ (∇ϕ) + εβTx̃,εβ (∇φ2)Tx̃,εβ (Ψ2)

+ Tx̃,εβ (φ2)Tx̃,εβ
(
∇ỹΨ2

( x̃
εβ

)))
dxdỹ.

Now, we can pass to the limit in each term. For Iε11, we use the boundedness of

εTx̃,εβ (∇x̃u
ε(x)), Proposition 3.3, Proposition 3.2 and Corollary 3.5 and we obtain

Iε11 → 0, Iε3 → 0.

For Iε12, in view of (5.6), Proposition 3.3, Proposition 3.2 and Corollary 3.5 , we have

Iε12 →

∫

Ω×Ỹ1

a1(ỹ)∂x3
u(x)∂x3

ϕ(x) dxdỹ.

And for Iε2 by using Theorem 3.7 and (5.4) we derive

Iε2 →

∫

Ω×Ỹ 2

a2(ỹ)(∇u(x) +∇ỹ ṽ2(x, ỹ))(∇ϕ(x) + φ2(x)∇ỹΨ2(ỹ)) dxdỹ.

Thus, we obtain the following variational problem:

(5.10)

∫

Ω×Ỹ1

a1(ỹ)∂x3
u(x)∂x3

ϕ(x) dxdỹ

+

∫

Ω×Ỹ 2

a2(ỹ)(∇u(x) +∇ỹ ṽ2(x, ỹ))(∇ϕ(x) + φ2(x)∇ỹΨ2(ỹ)) dxdỹ

=

∫

Ω

f(x)ϕ(x) dx.
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By the Lax-Milgram Theorem, the above equation has a unique solution in

H1
D(Ω)× L2(Ω;H1

per(Ỹ2)/R).

We are now ready to give the homogenized version of the above limit problem.

Firstly, we take ϕ = 0 in (5.10) and integrating by parts we obtain the following

system:

− divỹ[a2(ỹ)(∇u(x) +∇ỹ ṽ2(x, ỹ))] = 0 in Ỹ2,

a2(ỹ)(∇u(x) +∇ỹ ṽ2(x, ỹ))n2(ỹ) = 0 on Ỹ23,

a2(ỹ)(∇u(x) +∇ỹ ṽ2(x, ỹ))n2(ỹ)|∂Ỹ2∩∂Ỹ
Ỹ -periodic.

Secondly, we take ψ2 = 0 in (5.10) and integrating by parts, we get for an arbitrary

ϕ ∈ H1
D(Ω):

− divx

(∫

Ỹ2

a2(ỹ)(∇u +∇ỹ ṽ2) dỹ

)
−

∫

Ỹ1

a1(ỹ)∂
2
x3
u(x) dỹ = f(x),

∂x3
u(x̃, 1) = 0, x̃ ∈ Ω̃,

a2(ỹ)(∇u(x̃, 1) +∇ỹ ṽ2((x, 1), ỹ)) = 0, x̃ ∈ Ω̃, a.e. ỹ ∈ Ỹ2.

Finally, we decouple the macroscopic and microscopic variables (x, ỹ) by taking

ṽ2(x, ỹ) =
3∑

k=1

∂xk
u(x)sk2(ỹ), where s

k
2 is defined by (4.1).

−divx

(∫

Ỹ2

a2(ỹ)(∇u +

3∑

k=1

∂xk
u(x)∇ỹs

k
2(ỹ)) dỹ

)
−

∫

Ỹ1

a1(ỹ)∂
2
x3
u(x) dỹ

= −divx

(∫

Ỹ2

a2(ỹ)
3∑

k=1

∂xk
u(ek +∇ỹs

k
2(ỹ)) dỹ

)
−

∫

Ỹ1

a1(ỹ)∂
2
x3
u(x) dỹ = f(x).

As a consequence we deduce the homogenized problem (4.2). �

5.2. Critical scale. In this subsection, we focus on the case β = 1 which gives

the most interesting result. We start with the following lemma.

Lemma 5.2. Let uε be the solution of problem (2.1), then, up to a subsequence,

there exist
u2 ∈ H1

D(Ω), ṽ1 ∈ L2(Ω;H1(Ỹ1)/R) ∩ L
2(Ω̃;H1(I),

ṽ2 ∈ L2(Ω;H1
per(Ỹ2)/R) ∩ L

2(Ω̃;H1(I))

ṽ3 ∈ L2(Ω;H1(Ỹ3)/R)
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such that:

Tx̃,ε(u
ε)⇀ χ1(ỹ)ṽ1(x, ỹ) + χ2(ỹ)u2(x) + χ3(ỹ)ṽ3(x, ỹ) in L2(Ω× Ỹ ),(5.11)

uε ⇀

∫

Ỹ 1

ṽ1(x, ỹ) dỹ + |Ỹ2|u2(x) +

∫

Ỹ 3

ṽ3(x, ỹ) dỹ in L2(Ω),(5.12)

εTx̃,ε(∇x̃u
ε
|Ωε

1

)⇀ ∇ỹ ṽ1(x, ỹ) in L2(Ω× Ỹ1),(5.13)

Tx̃,ε(∇u
ε
|Ωε

2
)⇀

(
∇x̃u2(x) +∇ỹ ṽ2(x, ỹ)

∂x3
u2(x)

)
in L2(Ω× Ỹ2),(5.14)

εTx̃,ε(∇u
ε
|Ωε

3

)⇀ (∇ỹ ṽ3(x, ỹ) 0 ) in L2(Ω× Ỹ3),(5.15)

Tx̃,ε(∂x3
uε|Ωε

1

)⇀ ∂x3
ṽ1(x, ỹ) in L2(Ω× Ỹ1).(5.16)

P r o o f. The above convergence results are straightforward from Lemma 2.1,

Corollary 3.8, and Theorem 3.7. �

P r o o f of Theorem 4.2. Note that for all φε(x) = ϕ(x)ψε(x̃), where ϕ ∈ D(Ω)

and ψ ∈ H1
per(Ỹ ), one has

(5.17)

∫

Ω

ε∇x̃u
εϕψε(x̃) dx

=

∫

Ω×Ỹ

εTx̃,ε(∇x̃u
ε)(x, ỹ)Tx̃,ε(ϕ)(x, ỹ)Tx̃,ε(ψ

ε)(x, ỹ) dxdỹ

→

∫

Ω×Ỹ1

∇ỹ ṽ1(x, ỹ)ϕ(x)ψ(ỹ) dxdỹ +

∫

Ω×Ỹ3

∇ỹ ṽ3(x, ỹ)ϕ(x)ψ(ỹ) dxdỹ.

Integration by parts yields the following:
∫

Ω

ε∇x̃u
ε(x)ϕ(x)ψε(x̃) dx = −

∫

Ω

uε(x)[εdivx̃ϕ(x)ψ
ε(x̃) + ϕ(x)divỹψ

ε(x̃)] dx

= −

∫

Ω×Ỹ

Tx̃,ε(u
ε)[εTx̃,ε(divx̃ϕ)Tx̃,ε(ψ

ε) + Tx̃,ε(ϕ)Tx̃,ε(divỹψ
ε)] dxdỹ =: Iε1 + Iε2 .

Then passing to the limit as ε tends to zero, we have

Iε1 → 0,

Iε2 → I2 = −

∫

Ω×Ỹ1

ṽ1(x, ỹ)ϕ(x)divỹψ(ỹ) dxdỹ −

∫

Ω×Ỹ2

u2(x)ϕ(x)divỹψ(ỹ) dxdỹ

−

∫

Ω×Ỹ3

ṽ3(x, ỹ)ϕ(x)divỹψ(ỹ) dxdỹ.

We put w3 = ṽ3 − u2, thus we deduce

w3(x, ỹ) = 0 on Ỹ23,

w3(x, ỹ) = ṽ1(x, ỹ)− u2(x) on Ỹ13.
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The limit problem is then derived by taking as test function in (2.1)

ψε(x) = ϕ(x) + εφ2(x)Ψ2

( x̃
ε

)
+ φ(x)Ψ

( x̃
ε

)

and

Ψ(ỹ) =

{
Ψα(ỹ) for ỹ ∈ Ỹα, α = 1.3,

0 for ỹ ∈ Ỹ2,

where φ2, φ ∈ D(Ω), ϕ ∈ D1
D(Ω̄), Ψα,Ψ2 ∈ H1

per(Ỹ ). Similarly, by using the same

lines as in the proof of Theorem 4.1 we have first

∫

Ω

Aε(x)∇uε(x)∇ψε(x) dx =: Iε11 + Iε12 + Iε2 + Iε3 +O(εβ),

where

Iε11 =

∫

Ω×Ỹ1

Tx̃,ε(a
ε
1)εTx̃,ε(∇x̃u

ε)
(
εTx̃,ε(∇x̃ϕ) + ε2Tx̃,ε(∇x̃φ2)Tx̃,ε

(
Ψ2

( x̃
ε

))

+ εTx̃,ε(φ2)Tx̃,ε
(
∇ỹΨ2

( x̃
ε

))
+ εTx̃,ε(∇x̃φ)Tx̃,ε(Ψ1)

+ Tx̃,ε(φ)Tx̃,ε
(
∇ỹΨ1

( x̃
ε

)))
dxdỹ

Iε12 =

∫

Ω×Ỹ1

Tx̃,ε(a
ε
1)Tx̃,ε(∂x3

uε)
(
Tx̃,ε(∂x3

ϕ) + εTx̃,ε(∂x3
φ2)Tx̃,ε

(
Ψ2

( x̃
ε

))

+ Tx̃,ε(∂x3
φ)Tx̃,ε

(
Ψ1

( x̃
ε

)))
dxdỹ

Iε2 =

∫

Ω×Ỹ2

Tx̃,ε(a
ε
2)Tx̃,ε(∇u

ε)
(
Tx̃,ε(∇ϕ) + εTx̃,ε(∇φ2)Tx̃,ε

(
Ψ2

( x̃
ε

))

+ Tx̃,ε(φ2)Tx̃,ε
(
∇ỹΨ2

( x̃
ε

)))
dxdỹ

Iε3 =

∫

Ω×Ỹ3

Tx̃,ε(a
ε
3)εTx̃,ε(∇u

ε)
(
εTx̃,ε(∇ϕ) + ε2Tx̃,ε(∇φ2)Tx̃,ε(Ψ2)

+ εTx̃,ε(φ2)Tx̃,ε
(
∇ỹΨ2

( x̃
ε

))
+ εTx̃,ε(∇φ)Tx̃,ε

(
Ψ3

( x̃
ε

))

+ Tx̃,ε(φ)Tx̃,ε
(
∇ỹΨ3

( x̃
ε

)))
dxdỹ.

Now, passing to the limit as ε→ 0 we obtain

Iε11 →

∫

Ω×Ỹ 1

a1(ỹ)∇ỹ ṽ1(x, ỹ)φ(x)∇ỹΨ1(ỹ) dxdỹ,

Iε12 →

∫

Ω×Ỹ 1

a1(ỹ)∂x3
ṽ1(x, ỹ)(∂x3

ϕ(x) + ∂x3
φ(x)Ψ1(ỹ)) dxdỹ,
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Iε2 →

∫

Ω×Ỹ2

a2(ỹ)(∇u2(x) +∇ỹ ṽ2(x, ỹ))(∇ϕ(x) + φ2∇ỹΨ2(ỹ)) dxdỹ,

Iε3 →

∫

Ω×Ỹ3

a3(ỹ)∇ỹw3(x, ỹ)φ(x)∇ỹΨ3(ỹ) dxdỹ.

We deduce the following homogenized limit problem:

(5.18)

∫

Ω×Ỹ 1

a1(ỹ)∇ỹ ṽ1(x, ỹ)φ(x)∇ỹΨ1(ỹ) dxdỹ

+

∫

Ω×Ỹ1

a1(ỹ)∂x3
ṽ1(x, ỹ)(∂x3

ϕ(x) + ∂x3
φ(x)Ψ1(ỹ)) dxdỹ

+

∫

Ω×Ỹ 2

a2(ỹ)(∇u2(x) +∇ỹ ṽ2(x, ỹ))(∇ϕ(x) + φ2(x)∇ỹΨ2(ỹ)) dxdỹ

+

∫

Ω×Ỹ 3

a3(ỹ)∇ỹw3(x, ỹ)φ(x)∇ỹΨ3(ỹ) dxdỹ

=

∫

Ω×Ỹ1

f(x)φ(x)Ψ1(ỹ) dxdỹ +

∫

Ω

f(x)φ(x) dx

+

∫

Ω×Ỹ3

f(x)φ(x)Ψ3(ỹ) dxdỹ.

By the Lax-Milgram Theorem, there exists a unique solution

(u2, ṽ1, ṽ2) ∈ H1
D(Ω)× [L2(Ω;H1(Ỹ1)/R) ∩ L

2(Ω̃;H1(I))] × L2(Ω;H1
per(Ỹ2)/R),

w3 ∈ L2(Ω; (H1(Ỹ3)/R)).

Now, we derive the two-scale homogenized problem. Firstly, we take φ = 0 and

ψ2 = ψ1 = 0 in (5.18). After integration by parts, we deduce

(5.19) − divỹ[a3(ỹ)∇ỹw3(x, ỹ)] = f(x), a.e. ỹ ∈ Ỹ3, x ∈ Ω,

a3(ỹ)∇ỹw3(x, ỹ)n3(ỹ) = 0, a.e. ỹ ∈ ∂Ỹ3, x ∈ Ω.

Secondly, let φ = 0 and ψ2 = 0 in (5.18), integrating by parts and using (5.19), we

get

(5.20) − divỹ[a1(ỹ)∇ỹ ṽ1(x, ỹ)]− a1(ỹ)∂
2
x3
ṽ1(x, ỹ) = f(x) a.e. ỹ ∈ Ỹ1, x ∈ Ω,

a1(ỹ)∇ỹ ṽ1(x, ỹ)n1(ỹ) = −a3(ỹ)∇ỹw3(x, ỹ)n3(ỹ) a.e. ỹ ∈ Ỹ13, x ∈ Ω.

Thirdly, let ψ2 = ψ1 = ψ3 = 0 in (5.18) and integrating by parts,

−

∫

Ỹ2

divx[a2(ỹ)(∇u2 +∇ỹ ṽ2)] dỹ −

∫

Ỹ1

a1(ỹ)∂
2
x3
ṽ1(x, ỹ) dỹ =

∫

Ỹ

f(x) dỹ in Ω,

a2(ỹ)(∇u2(x̃, 1) +∇ỹ ṽ2((x̃, 1), ỹ)) = 0 x̃ ∈ Ω̃, a.e. ỹ ∈ Ỹ2,

∂x3
ṽ1(x̃, 1, ỹ) = 0 in Ω̃.
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In (5.20) and (5.19) we take, respectively, the average over Ỹ1 and Ỹ3 and we get

−

∫

Ỹ 1

divỹ[a1(ỹ)∇ỹ ṽ1(x, ỹ)] dỹ −

∫

Ỹ1

a1(ỹ)∂
2
x3
ṽ1(x, ỹ) dỹ =

∫

Ỹ 1

f(x) dỹ

and

−

∫

Ỹ3

divỹ[a3(ỹ)∇ỹw3(x, ỹ)] dỹ =

∫

Ỹ3

f(x) dỹ.

Integrating by parts, we deduce

−divx

(∫

Ỹ2

a2(ỹ)(∇u2+∇ỹ ṽ2) dỹ

)
−

∫

Ỹ23

a3(ỹ)∇ỹw3(x, ỹ)n3(ỹ) ds(ỹ) =

∫

Ỹ 2

f(x) dỹ.

Finally, we put ṽ2(x, ỹ) =
3∑

k=1

∂xk
u2(x)s

k
2(ỹ), where s

k
2 is defined by (4.1), then we

deduce (4.3). �

5.3. Subcritical scale. In this section, we investigate the subcritical scale. We

first prove the following lemma.

Lemma 5.3. Let uε be the solution of (2.1). Then there exist

u2 ∈ H1
D(Ω), ṽ1 ∈ L2(Ω;H1(Ỹ1)/R) ∩ L

2(Ω̃;H1(I))

and ṽ2 ∈ L2(Ω;H1
per(Ỹ2)/R), such that

Tx̃,εβ (∇u
ε
|Ωε

2

)⇀

(
∇x̃u2(x) +∇ỹ ṽ2(x, ỹ)

∂x3
u2(x)

)
in L2(Ω× Ỹ2),(5.21)

Tx̃,εβ (∂x3
uε|Ωε

1

)⇀ ∂x3
ṽ1(x, ỹ) in L2(Ω× Ỹ1).(5.22)

Remark 5.4. Let us mention that our a priori estimates are not enough to

deduce the behavior of εβTx̃,εβ (∇x̃u
ε
|Ωε

1

) and εβTx̃,εβ (∇u
ε
|Ωε

3
).

P r o o f of Lemma 5.3. To prove the lemma, we shall give some a priori estimates

for the sequence {uε} in Ωε
1 and Ωε

2.

Since Ω̃ε
2 is connected and u

ε = 0 on ∂Ω̃ε
2 ∩ ∂Ω̃, we have

‖uε‖
L2(Ω̃ε

2
) 6 C‖∇uε‖

L2(Ω̃ε
2
),

by applying [1], Lemma A.4. Now, by using integration over the interval I with

respect to the x3 variable we obtain

(5.23) ‖uε‖L2(Ωε
2
) 6 C‖∇uε‖L2(Ωε

2
).
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Moreover, as in the proof of [3], Lemma 2.1 one obtains

(5.24) ‖uε‖L2(Ωε
1
) 6 C‖∂x3

uε‖L2(Ωε
1
).

From estimates (2.2), (5.23)–(5.24) one can deduce that

uε(x)χ2

( x̃
εβ

)
and uε(x)χ1

( x̃
εβ

)

are bounded in L2(Ω), then (u2, ṽ1) ∈ H1
D(Ω) × [L2(Ω;H1(Ỹ1)/R) ∩ L2(Ω̃;H1(I))]

such that

Tx̃,εβ (u
ε
|Ωε

1

)⇀ ṽ1(x, ỹ), Tx̃,εβ (u
ε
|Ωε

2

)⇀ u2(x)

and

uε(x)χ1

( x̃
εβ

)
⇀

∫

Ỹ 1

ṽ1(x, ỹ) dỹ, uε(x)χ2

( x̃
εβ

)
⇀ |Ỹ2|u2(x) weakly in L2(Ω).

We apply Corollary 3.8 and Theorem 3.7 and get immediately convergences

(5.21)–(5.22). �

Thanks to the convergence results presented in Lemma 5.3, we can now give the

proof of the homogenized result stated in Theorem 4.3.

P r o o f of Theorem 4.3. In this case, we take as test function in (2.1)

ψε(x) = ϕ(x) + εβφ2(x)Ψ2

( x̃
εβ

)
+ φ1(x)Ψ1

( x̃
εβ

)

such that ψ1(ỹ) = 0 for all ỹ ∈ Ỹ2, where φ2, φ1 ∈ D(Ω), ϕ ∈ D1
D(Ω̄) and

Ψ1,Ψ2 ∈ H1
per(Ỹ ).

By using the same technical argument as in the proof of the previous theorem,

one gets ∫

Ω

Aε(x)∇uε(x)∇ψε(x) dx =: Iε11 + Iε12 + Iε2 + Iε3 +O(εβ).

Passing to the limit we obtain

Iε11 → 0, Iε3 → 0,

Iε12 →

∫

Ω×Ỹ 1

a1(ỹ)∂x3
ṽ1(x, ỹ)(∂x3

ϕ(x) + ∂x3
φ1(x)Ψ1(ỹ)) dxdỹ,

Iε2 →

∫

Ω×Ỹ2

a2(ỹ)(∇u2(x) +∇ỹ ṽ2(x, ỹ))(∇ϕ(x) + φ2(x)∇ỹΨ2(ỹ)) dxdỹ.
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Then we derive the following limit problem:

(5.25)

∫

Ω×Ỹ1

a1(ỹ)∂x3
ṽ1(x, ỹ)(∂x3

ϕ(x) + ∂x3
φ1(x)Ψ1(ỹ)) dxdỹ

+

∫

Ω×Ỹ 2

a2(ỹ)(∇u2(x) +∇ỹ ṽ2(x, ỹ))(∇ϕ(x) + φ2(x)∇ỹΨ2(ỹ)) dxdỹ

=

∫

Ω×Ỹ1

f(x)φ1(x)Ψ1(ỹ) dxdỹ +

∫

Ω

f(x)ϕ(x) dx.

Based on the Lax-Milgram Theorem, this equation has a unique solution. To

derive the two-scale homogenized problem (4.3) we take first ϕ = 0 and ψ2 = 0

in (5.25) and after integration by parts we obtain (4.7). Then we take ψ2 = ψ1 = 0

in (5.25) to get (4.6). �

6. Corrector results

We are going to construct some corrector results by using the partial averaging

operator Ux̃,εβ . Let us deal only with the critical case in this section. The other cases

are quite similar and follow the same pattern.

Theorem 6.1. Using the hypotheses of Theorem 4.2, we have

ε∇x̃u
ε
|Ωε

1
− Ux̃,ε(∇ỹ ṽ1) → 0 in L2(Ω),

∂x3
uε|Ωε

1

− Ux̃,ε(∂x3
ṽ1) → 0 in L2(Ω),

∇uε|Ωε
2

−∇xu2 − Ux̃,ε(∇ỹ ṽ2) → 0 in L2(Ω),

ε∇uε|Ωε
3
− Ux̃,ε(∇ỹw3) → 0 in L2(Ω).

We start with the so-called energy-convergence. Under the hypotheses of The-

orem 4.2 and (5.18) and using the same arguments as in [4], we obtain easily the

following lemma.

Lemma 6.2.

lim
ε→0

∫

Ω

Aε(x)∇uε(x)∇uε(x) dx =

∫

Ω×Ỹ 1

a1(ỹ)∇ỹ ṽ1(x, ỹ)∇ỹ ṽ1(x, ỹ) dxdỹ

+

∫

Ω×Ỹ1

a1(ỹ)∂x3
ṽ1(x, ỹ)∂x3

ṽ1(x, ỹ) dxdỹ

+

∫

Ω×Ỹ 2

a2(ỹ)(∇u2(x) +∇ỹ ṽ2(x, ỹ))(∇u2(x) +∇ỹ ṽ2(x, ỹ)) dxdỹ

+

∫

Ω×Ỹ 3

a3(ỹ)∇ỹw3(x, ỹ)∇ỹw3(x, ỹ) dxdỹ.
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Using the same arguments as in Theorem 4.2, we get the following corollary.

Corollary 6.3.

εTx̃,ε(∇x̃u
ε
|Ωε

1

) → ∇ỹ ṽ1(x, ỹ) in L2(Ω× Ỹ1),

Tx̃,ε(∇u
ε
|Ωε

2

) →

(
∇x̃u2(x) +∇ỹ ṽ2(x, ỹ)

∂x3
u2(x)

)
in L2(Ω× Ỹ2),

εTx̃,ε(∇u
ε
|Ωε

3
) →

(
∇ỹw3(x, ỹ)

0

)
in L2(Ω× Ỹ3),

Tx̃,ε(∂x3
uε|Ωε

1

) → ∂x3
ṽ1(x, ỹ) in L2(Ω× Ỹ1).

P r o o f of Theorem 6.1. By using Lemma 6.2, Corollary 6.3 and Proposition 3.10

we deduce Theorem 6.1. �

7. Conclusion

In this work, we succeeded to provide the solutions of an homogenization problem

for a three-phase composite material: fibres, interphase and matrix. The conduc-

tivity matrix Aε of the medium varies periodically with a period of size εβ (ε > 0

and β > 0) in the transverse directions of the fibers and having different scaling in

different phases and directions. It is equal to ε2 (the so-called the double-porosity

type scaling) in both the interphase and the direction of the fibers and no scaling in

both the transverse directions of the fibers and the matrix. Recall that for composite

materials with highly contrasting parameters of order ε2, the homogenized limit may

exhibit a nonlocal effect which is demonstrated rigorously in [3], [4]. Our first ob-

jective was to study the effects of weakly conducting interphase on the homogenized

model for this double-porosity type composites. We have showed that the result

depends on the magnitude of the exponent β, being lower, equal or greater than 1.

More precisely, the effects of the interphase properties on the homogenized models

are captured only when the microstural length scale is of order εβ with 0 < β 6 1.

Thus, the result is physically very interesting, especially in the case β > 1, where

the interphase insures a perfect conductor between the fibers and the matrix at the

macroscopic scale.
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