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GENERALIZED PRIME D-FILTERS OF DISTRIBUTIVE
LATTICES

A.P. Phaneendra Kumar, M. Sambasiva Rao, and K. Sobhan Babu

Abstract. The concept of generalized prime D-filters is introduced in dis-
tributive lattices. Generalized prime D-filters are characterized in terms of
principal filters and ideals. The notion of generalized minimal prime D-filters
is introduced in distributive lattices and properties of minimal prime D-filters
are then studied with respect to congruences. Some topological properties of
the space of all prime D-filters of a distributive lattice are also studied.

Introduction

In 1968, the theory of relative annihilators was introduced in lattices by Mark
Mandelker [12] and he characterized distributive lattices in terms of their relative
annihilators. Later many authors introduced the concept of annihilators in the
structures of rings as well as lattices and characterized several algebraic struc-
tures in terms of annihilators. T.P. Speed [11] and W.H. Cornish [3, 4, 5] made
an extensive study of annihilators in distributive lattices and characterized some
algebraic structures like normal lattices and quasicomplemented lattices. Recently
in 2013, the concepts of e-filters and D-filters [10] are introduced and characterized
in MS-algebras. Some topological properties of the class of all prime e-filters of
MS-algebras are studied. In 2016, Rao and Badawy studied the properties of
co-annihilator filters of distributive lattices. In [9], authors generalized the concept
of D-filters in distributive lattices and studied their properties.

In this paper, the notion of generalized prime D-filters is introduced in the form
of F -filters of distributive lattices. Some properties of generalized prime D-filters
are investigated and the prime filter theorem is generalized to the case of prime
F -filters. The concept of generalized minimal prime D-filters is introduced in the
form of minimal prime F -filters of distributive lattices. A characterization theorem
of minimal prime D-filters is derived. A set of equivalent conditions is established
for any two distinct minimal prime F -filters to become co-maximal. An ideal
congruence is introduced in lattices and then some properties of prime D-filters
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are studied with respect to this ideal congruence. A one-to-one correspondence is
obtained between the class of all minimal prime D-filters of a distributive lattice
and the class of all minimal prime D-filters of the corresponding quotient algebra
with respect to this congruence. Topological properties of the space prime D-filters
are investigated. Finally, a set of equivalent conditions is derived for the space of
all prime D-filters to become a Hausdorff space.

1. Preliminaries

The reader is referred to [1] and [2] for the elementary notions and notations of
distributive lattices. However some of the preliminary definitions and results of [3],
[5], [7], [9] and [12] are presented for the ready reference of the reader.

Definition 1.1 ([2]). An algebra (L,∧,∨) of type (2, 2) is called a distributive
lattice if for all x, y, z ∈ L, it satisfies the following properties (1), (2), (3) and (4)
along with (5) or (5′)

(1) x ∧ x = x, x ∨ x = x,
(2) x ∧ y = y ∧ x, x ∨ y = y ∨ x,
(3) (x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z),
(4) (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x,
(5) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
(5′) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

A non-empty subset A of L is called an ideal(filter) of L if a ∨ b ∈ A (a ∧ b ∈ A)
and a ∧ x ∈ A (a ∨ x ∈ A) whenever a, b ∈ A and x ∈ L. The set I(L) of all ideals
of (L,∨,∧, 0) forms a complete distributive lattice as well as the set F(L) of all
filters of (L,∨,∧, 1) forms a complete distributive lattice. A proper ideal(filter) M
of a lattice is called maximal if there exists no proper ideal(filter) N such that
M ⊂ N .

Definition 1.2 ([2]). Let (L,∧,∨) be a lattice. A partial ordering relation ≤ is
defined on L by x ≤ y if and only if x ∧ y = x and x ∨ y = y. In this case, the pair
(L,≤) is called a partially ordered set. If x ≤ y or y ≤ x for all x, y ∈ L, then
(L,≤) is called a totally ordered set.

The set (a] = {x ∈ L | x ≤ a} is called a principal ideal generated by a and the
set of all principal ideals is a sublattice of I(L). Dually the set [a) = {x ∈ L | a ≤ x}
is called a principal filter generated by a and the set of all principal filters is a
sublattice of F(L). A proper ideal (proper filter) P of a lattice L is called prime if
for all a, b ∈ L, a ∧ b ∈ P (a ∨ b ∈ P ) then a ∈ P or b ∈ P . Every maximal ideal
(maximal filter) is prime. A prime ideal P of L is called minimal [7] if there exists
no prime ideal Q of L such that Q ⊂ P .

Theorem 1.3 ([1]). Let F be a filter and I an ideal of a distributive lattice L
such that F ∩ I = ∅. Then there exists a prime filter P of L such that F ⊆ P and
P ∩ I = ∅.
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For any element a of a distributive lattice (L,∨,∧, 0), the annihilator of a is
defined as the set (a)∗ = {x ∈ L | x ∧ a = 0}. Properties of these annihilators
are extensively studied by Cornish [3, 4], T.P Speed [12]. Normal lattices are
characterized in terms of annihilators in [3].

Lemma 1.4 ([12]). For any two elements a, b of a distributive lattice L with 0, we
have

(1) a ≤ b implies (b)∗ ⊆ (a)∗,
(2) (a ∨ b)∗ = (a)∗ ∩ (b)∗,
(3) (a ∧ b)∗∗ = (a)∗∗ ∩ (b)∗∗,
(4) (a)∗ = L if and only if a = 0.

An element a of a lattice L is called a dense element if (a)∗ = {0}. The set D of
all dense elements of a distributive lattice forms a filter. A lattice L with 0 is called
quasicomplemented [5] if for each x ∈ L, there exists y ∈ L such that x ∧ y = 0
and x ∨ y is dense.

Definition 1.5 ([9]). A filter F of a distributive lattice L is called a D-filter if
D ⊆ F .

The set D of all dense elements of a distributive lattice is the smallest D-filter
of the lattice.

2. Generalized prime D-filters

In this section, the notion of generalized prime D-filters is introduced in lattices
in the form of prime F -filters. A relation between maximal filters and prime D-filters
is established. Stone’s theorem of prime filters of lattices is generalized to the case
of prime F -filters. A set of equivalent conditions is derived for every proper F -filter
of a lattice to become a prime F -filter.

Definition 2.1. Let F be an arbitrary filter of a distributive lattice L. A filter G
of L is called an F -filter of L if G contains F (i.e. F ⊆ G).

For any subset S of a distributive lattice L, define 〈S〉F = [S) ∨ F , where [S) is
the smallest filter containing S. Clearly 〈S〉F is an F -filter of L and, in fact the
smallest F -filter containing S. For S = {x}, we denote simply 〈x〉F for 〈{x}〉F .
Then clearly 〈0〉F = L and 〈1〉F = F . Moreover, for any x ∈ L, 〈x〉F = [x) ∨ F is
the smallest F -filter containing x which is known as the principal F -filter generated
by x. The following result is an easy consequence of the above facts:

Lemma 2.2. For any two elements a, b of a distributive lattice L, we have
(1) a ≤ b implies 〈b〉F ⊆ 〈a〉F ,
(2) 〈a ∧ b〉F = 〈a〉F ∨ 〈b〉F ,
(3) 〈a ∨ b〉F = 〈a〉F ∩ 〈b〉F ,
(4) 〈a〉F = F if and only if a ∈ F .
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It is easy to verify that the set FF (L) of all F -filters of a lattice L forms a
distributive lattice. Further, the set PFF (L) of all principal F -filters of L forms a
sublattice to FF (L).

Definition 2.3. A proper F -filter P of a distributive lattice L is called a prime
F -filter if for any a, b ∈ L, a ∨ b ∈ P implies that either a ∈ P or b ∈ P . A proper
D-filter P of a lattice L is called a prime D-filter if for any a, b ∈ L, a ∨ b ∈ P
implies that either a ∈ P or b ∈ P .

Example 2.4. Consider the distributive lattice L = {0, a, b, c, 1} whose Hasse
diagram is given in the following figure:
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Consider the filters F1 = {a, c, 1}, F2 = {b, c, 1} and F3 = {c, 1} . Then F1, F2 and
F3 are D-filters of L. Clearly F1 and F2 are prime D-filters but F3 is not a prime
D-filter.

Theorem 2.5. Let F be an arbitrary filter of a distributive lattice L. Suppose P
is a proper F -filter of L. Then the following assertions are equivalent:

(1) P is prime;
(2) for any two F -filters G1, G2 of L, G1∩G2 ⊆ P implies G1 ⊆ P or G2 ⊆ P ;
(3) for any a, b ∈ L, 〈a〉F ∩ 〈b〉F ⊆ P implies a ∈ P or b ∈ P .

Proof. (1) ⇒ (2): Assume that P is a prime F -filter of L. Let G1 and G2 be
two F -filters of L such that G1 ∩ G2 ⊆ P . Suppose G1 6⊆ P and G2 6⊆ P . Then
there exist two elements a, b ∈ L such that a ∈ G1 and b ∈ G2 such that a /∈ P
and b /∈ P . Since P is prime, we get a ∨ b 6∈ P . Since a ∈ G1 and b ∈ G2, we get
a∨ b ∈ G1 ∩G2 ⊆ P . Hence a∨ b ∈ P , which is a contradiction. Therefore G1 ⊆ P
or G2 ⊆ P .
(2)⇒ (3): Since each 〈x〉F is an F -filter of L, it is clear.
(3) ⇒ (1): Assume that condition (3) holds. Let a, b ∈ L be such that a ∨ b ∈ P .
Since P is an F -filter, we get 〈a〉F ∩ 〈b〉F = 〈a∨ b〉F ⊆ P . By the condition (3), we
get a ∈ P or b ∈ P . Therefore P is a prime F -filter of L. �

Corollary 2.6. Let P be a proper D-filter of a distributive lattice L. Then the
following assertions are equivalent:

(1) P is prime;
(2) for any two D-filters G1, G2 of L, G1∩G2 ⊆ P implies G1 ⊆ P or G2 ⊆ P ;



GENERALIZED PRIME D-FILTERS OF DISTRIBUTIVE LATTICES 161

(3) for any a, b ∈ L, 〈a〉D ∩ 〈b〉D ⊆ P implies a ∈ P or b ∈ P .
Theorem 2.7. Let F be an arbitrary filter of a distributive lattice L. Then every
maximal F -filter of L is a prime F -filter.
Proof. Let M be a maximal F -filter of a distributive lattice L. Let x, y ∈ L be
such that x /∈ M and y /∈ M . Then M ∨ 〈x〉F = L and M ∨ 〈y〉F = L. Hence we
have the following consequence:

L = L ∩ L
= {M ∨ 〈x〉F } ∩ {M ∨ 〈y〉F }
= M ∨ {〈x〉F ∩ 〈y〉F }
= M ∨ 〈x ∨ y〉F .

If x ∨ y ∈M then M = L, which is a contradiction. Hence x ∨ y 6∈M . Thus M is
prime. �

Corollary 2.8. Every maximal filter of a distributive lattice is a prime D-filter.
Proof. Let M be a maximal filter of a distributive lattice L. We first prove that M
is a D-filter of L. Suppose there exists d ∈ D such that d 6∈M . Then M ∨ [d) = L,
because of M is maximal. Then 0 ∈M ∨ [d), which gives x∧ d = 0 for some x ∈M .
Since d is dense, we must have x = 0. Hence 0 = x ∈M , which is a contradiction
to that M is a proper filter. Therefore D ⊆M , which gives that M is a D-filter. By
taking F = D in the main theorem, the remaining proof is an easy consequence. �

Corollary 2.9. If M1,M2,M3, . . . ,Mn and M are maximal F -filters of a distri-
butive lattice L such that

n⋂
i=1

Mi ⊆ M , then there exists j ∈ {1, 2, 3, . . . , n} such

that Mj ⊆M .
Proof. Let M1,M2,M3, . . . ,Mn and M be maximal F -filters of L such that
n⋂
i=1

Mi ⊆ M . By the above theorem M is a prime F -filter of L. Then there

exist j ∈ {1, 2, 3, . . . , n} such that Mj ⊆M . �

Definition 2.10. Let F be a filter of a distributive lattice L. Then the lattice
L is called F -quasicomplemented if to each x ∈ L there exists x′ ∈ L such that
x ∧ x′ = 0 and x ∨ x′ ∈ F .
Theorem 2.11. In an F -quasicomplemented lattice, every prime F -filter is a
maximal F -filter.
Proof. Let P be a prime F -filter of L. Suppose there exist a proper F -filter Q of L
such that P ⊂ Q. Choose x ∈ Q− P . Then there exist x′ ∈ L such that x ∧ x′ = 0
and x ∨ x′ ∈ F . Hence x ∨ x′ ∈ F ⊆ P . Since x 6∈ P , we must have x′ ∈ P ⊂ Q.
Since x ∈ Q, we get 0 = x ∧ x′ ∈ Q, which is a contradiction to that Q is proper.
Therefore P is a maximal F -filter of L. �

If F = D, then it clear that the F -quasicomplemented lattice will become
quasicomplemented. Then the following corollary is a direct consequence of the
above theorem.
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Corollary 2.12. In a quasicomplimented lattice, every prime D-filter is a maximal
D-filter.

Theorem 2.13. Let F be a filter and P be a proper F -filter of a distributive lattice
L. Then P is a prime F -filter of L if and only if L− P is a prime ideal such that
(L− P ) ∩ F = ∅.

Proof. Assume that P is a prime F -filter of L. Since P 6= L, we get L − P is
non-empty. It can be easily shown that L−P is an ideal of L. Suppose (L−P )∩F 6= ∅.
Choose a ∈ (L−P )∩F . Hence a ∈ F ⊆ P , which is a contradiction to that a ∈ L−P .
Therefore (L− P ) ∩ F = ∅.

Conversely, suppose that L− P is a prime ideal of L such that (L− P )∩ F = ∅.
It can be routinely verified that P is a filter of L. Let x, y ∈ L be such that x /∈ P
and y /∈ P . Then x ∈ L − P and y ∈ L − P . Since L − P is an ideal, we get
x ∨ y ∈ L− P . Hence x ∨ y 6∈ P , which means that P is a prime filter of L. Since
(L−P )∩F = ∅, we get F ⊆ L− (L−P ) = P . Thus P is a prime F -filter of L. �

Corollary 2.14. Let P be a proper D-filter of a distributive lattice L. Then P is a
prime D-filter of L if and only if L−P is a prime ideal such that (L−P )∩D = ∅.

Theorem 2.15. Let F be a filter and G be an F -filter of a distributive lattice L.
Suppose I is a non-empty subset of L, which is closed under the operation ∨ such
that G ∩ I = ∅. Then there exists a prime F -filter P of L such that G ⊆ P and
P ∩ I = ∅.

Proof. Let G be an F -filter of L and I a non-empty subset of L, which is closed
under the operation ∨ such that G ∩ I = ∅. Consider P = {H | H is an F -filter of
L, G ⊆ H and H ∩ I = ∅}. Clearly G ∈ P. Let {Hα}α∈∆ be a chain of elements
in P. Since each Hα is an F -filter of L, we get

⋃
α∈∆

Hα is an F -filter of L. Since

G ⊆ Hα for each α ∈ ∆, we get G ⊆
⋃
α∈∆

Hα. Since Hα ∩ I = ∅ for each α ∈ ∆, we

get
( ⋃
α∈∆

Hα

)
∩ I = ∅. Hence

⋃
α∈∆

Hα is an upper bound for the chain {Hα}α∈∆.

By the Zorn’s lemma, P has a maximal element say P . That is, P is an F -filter of
L such that G ⊆ P and P ∩I = ∅. Let a, b ∈ L be such that a /∈ P and b /∈ P . Then
P ∨ 〈a〉F and P ∨ 〈b〉F are F -filter of L such that P ⊂ P ∨ 〈a〉F and P ⊂ P ∨ 〈b〉F .
Since P is maximal in P and G ⊂ P ∨ 〈a〉F , we get (P ∨ 〈a〉F ) ∩ I 6= ∅. Similarly,
we obtain that (P ∨〈b〉F )∩ I 6= ∅. Choose x ∈ (P ∨〈a〉F )∩ I and y ∈ (P ∨〈b〉F )∩ I.
Then

x ∨ y ∈ {P ∨ 〈a〉F )} ∩ {P ∨ 〈b〉F }
= P ∨ {〈a〉F ∩ 〈b〉F }
= P ∨ 〈a ∨ b〉F .

If a ∨ b ∈ P , then 〈a ∨ b〉F ⊆ P . Hence x ∨ y ∈ P . Since x, y ∈ I, we get x ∨ y ∈ I.
Thus x ∨ y ∈ P ∩ I, which is a contradiction. Hence a ∨ b 6∈ P . Thus P is a prime
F -filter of L. �
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Corollary 2.16. Let F be a filter and G be an F -filter of a distributive lattice L.
Suppose a ∈ L such that a /∈ G. Then there exists a prime F -filter P of L such
that G ⊆ P and a 6∈ P .

In case of F = D, we have the following two special cases:

Corollary 2.17. Let G be a D-filter of a distributive lattice L and I be a non-empty
subset of L, which is closed under the operation ∨ such that G ∩ I = ∅. Then there
exists a prime D-filter P of L such that G ⊆ P and P ∩ I = ∅.

Corollary 2.18. Let G be a D-filter of a distributive lattice L and a ∈ L be such
that a /∈ G. Then there exists a prime D-filter P of L such that G ⊆ P and a /∈ P .

Theorem 2.19. Let F be a filter of a distributive lattice L. Then the following
assertions are equivalent:

(1) Every proper F -filter of L is prime;
(2) FF (L) is a totally ordered set;
(3) PFF (L) is a totally ordered set.

Proof. (1) ⇒ (2): Assume that every proper F -filter of L is a prime F -filter of
L. Clearly FF (L) is a partially ordered set with respect to the set inclusion ⊆.
Let G1 and G2 be two proper F -filters of L. By the assumption, we get that
G1 ∩G2 is also a proper F -filter of L. Hence G1 ∩G2 is a prime F -filter of L. Since
G1 ∩G2 ⊆ G1 ∩G2, we get G1 ⊆ G1 ∩G2 ⊆ G or G2 ⊆ G1 ∩G2 ⊆ G. Therefore
FF (L) is a totally ordered set.
(2)⇒ (3): It is clear.
(3)⇒ (1): Assume that PFF (L) is a totally ordered set. Let G be a proper F -filter
of L. Choose a, b ∈ L be such that 〈a〉F ∩〈b〉F ⊆ G. Since 〈a〉F and 〈b〉F are F -filters
of L, we get either 〈a〉F ⊆ 〈b〉F or 〈b〉F ⊆ 〈a〉F . Hence a ∈ 〈a〉F = 〈a〉F ∩ 〈b〉F ⊆ G
or b ∈ 〈b〉F = 〈a〉F ∩ 〈b〉F ⊆ G. Therefore G is a prime F -filter of L. �

Corollary 2.20. Following assertions are equivalent in a distributive lattice L:
(1) Every proper D-filter of L is prime;
(2) FD(L) is a totally ordered set;
(3) PFD(L) is a totally ordered set.

3. Generalized minimal prime D-filters

In this section, the notion of generalized minimal prime D-filters is introduced as
minimal prime F -filters of distributive lattices. A necessary and sufficient condition
is derived for every prime D-filter to become a minimal prime D-filter. A set of
equivalent conditions is established for any two distinct minimal prime D-filters to
become co-maximal.

Definition 3.1. Let F be a filter of a distributive lattice L. For any ∅ 6= A ⊆ L,
define (A,F ) = {x ∈ L | a ∨ x ∈ F , for all a ∈ A}.
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For any distributive lattice L, it can be observed that (L,F ) = F and (F, F ) = L.
It can also be observed that F ⊆ (A,F ) for any subset A of a distributive lattice
L. For A = {a}, we denote ({a}, F ) by (a, F ). In case of F = D, we denote (A,D)
by A◦. For any a ∈ L, we simply represent ({a})◦ by (a)◦.

Proposition 3.2. Let F be a filter of a distributive lattice L. For any non-empty
subset A of L, the set (A,F ) is an F -filter of L.

Proof. Clearly F ⊆ (A,F ). Let x, y ∈ (A,F ). For any a ∈ A, we have a ∨ (x ∧ y)
= (a∨x)∧ (a∨ y) ∈ F . Hence x∧ y ∈ (A,F ). Let x ∈ (A,F ) and y ∈ L with x ≤ y.
Then a∨x ≤ a∨ y for all a ∈ A. Since a∨x ∈ F and F is a filter, we get a∨ y ∈ F .
Hence y ∈ (A,F ) for all a ∈ A. Thus (A,F ) is a filter of L. Since F ⊆ (A,F ), it
concludes that (A,F ) is an F -filter of L. �

Corollary 3.3. For any non-empty subset A of a distributive lattice L, A◦ is a
D-filter of L.

Lemma 3.4. Let F be a filter of a distributive lattice L. For any two non-empty
subsets A and B of L, we have

(1) A ⊆ B implies (B,F ) ⊆ (A,F ),
(2) A ⊆ ((A,F ), F ),
(3) (((A,F ), F ), F ) = (A,F ),
(4) (A,F ) = L if and only if A ⊆ F .

Proof. (1) Assume that A ⊆ B. Let x ∈ (B,F ). Then a ∨ x ∈ F for all a ∈ B.
Since A ⊆ B, we get a ∨ x ∈ F for all a ∈ A. Hence x ∈ (A,F ). Therefore
(B,F ) ⊆ (A,F ).
(2) Let a ∈ A. Then for every x ∈ (A,F ), we get a ∨ x ∈ F . Hence a ∨ x ∈ F for
all x ∈ (A,F ). Thus a ∈ ((A,F ), F ). Therefore A ⊆ ((A,F ), F ).
(3) From (2), we have A ⊆ ((A,F ), F ). By (1), we get (((A,F ), F ), F ) ⊆ (A,F ).
Again by (2), we have (A,F ) ⊆ (((A,F ), F ), F ). Therefore (((A,F ), F ), F ) =
(A,F ).
(4) Suppose (A,F ) = L. Then 0 ∈ (A,F ). Now a = a ∨ 0 ∈ F for all a ∈ A. Hence
a ∈ F for all a ∈ A. Therefore A ⊆ F . Conversely, assume that A ⊆ F . Let x ∈ L.
Since F is a filter, we get a∨x ∈ F for all a ∈ A ⊆ F . Hence x ∈ (A,F ). Therefore
(A,F ) = L. �

In the case of filters of distributive lattices, we have the following result.

Proposition 3.5. For any filters F , G1 and G2 of a distributive lattice L, the
following conditions hold:

(1) (G,F ) ∩ ((G,F ), F ) = F ,
(2) (G1 ∨G2, F ) = (G1, F ) ∩ (G2, F ),
(3) ((G1 ∩G2, F ), F ) = ((G1, F ), F ) ∩ ((G2, F ), F ).

Proof. (1) Clearly F ⊆ (A,F )∩((A,F ), F ). Conversely, let x ∈ (A,F )∩((A,F ), F ).
Then x = x ∨ x ∈ F . Hence (A,F ) ∩ ((A,F ), F ) ⊆ F . Therefore (A,F ) ∩
((A,F ), F ) = F .
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(2) Clearly (G1 ∨ G2, F ) ⊆ (G1, F ) ∩ (G2, F ). Conversely, let x ∈ (G1, F ) ∩
(G2, F ). Let c ∈ G1 ∨ G2. Then c = i ∧ j for some i ∈ G1 and j ∈ G2. Now
x ∨ c = x ∨ (i ∧ j) = (x ∨ i) ∧ (x ∨ j) ∈ F . Hence x ∈ (G1 ∨ G2, F ). Therefore
(G1, F ) ∩ (G2, F ) ⊆ (G1 ∨G2, F ).
(3) Clearly ((G1 ∩ G2, F ), F ) ⊆ ((G1, F ), F ) ∩ ((G2, F ), F ). Conversely, let x ∈
((G1, F ), F ) ∩ ((G2, F ), F ), y ∈ (G1 ∩ G2, F ), f ∈ G1 and g ∈ G2. Clearly
f ∨ g ∈ G1 ∩G2. Now
y ∈ (G1 ∩G2, F )⇒ y ∨ (f ∨ g) ∈ F since f ∨ g ∈ G1 ∩G2

⇒ (y ∨ f) ∨ g ∈ F for all g ∈ G2

⇒ y ∨ f ∈ (G2, F )
⇒ x ∨ (y ∨ f) ∈ F since x ∈ ((G2, F ), F )
⇒ (x ∨ y) ∨ f ∈ F for all f ∈ G1

⇒ x ∨ y ∈ (G1, F )
⇒ x ∨ y ∈ (G1, F ) ∩ ((G1, F ), F ) = F since x ∈ ((G1, F ), F )
⇒ x ∈ (y, F ) for all y ∈ (G1 ∩G2, F )
⇒ x ∈ ((G1 ∩G2, F ), F ) .

Hence ((G1, F ), F ) ∩ ((G2, F ), F ) ⊆ ((G1 ∩G2, F ), F ). Thus ((G1 ∩G2, F ), F ) =
((G1, F ), F ) ∩ ((G2, F ), F ). �

The following corollaries are direct consequences of the above results.
Corollary 3.6. Let F be a filter of a distributive lattice L and a, b ∈ L. Then we
have

(1) ([a), F ) = (a, F ),
(2) a ≤ b implies (a, F ) ⊆ (b, F ),
(3) (a ∧ b, F ) = (a, F ) ∩ (b, F ),
(4) ((a ∨ b, F ), F ) = ((a, F ), F ) ∩ ((b, F ), F ),
(5) (a, F ) = L if and only if a ∈ F .

Corollary 3.7. Let L be a distributive lattice and a, b ∈ L. Then we have
(1) ([a))◦ = (a)◦,
(2) a ≤ b implies (a)◦ ⊆ (b)◦,
(3) (a ∧ b)◦ = (a)◦ ∩ (b)◦,
(4) (a ∨ b)◦◦ = (a)◦◦ ∩ (b)◦◦,
(5) (a)◦ = L if and only if a is dense.

Lemma 3.8. Let F be a filter and P be a prime F -filter of a distributive lattice
L. Then x /∈ P implies (x, F ) ⊆ P for any x ∈ L.

In the following definition, the notion of minimal prime F -filters is introduced
in distributive lattices.
Definition 3.9. Let F be an arbitrary filter of a distributive lattice L. Suppose
G is an F -filter and P a prime F -filter of L such that G ⊆ P . Then P is called a
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minimal prime F -filter belonging to G if there exists no prime F -filter Q such that
G ⊆ Q ⊂ P . A minimal prime F -filter belonging to the filter F is simply called
minimal prime F -filter of L.

In case of F = D, we call P the minimal prime D-filter belonging to G. A
minimal prime D-filter belonging to the filter D is simply called minimal prime
D-filter.

Proposition 3.10. Let F be an arbitrary filter of a distributive lattice L. Suppose
G is an F -filter and P a prime F -filter of L such that G ⊆ P . Then P is a minimal
prime F -filter belonging to G if and only if L− P is a maximal ideal with respect
to the property that (L− P ) ∩G = ∅.

Proof. Let P be a prime F -filter of L such that G ⊆ P . Assume that P is
a minimal prime F -filter belonging to G. Clearly L − P is an ideal such that
(L− P ) ∩G = ∅. Suppose Q is another ideal such that Q ∩G = ∅ and L− P ⊆ Q.
Hence G ⊆ L−Q ⊆ P . By the minimality of P , we get L−Q = P . Hence L− P
is a maximal ideal with respect to the property (L− P ) ∩G = ∅.

Conversely, let L−P be a maximal ideal with respect to the property (L−P )∩G =
∅. Suppose Q is a prime F -filter of L such that F ⊆ G ⊆ Q ⊆ P . Clearly L−Q
is an ideal such that L− P ⊆ L−Q and (L−Q) ∩G = ∅, which contradicts the
maximality of L− P . Hence P is the minimal prime F -filter belonging to G. �

Corollary 3.11. Let F be a D-filter and P a prime D-filter of a distributive lattice
L such that F ⊆ P . Then P is a minimal prime D-filter belonging to F if and only
if L− P is a maximal ideal with respect to the property that (L− P ) ∩ F = ∅.

Theorem 3.12. Let F be an arbitrary filter of a distributive lattice L. Suppose G
is an F -filter and P a prime F -filter of L such that G ⊆ P . Then P is a minimal
prime F -filter belonging to G if and only if to each x ∈ P , there exists y /∈ P such
that x ∨ y ∈ G.

Proof. Let G be an F -filter and P a prime F -filter of L such that G ⊆ P . Assume
that P is a minimal prime F -filter belonging to G. Then L − P is a maximal
ideal with respect to the property that (L− P ) ∩G = ∅. Let x ∈ P . Then clearly
L−P ⊂ (L−P )∨ (x]. By the maximality of L−P , we get {(L−P )∨ (x]}∩G 6= ∅.
Choose a ∈ {(L− P ) ∨ (x]} ∩G. Then we get a = y ∨ x for some y ∈ L− P and
a ∈ G. Hence y ∨ x = a ∈ G where y /∈ P .

Conversely, assume that the condition holds. Suppose P is not a minimal prime
F -filter belonging to G. Then there exists a prime F -filter Q of L such that
F ⊆ G ⊆ Q ⊂ P . Choose x ∈ P −Q. Then, by the assumed condition, there exists
y /∈ P such that x ∨ y ∈ G ⊆ Q. Since x /∈ Q, it yields that y ∈ Q ⊂ P , which is a
contradiction. Therefore P is a minimal prime F -filter belonging to G. �

Replacing the filter F by the D-filter D, the following are direct consequences.

Corollary 3.13. Let G be a D-filter and P a prime D-filter of a distributive lattice
L such that G ⊆ P . Then P is a minimal prime D-filter belonging to G if and only
if to each x ∈ P , there exists y /∈ P such that x ∨ y ∈ G.
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Corollary 3.14. A prime D-filter P of a distributive lattice L is minimal if and
only if to each x ∈ P , there exists y /∈ P such that x ∨ y ∈ D.

Definition 3.15. Let F be a filter of a distributive lattice L. For any prime F -filter
P of L, define the set OF (P ) as OF (P ) = {x ∈ L | x ∈ (a, F ) for some a /∈ P}.

For a prime D-filter P , we denote OD(P ) by O(P ) = {x ∈ L | x ∈ (a)◦ for some
a /∈ P}.

Lemma 3.16. Let F be a filter of a distributive lattice L. For any prime F -filter
P of L, OF (P ) is an F -filter such that OF (P ) ⊆ P .

Proof. Clearly F ⊆ OF (P ). Let x, y ∈ OF (P ). Then x ∈ (a, F ) and y ∈ (b, F )
for some a /∈ P and b /∈ P . Hence ((a, F ), F ) ⊆ (x, F ) and ((b, F ), F ) ⊆ (y, F ).
Thus ((a∨ b, F ), F ) = ((a, F ), F )∩ ((b, F ), F ) ⊆ (x, F )∩ (y, F ) = (x∧ y, F ). Hence
x ∧ y ∈ ((x ∧ y, F ), F ) ⊆ (((a ∨ b, F ), F ), F ) = (a ∨ b, F ). Since a ∨ b /∈ P , we get
that x ∧ y ∈ OF (P ). Again, let x ∈ OF (P ) and x ≤ y. Then x ∈ (a, F ) for some
a /∈ P . Since (a, F ) is a filter, we get y ∈ (a, F ). Hence y ∈ OF (P ). Therefore
OF (P ) is an F -filter of L. Let x ∈ OF (P ). Then x ∈ (a, F ) for some a /∈ P . Hence
x ∨ a ∈ F ⊆ P . Since P is prime, we get x ∈ P . Therefore OF (P ) ⊆ P . �

Lemma 3.17. Let F be a filter and P be a prime F -filter of a distributive lattice
L. Then every minimal prime F -filter belonging to OF (P ) is contained in P .

Proof. Let Q be a minimal prime F -filter belonging to OF (P ). Suppose Q * P .
Choose x ∈ Q − P . Then there exists y /∈ Q such that x ∨ y ∈ OF (P ). Hence
x ∨ y ∈ (a, F ) for some a /∈ P . Thus y ∨ (x ∨ a) = (x ∨ y) ∨ a ∈ F ⊆ P . Since
x /∈ P, a /∈ P , and P is prime, we get x ∨ a /∈ P . Hence y ∈ OF (P ) ⊆ Q, which is a
contradiction. Therefore Q ⊆ P . �

In case of F = D, the above two results conclude that O(P ) is a D-filter such
that O(P ) ⊆ P and every minimal prime D-filter belonging to O(P ) is contained
in P .

Proposition 3.18. Let F be a filter and P be a prime F -filter of a distributive
lattice L. Then OF (P ) is the intersection of all minimal prime F -filters contained
in P .

Proof. Let P be a prime F -filter of L. By Zorn’s lemma, P contains a minimal
prime F -filter. Let {Sα}α∈∆ be the family of all minimal prime F -filters contained
in P . Let x ∈ OF (P ). Then there exists a /∈ P such that x ∈ (a, F ). Since each
Sα ⊆ P and a /∈ P , we get a /∈ Sα for all α ∈ ∆. Since x ∨ a ∈ F ⊆ Sα and
a /∈ Sα for all α ∈ ∆, we get x ∈ Sα for all α ∈ ∆. Hence x ∈

⋂
α∈∆

Sα. Therefore

OF (P ) ⊆
⋂
α∈∆

Sα. Conversely, let x /∈ OF (P ). Consider S = (L−P )∨ (x]. Suppose

F ∩ S 6= ∅. Choose a ∈ F ∩ S. Since a ∈ S, we get a = t ∨ x for some t ∈ L− P .
Since a ∈ F , we get t ∨ x ∈ F . Hence x ∈ (t, F ) where t /∈ P . Thus x ∈ OF (P ),
which is a contradiction. Therefore S ∩ F = ∅. Let M be the maximal ideal such
that S ⊆M and M ∩ F = ∅. Then L−M is a minimal prime F -filter such that
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L−M ⊆ P and x /∈ L−M because of x ∈ S ⊆M . Hence x /∈
⋂
α∈∆

Sα. Therefore⋂
α∈∆

Sα ⊆ OF (P ). �

The following corollaries are direct consequences of the above theorem.

Corollary 3.19. Let P be a prime D-filter of a distributive lattice L. Then O(P )
is the intersection of all minimal prime D-filters contained in P .

Corollary 3.20. If P is a minimal prime D-filter of a distributive lattice L, then
O(P ) = P .

Definition 3.21. Let F be an arbitrary filter of a distributive lattice L. Then two
F -filters G1 and G2 of L are called co-maximal if G1 ∨G2 = L.

Theorem 3.22. Let F be an arbitrary filter of a distributive lattice L. Then the
following assertions are equivalent:

(1) every prime F -filter contains a unique minimal prime F -filter;
(2) for any prime F -filter P , OF (P ) is prime;
(3) for any a, b ∈ L with a ∨ b ∈ F, (a, F ) ∨ (b, F ) = L;
(4) for any a, b ∈ L, (a, F ) ∨ (b, F ) = (a ∨ b, F );
(5) any two distinct minimal prime F -filters are co-maximal.

Proof. (1)⇒ (2): Assume that every prime F -filter of L contains a unique minimal
prime F -filter. Then by Proposition 3.18, we get that OF (P ) is a prime F -filter.
(2)⇒ (3): Assume the condition (2). Let a, b ∈ L be such that a ∨ b ∈ F . Suppose
(a, F )∨(b, F ) 6= L. Then there exists a maximal filter P such that (a, F )∨(b, F ) ⊆ P .
Hence (a, F ) ⊆ P and (b, F ) ⊆ P . Thus we get a /∈ OF (P ) and b /∈ OF (P ). Since
OF (P ) is prime, we get a∨ b /∈ OF (P ). Hence F * OF (P ), which is a contradiction.
Therefore (a, F ) ∨ (b, F ) = L.
(3) ⇒ (4): Assume that the condition (3) holds. Let a, b ∈ L. Clearly (a, F ) ∨
(b, F ) ⊆ (a ∨ b, F ). Conversely, let x ∈ (a ∨ b, F ). Then we get (x ∨ a) ∨ (x ∨ b) =
x∨ (a∨ b) ∈ F . Hence by condition (3), we get (x∨a, F )∨ (x∨ b, F ) = L. Therefore
x ∈ (x∨a, F )∨ (x∨ b, F ). Hence x = r∧s for some r ∈ (x∨a, F ) and s ∈ (x∨ b, F ).
Since r ∈ (x ∨ a, F ), we get r ∨ x ∈ (a, F ). Similarly, we get s ∨ x ∈ (b, F ). Now

x = x ∨ x
= x ∨ (r ∧ s)
= (x ∨ r) ∧ (x ∨ s) ∈ (a, F ) ∨ (b, F ) .

Hence (a ∨ b, F ) ⊆ (a, F ) ∨ (b, F ). Therefore (a, F ) ∨ (b, F ) = (a ∨ b, F ) for all
a, b ∈ L.
(4)⇒ (5): Assume the condition (4). Let P and Q be two distinct minimal prime
F -filters of L. Choose x ∈ P − Q and y ∈ Q − P . Since P and Q are minimal,
there exist x0 /∈ P and y0 /∈ Q such that x ∨ x0 ∈ F and y ∨ y0 ∈ F . Hence
x ∨ x0 ∨ y ∨ y0 ∈ F . Since x0 /∈ P and y /∈ P , we get x0 ∨ y /∈ P and hence we
conclude (x0 ∨ y, F ) ⊆ P . Similarly, we can obtain (x ∨ y0, F ) ⊆ Q. By Corollary



GENERALIZED PRIME D-FILTERS OF DISTRIBUTIVE LATTICES 169

3.6(5), we get
L = (x ∨ x0 ∨ y ∨ y0, F )

= ((x ∨ y0) ∨ (x0 ∨ y), F )
= (x ∨ y0, F ) ∨ (x0 ∨ y, F ) by (4)
⊆ P ∨Q

which gives P ∨Q = L. Therefore P and Q are co-maximal.
(5)⇒ (1): Assume that any two distinct minimal prime F -filters of L are co-maximal.
Let P be a prime F -filter of L. Suppose P contains two minimal prime F -filters,
say Q1 and Q2. Then by condition (5), we get L = Q1 ∨ Q2 ⊆ P , which is a
contradiction. Therefore every prime F -filter contains a unique minimal prime
F -filter. �

Corollary 3.23. Following assertions are equivalent in a distributive lattice L:
(1) every prime D-filter contains a unique minimal prime D-filter;
(2) for any prime D-filter P , O(P ) is prime;
(3) for any a, b ∈ L with a ∨ b ∈ D, (a)◦ ∨ (b)◦ = L;
(4) for any a, b ∈ L, (a)◦ ∨ (b)◦ = (a ∨ b)◦;
(5) any two distinct minimal prime D-filters are co-maximal.

4. Congruences and prime D-filters

In this section, we first study a congruence in terms of ideals. Later, an equiva-
lency is obtained between the minimal prime D-filters of a distributive lattice and
its quotient algebra with respect to this congruence. The following proposition can
be routinely verified.

Proposition 4.1. Let I be an ideal of a distributive lattice L. For any x, y ∈ L,
define a binary relation ψI on L by (x, y) ∈ ψI if and only if x∨a = y∨a for some
a ∈ I. Then ψI is a congruence on L with I as a congruence class modulo ψI .

For any distributive lattice L, it can be shown that the quotient algebra L/ψI is
also a distributive lattice with respect to the following operations:

[x]ψI ∧ [y]ψI = [x ∧ y]ψI and [x]ψI ∨ [y]ψI = [x ∨ y]ψI
where [x]ψI is the congruence class of x modulo ψI . It can be routinely verified
that the mapping Ψ: L −→ L/ψI defined by Ψ(x) = [x]ψI is a homomorphism.

Lemma 4.2. The following conditions hold in a distributive lattice L:
(1) If d is a dense element of L, then [d]ψI is a dense element of L/ψI ,
(2) If F is a D-filter of L/ψI , then Ψ−1(F ) is a D-filter of L,
(3) If P is a prime D-filter of L/ψI , then Ψ−1(P ) is a prime D-filter of L.

Proof. (1). It is clear.
(2). Let F be a D-filter of L/ψI . Clearly Ψ−1(F ) is a filter of L. Let x ∈ D ⊆ L.
Then by (1), we get that [x]ψI is a dense element of L/ψI . Hence Ψ(x) = [x]ψI ∈ F ,



170 A.P. PHANEENDRA KUMAR, M. SAMBASIVA RAO AND K. SOBHAN BABU

which implies x ∈ Ψ−1(F ). Thus D ⊆ Ψ−1(F ). Therefore Ψ−1(F ) is a D-filter of
L.
(3). By the nature of homomorphisms, it can be obtained easily. �

Definition 4.3. Let I be an ideal of a distributive lattice L. For any filter F of L,
define F = {[x]ψI | x ∈ F}.

By the nature of congruences of distributive lattices, it can be easily observed
that F is a D-filter in L/ψI whenever F is a D-filter in L. In the following, we
observe some properties of prime D-filters of a distributive lattice with respect to
congruence classes modulo ΨI .
Proposition 4.4. Let P be a prime D-filter and I an ideal of a distributive lattice
L such that P ∩ I = ∅. Then the following conditions hold:

(1) x ∈ P if and only if [x]ψI ∈ P ,
(2) P ∩ I = ∅,
(3) If P is a prime D-filter of L, then P is a prime D-filter of L/ψI .

Proof. (1). Clearly x ∈ P implies [x]ψI ∈ P . Conversely, let [x]ψI ∈ P . Then
[x]ψI = [t]ψI for some t ∈ P . Hence (x, t) ∈ ψI . Thus x ∨ a = t ∨ a ∈ P for some
a ∈ I. Since P ∩ I = ∅, we get a /∈ P . Since x ∨ a ∈ P and a /∈ P , we must have
x ∈ P .
(2). Suppose P ∩ I 6= ∅. Then choose [x]ψI ∈ P ∩ I. Then by (1), we get x ∈ P and
[x]ψI ∈ I. Hence we can have the following:

[x]ψI ∈ I ⇒ [x]ψI = [y]ψI for some y ∈ I
⇒ (x, y) ∈ ψI
⇒ x ∨ a = y ∨ a for some a ∈ I
⇒ x ∨ a ∈ I since y ∨ a ∈ I
⇒ x ∨ a ∈ P ∩ I since x ∈ P

which is a contradiction to P ∩ I = ∅. Therefore P ∩ I = ∅.
(3). Since P is a filter of L, it is clear that P is a filter of L/ψI . Let [x]ψI ∈ D.
Then, we get x ∈ D ⊆ P . Hence [x]ψI ∈ P . Therefore P is a D-filter of L/ψI .
Since P is a proper filter of L, by (1), we get that P is a proper filter in L/ψI . Let
[x]ψI , [y]ψI ∈ L/ψI . Then we have

[x]ψI ∨ [y]ψI ∈ P ⇒ [x ∨ y]ψI ∈ P
⇒ x ∨ y ∈ P from (1)
⇒ x ∈ P or y ∈ P
⇒ [x]ψI ∈ P or [y]ψI ∈ P

Therefore P is a prime D-filter in L/ψI . �

Proposition 4.5. Let I be an ideal of a distributive lattice L. Then the mapping
P 7→ P is an order isomorphism of the set of all prime D-filters of L disjoint from
I onto the set of all prime D-filters of L/ψI .
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Proof. Let P and Q be two prime D-filters of L such that P ∩ I = ∅ and
Q ∩ I = ∅. Then by Proposition 4.4(1), we get that P ⊆ Q ⇔ P ⊆ Q. Let P be
a prime D-filter of L such that P ∩ I = ∅. Then by Proposition 4.4(3), we get
that P is a prime D-filter of L/ψI . Let R be a prime D-filter of L/ψI . Consider
P = {x ∈ L | [x]ψI ∈ R}. Since R is a D-filter of L/ψI , we get that P is a D-filter
of L. Let x, y ∈ L be such that x∨ y ∈ P . Then [x]ψI ∨ [y]ψI = [x∨ y]ψI ∈ R. Since
R is prime, we get either [x]ψI ∈ R or [y]ψI ∈ R. Hence either x ∈ P or y ∈ P .
Therefore P is a prime D-filter of L. Clearly P = R. Suppose P ∩ I 6= ∅. Choose
a ∈ P ∩ I. Then [a]ψI ∈ R and a ∈ I. Let [y]ψI ∈ L/ψI be an arbitrary element.
Now for any a ∈ I and y ∈ L, we have

a ∨ y = a ∨ y ∨ a⇒ (y, y ∨ a) ∈ ψI
⇒ [y]ψI = [y ∨ a]ψI
⇒ [y]ψI = [y]ψI ∨ [a]ψI ∈ R since R is a filter
⇒ [y]ψI ∈ R

Hence L/ψI ⊆ R, which is a contradiction. Thus P ∩ I = ∅. Therefore P 7→ P is an
order isomorphism from the set of all prime D-filters of L which are disjoint from
I onto the set of all prime D-filters of L/ψI . �

The following corollary is a direct consequence of the above theorem.

Corollary 4.6. Let L be a distributive lattice. Then the above map P 7→ P induces
a one-to-one correspondence between the set of all minimal prime D-filters of L
which are disjoint from I and the set of all minimal prime D-filters of L/ψI .

Theorem 4.7. Let I be an ideal of a distributive lattice L. Then any two distinct
minimal prime D-filters of L are co-maximal if and only if any two distinct minimal
prime D-filters of L/ψI are co-maximal.

Proof. Assume that any two distinct minimal prime D-filters of L are co-ma-
ximal. Let P1, P2 be two distinct minimal prime D-filters of L/ψI . Then by the
above corollary, there exist two minimal prime D-filters Q1 and Q2 of L such
that Q1 ∩ I = ∅ and Q2 ∩ I = ∅. Also Q1 = P1 and Q2 = P2. Since P1 and P2
are distinct, we get that Q1 and Q2 are distinct. By the assumption, we get that
Q1 ∨Q2 = L. Hence for any x ∈ L, we can have

x = x1 ∧ x2 where x1 ∈ Q1 and x2 ∈ Q2

Since x1 ∈ Q1, we get [x1]ψI ∈ Q1 = P1. Similarly, we get [x2]ψI ∈ Q2 = P2. Hence
we get

[x]ψI = [x1 ∧ x2]ψI = [x1]ψI ∧ [x2]ψI ∈ P1 ∨ P2.
Thus, for any x ∈ L, we obtained [x]ψI ∈ P1 ∨ P2. Hence P1 ∨ P2 = L/ψI .

Conversely, assume that any two distinct minimal prime D-filters of L/ψI are
co-maximal. Let P be a prime D-filter of L. Suppose P contains two distinct
minimal prime D-filters, say P1 and P2. Consider S = L− P . Then clearly S is an
ideal of L such that P1 ∩ S = ∅ = P2 ∩ S. Then by Corollary 4.6, we get that P 1
and P 2 are distinct minimal prime D-filters of L/ψI such that P 1, P 2 ⊆ P . Thus P
is containing two distinct minimal prime D-filters of L/ψI , which is a contradiction.
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Hence P contains a unique minimal prime D-filter. Therefore, by Corollary 3.23,
any two distinct minimal prime D-filters of L are co-maximal. �

5. The space of prime D-filters

In this section, some topological properties of the space of all prime D-filters of
a distributive lattice are studied. In the following proposition, we first observe the
generalization of the Stone’s theorem of prime ideals to the case of prime D-filters
of distributive lattices:

Proposition 5.1. Every D-filter of a distributive lattice is the intersection of all
prime D-filters containing it.

Proof. Let F be a D-filter of a distributive lattice L. Consider
F0 =

⋂
{P | P is a prime D-filter such that F ⊆ P}

Clearly F ⊆ F0. Conversely, let x /∈ F . Then there exists a prime filter P such
that F ⊆ P and x /∈ P . As F a D-filter, P is also a D-filter. Hence x /∈ F0, which
completes the proof. �

Corollary 5.2. The intersection of all prime D-filters of a distributive lattice is
equal to D.

Corollary 5.3. Let L be a distributive lattice and x ∈ L. If x 6∈ D, then there
exists a prime D-filter P of L such that x 6∈ P .

Let us denote the set of all prime D-filters of a lattice L by SpecDF (L). For any
x ∈ L, define K(x) = {P ∈ SpecDF (L) | x /∈ P}. Then we have the following result
whose proof is straightforward.

Lemma 5.4. Let L be a distributive lattice and x, y ∈ L. Then the following
conditions hold:

(1)
⋃
x∈L

K(x) = SpecDF (L),

(2) K(x) ∩ K(y) = K(x ∨ y),
(3) K(x) ∪ K(x) = K(x ∧ y),
(4) K(x) = ∅ if and only if x ∈ D,
(5) K(0) = SpecDF (L).

From the above result, it can be easily observed that the collection {K(x) | x ∈ L}
forms a base for a topology on SpecDF (L). Under this topology, we have the following
result.

Theorem 5.5. The following conditions hold in a distributive lattice L:
(1) For any x ∈ L,K(x) is compact in SpecDF (L),

(2) Let C be a compact open subset of SpecDF (L). Then C = K(x) for some
x ∈ L,

(3) SpecDF (L) is a T0-space,
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(4) The map x 7→ K(x) is an anti-homomorphism from L onto the lattice of
all compact open

subsets of SpecDF (L).

Proof. (1) Let x ∈ L. Let A ⊆ L be such that K(x) ⊆
⋃
y∈A

K(y). Let F be a

D-filter generated by the set A. Suppose x /∈ F . Then there exists a prime D-filter
P such that F ⊆ P and x /∈ P . Since A ⊆ F ⊆ P , we get P /∈ K(y) for all y ∈ A.
Since x /∈ P , we get P ∈ K(x), which is a contradiction. Hence x ∈ F . So we can
write x = a1 ∧ a2 ∧ · · · ∧ an for some a1, a2, . . . , an ∈ A and n ∈ N. Then, we get

K(x) = K(
n∧
i=1

ai) =
n⋃
i=1

K(ai)

which is a finite subcover for K(x). Therefore K(x) is compact.
(2) Let C be a compact open subset of SpecDF (L). Since C is open, we get

C =
⋃
a∈A

K(a) for some A ⊆ L. Since C is compact, there exist a1, a2, . . . , an ∈ A

such that
C =

n⋃
i=1

K(ai) = K(
n∧
i=1

ai).

Therefore C = K(x) for some x ∈ L.
(3) Let P and Q be two distinct prime D-filters of L. Without loss of generality,

assume that P * Q. Choose x ∈ L such that x ∈ P and x /∈ Q. Hence P /∈ K(x)
and Q ∈ K(x). Therefore SpecDF (L) is a T0-space.
(4) It can be obtained from (1), (2) and by the above lemma. �

Proposition 5.6. Following assertions are equivalent in a distributive lattice L:

(1) SpecDF (L) is a Hausdorff space;
(2) for each P ∈ SpecDF (L), P is the unique member of SpecDF (L)

such that O(P ) ⊆ P ;
(3) every prime D-filter is maximal;
(4) every prime D-filter is minimal.

Proof. (1)⇒ (2): Assume that SpecDF (L) is a Hausdorff space. Let P ∈ SpecDF (L).
Clearly O(P ) ⊆ P . Suppose Q ∈ SpecDF (L) such that Q 6= P and O(P ) ⊆ Q.
Since SpecDF (L) is Hausdorff, there exists x, y ∈ L such that P ∈ K(x), Q ∈ K(y)
and K(x ∨ y) = K(x) ∩ K(y) = ∅. Hence x /∈ P, y /∈ Q and x ∨ y ∈ D. Therefore
y ∈ O(P ) ⊆ Q, which is a contradiction to that y /∈ Q. Hence P = Q. Therefore P
is the unique member of SpecD F (L) such that O(P ) ⊆ P .
(2)⇒ (3): Assume the condition (2). Let P be a prime D-filter of L. Suppose P is
not minimal. Let Q be a prime D-filter in L such that Q ⊆ P . Hence O(Q) ⊆ Q ⊆ P ,
which is a contradiction to the assumption. Therefore P is a minimal prime D-filter
of L.
(3)⇒ (4): Since every maximal D-filter is prime, it is clear.
(4)⇒ (1): Assume that every prime D-filter is minimal. Let P and Q be two distinct
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elements of SpecDF (L). Hence O(Q) * P . Choose x ∈ O(Q) such that x /∈ P . Since
x ∈ O(Q), there exists y /∈ Q such that x ∈ (y)◦. Hence x ∨ y ∈ D. Thus it yields,
P ∈ K(x), Q ∈ K(y). Since x ∨ y ∈ D, we get that K(x) ∩ K(y) = K(x ∨ y) = ∅.
Therefore SpecDF (L) is Hausdorff. �

Acknowledgement. The authors would like to thank the referee for his valuable
suggestions and comments which improved the presentation of the content of this
paper.

References
[1] Birkhoff, G., Lattice theory, Amer. Math. Soc. Colloq. XXV, Providence, USA, 1967.
[2] Burris, S., Sankappanavar, H.P., A Course in Universal Algebra, Springer Verlag, 1981.
[3] Cornish, W.H., Normal lattices, J. Aust. Math. Soc. 14 (1972), 200–215.
[4] Cornish, W.H., Annulets and α-ideals in distributive lattices, J. Aust. Math. Soc. 15 (1973),

70–77.
[5] Cornish, W.H., Quasicomplemented lattices, Comment. Math. Univ. Carolin. 15 (3) (1974),

501–511.
[6] Katrinak, T., Remarks on Stone lattices, I, Math.-Fyz.Časopis 16 (1966), 128–142.
[7] Kist, J., Minimal prime ideals in commutative semigroups, Proc. London Math. Soc. Sec. B

13 (1963), 31–50.
[8] Mandelker, M., Relative annihilators in lattices, Duke Math. J. 37 (1970), 377–386.
[9] Phaneendra Kumar, A.P., Sambasiva Rao, M., Sobhan Babu, K., Filters of distributive

lattices generated by dense elements, to appear in Palestine J. Math.
[10] Sambasiva Rao, M., e-filters of MS-algebras, Acta Math. Sci. 33B (3) (2013), 738–746.
[11] Sambasiva Rao, M., Badawy, A., µ-filters of distributive lattices, Southeast Asian Bull. Math.

40 (2016), 251–264.
[12] Speed, T.P., Some remarks on a class of distributive lattices, J. Aust. Math. Soc. 9 (1969),

289–296.

Corresponding author: M. Sambasiva Rao,
Department of Mathematics, MVGR College of Engineering,
Vizianagaram, India - 535005
E-mail: mssraomaths35@rediffmail.com

Department of BS& H, Vignan’s Institute of Engineering for Women,
Visakhapatnam, Andhra Pradesh,
India - 530046
E-mail: phaneendra.arjun@gmail.com

Department of Mathematics,
JNTU-K University College of Engineering,
Narasaraopeta, India-522616
E-mail: ksobhanjntu@gmail.com

mailto:mssraomaths35@rediffmail.com
mailto:phaneendra.arjun@gmail.com
mailto:ksobhanjntu@gmail.com

