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Abstract. We provide a construction of monomial ideals in R = K[x, y] such that
µ(I2) < µ(I), where µ denotes the least number of generators. This construction gen-
eralizes the main result of S. Eliahou, J. Herzog, M.Mohammadi Saem (2018). Working in
the ring R, we generalize the definition of a Freiman ideal which was introduced in J.Herzog,
G. Zhu (2019) and then we give a complete characterization of such ideals. A particular case

of this characterization leads to some further investigations on µ(Ik) that generalize some
results of S. Eliahou, J.Herzog, M.Mohammadi Saem (2018), J. Herzog, M.Mohammadi
Saem, N. Zamani (2019), and J. Herzog, A. Asloob Qureshi, M. Mohammadi Saem (2019).
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1. Introduction

Let I be a monomial ideal in the polynomial ring K[x1, . . . , xn] over a field K.

Let µ(I) denote the least number of generators of the ideal I. For a sufficiently

large k, it is well known that µ(Ik) is a polynomial in k of degree l(I)−1, where l(I) is

the analytical spread of I. This implies that µ(Ik) < µ(Ik+1) for k ≫ 0. But what is

the behavior of µ(Ik) for small integers k? It has been proved in Herzog et al. (see [9])

that µ(Ik) < µ(Ik+1) for all k > 1 if depth F (I) > 0 and height I > 2, where F (I)

is the fiber ring of I. On the other hand, whenever F (I) = 0, Eliahou et al. in [5]

constructed ideals of height 2 in K[x, y] such that µ(I2) = 9 and µ(I) = m, where

m > 6 can be any integer. One goal of this paper is to provide a simpler construction

of families of ideals in K[x, y] with µ(I)− µ(I2) arbitrary large. In particular, for

any fixed odd integer t > 9 we produce an ideal I in K[x, y] with µ(I2) = t and µ(I)

arbitrarily large.
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As a consequence of the well known theorem due to Freiman (see [6]) from additive

number theory, Herzog et al. in [9], Theorem 1.9 showed that if I is an equigenerated

monomial ideal then µ(I2) > l(I)µ(I)−
(
l(I)
2

)
. If the equality holds, then Herzog and

Zhu in [10] call the equigenerated monomial ideal I a Freiman ideal. Our investiga-

tion of µ(I2) leads us to generalize (by dropping the equigenerated assumption) the

definition of Freiman ideals in the ring K[x, y]. In particular, we say that an ideal I

inK[x, y] is a Freiman ideal whenever µ(I2) = 2µ(I)−1. According to this definition,

we give in Subsection 4.1 a complete characterization of Freiman ideals in K[x, y]

and we show that they exist profoundly. In Subsection 4.2, we discuss an interest-

ing particular case of our characterization of Freiman ideals, see Theorem 4.2. This

case leads us to generalize some results from [5], [8], [9] concerning the behavior of

powers of equigenerated and concave ideals. If I is an equigenerated monomial ideal

in K[x, y] or, more generally, the exponents of the generators of I lie in one line, then

we show that µ(Ik) > k(µ(I)−1)+1 for all k > 2. In such a case, we give a complete

characterization of the case when µ(Ik) = k(µ(I)−1)+1 for all k > 2, see Lemma 4.1.

In the ring K[x, y], there is no loss of generality if we work with 〈x, y〉-primary

ideals due to removing the common factor. Throughout this paper, I is an ideal of

the form I = 〈yb0 , xa1yb1 , . . . , xan−1ybn−1 , xan〉 ⊆ 〈yb0 , xan〉, where 〈yb0 , xan〉 is the

integral closure of 〈yb0 , xan〉. Denote this class of ideals by C. The organization of

this paper is as follows:

In Section 2, we introduce some semigroups S, Si and T , Tj in Z2 and their as-

sociated ideals IS , ISi
and IT , ITj

. We explore some properties of these ideals that

are needed later in this paper. We conclude this section with a decomposition of the

powers of I in terms of ISi
and ITj

as given in Lemma 2.1. This lemma leads to

the starting point of Section 3 in which we produce a formula for obtaining µ(I2).

This allows us to introduce a simple construction of ideals I with µ(I2) = 9 and µ(I)

arbitrarily large in Theorem 3.1. Wee see that this construction produces monomial

ideals with tiny squares. As an application of this construction, we obtain in Propo-

sitions 3.1 and 3.2 generalizations of the main result of Eliahou, Herzog and Saem,

see [5], Theorem 3.1.

In Section 4 we give a complete characterization of Freiman ideals of the class C, see

Theorem 4.1. In Theorem 4.2 we show that µ(Ik) = k(µ(I)− 1)+ 1 whenever IS2
=

I = IT2
. Such a situation holds for the concave ideals (see Proposition 4.3) giving us

direct proofs of Proposition 4.2 in [9] and Proposition 2.1 in [8]. In Lemma 4.1 we

study µ(Ik) whenever the exponents of the generators of I lie on one line. This leads

us to generalize Corollaries 3.4 and 3.5 of [9], Proposition 4.3 of [5], and Theorem

1.9 of [9] if restricted to the ring K[x, y].

In Section 5 we completed this paper with an example that demonstrates how easy

it is to graphically obtain S and T .
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2. Semigroups and their associated ideals

Let I be an ideal of a ring R and let I be the integral closure of I in R. If I is

a monomial ideal in a polynomial ring K[x1, . . . , xn], where K is a field, then it is

well known that, see [11], Proposition 1.4.6 or [7], Corollary 1.4.3, finding the integral

closure of the ideal I is the same as finding all the integer lattice points in the convex

hull in Rn of Γ(I), where Γ(I) denotes the set of exponents of all monomials in I.

Therefore, if a and b are positive integers, then xakybk ∈ H := 〈yb, xa〉 if and only

if (b− bk)/ak 6 b/a. Moreover, if xa1yb1 , xa2yb2 ∈ H then either a1 + a2 > a (then

xa1+a2−ayb1+b2 ∈ H) or b1 + b2 > b (then xa1+a2yb1+b2−b ∈ H); this is true since it

is well known that H is a normal ideal, in particular, H2 = 〈y2b, x2a〉.

Let I = 〈yb0 , xa1yb1 , . . . , xan−1ybn−1 , xan〉 ⊆ 〈yb0 , xan〉 ⊂ K[x, y]. Al-Ayyoub in [1]

produced an algorithm for computing the Ratliff-Rush closure Ĩ of I. We summa-

rize this algorithm. Let Ω be the numerical semigroup in Z2 generated by the set

{(ak, bk) | k = 0, . . . , n} with a0 = 0 and bn = 0, that is,

Ω =

{

(α, β) =

n∑

k=0

λk(ak, bk) |λk ∈ N

}

.

Construct two semigroups S and T ,

(2.1) S = {(α, β mod b0) | (α, β) ∈ Ω with α < an},

T = {(α mod an, β) | (α, β) ∈ Ω with β < b0},

where the modulo operation is taken to be the least positive residue. Define the

ideals

(2.2) IS = 〈xαyβ
′

| (α, β′) ∈ S〉 and IT = 〈xα′

yβ | (α′, β) ∈ T 〉.

In fact, these two ideals were first introduced in [1], where it is proved that Ĩ = IS∩IT
and Ĩ =

⋃

n>1

(In+1 : In) is the Ratliff-Rush closure of the ideal I.

In order to proceed to the results of this paper, we need to refine the semigroups

given in (2.1) into new semigroups Si and Tj that are given below. In fact, these

new semigroups were first introduced in [3] and later used in [2].

Si =

{

(α, β mod b0) | (α, β) :=

n∑

k=0

λk(ak, bk) ∈ Ω with α < an and

n∑

k=0

λk 6 i

}

,(2.3)

Tj =

{

(α mod an, β) | (α, β) :=
n∑

k=0

λk(ak, bk) ∈ Ω with β < b0 and
n∑

k=0

λk 6 j

}

.(2.4)
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Simply, the semigroups S, T , Si and Tj can be obtained graphically, which is demon-

strated in Example 5.1. Define the ideals

ISi
= 〈xαyβ

′

| (α, β′) ∈ Si〉 and ITj
= 〈xα′

yβ | (α′, β) ∈ Tj〉.

Note that IS1
= IT1

= I. Before we proceed, we explore some properties that the

semigroups S and T , and their corresponding ideals IS and IT enjoy.

Remark 2.1. Given the semigroups S an T as before. Then:

(1) If (α1, β1), (α2, β2) ∈ S with α1+α2 < an, then (α1+α2, (β1+β2) mod b0) ∈ S.

(2) If (α1, β1), (α2, β2) ∈ T with β1+β2 < b0, then ((α1+α2) mod an, β1+β2) ∈ T .

Remark 2.2. It is obvious that IS2
= I ⇔ IS = I. Also, IT2

= I ⇔ IT = I.

Notation 2.1. By G(L) we mean the set of the minimal generators of a monomial

ideal L.

Remark 2.3. Let I = 〈yb0 , xa1yb1 , . . . , xan−1ybn−1 , xan〉 ⊆ 〈yb0 , xan〉. Let J be

the monomial ideal given by J = 〈xdyc |xcyd ∈ G(I)〉. Then G(JS) = {xβyα |xαyβ ∈

G(IT )} and also G(JT ) = {xβyα |xαyβ ∈ G(IS)}. Thus, IS = I ⇔ JT = J . Also,

IT = I ⇔ JS = J .

Remark 2.4. Let I = 〈yb0 , xa1yb1 , . . . , xan−1ybn−1 , xan〉 be such that (ak, bk) lies

on the line connecting (0, b0) and (an, 0) for all k. Then any minimal element of S

or T lies on the same line. This implies that G(I) ⊆ G(IS) and G(I) ⊆ G(IT ). In such

a case, any generator of I l is of the form (yb0)l−1−rxαyβ(xan)r with (α, β) lying on

that same line and 0 6 r 6 l − 1. In other words, if ω = xδ1yδ2 is a generator of I l,

then (δ1, δ2) lies on the line connecting the points (0, lb0) and (lan, 0).

P r o o f. We prove the remark for the elements of S, while the same proof works

for the elements of T . Let (ai, bi) and (aj , bj) be with ai+aj < an, hence bi+bj > b0.

Let d ≡ bi+ bj mod b0, that is, d = bi+ bj − b0. The proof is over if we show that the

absolute value of the slope of the line connecting the points (aj , bj) and (ai + aj , d)

is b0/an, but this is true since (bj − d)/ai = (b0 − bi)/ai = b0/an. �

Recall that I = 〈yb0 , xa1yb1 , . . . , xan−1ybn−1 , xan〉 with uk = xakybk ∈ 〈yb0 , xan〉,

i.e., (b0 − bk)/ak 6 b0/an for k = 1, . . . , n − 1. Let (α, β) =
n∑

k=0

λk(ak, bk) with

n∑

k=0

λk = i, that is, xαyβ ∈ Ii. Notice that if
n∑

k=0

λkak < an then
n∑

k=0

λkak/an < 1,

and thus
n∑

k=0

λk(b0 − bk) 6
n∑

k=0

λk(ak/an)b0 < b0; hence (i − 1)b0 <
n∑

k=0

λkbk 6 ib0.

This allows us to conclude the following remark and lemma.
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Remark 2.5. Let I, ISi
and ITj

be as above and let u0 = yb0 and un = xan .

Then

(1) ξ ∈ ISi
⇔ ui−1

0 ξ ∈ Ii,

(2) ξ ∈ ITj
⇔ ξuj−1

n ∈ Ij .

Lemma 2.1. With the notation as before, we have

(2.5) I l = ul−1
0 ISl

+ xanyb0M + ul−1
n ITl

for any l > 2, where M = I l : xanyb0 .

P r o o f. Let ω = xαyβ ∈ I l. Write ω = ui1ui2 . . . uil and let (aij , bij ) be the

exponent of uij , where 0 6 ij 6 n. Note that (α, β) =
l∑

j=1

(aij , bij ) ∈ Ω. Assume

ω /∈ xanyb0M , then either α < an or β < b0. If α < an, then (α, β′) ∈ Sl, where

β′ ≡ β mod b0 with 0 < β′ 6 b0. According to the discussion above, we have

β = (l − 1)b0 + β′; thus ω ∈ ul−1
0 ISl

. Similarly, if β < b0 then ω ∈ ul−1
n ITl

.

This shows I l ⊆ ul−1
0 ISl

+ xanyb0M + ul−1
n ITl

. The reverse statement is true by

Remark 2.5. �

A natural question that may come to mind is: does the decomposition (2.5) still

hold for the case when uk = xakybk /∈ 〈yb0 , xan〉 for some k? The answer is positive

as long as the power l is less than some integer, namely, l < q := min{qS, qT }, where

qS = min

{n−1∑

k=1

λk

∣
∣
∣

n−1∑

k=1

λk(b0 − bk) > b0 and

n−1∑

k=1

λkak < an

}

,(2.6)

qT = min

{n−1∑

k=1

λk

∣
∣
∣

n−1∑

k=1

λk(an − ak) > an and

n−1∑

k=1

λkbk < b0

}

.(2.7)

Whenever xakybk /∈ 〈yb0 , xan〉 for some k, then Si is still defined as in (2.3) but for

i < qS . Also, Tj is still defined as in (2.4) but for j < qT . In such a case, the discussion

before Lemma 2.1, and also its proof, guarantee that the decomposition (2.5) still

apply but for l 6 q − 1.
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3. Monomial ideals with tiny squares

Now we have a direct method for counting the number of generators of the square

of any ideal I ⊂ 〈yb0 , xan〉, or I * 〈yb0 , xan〉 with q > 2. Applying the decomposition

in (2.5) we get

(3.1) I2 = u0IS2
+ unIT2

.

Therefore,

(3.2) µ(I2) = µ(IS2
) + µ(IT2

)− 1.

This enables us to construct families of monomial ideals such that µ(I)−µ(I2) grows

to infinity. Inspired by [1], Corollary 18 and Figure 5, we introduce a construction

of such ideals. This construction is simple, however it generalizes a main result of

Eliahou, Herzog and Saem, see [5], Theorem 3.1.

b0

b1 − 1

2b1 − b0

2b2

b0 − b1 − 1

a3a3 − a2 − 1 2a1 2a2 − a3a2 − 1

un

H. . .

un−2

u2

Nu3

un−3

. . .

u1

2u1 ∈S2

2un−1 ∈ T2

un−1

Figure 1.

Figure 1 gives a good visualization of the following construction. Given a monomial

ideal J = 〈yb0 , xa1yb1 , xa2yb2 , xa3〉 with xa3yb0 dividing xa1+a2yb1+b2 , that is, a3 6

a1 + a2 and b0 6 b1 + b2. Write u0 = yb0 , u1 = xa1yb1 , u2 = xa2yb2 and u3 = xa3 ,

and let a1 < a2 < a3 and b0 > b1 > b2. Since the set {u0, . . . , u3} is assumed to be

the minimal set of generators of J , and since a3 6 a1 + a2 and b0 6 b1 + b2, then

we must have that a2 > 1
2a3 and b1 > 1

2b0. Note that JS2
= J + 〈x2a1y2b1−b0〉 and

JT2
= J + 〈x2a2−a3y2b2〉. Note also that the pairs (a1, b1) and (a2, b2) can be chosen

so that J  JS2
∩ JT2

. Let N be a monomial ideal with G(N) ⊆ (JS2
∩ JT2

) \ J ,

that is,

N ⊆ 〈x2a1y2b1−b0〉 ∩ 〈x2a2−a3y2b2〉.
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Note that 1 6 µ(N) 6 min{b0 − b1, a3 − a2} − 1. Now define the ideal

I = J +N.

Theorem 3.1. For every integerm > 5, there exists a monomial ideal I ⊂ K[x, y]

such that µ(I2) = 9 and µ(I) = m.

P r o o f. Let J , N and I be the ideals as given in the construction above. The

proof is over if we show that µ(IS2
) = µ(IT2

) = 5. In particular, we show that

IS2
= JS2

and IT2
= JT2

. We prove the first equality, while the second equality is

proved similarly. We already have JS2
= J + 〈x2a1y2b1−b0〉, hence showing IS2

= JS2

is equivalent to showing that the set IS2
\I contains only one minimal element whose

exponent is given by (2a1, 2b1 mod b0) = (2a1, 2b1− b0). This claim is true according

to the following three arguments. By Γ(N) we mean the set of exponents of the

monomials in N .

(i) If (c1, d1), (c2, d2) ∈ Γ(N), then c1, c2 > g := max{2a1, 2a2 − a3} > 1
2a3 since

a1 + a2 > a3; thus, c1 + c2 > a3. Therefore, no minimal element in IS2
\ I can

be produced using combinations of elements of Γ(N) ∪ {(a2, b2)}.

(ii) If (c, d) ∈ Γ(N), then c > 2a2 − a3; thus, a1 + c > a2 + (a1 + a2) − a3 > a2

as a1+a2 > a3. Also, since d > 2b2, then b1+d−b0 > b2+(b2+b1)−b0 > b2 as

b1 + b2 > b0. Thus, (a1 + c, (b1 + d) mod b0) is a multiple of (a2, b2). Therefore,

no minimal element in IS2
\I can be produced using any combination of (a1, b1)

along with an element from Γ(N).

(iii) Since a3 6 a1 + a2, then no minimal element in IS2
\ I can be produced using

any combination that involves both (a1, b1) and (a2, b2). �

Proposition 4.1 of [5] gives a construction for ideals that are generated in two de-

grees for which µ(I)−µ(I2) is arbitrary large and such that µ(I2) = 9 and I2 is gen-

erated in a single degree. In the following proposition, whose proof is a direct applica-

tion of the above theorem, we generalize this by giving a construction for ideals gen-

erated in multiple degrees and such that I2 is also generated in multiple degrees. Fig-

ure 1 visualizes such a construction, where G(I) = {u0, u1, u2, . . . , un−2, un−1, un}.

Proposition 3.1. Let J = 〈yb0 , xa1yb1 , xa2yb2 , xa3〉 be such that xa3yb0 divides

xa1+a2yb1+b2 and b0 − b1 6 1
4b0 and a3 − a2 6 1

4a3. Let H be the integral closure of

〈xa3−a2−1, yb0−b1−1〉 and let N = x2a2−a3y2b1−b0H . Define the ideal I as

I = J +N.

Then µ(I) = µ(J) + µ(N) = 4 +min{b0 − b1, a3 − a2} and µ(I2) = 9.
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The following proposition shows that for any even integer m > 6 there exists an

ideal I with µ(I2) = 2m+1 and µ(I) is arbitrary large. Figure 2 gives a visualization

for the construction of such ideals.

Proposition 3.2. Let m > 6 be an even integer. Choose c > 2 and let a = mc.

Let H = 〈yc−1, xc−1〉 and define

N = x3cya−3cH + x5cya−5cH + . . .+ xa−3cy3cH.

Let J = 〈xcya−c〉+ 〈xa−cyc〉+ 〈x2icya−2ic〉
m/2
i=0 . Define the ideal

I = J +N.

Then µ(I2) = 2m+ 1 and µ(I) = (12m− 2)(c+ 1) + 5.

P r o o f. From Figure 2, it is direct to see that IS2
= IT2

= 〈xicya−ic〉
a/c
i=0; there-

fore, we have µ(I2) = µ(IS2
)+µ(IT2

)−1 = 2m+1. Note that µ(N) = 1
2 (m−4)µ(H) =

(12m−2)c as µ(H) = c. Also, note that µ(J) = 1
2m+3. Now, since G(J)∩G(N) = ϕ,

then we have µ(I) = µ(J) + µ(N) = (12m− 2)(c+ 1) + 5. �

a

a− c

a− 2c

a− 4c

a− 6c

c− 1

c− 1 a− 6c a− 4c a− 2c a− c a

u0

u1

u2

u3

u4

ξ2

ξ3

u1 + u2 ∈S2

u3 + un−1 ∈ T2

u1 + u3 ∈S2

u4 + un−1 ∈ T2

un−4

un−3

un−2

un−1

un

ξn−4

ξn−3

u1 + un−4 ∈S2

un−3 + un−1 ∈ T2

u1 + un−3 ∈S2

un−2 + un−1 ∈ T2

. . .

H

Figure 2.
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4. Freiman ideals and their powers

Let C denote the class of ideals with I = 〈yb0 , xa1yb1 , . . . , xan−1ybn−1 , xan〉 ⊆

〈yb0 , xan〉. Our investigation of µ(I2) leads us to study the Freiman ideals and

their powers. In turn, this leads us to generalize some results from [5], [8] and [9].

Herzog et al. in [9], Theorem 1.9 showed that if I is an equigenerated monomial

ideal then µ(I2) > l(I)µ(I)−
(
l(I)
2

)
, where l(I) is the analytical spread of I. Herzog

and Zhu in [10] defined an equigenerated monomial ideal to be the Freiman ideal if

µ(I2) = l(I)µ(I)−
(
l(I)
2

)
. In the ring K[x, y], there is no loss of generality if we work

with 〈x, y〉-primary ideals due to removing the common factor; therefore, the last

equality becomes

(4.1) µ(I2) = 2µ(I)− 1.

In K[x, y], we generalize the definition of Freiman ideals by dropping the equigen-

erated assumption from the original definition of [10]. We say that a monomial ideal

I ∈ C is the Freiman ideal if it satisfies the equality (4.1).

4.1. Characterization of Freiman ideals. In the following theorem we give

a complete characterization of the Freiman ideals in C.

Theorem 4.1. An ideal I ∈ C is Freiman if and only if µ(IS2
) + µ(IT2

) = 2µ(I).

P r o o f. The proof is direct since µ(I2) = µ(IS2
) + µ(IT2

)− 1 according to (3.2).

�

The following corollary is a direct consequence of the above theorem, it coincides

with Corollary 2.4 of [10].

Corollary 4.1. Let I be an equigenerated monomial ideal in K[x, y] of height 2.

Then I is Freiman if and only if I = 〈ya, xa〉t for some integers a and t.

P r o o f. The proof is a direct application of Theorem 4.1 as well as Lemmas 4.1

and 4.2. �

Freiman ideals profoundly exist in the ring K[x, y]. This assertion is supported by

the following two propositions, and also by Corollaries 4.2, 4.3, and 4.4.

Proposition 4.1. For any integer d > 2 there exists a Freiman ideal. In particu-

lar, if I = 〈y3d, xdy2d, x2d+1yd, x3d〉, then I is Freiman.

P r o o f. The proof is direct since IS2
= 〈y3d, xdy2d, x2dyd, x3d〉 and IT2

= I. �

855



Proposition 4.2. Let r, q > 3 be integers with r + 2 < q < 2r. Let J =

〈y3q, xry3q−1, xr+qyq, xr+2q〉 and choose any two monomials w1 and w2 from

〈x2r+1y2q〉 \ J so that wi ∤ wj . Put

I = J + 〈w1, w2〉.

Then I is Freiman. Therefore, there are many Freiman ideals for every pair r, q > 3.

P r o o f. Note that the bigger q is the more choices there are for the monomi-

als w1 and w2. Write u1 = xry3q−1 and u2 = xr+qyq. Figure 3 above explains the

computation of IS2
and IT2

. Notice that y-deg(u2u1), y-deg(u2wi) > 3q; hence, the

only minimal element in IT2
\ I is obtained by 2u2 ↔ xry2q. Also, notice that u1, w1

and w2 are multiples of this new element; therefore,

IT2
= 〈y3q, xry2q, u2, x

r+2q〉.

Since y − deg(wi) > 2q, then y − deg(u1wi) − 3q > y − deg(u2). Also, since we

have q < 2r and x − deg(wi) > 2r + 1, then x − deg(u1wi) > x − deg(u2). This

implies that the minimal elements in IS2
\ I are obtained by 2u1 ↔ x2ry3q−2 and

u1 + u2 ↔ x2r+qyq−1; therefore,

IS2
= 〈y3q, u1, x

2ry3q−2, w1, w2, u2, x
2r+qyq−1, xr+2q〉.

Now 2µ(I) = µ(IS2
) + µ(IT2

), hence the ideal I is Freiman by Theorem 4.1. �

3q

3q − 1

2q

q

q − 1

u0

u3

u1 + u2 ∈S2

u2

2u1 ∈S2

u1

2u2 ∈ T2

w1

w2

r 2r + 1 r + q 2r + q r + 2q

Figure 3.
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4.2. Freiman ideals with reduction number one. A particular case of Theo-

rem 4.1 occurs if IS2
= I = IT2

. Having an ideal to satisfy this case has turned out to

be useful as we see in the remaining of this paper. Note that this case is equivalent

to having r(I) = 1 for the reduction number of I. Therefore, any power Ik is a union

of translations of the ideal I itself.

Theorem 4.2. Let I ⊆ 〈yb, xa〉 with yb, xa ∈ I. Then the following statements

are equivalent.

(1) IS = I = IT .

(2) J := 〈yb, xa〉 is a reduction of I with I2 = JI, hence r(I) = 1.

In such a case, the ideal I is Freiman and

(4.2) Ik =

k−1∑

j=0

(yb)k−1−jI(xa)j ;

therefore, µ(Ik) = k(µ(I)− 1) + 1 for all k > 2.

P r o o f. (1) ⇒ (2) By (3.1) we have I2 = ybIS2
+ xaIT2

= ybI + xaI = JI.

(2) ⇒ (1) ybIS2
+ xaIT2

= I2 = JI = ybI + xaI; thus, the y-degree and the

x-degree counts force IS2
= I and IT2

= I, respectively. Hence, IS = I and IT = I

by the virtue of Remark 2.2.

Since I2 = JI and J = 〈yb, xa〉, then it follows that Ik =
k−1∑

j=0

(yb)k−1−jI(xa)j for

all k > 2. Therefore, if ω ∈ G(Ik) then ω = (yb)k−1−ju(xa)j for some u ∈ G(I) and

some j ∈ {0, . . . , k − 1}. Thus, to prove µ(Ik) = k(µ(I) − 1) + 1 it suffices to show

that if u ∈ G(I) then (yb)k−1−ju(xa)j ∈ G(Ik) for every j ∈ {0, . . . , k − 1}. Suppose

not, that is, suppose δ := (yb)k−1−ju(xa)j is not a generator of Ik for some u ∈ G(I)

and some j ∈ {0, . . . , k − 1}. This implies that there is a generator ω ∈ G(Ik) such

that ω | δ. But ω has to be of the form (yb)k−1−j′v(xa)j
′

for some v ∈ G(I) and some

j′ ∈ {0, . . . , k− 1}. Since (yb)k−1−j′v(xa)j
′

| (yb)k−1−ju(xa)j , then the y-degree and

the x-degree counts force that j = j′; thus v | u, a contradiction unless v = u. �

Having an ideal I to be Freiman does not necessarily imply that µ(Ik) =

k(µ(I)− 1) + 1 for every k > 3. To see this, let

I = 〈y14, x5y12, x11y11, x12y10, x16y2, x17〉,

then routine computations with Singular (see [4]) show that µ(I2) = 11, hence I

is Freiman, and µ(I3) = 18 6= 3(µ(I) − 1) + 1. On the other hand, it is direct to

see that IS2
= 〈y14, x5y12, x10y10, x16y2, x17〉 and IT2

= I + 〈x15y4〉. This also gives

that not all Freiman ideals satisfy the above theorem. On the other hand, powers of
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ideals that satisfy Theorem 4.2 show a systematic behavior which makes them easy

to study. In the following three corollaries we produce families of such ideals. In

Subsections 4.2.1 and 4.2.2 we discuss two of such families that have been of interest

for some authors.

Corollary 4.2. Let I = 〈yb, xa〉 with a and b being integers. Then I satisfies

Theorem 4.2.

P r o o f. Clearly, IS2
, IT2

⊆ 〈yb, xa〉 = I; hence IS2
= I = IT2

. �

Corollary 4.3. If I = 〈yb, xa〉+ J with J ⊆ 〈y⌈b/2⌉x⌈a/2⌉〉, then I satisfies The-

orem 4.2.

P r o o f. Since the sum of the x-exponents of any two generators of I is greater

than or equal to a, then IS2
= I. Similarly, since the sum of the y-exponents of any

two generators of I is greater than or equal to b, then IT2
= I. �

Corollary 4.4. For every pair of integers c and d, there are many monomial ideals

that satisfy Theorem 4.2. More precisely, if we choose a ∈ (c, 3
2c] then the monomial

ideal I = 〈y3d, x2c−ay2d, xcyd, xa〉 satisfies Theorem 4.2.

P r o o f. It is direct to see that IT2
= I since (2c mod a, 2d) = (2c − a, 2d) is

the exponent of x2c−ay2d ∈ G(I). Now, we show that IS2
= I. Since 3c > 2a,

then 2c > a and 3c− a > a, that is, no element in IS2
\ I can be produced either by

using two copies of the exponent of the monomial xcyd, or by using a combination

of the exponents of the two monomials xcyd and x2c−ay2d. Also, if 4c− 2a < a then

(4c−2a, 4d mod(3d)) = (4c−2a, d) is a multiple of (c, d), hence no element in IS2
\ I

can be produced using two copies of (2c− a, 2d). �

In fact, if we replace the generator x2c−ay2d of the ideal in the above corollary with

any set of monomials each of which is a multiple of x2c−ay2d, then the conclusion

of the corollary still holds. Namely, let J = 〈y3d, xcyd, xa〉, and let N be any ideal

with N ⊂ 〈x2c−ay2d〉 and G(J) ∩ G(N) = ϕ, then the ideal I = J + N satisfies

Theorem 4.2.

4.2.1. Equigenerated ideals. Assume that the ideal I is equigenerated, or more

generally, the exponents of the generators of I lie on one line. The following two

lemmas treat such a case. These lemmas generalize Corollaries 3.4 and 3.5 of [9]

and Proposition 4.3 of [5]. Also, if restricted to the ring K[x, y], they generalize

Theorem 1.9 of [9].
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Lemma 4.1. Let I = 〈yb, xa1yb1 , . . . , xan−1ybn−1 , xa〉, where (ai, bi) lies on the

line connecting (0, b) and (a, 0) for every i. Then:

(a) µ(Ik) > k(µ(I)− 1) + 1 for all k > 2.

(b) The following statements are equivalent.

(1) IS = I = IT .

(2) I2 = JI, where J = 〈yb, xa〉.

(3) µ(Ik) = k(µ(I) − 1) + 1 for all k > 2.

(4) µ(Ik) = k(µ(I) − 1) + 1 for k = 2.

P r o o f. (a) By Remark 2.4, (yb)k−1−jxaiybi(xa)j is a minimal generator of Ik

for every i, that is,
k−1⋃

j=0

(yb)k−1−jG(I)(xa)j ⊆ G(Ik). This implies that

k(µ(I)− 1) + 1 6 µ(Ik).

(b) According to Theorem 4.2, it suffices to prove (4) ⇒ (1). Assume xαyβ ∈

IS2
\ I. Then Remark 2.4 implies that (α, β) lies on the line connecting (0, b)

and (a, 0), hence xaiybi /∈ 〈xαyβ〉 for every i; thus, µ(I) < µ(IS2
). This proves

that if I  IS2
, then µ(I) < µ(IS2

). Similarly, if I  IT2
, then µ(I) < µ(IT2

). There-

fore, if I  IS2
or I  IT2

, then 2(µ(I)− 1) + 1 < µ(IS2
) + µ(IT2

)− 1 = µ(I2). �

It worth noting that the inequality µ(Ik) > k(µ(I)− 1) + 1 is not necessarily true

in general. In the following we give a complete characterization of the ideals that

satisfy part (b) of Lemma 4.1 above.

Lemma 4.2. Let I = 〈yb0 , xa1yb1 , . . . , xan−1ybn−1 , xan〉, where (ai, bi) lies on the

line connecting (0, b0) and (an, 0) for every i, and ai < ai+1 and bi > bi+1 for all

0 6 i 6 n− 1. Then IS = I = IT if and only if I = 〈ybn−1 , xa1〉q for some q.

P r o o f. The sufficient part is direct from the definitions of S and T . Thus we only

need to prove the necessary part. We present the proof for the case a1 6 an − an−1,

where we use the hypothesis IS = I. The proof for the case that a1 > an − an−1

follows by the symmetry (as in Remark 2.3), where we use the hypothesis I = IT .

Write an = pa1 + r with 0 < r 6 a1. Then

(pa1, pb1 − (p− 1)b0) = (pa1, pb1 mod b0) ∈ S,

hence xpa1ypb1−(p−1)b0 is a generator of IS ; thus, x
an−rypb1−(p−1)b0 is a generator

of I as IS = I. Note that an−1 6 an − a1 6 an − r. Now, since the ideal I has no

generator δ with an−1 < x−deg(δ) < an, then we must conclude that an−1 = an−r,

hence r = a1; thus, a1 divides an and an = qa1 with q = p + 1. Since (an−1, bn−1)

lies on the line connecting (0, b0) and (an, 0), then b0/an = bn−1/(an − an−1). But
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an − an−1 = a1 and an = qa1, thus b0 = qbn−1. Also, since (a1, b1) lies on the line

connecting (0, b0) and (an, 0), then b0/an = (b0 − b1)/a1; thus, bn−1 = b0 − b1.

We show 〈ybn−1 , xa1〉q ⊆ I. If M = 〈yb0 , xa1yb1 , xan〉, then

MS = 〈yb0 , xia1yib1 mod b0 , xan〉q−1
i=1 .

Note ib1 mod b0 ≡ ib1 − (i − 1)b0 = i(b0 − bn−1) − (i − 1)b0 = b0 − ibn−1, hence we

have MS = 〈yb0 , xia1yb−ibn−1 , xan〉q−1
i=1 = 〈ybn−1 , xa1〉q. Since M ⊆ I, then MS ⊆ IS .

But IS = I, thus we have 〈ybn−1 , xa1〉q ⊆ I as required.

The proof is over if we show that I ⊆ 〈ybn−1 , xa1〉q. For this purpose, suppose

xaiybi /∈ 〈ybn−1 , xa1〉q for some i. Write an − ai = sa1 + r with 0 6 r < a1. Note

that (ai + sa1, (bi + sb1) mod b0) is a minimal element of S, hence it corresponds

to a generator of IS = I; thus, xai+sa1ybi+s(b1−b0) is a generator of I. This gives

a contradiction since ai + sa1 = an − r > an − a1 = an−1 and since I has no

generator δ with an−1 < x− deg(δ) < an. �

4.2.2. Concave ideals. Let

0 = a0 < a1 < . . . < an and b0 > b1 > . . . > bn−1 > bn = 0.

According to [8], the ideal I = 〈yb0 , xa1yb1 , . . . , xan−1ybn−1 , xan〉 is called concave if

2ai > ai−1 + ai+1 and 2bi > bi−1 + bi+1 for 1 6 i 6 n− 1. This implies that

(4.3) ai+1 − ai 6 ai − ai−1 and bi − bi+1 > bi−1 − bi.

Therefore,

(4.4) ah+1 − ah 6 ak+1 − ak and bh − bh+1 > bk − bk+1 for h > k > 0.

Remark 4.1. Let I be a concave ideal as given above. If ai + aj < an, then

i+ j < n.

P r o o f. Assume i+ j > n and let i + j − s = n with s > 0. Then

an = a1 + (a2 − a1) + . . .+ (ai − ai−1) + (ai+1 − ai)

+ . . .+ (ai+j−s − ai+j−s−1)

6 a1 + (a2 − a1) + . . .+ (ai − ai−1) + a1 + (a2 − a1)(by (4.4))

+ . . .+ (aj−s − aj−s−1)

6 a1 + (a2 − a1) + . . .+ (ai − ai−1)
︸ ︷︷ ︸

ai

+ a1 + (a2 − a1) + . . .+ (aj − aj−1)
︸ ︷︷ ︸

aj

and the proof is over. �
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In [8], Proposition 2.1, it is proved that concave ideals satisfy part (2) of Theo-

rem 4.2 of this paper. Also, in [9], Proposition 4.2, it is shown that if I is concave

then µ(I2) = 2µ(I) − 1. In the following proposition we show that concave ideals

satisfy part (1) of Theorem 4.2, hence the results of [8] and [9] follow directly.

Proposition 4.3. Let I be a concave ideal as given above. Then IS = I = IT .

Therefore, Ik = JIk−1 and µ(Ik) = k(µ(I)−1)+1 for all k > 2, where J = 〈yb0 , xan〉.

P r o o f. We prove IS = I, while the proof for IT = I follows by symmetry as

in Remark 2.3. By the virtue of Remark 2.2, it suffices to show that IS2
= I. We

show that if ai+ aj < an, then (ai+ aj , bi+ bj − b0) is a multiple of (ai+j , bi+j) with

i+ j 6 n− 1 by Remark 4.1. Assume i 6 j. Consider

ai + aj = a1 + (a2 − a1) + . . .+ (ai − ai−1) + aj

> (ai+j − ai+j−1) + . . .+ (aj+1 − aj) + aj(by (4.4))

= ai+j ,

bi + bj = b0 − (b0 − b1)− . . .− (bi−1 − bi) + bj

> b0 − (bj − bj+1)− . . .− (bi+j−1 − bi+j) + bj(by (4.4))

= b0 + bi+j ,

hence, the proof is over. �

In [8], a concave ideal I = 〈yb0 , xa1yb1 , . . . , xan−1ybn−1 , xan〉 is said to have a corner

at the point (ai, bi) if 2ai > ai−1 + ai+1 and 2bi > bi−1 + bi+1. Combining Proposi-

tion 4.3 and Lemma 4.2 we obtain the following result which replaces Proposition 2.3

of [8].

Corollary 4.5. Let I = 〈yb0 , xa1yb1 , . . . , xan−1ybn−1 , xan〉 be a concave ideal as

given above. Then I has no corner points if and only if I = 〈ybn−1 , xa1〉q for some q.

P r o o f. Suppose that I has no corner points, that is, 2ai = ai−1 + ai+1 and

2bi = bi−1 + bi+1 for 1 6 i 6 n − 1. But this simply implies that the points

(ai−1, bi−1), (ai, bi), and (ai+1, bi+1) lie on the same line for all i. By Proposition 4.3

we have IS = I = IT since I is concave. Hence, we are finished by Lemma 4.2.

Conversely, it is obvious that an ideal of the form 〈yc, xd〉q is concave with no corner

points for all positive integers c, d, and q. �
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5. Appendix

Since the semigroups S and T play a major role in this paper and the proposed

future work, we see that it is worthy to demonstrate how easy obtaining these semi-

groups becomes if we work graphically. This is carried out in the following exam-

ple. First, we must agree on the term “path” as follows; given that u0 = (0, b0),

un = (an, 0) and ui = (c, d). A u0ցui path means moving b0 − d units downward

and then c units rightward. A uiտun path means moving an − c units leftward and

then d units upward.

Example 5.1. Given the ideal I = 〈y20, x4y18, x10y15, x14y12, x21y7, x26y3, x30〉.

Recall that T =
{ 6∑

i=0

λi(ai mod 30, bi)
∣
∣

6∑

i=0

λibi 6 20
}

. The dashed path in Figure 4

represents the u5 տ u6 path, while the vacuumed path represents the u4 տ u6 path.

The figure below represents all the possible combinations of paths that lead to the

minimal generators of the ideal IT . For instance, combining two u4 տ u6 paths

followed by one u5 տ u6 path, we reach the point τ7 ↔ 2u4 + u5 that corresponds

to x8y17 as a minimal generator of IT . Also, combining one u4 տ u6 path followed

20

18

16

14

12

10

9

7

6

3

4 8 10 12 14 18 21 26 30

u0

u1

δ1 ↔ 2u1 ∈S2

u2

δ2 ↔ 3u1 ∈S3

u3

δ3 ↔ u1 + u3 ∈S2

u4

δ4 ↔ u1 + u4 ∈S2

u5

u6

Figure 4.

by three u5 տ u6 paths, we reach the point τ6 ↔ u4+3u5 that corresponds to x
9y16

as a minimal generator of IT . And also, combining three u5 տ u6 paths, we reach

the point τ2 ↔ 3u5 that corresponds to x
18y9 as a minimal generator of IT . All other

points with τi are reached in a similar manner. Note that combining one u3 տ u6
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path followed by one u5 տ u6 path, we reach (10, 15) which already corresponds to

a minimal generator of IT , thus such a walk does not appear in the figure. Combining

one u2 տ u6 path followed by one u5 տ u6 path does not correspond to a minimal

generator of IT . Same thing applies for combining four u5 տ u6 paths. Such walks

do not appear in the figure.

Recall that S =
{ n∑

i=0

λi(ai, bi mod 20)
∣
∣

n∑

i=0

λiai 6 30
}

. The dashed path in Fig-

ure 5 represents the u0 ց u1 path, while the vacuumed path represents the u0 ց u3

path. The figure below represents all the possible combinations of paths that lead to

the minimal generators of the ideal IS . For instance, combining three u0 ց u1 paths,

we reach the point δ2 ↔ 3u1 that corresponds to x
12y14 as a minimal generator of IS .

Also, combining one u0 ց u3 path followed by one u0 ց u1 path, we reach the point

δ3 ↔ u1 + u3 that corresponds to x18y10 as a minimal generator of IS . Note that

combining two u0 ց u1 paths, we reach the point that corresponds to x
20y10 which

not a minimal generator of IS , thus such a walk does not appear in the figure.
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u0

u1

τ7 ↔ 2u4 + u5 ∈ T3

τ6 ↔ u4 + 3u5 ∈ T4

u2

τ5 ↔ 2u4 ∈ T2

τ4 ↔ u4 + 2u5 ∈ T3

u3
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τ2 ↔ 3u5 ∈ T3
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τ1 ↔ 2u5 ∈ T2
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Figure 5.
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