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THE LIE GROUPOID ANALOGUE
OF A SYMPLECTIC LIE GROUP

David N. Pham

Abstract. A symplectic Lie group is a Lie group with a left-invariant
symplectic form. Its Lie algebra structure is that of a quasi-Frobenius Lie
algebra. In this note, we identify the groupoid analogue of a symplectic Lie
group. We call the aforementioned structure a t-symplectic Lie groupoid; the
“t" is motivated by the fact that each target fiber of a t-symplectic Lie groupoid
is a symplectic manifold. For a Lie groupoid G ⇒M , we show that there is a
one-to-one correspondence between quasi-Frobenius Lie algebroid structures
on AG (the associated Lie algebroid) and t-symplectic Lie groupoid structures
on G ⇒M . In addition, we also introduce the notion of a symplectic Lie group
bundle (SLGB) which is a special case of both a t-symplectic Lie groupoid
and a Lie group bundle. The basic properties of SLGBs are explored.

1. Introduction

A symplectic Lie group is a Lie group G together with a left-invariant symplectic
form ω [1, 5]. The associated Lie algebra structure is that of a quasi-Frobenius Lie
algebra [3]; the latter is formally a Lie algebra q together with a skew-symmetric,
non-degenerate bilinear form β on q such that

β([x, y], z) + β([y, z], x) + β([z, x], y) = 0
for all x, y, z ∈ q. In other words, β is a non-degenerate 2-cocycle in the Lie algebra
cohomology of q with values in R (where q acts trivially on R). For a symplectic Lie
group (G,ω), the associated quasi-Frobenius Lie algebra is (g, ωe), where g = TeG
is the Lie algebra defined by the left-invariant vector fields on G.

The notion of a quasi-Frobenius Lie algebroid (or symplectic Lie algebroid as it is
more commonly called) was introduced independently in [6] and [14]. As one would
expect, a quasi-Frobenius Lie algebroid over a point is simply a quasi-Frobenius Lie
algebra. As far as the author can tell, the Lie groupoid analogue of a symplectic
Lie group has not been formally identified in the literature. In other words, the
following question has not yet been answered: what is the Lie groupoid structure
whose assoicated Lie algebroid is precisely a quasi-Frobenius Lie algebroid?
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To be clear, there is a structure in the literature called a symplectic Lie groupoid
[16]. However, it is unrelated to the notion of a symplectic Lie group. Formally, a
symplectic Lie groupoid is a Lie groupoid G ⇒ M together with a symplectic form
ω on G such that

G3 := {(g, h, gh) | (g, h) ∈ G2}
is a Lagrangian submanifold of G × G × G, where G is the symplectic manifold
(G,−ω) and

G2 := {(g, h) | g, h ∈ G, s(g) = t(h)} .
The condition that G3 is a Lagrangian submanifold of G × G × G is equivalent to
the condition that
(1.1) m∗ω = π∗1ω + π∗2ω

where m : G2 −→ G denotes the multiplication map and πi : G2 −→ G denotes the
natural projection map for i = 1, 2.

Any Lie groupoid over a point is just a Lie group. Hence, one might expect that
a symplectic Lie groupoid over a point is just a symplectic Lie group, but this is
not the case. In fact, there are no symplectic Lie groupoids over a point. To see
this, let ω be a 2-form on a Lie group G which satisfies (1.1). Let g, h ∈ G and let

u := (x, y), v := (x′, y′) ∈ TgG× ThG .
Then
(1.2) (m∗ω)(g,h)(u, v) = ωgh

(
(rh)∗x+ (lg)∗y, (rh)∗x′ + (lg)∗y′

)
and
(1.3) (π∗1ω)(g,h)(u, v) + (π∗2ω)(g,h)(u, v) = ωg(x, x′) + ωh(y, y′) .
Setting h = e, x′ = 0g, and y = 0e in (1.2) and (1.3) gives
(1.4) (m∗ω)(g,e)(u, v) = ωg

(
x, (lg)∗y′

)
and
(1.5) (π∗1ω)(g,e)(u, v) + (π∗2ω)(g,e)(u, v) = 0 .
Since ω satisfies (1.1) by assumption, equations (1.4) and (1.5) imply that ωg ≡ 0
for all g ∈ G. This shows that for any Lie group G, there are no symplectic forms
which satisfy (1.1). Hence, there are no symplectic Lie groupoids over a point.

In this note, we will identify the groupoid analogue of a symplectic Lie group. We
call the aforementioned structure a t-symplectic Lie groupoid; the “t" is motivated
by the fact that each target fiber of a t-symplectic Lie groupoid is a symplectic
manifold. For a Lie groupoid G ⇒ M , we show that there is a one-to-one corres-
pondence between quasi-Frobenius Lie algebroid structures on AG (the associated
Lie algebroid) and t-symplectic Lie groupoid structures on G ⇒ M . In addition,
we also introduce the notion of a symplectic Lie group bundle (SLGB) which is a
special case of both a t-symplectic Lie groupoid and a Lie group bundle [10, 11].

The rest of this paper is organized as follows. In Section 2, we give a brief review
of Lie groupoids and Lie algebroids. In Section 3, we introduce t-symplectic Lie
groupoids, and establish the aforementioned one-to-one correspondence. Some basic
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examples of t-symplectic Lie groupoids are also presented. We conclude the paper
in Section 4 by introducing SLGBs and exploring some of its basic properties. In
addition, we also prove a result which is useful for the construction of nontrivial
SLGBs.

2. Preliminaries

2.1. Lie groupoids & Lie algebroids. In this section, we give a brief review of
Lie groupoids and Lie algebroids [10, 11, 12], mainly to establish the notation for
the rest of the paper. We begin with the following definition:

Definition 2.1. A Lie groupoid is a groupoid G ⇒ M such that
(i) G and M are smooth manifolds
(ii) all structure maps are smooth
(iii) the source map s : G −→M is a surjective submersion.

Remark 2.2. Note that condition (iii) of Definition 2.1 is equivalent to the
condition that the target map t : G −→M is a surjective submersion.

In addition, the axioms of a Lie groupoid imply that the unit map

u : M −→ G

is a smooth embedding. As a consequence of this, we will often view M as an
embedded submanifold of G. With this viewpoint, u is simply the inclusion map.

The domain of the multiplication map m on G is typically denoted as

G2 := {(g, h) | g, h ∈ G, s(g) = t(h)} .

Give (g, h) ∈ G2, we set gh := m(g, h).

Definition 2.3. Let G ⇒ M and H⇒ N be Lie groupoids. Let (s, t) and (s′, t′)
denote the source and target maps of G ⇒ M and H⇒ N respectively. Also, let u
and u′ denote the respective unit maps. A homomorphism from G ⇒ M to H⇒ N
is a pair of smooth maps F : G → H and f : M → N such that

(i) F (gh) = F (g)F (h) for all (g, h) ∈ G2
(ii) F ◦ u = u′ ◦ f
(iii) s′ ◦ F = f ◦ s, t′ ◦ F = f ◦ t

Example 2.4. Any Lie group is naturally a Lie groupoid over a point.

Example 2.5. Associated to any manifold M is the pair groupoid M ×M ⇒ M
whose structure maps are defined as follows:

s(p, q) := q, t(p, q) := p, (p, q)(q, r) := (p, r)
u(p) := (p, p), i(p, q) := (q, p)

for p, q, r ∈M .

Example 2.6. Let M be a manifold with a smooth left-action by a Lie group G.
Associated to (M,G) is the action groupoid G×M ⇒ M whose structure maps
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are defined as follows:

s(g, p) := g−1p , t(g, p) := p , (g, p)(h, g−1p) := (gh, p)
u(p) := (e, p) , i(g, p) := (g−1, g−1p) .

for g, h ∈ G, p ∈M .

Definition 2.7. A Lie algebroid is a triple (A, ρ,M) where A is a vector bundle
over M and ρ : A→ TM is a vector bundle map called the anchor such that

(i) Γ(A) is a Lie algebra.
(ii) For X, Y ∈ Γ(A) and f ∈ C∞(M), the Lie bracket on Γ(A) satisfies the

following Leibniz-type rule:

[X, fY ] = f [X,Y ] + (ρ(X)f)Y .

Proposition 2.8. Let (A, ρ,M) be a Lie algebroid. Then
(i) ρ : Γ(A)→ Γ(TM) is a Lie algebra map, where the Lie bracket on Γ(TM) is

just the usual Lie bracket of vector fields.
(ii) [fX, Y ] = f [X,Y ]− (ρ(Y )f)X for all X,Y ∈ Γ(A), f ∈ C∞(M).

Proof. (i): See Lemma 8.1.4 of [7].
(ii): Direct calculation. �

Definition 2.9. Let (A, ρ,M) and (A′, ρ′,M) be Lie algebroids over the same
base space M . A Lie algebroid homomorphism from (A, ρ,M) to (A′, ρ′,M) is a
vector bundle map ϕ : A→ A′ such that

(i) ϕ : Γ(A)→ Γ(A′) is a Lie algebra map,
(ii) ρ′ ◦ ϕ = ρ.

Every Lie groupoid G ⇒ M has an associated Lie algebroid (AG, ρ,M) which
arises by considering the Lie algebra of left-invariant vector fields on G.

Definition 2.10. Let G ⇒ M be a Lie groupoid. A vector field X̃ on G is
left-invariant if

(lg)∗,hX̃h = X̃gh

for all g, h ∈ G, where s(g) = t(h) and

lg : t−1(s(g)
)
−→ t−1(t(g)

)
is left multiplication by g.

Let
T tG := ker t∗ ⊂ TG .

Since t : G −→ M is a surjective submersion, it follows that T tG is a smooth
sub-bundle of TG. In addition, define

AG := T tG|M ,

where we recall that M is identified with the embedded submanifold of G consisting
of the unit elements. Let Xl(G) denote the left-invariant vector fields of G. It can
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be shown that Xl(G) is closed under the ordinary Lie bracket of vector fields on G.
Consequently, Xl(G) is a Lie algebra itself. Definition 2.10 implies that the map

Xl(G) −→ Γ(AG) , X̃ 7→ X̃|M
is a vector space isomorphism. The inverse map sends a section X ∈ Γ(AG) to the
left-invariant vector field X̃ on G defined by

(lg)∗,s(g)Xs(g) = X̃g .

Theorem 2.11. Let G ⇒ M be a Lie groupoid. For X, Y ∈ Γ(AG), define

[X,Y ] := [X̃, Ỹ ]|M ,

where X̃, Ỹ are the left-invariant vector fields associated to X and Y respectively.
Also, let

ρ := s∗|AG ,
where s : G −→M is the source map. Then (AG, ρ,M) is a Lie algebroid.

Proposition 2.12. Let G ⇒ M and H ⇒ M be Lie groupods and let ϕ : G → H
be a Lie groupoid homomorphism, where the morphism on the base space is idM .
Let ϕ̂ := ϕ∗|AG. Then ϕ̂ : AG → AH is a Lie algebroid homomorphism.

Example 2.13. Any Lie algebra g is naturally a Lie algebroid over a point.
Specifically, the Lie algebra structure on Γ(g) is induced by that of g under the
natural vector space isomorphism Γ(g) ' g, and the anchor map of g is (necessarily)
the zero map.

Example 2.14. The tangent bundle TM of a manifold M is naturally a Lie
algebroid where the Lie bracket on Γ(TM) is just the usual Lie bracket of vector
fields on M , and the anchor map is just the identity map ρ := idTM . (TM, idTM ,M)
is called the tangent algebroid.

A direct calculation shows that the tangent algebroid is the associated Lie
algebroid of the pair groupoid M ×M ⇒ M .

Example 2.15. Let

ψ : g −→ Γ(TM), x 7→ xM := ψ(x) ∈ Γ(TM)

be an action of a Lie algebra g on a manifold M , that is, ψ is a Lie algebra
homomorphism. Consider the trivial vector bundle

g×M →M .

The sections of g×M are naturally identified with smooth g-valued functions on
M . Given two smooth functions φ, τ : M −→ g, define

(2.1) [φ, τ ](p) := [φ(p), τ(p)] + (φ(p)M )pτ − (τ(p)M )pφ

for all p ∈M , where [φ(p), τ(p)] is understood to be the Lie bracket of φ(p), τ(p) ∈ g
on g. Also, define

(2.2) ρ : g×M −→ TM , (x, p) 7→ (xM )p ∈ TpM .
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Then g×M is a Lie algebroid with bracket given by (2.1) and anchor map given
by (2.2). (g×M,ρ,M) is called the action algebroid.

Now let G be a Lie group whose Lie algebra is g and suppose that M has a
smooth left-action by G. The G-action on M induces an action of g on M which
sends x ∈ g to the vector field xM on M given by

(2.3) (xM )p := d

dt
|t=0 exp(−tx)p ∈ TpM .

The action algebroid given by the g-action of (2.3) coincides with the associated
Lie algebroid of the action groupoid G×M ⇒ M .

2.2. The exterior derivative of a Lie algebroid. Every Lie algebroid (A, ρ,M)
has an exterior derivative

dA : Γ(∧kA∗) −→ Γ(∧k+1A∗) ,

which is analogous to the usual exterior derivative of differential forms. Formally,
dA is defined by

(dAω)(X1, . . . , Xk+1) =
k+1∑
i=1

(−1)i+1ρ(Xi)[ω(X1, . . . , X̂i, . . . , Xk+1)]

+
∑
i<j

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1)(2.4)

for ω ∈ Γ(∧kA∗), Xi ∈ Γ(A), i = 1, . . . , k + 1, where X̂i denotes omission of Xi. A
direct calculation shows that

(2.5) d2
A = 0 .

Example 2.16. The exterior derivative dTM associated to the tangent algebroid
(TM, idTM ,M) is just the ordinary exterior derivative of differential forms on M .

Example 2.17. For a Lie algebra g, the exterior derivative dg associated to its
natural Lie algebroid structure is given explicitly by

(dgω)(x1, . . . , xk+1) =
∑
i<j

(−1)i+jω([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xk+1) ,

for ω ∈ ∧kg∗, x1, . . . , xk+1 ∈ g. From this, one sees that dg is just the coboundary
map in the Lie algebra cohomology of g with values in R, where g acts trivially on
R.

2.3. quasi-Frobenius Lie algebroids. As mentioned previously, a symplectic
Lie algebroid over a point is a symplectic Lie algebra (or quasi-Frobenius Lie algebra
as it is also called). However, the name symplectic Lie algebra also has a different
meaning. It also refers to sp(2n,R), the Lie algebra of the Lie group of 2n × 2n
symplectic matrices. For this reason, we prefer to use the name quasi-Frobenius
Lie algebroids in place of symplectic Lie algebroids. Formally, a quasi-Frobenius
Lie algebroid is defined as follows:
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Definition 2.18. A quasi-Frobenius Lie algebroid is a Lie algebroid (A, ρ,M)
together with a non-degenerate 2-cocycle ω in the Lie algebroid cohomology of
(A, ρ,M), that is, ω ∈ Γ(∧2A∗) such that

(i) ω is nondegenerate
(ii) dAω = 0.

Furthermore, if there exists θ ∈ Γ(A∗) such that ω = dAθ, then (A, ρ,M, θ) is
called a Frobenius Lie algebroid.

Example 2.19. Let (q, β) be a quasi-Frobenius Lie algebra, that is, q is a Lie
algebra and β ∈ ∧2q∗ is a nondegenerate 2-cocycle in the Lie algebra cohomology
of q with values in R (where q acts trivially on R). Let dq denote the exterior
derivative from the natural Lie algebroid structure on q. As noted previously, dq

coincides with the coboundary map in the Lie algebra cohomology of q with values
in R. Hence, dqβ = 0. Equipping q with its natural Lie algebroid structure, it
follows that (q, β) is naturally a quasi-Frobenius Lie algebroid over a point.

Example 2.20. Let (M,ω) be a symplectic manifold and let
(TM, idTM ,M)

denote the tangent algebroid. As noted previously, dTM = d where d is the
usual exterior derivative of differential forms on M . From this, it follows that
(TM, idTM ,M) together with ω is a quasi-Frobenius Lie algebroid over M .

3. t-symplectic Lie groupoids

In this section, we identify the Lie groupoid analogue of a symplectic Lie group.
To start, recall that a symplectic Lie group is a Lie group G together with a
left-invariant symplectic form ω. The condition of left-invariance simply means that
(3.1) l∗gω = ω , ∀ g ∈ G ,

where lg : G −→ G is left translation by g ∈ G. For a Lie groupoid G ⇒ M ,
where M consists of more than one point, the condition of left-invariance given
by equation (3.1) is no longer applicable. In other words, while the notion of
left-invariant vector fields extends from Lie groups to Lie groupoids, the notion
of left-invariant differential forms does not. This is a consequence of the fact that
multiplication on a groupoid G ⇒ M is only partial whenever M consists of more
than one point.

For g ∈ G, the domain of lg is not G. Instead, one has

lg : t−1(s(g)
) ∼−→ t−1(t(g)

)
↪→ G ,

where s and t denote the source and target maps on G ⇒ M . Consequently, if one
starts with a differential form ω on G, then the pullback (lg)∗ω is now a differential
form on the embedded submanifold t−1(s(g)), rather than on G.

In the case of a Lie group G, every left-invariant k-form on G is uniquely
determined by some element in ∧kg∗, where g is the Lie algebra of G. Since AG is
the analogue of g for a Lie groupoid G ⇒ M and Γ(∧kg∗) ' ∧kg∗, it is natural to
take the Lie groupoid analogue of left-invariant k-forms on G ⇒ M to be in one to
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one correspondence with the elements of Γ(∧k(AG)∗). This motivates the following
definition:

Definition 3.1. Let G ⇒ M be a Lie groupoid. A section

ω̃ ∈ Γ
(
∧k (T tG)∗

)
is left-invariant if

(lg)∗
(
ω̃|t−1(t(g))

)
= ω̃|

t−1
(
s(g)
)

for all g ∈ G.

Remark 3.2. Recall that for p ∈M and g ∈ t−1(p),

(3.2) (T tG)g := ker t∗,g = Tg t
−1(p) .

This implies that ω̃|t−1(p) in Definition 3.1 is indeed a differential k-form on t−1(p).

Remark 3.3. Note that when M is a point, that is, G is a Lie group, we have
T tG = TG, and Definition 3.1 coincides with the usual notion of left-invariant
differential forms on a Lie group.

The next result justifies Definition 3.1.

Proposition 3.4. Let G ⇒ M be a Lie groupoid and let ΓL(∧k(T tG)∗) denote the
space of left-invariant sections of ∧k(T tG)∗. Define

ϕ : ΓL(∧k(T tG)∗) −→ Γ(∧k(AG)∗)

by ϕ(ω̃) := ω̃|M , where p ∈ M is identified with its corresponding unit element
ep ∈ G and AG is the Lie algebroid of G ⇒ M . Let ω̃(p) := ω̃|t−1(p) and ω := ϕ(ω̃).
Then ϕ is a vector space isomorphism and

(3.3) [(dω̃(p))(X̃1, . . . , X̃k+1)](g) =
[
(dAGω)(X1, . . . , Xk+1)

](
s(g)

)
,

for all ω̃ ∈ ΓL(∧k(T tG)∗), p ∈M , g ∈ t−1(p), and Xi ∈ Γ(AG) for i = 1, . . . , k+ 1,
where X̃i ∈ Γ(T tG) is the left-invariant vector field associated to Xi.

Proof. The linearity of ϕ is clear. We now show that ϕ is injective. Let Xi ∈ Γ(AG),
i = 1, . . . , k be arbitrary sections of AG and let X̃i, i = 1, . . . , k denote the
corresponding left-invariant vector fields on G. Let p ∈ M and g ∈ t−1(p). Note
that by equation (3.2), the restriction of X̃i to t−1(p) is a vector field on t−1(p).
Let ω̃ ∈ ΓL(∧k(T tG)∗) and ω := ω̃|M . Using the left-invariance of ω̃, we have[

ω̃(p)(X̃1, . . . , X̃k)
]
(g) = ω̃(p)

g

(
(X̃1)g, . . . , (X̃k)g

)
= ω̃(p)

g

(
(lg)∗,s(g)(X1)s(g), . . . , (lg)∗,s(g)(Xk)s(g)

)
= (l∗gω̃(p))s(g)

(
(X1)s(g), . . . , (Xk)s(g)

)
= ω̃

(s(g))
s(g)

(
(X1)s(g), . . . , (Xk)s(g)

)
= ωs(g)((X1)s(g), . . . , (Xk)s(g))
=
[
ω(X1, . . . , Xk)

](
s(g)

)
.(3.4)
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Equation (3.4) can be rewritten more generally as

(3.5) ω̃(X̃1, . . . , X̃k) = s∗[ω(X1, . . . , Xk)] ,

where we recall that ω̃(p) is just the restriction of ω̃ to t−1(p). Equation (3.5)
implies that ω̃ is uniquely determined by ω := ω̃|M ∈ Γ(∧k(AG)∗). Hence, ϕ is
injective. On the other hand, if β ∈ Γ(∧k(AG)∗), then one obtains an element
β̃ ∈ ΓL(∧k(T tG)∗) by defining

(3.6) β̃g(u1, . . . , uk) := βs(g)((lg−1)∗,gu1, . . . , (lg−1)∗,guk) .

for g ∈ G, u1, . . . , uk ∈ (T tG)g. From the definition, it follows that β̃|M = β. Hence,
ϕ is also surjective which proves that ϕ is an isomorphism.

Next, let Xk+1 ∈ Γ(AG) and let X̃k+1 be the associated left-invariant vector
field on G. Let g ∈ G. Then[

X̃k+1(ω̃(X̃1, . . . , X̃k))
]
(g) =

(
X̃k+1)g(ω̃(X̃1, . . . , X̃k)

)
= (X̃k+1)g

(
s∗[ω(X1, . . . , Xk)]

)
=
(
(lg)∗,s(g)(Xk+1)s(g)

)
([ω(X1, . . . , Xk)] ◦ s)

= (Xk+1)s(g) ([ω(X1, . . . , Xk)] ◦ s ◦ lg)
= (Xk+1)s(g) ([ω(X1, . . . , Xk)] ◦ s)
= s∗,s(g)

(
(Xk+1)s(g)

)
[ω(X1, . . . , Xk)]

= ρ
(
(Xk+1)s(g)

)
[ω(X1, . . . , Xk)](3.7)

where the second equality follows from equation (3.5), the fifth equality follows
from the fact that s ◦ lg = s|t−1(s(g)), and the last equality follows from the fact
that the anchor map associated to AG is ρ = s∗|AG . Equation (3.7) can be written
more generally as

(3.8) X̃k+1(ω̃(X̃1, . . . , X̃k)) = s∗ (ρ(Xk+1)[ω(X1, . . . , Xk)]) .

Now let p ∈M and g ∈ t−1(p). Then

[
(dω̃(p))(X̃1, . . . , X̃k+1)

]
(g) =

k+1∑
i=1

(−1)i+1(X̃i)g[ω̃(p)(X̃1, . . . ,
̂̃
Xi, . . . , X̃k+1)]

+
∑
i<j

(−1)i+j [ω̃(p)([X̃i, X̃j ], X̃1, . . . ,
̂̃
Xi, . . . ,

̂̃
Xj , . . . , X̃k+1)](g)

=
k+1∑
i=1

(−1)i+1(X̃i)g[ω̃(X̃1, . . . ,
̂̃
Xi, . . . , X̃k+1)]

+
∑
i<j

(−1)i+j [ω̃([X̃i, X̃j ], X̃1, . . . ,
̂̃
Xi, . . . ,

̂̃
Xj , . . . , X̃k+1)](g)
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=
k+1∑
i=1

(−1)i+1ρ((Xi)s(g))[ω(X1, . . . , X̂i, . . . , Xk+1)]

+
∑
i<j

(−1)i+j [ω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1)](s(g))

= [(dAGω)(X1, . . . , Xk+1)]
(
s(g)

)
where the third equality follows from equations (3.5) and (3.8) and the fact that
[Xi, Xj ] := [X̃i, X̃j ]|M . This completes the proof. �

We now define the Lie groupoid analogue of a symplectic Lie group. The motivation
for this definition will become clear shortly.

Definition 3.5. A t-symplectic Lie groupoid is a Lie grouopid G ⇒ M together with
a left-invariant section ω̃ ∈ Γ(∧2(T tG)∗) with the property that (t−1(p), ω̃|t−1(p))
is a symplectic manifold for all p ∈M . The section ω̃ is called a t-symplectic form
on G ⇒ M .

Here are some immediate consequences of Definition 3.1 and Definition 3.5:

Corollary 3.6. Let G ⇒ M be a Lie groupoid and let ω̃ ∈ Γ(∧2(T tG)∗). Then ω̃
is a t-symplectic form iff (t−1(p), ω̃|t−1(p)) is a symplectic manifold for all p ∈M
and

lg : (t−1(s(g)), ω̃|t−1(s(g)))
∼−→ (t−1(t(g)), ω̃|t−1(t(g)))

is a symplectomorphism for all g ∈ G.

Corollary 3.7. Let (G ⇒ M, ω̃) be a t-symplectic Lie groupoid. Then dimG −
dimM is even.

Proof. Let p ∈M . By Definition 3.5, (t−1(p), ω̃|t−1(p)) is a symplectic manifold.
Hence t−1(p) is an even-dimensional manifold. Since t is a submersion, we have

dim t−1(p) = dimG − dimM .

This completes the proof. �

Theorem 3.8. Let G ⇒ M be a Lie groupoid. There is a one-to-one correspondence
between quasi-Frobenius Lie algebroid structures on (AG, ρ,M) and t-symplectic
Lie groupoid structures on G ⇒ M . This correspondence is given as follows. Let

ϕ : ΓL(∧2(T tG)∗) ∼−→ Γ(∧2(AG)∗) , ω̃ 7→ ω̃|M
be the vector space isomorphism of Proposition 3.4. Let ω̃ ∈ ΓL(∧2(T tG)∗). Then
(G ⇒ M, ω̃) is a t-symplectic Lie groupoid iff (AG, ρ,M,ϕ(ω̃)) is a quasi-Frobenius
Lie algebroid.

Proof. Suppose (AG, ρ,M, ω) is a quasi-Frobenius Lie algebroid. By Proposi-
tion 3.4, there exists a unique section ω̃ ∈ ΓL(∧2(T tG)∗) such that ω̃|M = ω. From
the proof of Proposition 3.4, ω̃ is given explicitly by
(3.9) ω̃g(u, v) = ωs(g)((lg−1)∗,gu, (lg−1)∗,gv)
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for g ∈ G and u, v ∈ (T tG)g. Since ω is nondegenerate on AG and

(lg)∗,h : (T tG)h
∼−→ (T tG)gh

is a vector space isomorphism for all g ∈ G and h ∈ t−1(s(g)), it follows that ω̃ is
nondegenerate on T tG. In particular, ω̃(p) := ω̃|t−1(p) is nondegenerate on

Tt−1(p) = (T tG)|t−1(p)

for all p ∈M .
Now let X, Y ∈ Γ(AG) be arbitrary and let X̃, Ỹ ∈ Γ(T tG) be the associated

left-invariant vector fields on G. By Proposition 3.4,

(3.10)
[
(dω̃(p))(X̃, Ỹ )

]
(g) =

[
(dAGω)(X,Y )

](
s(g)

)
, ∀ p ∈M, g ∈ t−1(p) .

Since dAGω = 0, equation (3.10) implies that dω̃(p) = 0 for all p ∈M . Hence, ω̃(p)

is a closed and nondegenerate 2-form on t−1(p) for all p ∈M . Hence, (t−1(p), ω̃(p))
is a symplectic manifold for all p ∈M .

On the other hand, suppose that (G ⇒ M, ω̃) is a t-symplectic Lie groupoid
for some ω̃ ∈ ΓL(∧2(T tG)∗). Let ω := ω̃|M . Since (t−1(p), ω̃|t−1(p)) is a symplectic
manifold and

(AG)p = (T tG)p = Tpt
−1(p)

for all p ∈M (where, as usual, we identify M with the unit elements of G), it follows
immediately that ω := ω̃|M is nongenerate on AG. Since ω̃ is left-invariant, Propo-
sition 3.4 implies equation (3.10). Since dω̃(p) = 0 for all p ∈M and s : G −→M is
surjective, it follows that dAGω = 0 as well. Hence, (AG, ρ,M, ω) is a quasi-Frobenius
Lie algebroid.

Since the above constructions are clearly inverse to one another, the one-to-one
correspondence between t-symplectic Lie groupoid structures on G ⇒ M and
quasi-Frobenius Lie algebroid structures on (AG, ρ,M) is established. �

We conclude this section with a few elementary examples of t-symplectic Lie
groupoids.

Example 3.9. Every symplectic Lie group is naturally a t-symplectic Lie groupoid
over a point (and vice versa).

Example 3.10. Let (M,ω) be a symplectic manifold and let M ×M ⇒ M be
the pair groupoid with

s(p, q) := q, t(p, q) := p

for p, q ∈M . Let j : T t(M ×M) ↪→ T (M ×M) be the inclusion map and let

ω̃ := j∗(s∗ω) ∈ Γ
(
∧2 (T t(M ×M))∗

)
where j∗ denotes the dual map. Then M×M ⇒ M together with ω̃ is a t-symplectic
Lie groupoid. The associated quasi-Frobenius Lie algebroid is just the tangent
algebroid (TM, idM ,M) with ω as the nondegenerate 2-cocycle.
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Example 3.11. Let M be a manifold with a smooth left-action by a Lie group G.
Let G×M ⇒ M be the associated action groupoid.

Now suppose that G admits a left-invariant symplectic form ω, that is, (G,ω) is
a symplectic Lie group. Then ω induces a t-symplectic form ω̃ on G×M ⇒ M . To
construct ω̃, let

j : T t(G×M) ↪→ T (G×M)
be the inclusion map and let π1 : G×M −→ G denote the natural projection map.
Then ω̃ ∈ Γ(∧2(T t(G×M))∗) is defined by ω̃ := j∗(π∗1ω).

We now verify that ω̃ satisfies the conditions of a t-symplectic form. For p ∈M ,
let

ip : t−1(p) ↪→ G×M
be the inclusion. Then
(3.11) ω̃|t−1(p) = i∗p(π∗1ω) = (π1 ◦ ip)∗ω .
Equation (3.11) together with the fact that dω = 0 implies that
(3.12) d(ω̃|t−1(p)) = 0

for all p ∈ M . Now let (g, p) ∈ t−1(p) and let u, v ∈ T(g,p)t
−1(p). Since t−1(p) =

G× {p}, it follows that
u = (x, 0p) , v = (y, 0p)

for some x, y ∈ TgG. Hence,
(3.13) (ω̃|t−1(p))(g,p)(u, v) = ((π1 ◦ ip)∗ω)(g,p)(u, v) = ωg(x, y) .
Since ω is nondegenerate, it follows that ω̃|t−1(p) is also nondegenerate. Hence,
t−1(p) together with ω̃|t−1(p) is a symplectic manifold.

All that remains to check is that for all (g, p) ∈ G×M , the left-translation map
(3.14) l(g,p) : t−1(g−1p) = G× {g−1p} −→ t−1(p) = G× {p}

is a symplectomorphism (where we note that s(g, p) = g−1p and t(g, p) = p). This
can be seen as follows:

(l(g,p))∗ω̃|t−1(p) = (l(g,p))∗((π1 ◦ ip)∗ω)
= (π1 ◦ ip ◦ l(g,p))∗ω
= (lg ◦ π1 ◦ ig−1p)∗ω
= (π1 ◦ ig−1p)∗[(lg)∗ω]
= (π1 ◦ ig−1p)∗ω
= ω̃|t−1(g−1p) ,

where the fifth equality follows from the fact that ω is left-invariant. This proves
that (G×M ⇒ M, ω̃) is a t-symplectic Lie groupoid.

Example 3.12. Let (M,ω) be a symplectic manifold and let (G, β) be a symplectic
Lie group. Let

M ×G×M ⇒ M

be the Lie groupoid defined by
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(i) s(q, g, p) := p
(ii) t(q, g, p) := q
(iii) (r, h, q)(q, g, p) := (r, hg, p)
(iv) u(p) := (p, e, p)
(v) i(q, g, p) := (p, g−1, q).

Let
ω̂ := π∗2β + π∗3ω ,

where π2 : M×G×M −→ G and π3 : M×G×M −→M are the natural projection
maps. Also, define the following inclusion maps

j : T t(M ×G×M) ↪→ T (M ×G×M) , ip : t−1(p) ↪→M ×G×M

for p ∈M . Define ω̃ := j∗ω̂.
Since β and ω are symplectic forms on G and M respectively and

t−1(p) = {p} ×G×M ,

it follows immediately that (t−1(p), ω̃|t−1(p)) is a symplectic manifold for all p ∈M .
Furthermore, we have

(l(q,g,p))∗(ω̃|t−1(q)) = (l(q,g,p))∗(i∗qω̂)
= (iq ◦ l(q,g,p))∗ω̂
= (iq ◦ l(q,g,p))∗(π∗2β + π∗3ω)
= (π2 ◦ iq ◦ l(q,g,p))∗β + (π3 ◦ iq ◦ l(q,g,p))∗ω
= (lg ◦ π2 ◦ ip)∗β + (π3 ◦ ip)∗ω
= i∗p ◦ π∗2 ◦ (l∗gβ) + i∗p(π∗3ω)
= i∗p(π∗2β + π∗3ω)
= i∗pω̂

= ω̃|t−1(p),

for all p, q ∈M , g ∈ G, where the seventh equality follows from the left-invariance
of β. Hence, M ×G×M ⇒ M together with ω̃ is a t-symplectic Lie groupoid.

4. Symplectic Lie group bundles

In this section, we introduce the notion of a symplectic Lie group bundle (SLGB),
which combines the notion of a t-symplectic Lie groupoid with that of a Lie group
bundle1. Formally, SLGBs are defined as follows:

Definition 4.1. A symplectic Lie group bundle consists of the following data:
(G,ω,E, π,M, ω̃), where

(i) (G,ω) is a symplectic Lie group
(ii) π : E →M is smooth fiber bundle with fiber G
(iii) ω̃ is a smooth section of ∧2(kerπ∗)∗

such that

1See [10, 11] for a review of Lie group bundles.
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(a) for all p ∈M , the fiber Ep := π−1(p) has a Lie group structure (where the
smooth structure on the Lie group coincides with the smooth structure on Ep
as an embedded submanifold of E)

(b) for all p ∈M , γ∗p ω̃ is a left-invariant symplectic form on Ep, where

γp : T (Ep) ↪→ kerπ∗

is the inclusion
(c) there exists a system of local trivializations

{ψi : π−1(Ui)
∼→ Ui ×G}

such that for all i and p ∈ Ui,

ψi,p : (Ep, γ∗p ω̃) ∼→ (G,ω)

is an isomorphism of symplectic Lie groups, where ψi,p is the composition

Ep
ψi−→ {p} ×G ∼−→ G

Proposition 4.2. Every SLGB has a canonical t-symplectic Lie groupoid structure.

Proof. Let (G,ω,E, π,M, ω̃) be a SLGB. Since E → M is a Lie group bundle,
one can also regard it as a Lie groupoid E ⇒ M as follows:

1. the source and target maps are defined by s = t := π
2. the unit map u : M → E is defined by u(p) := 1p for all p ∈M where 1p is

the identity element on Ep
3. the groupoid multiplication is induced by the fiber-wise group multiplication:
Ep × Ep → Ep

4. the inverse map i : E → E is induced by the fiber-wise inverse map Ep → Ep
Since s = t = π, we have

t−1(s(x)) = t−1(t(x)) = Eπ(x) , ∀ x ∈ E .

By Definition 4.1,
γ∗π(x)ω̃ = ω̃|Eπ(x)

is a left-invariant symplectic form on Eπ(x) for all x ∈ E. Hence,

lx : (Eπ(x), ω̃|Eπ(x))
∼→ (Eπ(x), ω̃|Eπ(x))

is a symplectomorphism. By Corollary 3.6, ω̃ is a t-symplectic form on E ⇒ M .
This completes the proof. �

Proposition 4.3. Let E = (G,ω,E, π,M, ω̃) be a SLGB and let (AE, ρ,M, β) be
the associated quasi-Frobenius Lie algebroid (where E is equipped with its canonical
t-symplectic Lie groupoid structure). Then

(i) ρ ≡ 0
(ii) the Lie bracket on Γ(AE) is C∞(M)-bilinear; in particular, there is an

induced Lie algebra structure on the fiber (AE)p for all p ∈M
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(iii) there exists a system of local trivializations

{ϕi : π−1
AE(Ui)

∼→ Ui × g}

such that for all i and p ∈ Ui,

ϕi,p : ((AE)p, βp)
∼→ (g, ωe)

is an isomorphism of quasi-Frobenius Lie algebras, where πAE is the projection
map from AE to M , (g, ωe) is the quasi-Frobenius Lie algebra associated to
(G,ω), and ϕi,p is the composition

(AE)p
ϕi−→ {p} × g

∼−→ g .

Proof. (i) follows from the fact that
AE := (ker t∗)|u(M)

ρ := s∗|AE , and s = t = π from the proof of Proposition 4.2. (Recall that we regard
AE as a vector bundle over M by identifying the unit element 1p ∈ E with p ∈M .)

(ii) follows from the Leibniz property of the Lie bracket on Γ(AE) together with
the fact that the anchor map ρ is identically zero.

For (iii), let
{ψi : π−1(Ui)

∼→ Ui ×G}
be a system of local trivialization on π : E →M such that for all i and p ∈ Ui,

ψi,p : (Ep, γ∗p ω̃) ∼→ (G,ω)

is an isomorphism of symplectic Lie groups, where γp : T (Ep) ↪→ kerπ∗ is the
inclusion. For each i, the restriction of

(ψi)∗ : T (π−1(Ui))
∼→ T (Ui ×G)

to AE|Ui induces a local trivialization

ϕi : AE|Ui
∼→ Ui × g .

Furthermore, for all i and p ∈ Ui,

ϕi,p : ((AE)p, βp)
∼→ (g, ωe)

is an isomorphism of quasi-Frobenius Lie algebras. Indeed, this follows from the
fact that (AE)p = T1p(Ep),

βp = ω̃1p = [γ∗p ω̃]1p
by Theorem 3.8, and ψi,p is an isomorphism of symplectic Lie groups. This completes
the proof. �

Remark 4.4. The Lie algebroid appearing in Proposition 4.3 is both a quasi-Frobenius
Lie algebroid and a Lie algebra bundle2. For this reason, it is only natural that we
call a quasi-Frobenius Lie algebroid (A, ρ,M, β) satisfying conditions (i)–(iii) of
Proposition 4.3 a quasi-Frobenius Lie algebra bundle (QFLAB).

2See [10, 11] for a review of Lie algebra bundles.
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We now give a characterization of general SLGBs. To this end, we will make use
of the following results:

Lemma 4.5. Let ϕ : G→ H be a Lie group homomorphism and let θ ∈ Ωk(H) be
a left-invariant k-form. Then ϕ∗θ ∈ Ωk(G) is also left-invariant.

Proof. This is just a direct calculation:
l∗g(ϕ∗θ) = (ϕ ◦ lg)∗θ

= (lϕ(g) ◦ ϕ)∗θ
= ϕ∗(l∗ϕ(g)θ)
= ϕ∗θ .

This completes the proof. �

Lemma 4.6. Let (G,ω) be a symplectic Lie group and let M be a manifold. Let
π1 : M × G → M and π2 : M × G → G denote the natural projections. Also, let
τ : ker(π1)∗ ↪→ T (M ×G) be the inclusion. Then(

G,ω,M ×G, π1,M, τ∗(π∗2ω)
)

is a SLGB, where for all p ∈M , the Lie group structure on π−1
1 (p) is the natural

one.

Proof. For p ∈M , let
γp : T ({p} ×G) ↪→ ker(π1)∗

and
ιp : {p} ×G ↪→M ×G

denote the inclusion maps. Note that
γ∗p(τ∗(π∗2ω)) = (τ ◦ γp)∗(π∗2ω)

= (ιp)∗(π∗2ω)
= (π2 ◦ ιp)∗ω .(4.1)

Then for g ∈ G, we have
(l(p,g))∗[γ∗p(τ∗(π∗2ω))] = (l(p,g))∗[(π2 ◦ ιp)∗ω]

= (π2 ◦ ιp)∗ω
= γ∗p

(
τ∗(π∗2ω)

)
where we have used (4.1) in the first and third equality and Lemma 4.5 in the
second equality, where we note that

π2 ◦ ιp : {p} ×G→ G

is a Lie group isomorphism. Hence, γ∗p(τ∗(π∗2ω)) is left-invariant. Furthermore,
(4.1) implies that ω is closed and non-degenerate, i.e., symplectic. This proves that(
π−1

1 (p), γ∗p(τ∗(π∗2ω))
)

is a symplectic Lie group. Lastly, the identity map
id : M ×G→M ×G

is the desired trivialization for the SLGB structure. This completes the proof. �
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Proposition 4.7. Let (G,ω) be a connected symplectic Lie group and let Aut(G,ω)
be the group of automorphisms of (G,ω). Then Aut(G,ω) is a finite dimensional
Lie group. Furthermore, if G is simply connected, then Aut(G,ω) ' Aut(g, ωe) as
Lie groups, where (g, ωe) is the quasi-Frobenius Lie algebra associated to (G,ω)
and Aut(g, ωe) is the group of automorphisms of (g, ωe).

Proof. Let g be the Lie algebra of G. In [4], Chevalley proved that the auto-
morphism group of any finite dimensional connected Lie group is again a finite
dimensional Lie group. To show that Aut(G,ω) is a Lie group, it suffices to show
that Aut(G,ω) is a closed subset of the Lie group Aut(G); the closed subgroup
theorem [15] then implies that Aut(G,ω) is an embedded Lie subgroup of Aut(G).

To this end, define
f : Aut(G)→ Aut(g) ⊂ GL(g) , ϕ 7→ ϕ∗ : g

∼→ g .

Since G is connected, ϕ ∈ Aut(G) is uniquely determined by f(ϕ) ∈ Aut(g). From
[4], the Lie group structure on Aut(G) is obtained by using f to identify Aut(G)
with im f , which is shown to be a closed subgroup of the Lie group Aut(g) (which
in turn is a closed subgroup of GL(g)).

By definition,
Aut(G,ω) = {ϕ ∈ Aut(G) | ϕ∗ω = ω} .

Let ϕ ∈ Aut(G) be a limit point of Aut(G,ω) and let {ϕn} ⊂ Aut(G,ω) be a
sequence which converges to ϕ. Since f is a Lie group isomorphism from Aut(G)
to im f (in particular - a homeomorphism), we have

f(ϕn) = (ϕn)∗ → f(ϕ) = ϕ∗ .

Hence, for x, y ∈ g = TeG, we have
ϕ∗ωe(x, y) = ωe(ϕ∗x, ϕ∗y)

= lim
n→∞

ωe((ϕn)∗x, (ϕn)∗y)

= lim
n→∞

(ϕn)∗ωe(x, y)

= lim
n→∞

[(ϕn)∗ω]e(x, y)

= lim
n→∞

ωe(x, y)

= ωe(x, y) ,
where we have used the fact that ϕn ∈ Aut(G,ω) in the second to last equality.
Hence, ϕ∗ωe = ωe. Since ω is left-invariant and ϕ ∈ Aut(G), it follows that ϕ∗ω = ω.
This shows that ϕ ∈ Aut(G,ω), which in turn implies that Aut(G,ω) is a closed
subset of Aut(G).

For the last part of Proposition 4.7, suppose that G is simply connected. Then
f : Aut(G) ∼→ Aut(g)

is a Lie group isomorphism. In addition, note that f(Aut(G,ω)) = Aut(g, ωe).
Hence, the restriction of f to Aut(G,ω) gives a Lie group isomorphism from
Aut(G,ω) to Aut(g, ωe). This completes the proof. �

The following result provides an alternate way of viewing SLGBs:
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Theorem 4.8. Let (G,ω) be a connected symplectic Lie group and let π : E →M
be a smooth fiber bundle with fiber G. Then π : E →M admits the structure of a
SLGB if and only if there exists a system of local trivializations

{ψi : π−1(Ui)→ Ui ×G}

for which all the transition functions take their values in the Lie group Aut(G,ω).

Proof. (⇒). Suppose (G,ω,E, π,M, ω̃) is a SLGB. By Definition 4.1, there exists
a system of local trivializations

{ψi : π−1(Ui)
∼→ Ui ×G}

such that
ψi,p : (Ep, γ∗p ω̃) ∼→ (G,ω)

is an isomorphism of symplectic Lie groups for all i and p ∈ Ui, where γp : T (Ep) ↪→
ker (πE)∗ is the inclusion. This implies that for all i, j such that Ui ∩ Uj 6= ∅ and
for all p ∈ Ui ∩ Uj , the map

ψj,p ◦ ψ−1
i,p : (G,ω) ∼→ (G,ω) g 7→ φji(p)g

is an automorphism of (G,ω), where φji is the transition function associated to
ψj ◦ ψ−1

i . Hence, im φji ⊂ Aut(G,ω).
(⇐). On the other hand, suppose that π : E →M is a smooth fiber bundle with

fiber G for which there exists a system of local trivializations

{ψi : π−1(Ui)
∼→ Ui ×G}

whose transition functions all take their values in the Lie group Aut(G,ω). First, we
define a Lie group structure on the fibers of E. Let p ∈M and let Ui be any open
set such that p ∈ Ui. The (abstract) group structure on the fiber Ep is obtained by
declaring

ψi,p : Ep
∼→ G

to be a group isomorphism. Hence, for g, h ∈ G, the product, inverse, and identity
on Ep are given respectively by

(4.2) ψ−1
i,p (g) · ψ−1

i,p (h) := ψ−1
i,p (gh) , (ψ−1

i,p (g))−1 := ψ−1
i,p (g−1)

and 1p := ψ−1
i,p (e), where e is the identity element on G. Since ψi,p is a diffeo-

morphism, the above product and inverse maps are smooth with respect to the
manifold structure on Ep. Hence, (4.2) defines a Lie group structure on Ep.

To show that the group structure on Ep is well-defined, let Uj be another open
set such that p ∈ Uj . Let

φji : Ui ∩ Uj → Aut(G,ω)

be the transition function associated to ψj ◦ ψ−1
i . Then

ψ−1
i,p (g) = ψ−1

j,p (φji(p)g) , ∀ g ∈ G .
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Let ·i and ·j denote the group products defined by ψi,p and ψj,p respectively. Since
φji(p) ∈ Aut(G,ω), we have

ψ−1
i,p (g) ·i ψ−1

i,p (h) = ψ−1
i,p (gh)

= ψ−1
j,p

(
φji(p)(gh)

)
= ψ−1

j,p

(
[φji(p)(g)][φji(p)(h)]

)
= ψ−1

j,p

(
φji(p)(g)

)
·j ψ−1

j,p

(
φji(p)(h)

)
for g, h ∈ G. This implies that the group product on Ep is well-defined. In a similar
fashion, one can show that the identity element and the inverse map on Ep are
also well-defined.

Next, for p ∈ Ui, define ω(p) := ψ∗i,pω. Then ω(p) is a symplectic form on Ep.
Moreover, since ψi,p is a Lie group isomorphism, Lemma 4.5 implies that ω(p) is
also left-invariant. From the definition of ω(p), it follows that

ψi,p : (Ep, ω(p)) ∼→ (G,ω)

is an isomorphism of symplectic Lie groups. To see that the definition of ω(p) is
well-defined, let Uj be another open set such that p ∈ Uj . Then

(ψj,p ◦ ψ−1
i,p )∗ω = (φji(p))∗ω = ω

since φji(p) ∈ Aut(G,ω). This implies that

ψ∗j,pω = ψ∗i,pω ,

which proves that ω(p) is well-defined.
Lastly, we construct a section ω̃ of ∧2(kerπ∗)∗ such that

(4.3) γ∗p ω̃ = ω(p) , ∀ p ∈M

where γp : T (Ep) ↪→ kerπ∗ is the inclusion. To begin, for each i, equip the bundle

π1,i : Ui ×G→ Ui

with the SLGB structure given by Lemma 4.6. The t-symplectic form on Ui ×G is
then τ∗i (π∗2,iω), where

π2,i : Ui ×G→ G , τi : ker (π1,i)∗ ↪→ T (Ui ×G)

are the natural maps. Let π̃i denote the restriction of π to π−1(Ui) and define

ψ̃i := (ψi)∗|ker(π̃i)∗ .

Since π1,i ◦ ψi = π̃i, it follows that

ψ̃i : ker(π̃i)∗
∼→ ker (π1,i)∗

is a vector bundle isomorphism.
Now define ω̃i := (ψ̃i)∗[τ∗i (π∗2,iω)]. Let p ∈ Ui, x ∈ Ep, and

u, v ∈ ker(π̃i)∗,x = kerπ∗,x = Tx(Ep) .



80 D.N. PHAM

Then
(ω̃i)x(u, v) =

[
(ψ̃i)∗[τ∗i (π∗2,iω)]

]
x
(u, v)

= [τ∗i (π∗2,iω)]ψi(x)
(
ψ̃i(u), ψ̃i(v)

)
= [(π∗2,iω)]ψi(x)

(
τi(ψ̃i(u)), τi(ψ̃i(v))

)
= [(π∗2,iω)]ψi(x)

(
ψ̃i(u), ψ̃i(v)

)
= ωπ2,i◦ψi(x)((π2,i)∗ ◦ ψ̃i(u), (π2,i)∗ ◦ ψ̃i(v))
= ωψi,p(x)((ψi,p)∗(u), (ψi,p)∗(v))
= ((ψi,p)∗ω)x(u, v)

= ω(p)
x (u, v) .(4.4)

This proves that for all pairs i, j such that Ui ∩ Uj 6= ∅, we have

ω̃i = ω̃j on π−1(Ui) ∩ π−1(Uj) = π−1(Ui ∩ Uj) .
Hence, the ω̃i’s glue together to form a global section ω̃ ∈ Γ(∧2(ker π)∗). Moreover,
since γp : T (Ep) ↪→ ker π∗ is just the inclusion and ω̃|π−1(Ui) = ω̃i for all i, (4.4)
implies γ∗p ω̃ = ω(p). This completes the proof. �

We conclude the paper with the following corollary which provides a simple recipe
for generating SLGBs:

Corollary 4.9. Let (G,ω) be a connected symplectic Lie group and let π : P →M
be any principal Aut(G,ω)-bundle. Then the associated fiber bundle

E := (P ×G)/Aut(G,ω)→M

admits the structure of a SLGB, where Aut(G,ω) acts naturally on G from the left.

Proof. From the definition of the associated fiber bundle, we see that E →M is a
smooth fiber bundle with fiber G which has a system of local trivializations whose
transition functions all take their values in Aut(G,ω). Theorem 4.8 now implies
that E →M admits the structure of a SLGB. �
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