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A NOTE ON THE CONVERGENCE RATE
IN REGULARIZED STOCHASTIC PROGRAMMING

Evgueni Gordienko and Yury Gryazin

We deal with a stochastic programming problem that can be inconsistent. To overcome
the inconsistency we apply Tikhonov’s regularization technique, and, using recent results on
the convergence rate of empirical measures in Wasserstein metric, we treat the following two
related problems:

1. A choice of regularization parameters that guarantees the convergence of the minimization
procedure.

2. Estimation of the rate of convergence in probability.

Considering both light and heavy tail distributions and Lipschitz objective functions (which
can be unbounded), we obtain the power bounds for the convergence rate.

Keywords: stochastic programming problem, Tikhonov’s regularization, Lipschitz condi-
tions, Kantorovich metric, convergence rate

Classification: 90C15

1. PROBLEM SETTING

We consider a stochastic optimization problem associated with, so-called, empirical risk
minimization in the learning theory (see, for instance [2, 3, 11, 14, 15]). We assume that
all random vectors and variables, which appear in this paper, are defined on a common
probability space (Ω,F ,P).

Let X̄ = (X,Y ) ∈ X × Y be a random vector with values X ∈ X ⊂ Rk and
Y ∈ Y ⊂ Rm, where X and Y are given Borel sets.

Let L : Y × Y → [0,∞) be a given measurable function (loss function in learning,
that is related to objective function in “classical” stochastic optimization), and F = {f :
X → Y} be a given class of measurable functions. We suppose that for each f ∈ F ,

R(f) := EL(Y, f(X)) <∞ (1)

and there exists f∗ ∈ F such that

R∗ := inf
f∈F

R(f) = R(f∗). (2)
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One of typical problems in stochastic optimization is estimating R∗ in (2) in the
situation where the distribution P := P(X,Y ) of (X,Y ) is unknown, but a sample

{X̄1 = (X1, Y1), . . . , X̄n = (Xn, Yn)} (3)

of i.i.d. random vectors with a common law P is available.
The standard approach to tackle the problem is the following (see, for example,

[2, 3, 7, 8, 9, 10, 12, 14]).

Let Pn := 1
n

n∑
i=1

δ(Xi,Yi) be the corresponding empirical distribution,

Rn(f) := EPnL(Y, f(X)) =
1

n

n∑
i=1

L(Yi, f(Xi)), f ∈ F, (4)

and

R∗n := inf
f∈F

Rn(f), n = 1, 2, . . . (5)

There is a vast literature about conditions (for example, boundedness, compactness,
continuity, or moment conditions) that make the problem consistent. That is

R∗n → R∗ as n→∞ (6)

(either in probability, or with probability one).
Moreover, considering a “classical” version of the stochastic programming problem

(1) – (5) with an objective function L : Rs × Rk → R and

R∗ := inf
x∈X⊂Rs

EL(x, ξ), (7)

where x ∈ Rs is a “decision vector”, and ξ is a k−dimensional random vector with an
unknown distribution, one can find many papers (possibly starting in 1978 by paper [7])
on estimations of the rate of convergence of R∗n to R∗ (in probability, see, for instance
[2, 8, 9, 10, 12, 14]).

Our goal also is the estimation of the convergence rate (in probability), but in situa-
tions where the consistency (6) can fail to hold, and a regularization is needed to make
the problem well-posed.

Note that the technique and the results obtained in this paper can (after appropriate
modifications) be applied to the “classical” stochastic programming, where R∗ in (7) is
estimated by using empirical distributions.

2. ASSUMPTIONS AND EXAMPLE

The Lipschitz (or Hölder) conditions on a loss function (or on a objective function) are
common in stochastic programming ([5, 7, 9, 10, 12]) and the learning theory ([2, 3, 11,
14, 15]). At the same time, the Lipschitz conditions on functions f from F in (1) and
(2) are also in use (for example, considering linear functions or splines of first order,
[2, 3, 5, 11, 14, 15].
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Let | · |k and | · |m be Euclidian norms in Rk and Rm, respectively. A norm on
Rd = Rk × Rm is defined by | · | := | · |k + | · |m.

Let

F := {f : X → Y such that ‖f‖L := sup
x 6=x′

|f(x)− f(x′)|m
|x− x′|k

<∞} (8)

be the class of all maps from X to Y with a finite Lipschitz norm ‖·‖L.

Assumption 1. There is a constant L <∞ such that for any y, ỹ, y′ and ỹ′ ∈ Y

|L(y, ỹ)− L(y′, ỹ′)| ≤ L(|y − y′|m + |ỹ − ỹ′|m). (9)

Assumption 2. F is a subset of F .

Assumption 3. For some β ≥ 3

E|X|βk <∞, E|Y |βm <∞. (10)

Example 1. Let k = m = 1, X = [1, 3], X be a random variable distributed uniformly
on [1, 3], and for every Borel set B ⊂ R,

P (Y ∈ B|X = x) =

{
P(ηx ∈ B) x ∈ [1, 2],
P(η2x−2 ∈ B) x ∈ (2, 3].

Here ηx ∼ Norm(x, 1), η2x−2 ∼ Norm(2x− 2, 1), (that is, the law of Y conditionally to
X is a Gaussian centered either in X or in 2X − 2.)

Let L = |y− f(x)| and F := {f : [1, 3]→ R : ‖f‖L <∞}. Then Assumptions 1-3 are
satisfied, and in (1)

R(f) =
1

2

∫ 3

1

E {|Y − f(X)| |X = x} dx

=
1

2

∫ 2

1

E |ηx − f(x)|dx+
1

2

∫ 3

2

E |η2x−2 − f(x)|dx. (11)

Also,
inf
f∈F

E|ηx − f(x)| = inf
z∈R

E|ηx − z| = median(ηx) = x, x ∈ [1, 2]

and
inf
f∈F

E|η2x−2 − f(x)| = median(η2x−2) = 2x− 2, x ∈ (2, 3].

Consequently, inf
f∈F

R(f) is attained at the function

f∗(x) =

{
x , x ∈ [1, 2],
2x− 2 , x ∈ (2, 3].

From (11) we see that (η ∼ Norm(0, 1)) R∗ = R(f∗) = E|η| =
√

2
π .

The solution of the problem in (4), (5) provides a quite different result. Choosing
in (4) the piecewise linear function f∗n, that connects the points Yi, i = 1, . . . , n gives
f(Xi) = Yi for all i. Therefore, in (5) R∗n = Rn(f∗n) = 0 for all n = 1, 2, . . . . Note that
with probability one ‖f∗n‖L →∞ as n→∞.
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3. REGULARIZATION

The matter of fact we observed in Example 1 is known as overfitting (in learning theory
and other areas of stochastic optimization). To cope with this phenomenon, the different
methods of regularization are applied. (See, for instance, [3, 5, 11, 15]).

In our rather general setting, when we do not consider particular minimization
algorithms and treat the Lipschitz case, Tikkonov’s regularization (see, for instance,
[6, 11, 13, 15])

R̃n(f) := Rn(f) + αnV (f) (12)

is adequate. In (12) Rn was defined in (4), and V (f) ≡ V ( ‖f‖L) is the regularization
term, that penalises “too large slopes” ‖f‖L of f ∈ F .

In the above setting the following two problems seem to be new:

(1) A suitable choise of the regularization parameters αn in (12), which takes into
account the error of approximation of P by Pn, and guaranties

inf
f∈F

R̃n(f)
P−→ R∗ as n→∞. (13)

(2) Estimation of the rate of convergence in (13).

4. TIKHONOV’S REGULARIZATION AND THE CONVERGENCE RATE

Let (L is defined in (9))

V (f) := Lmax{1, ‖f‖L}, f ∈ F, (14)

and, given {αn} ⊂ (0,∞), for n = 1, 2, . . .

Gn,αn(f) := Rn(f) + αnV (f), f ∈ F, (15)

with Rn(f) being defined in (4).
First, we need to choose a suitable measure of an error of the approximation of the

unknown P by means of Pn.
For probabilities measures µ and ν on W := X × Y (with finite first moments) the

Kantorovich (or Wasserstein of order 1) distance is

κ(µ, ν) := sup
φ∈Φ
|
∫
W
φ(x)µ(dx)−

∫
W
φ(x)ν(dx)|, (16)

where Φ := {φ :W → R : ‖φ‖L ≤ 1}.
The below proposition is a particular case of Theorem 1 in [4].

Proposition 1. Under Assumption 3 there is a constant cβ <∞ such that,

Eκ(P,Pn) ≤ cβ γn, n = 1, 2, . . . , (17)

where for n = 1, 2, . . .

γn =

{
n−

1
2 log(1 + n) if d := k +m = 2,

n−
1
d if d ≥ 3.

(18)
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The rate of convergence in (17) is the best possible, and cβ can be estimated in terms
of β and d (see [4]).

Given some known bound c > cβ and fixing

α ∈
(

0,
1

2
− 1

β

)
, (19)

we define:
αn := c γn + n−α, n = 1, 2, . . . (20)

In place of the generally ill-posed problem (5), we consider the following (regularized)
problem of minimization of “empirical risk” .

Let {fn} ⊂ F be any sequence such that (see (15))

Gn,αn(fn) ≤ inf
f∈F

Gn,αn(f) + αn hn, n = 1, 2, . . . (21)

In (21) {hn} is a sequence of nonnegative random variables. The term αnhn represents
a possible error of minimization of Gn,αn . We assume

sup
n≥1

Ehn = h∗ <∞. (22)

Recall that R(f) and R∗ were introduced in (1) and (2).

Theorem 1. Let Assumtions 1-3 hold and {fn} be defined in (21). Then the sequence
R(fn), n ≥ 1 converges in probability to R∗ = inf

f∈F
R(f). Moreover, for every ε > 0,

n ≥ 1

P(R(fn)−R∗ > ε) ≤ 1

ε
[(ch∗ + q(c+ 1))γn + (h∗ + q)n−α]

+c̄ n−λ{1 + λ
β
2 [log n]

β
2 }, (23)

where q = Lmax{1, ‖f∗‖L}, (24)

λ =
β

2
− αβ − 1 > 0, (25)

c comes from (20) and c̄ := 2
5β
2 −1{E|X|βk +E|Y |βm}. The sequence {γn} was defined in

(18).

Remark 1. Consider, for instance, the case k = m = 1, and suppose that Assump-
tion 3 holds for all β > 0. Then we can single out a “large enough” β to be able to
choose in (19), (20) α = 1

2 − η with a small positive η. In view of (18) γn = o(n−α) as
n→∞, and in (25) λ = βη − 1 would be greater than 1

2 . Consequently, the right-hand
side of (23) could be 1

εO(n−α) with α ≈ 1
2 .

Remark 2. In the situation described in Remark 1 (with α = 1
2 − η) take in (23)

ε = tn−
1
2 +2η. Then P

(
(n

1
2−2η)[R(fn)−R∗] > t

)
→ 0 as n→∞.



A note on the convergence rate in regularized stochastic programming 43

This assertion resembles the estimations of the convergence rate obtained in the works
by V. Kaňková (particularly, Theorem 4.2 in [9]).

The above regularization technique can be applied to the “standard” stochastic opti-
mization problems, where as in (7) one is looking for inf

x∈X⊂Rs
EL(x, ξ), where the set X

can be noncompact and the objective function L : Rs × Rk → R might be unbounded,
however, for each x ∈ X the function L(x, ·) : Rk → R is Lipschitzian.

P r o o f . [Proof of the Theorem 1] Given any f ∈ F , from (9) and (8) we obtain

|L(y, f(x))− L(y′, f(x′))| ≤ L (|y − y′|m + ‖f‖L|x− x′|k)

≤ Lmax{1, ‖f‖L} |(y, x)− (y′, x′)| = V (f) |(y, x)− (y′, x′)|.

Hence L( · , f(·)) is Lipschitz on W. Letting δn := κ(P,Pn) by (1) and (16),

|R(f)−Rn(f)| ≤ δn V (f), f ∈ F. (26)

From (21) we infer the following inequalities (see (15)),

Gn,αn(fn) = Rn(fn) + αnV (fn) ≤ inf
f∈F

[Rn(f) + αn V (f)] + αnhn

≤ Rn(f∗) + αnV (f∗) + αnhn. (27)

By (26) and (27)

R(fn)− δnV (fn) + αnV (fn) ≤ Rn(fn) + αnV (fn)

≤ Rn(f∗) + αnV (f∗) + αnhn ≤ R(f∗) + δnV (f∗) + αnV (f∗) + αnhn

= R∗ + (αn + δn)V (f∗) + αnhn.

From the last inequalities we obtain

0 ≤ R(fn)−R∗ ≤ αnhn + (αn + δn)q + (δn − αn)V (fn), (28)

where q := V (f∗) ≡ Lmax{1, ‖f∗‖L}.
Let ε > 0 and ξn denote the sum of the first two terms on the right-hand side of (28).

Then {ξn ≤ ε, (δn − αn)V (fn) ≤ 0} ⊂ {ξn + (δn − αn)V (fn) ≤ ε}, or, passing to the
complements, {ξn + (δn − αn)V (fn) > ε} ⊂ {ξn > ε} ∪ {(δn − αn)V (fn) > 0}.

Since V (fn) is strictly positive (see(14)), {(δn−αn)V (fn) > 0} = {δn > αn}. There-
fore,

P(R(fn)−R∗ > ε) ≤ P(ξn > ε) + P(δn > αn). (29)

By Markov’s inequality, (17), (20) and (22)

P(ξn > ε) ≤ 1

ε
[αnh∗ + q(αn + cγn)] ≤

1

ε
[(c h∗ + qc+ q)γn + (h∗ + q)n−α]. (30)

To bound the second summand on the right-hand side of (29), we apply the following
concentration inequality given in Proposition A.2 in [1] which holds under Assumption 3:

P(κ(P,Pn) ≥ Eκ(P,Pn) + t) ≤ c1n1− β2 t−β
(

1 + [log(n
β
2−1tβ)]

β
2

)
. (31)
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As it is shown in [1], c1 = 2
3β
2 E|(X,Y )|β . But E|(X,Y )|β = E[|X|k + |Y |m]β ≤

2β−1{E|X|βk + E|Y |βm}. Thus, c1 ≤ 2
5β
2 −1{E|X|βk + E|Y |βm}.

We have (see (20))

P(δn > αn) = P(κ(P,Pn) > cγn + n−α) ≤ P(κ(P,Pn) > Eκ(P,Pn) + n−α), (32)

where the last inequality is due to (17) and the above selection of the constant c.
Applying (31) to (32) with t = n−α, we get

P(δn > αn) ≤ c1n−( β2−αβ−1){1 + [log(n
β
2−αβ−1)]

β
2 }.

Under condition (19) λ := β
2 − αβ − 1 > 0, and

P(δn > αn) ≤ c1n−λ{1 + λ
β
2 [log n]

β
2 }. (33)

Joining the inequalities (29), (30) and (33) we obtain the desired inequality (23). �

Example 2. (Continuation of Example 1) For the problem described in Example 1 the
inequalities (10) hold true for every β > 3. So, as it was explained in Remark 1, the
parameter α in (20) can be selected close to 1

2 , and the right-hand side of inequality (25)

can be made to be 1
εO(n−

1
2 +η), with η near zero.
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