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INVOLUTIVITY DEGREE OF A DISTRIBUTION
AT SUPERDENSITY POINTS OF ITS TANGENCIES

Silvano Delladio

Abstract.
Let Φ1, . . . ,Φk+1 (with k ≥ 1) be vector fields of class Ck in an open set

U ⊂ RN+m, let M be a N -dimensional Ck submanifold of U and define
T := {z ∈M : Φ1(z), . . . ,Φk+1(z) ∈ TzM}

where TzM is the tangent space to M at z. Then we expect the following
property, which is obvious in the special case when z0 is an interior point
(relative to M) of T :

If z0 ∈ M is a (N + k)-density point (relative to M) of T then
all the iterated Lie brackets of order less or equal to k
Φi1 (z0), [Φi1 ,Φi2 ](z0), [[Φi1 ,Φi2 ],Φi3 ](z0), . . . (h, ih ≤ k+1)
belong to Tz0M.

Such a property has been proved in [9] for k = 1 and its proof in the case
k = 2 is the main purpose of the present paper. The following corollary follows
at once:

Let D be a C2 distribution of rank N on an open set U ⊂ RN+m

and M be a N-dimensional C2 submanifold of U . Moreover let
z0 ∈ M be a (N + 2)-density point of the tangency set {z ∈
M|TzM = D(z)}. Then D must be 2-involutive at z0, i.e., for
every family {Xj}Nj=1 of class C2 in a neighborhood V ⊂ U of z0
which generates D one has

Xi1 (z0), [Xi1 , Xi2 ](z0), [[Xi1 , Xi2 ], Xi3 ](z0) ∈ Tz0M
for all 1 ≤ i1, i2, i3 ≤ N .

1. Introduction

Let Φ1, . . . ,Φk+1 (with k ≥ 1) be vector fields of class Ck in an open set
U ⊂ RN+m (with N,m ≥ 1), let M be a N -dimensional Ck submanifold of U and
define

T := {z ∈M : Φ1(z), . . . ,Φk+1(z) ∈ TzM}
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where TzM is the tangent space toM at z. One has the following obvious property:
If z0 is an interior point (relative to M) of T , then all the iterated Lie brackets of
order less or equal to k

Φi1(z0), [Φi1 ,Φi2 ](z0), [[Φi1 ,Φi2 ],Φi3 ](z0), . . . (h, ih ≤ k + 1)

belong to Tz0M.
With reference to this property, we are interested in understanding whether

it remains true when we substitute the hypothesis that z0 is an internal point of
T with the assumption that it is a point of sufficiently high density of T . In this
regard, for the convenience of the reader, we recall that z0 ∈ M is said to be a
(N + h)-density point of a set E ⊂M (relative to M) if h ≥ 0 and

HN (BM(z0, r) \ E) = o(rN+h) (as r → 0+)

where BM(z0, r) ⊂M is the metric ball of radius r centered at z0, compare Section
2 below. According to this definition, roughly speaking, we can say that: the larger
h, the higher the concentration of E at z0 (and the more z0 will resemble an interior
point of E). Observe that, in the special case when m = 0 and M = RN , the point
z0 is a N -density point of E if and only if it is a point of Lebesgue density of E ,
that is LN (BRN (z0, r) ∩ E)/LN (BRN (z0, r))→ 1 (as r → 0+).

In [9] we have proved the following result answering “yes” to the question above,
when k = 1.

Theorem 1.1 ([9]). Given an open set U ⊂ RN+m, consider Φ1, Φ2 ∈ C1(U,RN+m)
and a N -dimensional C1 submanifold M of U . Moreover define

T :=
{
z ∈M : Φ1(z),Φ2(z) ∈ TzM

}
and assume that z0 ∈ M is a (N + 1)-density point of T (relative to M). Then
one has Φ1(z0),Φ2(z0), [Φ1,Φ2](z0) ∈ Tz0M.

The main purpose of this work is to prove that also for k = 2 the answer to the
previous question is affirmative. More precisely one has

Theorem 1.2. Given an open set U ⊂ RN+m, consider Φ1, Φ2, Φ3 ∈ C2(U,RN+m)
and a N -dimensional C2 submanifold M of U . Moreover define

T :=
{
z ∈M : Φ1(z),Φ2(z),Φ3(z) ∈ TzM

}
and assume that z0 ∈ M is a (N + 2)-density point of T (relative to M). Then
one has Φi1(z0), [Φi1 ,Φi2 ](z0), [[Φi1 ,Φi2 ],Φi3 ](z0) ∈ Tz0M for all 1 ≤ i1, i2, i3 ≤ 3.

Now, in order to better understand the continuation of this introduction, we
will recall some definitions and some well-known facts. First of all, let N,m, k
be positive integers and recall that a Ck distribution of rank N on an open set
U ⊂ RN+m is a map D assigning a N -dimensional vector subspace D(z) of RN+m

to each point z ∈ U and satisfying the following property: If z ∈ U then there exist
a neighborhood V (z) ⊂ U of z and a family {X(z)

i }Ni=1 ⊂ Ck(V (z),RN+m) which
generates D in V (z), i.e., such that {X(z)

1 (z′), . . . , X(z)
N (z′)} is a basis of D(z′) for
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all z′ ∈ V (z). The distribution D is said to be k-involutive at z ∈ U if all the
iterated Lie brackets of order less or equal to k

X
(z)
i1

(z), [X(z)
i1
, X

(z)
i2

](z), [[X(z)
i1
, X

(z)
i2

] , X(z)
i3

](z), . . . (with ih ≤ N and h ≤ k+ 1)

belong to D(z). Such a definition does not depend on the choice of the family
{X(z)

i }Ni=1, compare Proposition 6.1 below. In the special case when k = 1 we will
omit the prefix, i.e., we will simply say “involutive” instead of “1-involutive”(that
makes this definition consistent with the classical one, compare [12, Definition
2.11.5]).

Let D be a C1 distribution of rank N on an open set U ⊂ RN+m and let M be
a N -dimensional C1 submanifold of U . Then, according to a celebrated theorem by
Frobenius (see [12, Section 2.11]), the distribution D is involutive at every point of
U if and only if the following integrability property is verified: For all z0 ∈ U there
exists a C1 submanifold M of U such that z0 ∈M and the tangency set of M with
respect to D coincides with M, namely τ(M,D) := {z ∈M : TzM = D(z)} =M.

The size of the tangency with respect to a noninvolutive distribution has been the
subject of recent investigations in the field of sub-Riemannian geometry. The follo-
wing list collects some of the results produced by this research activity. They describe
the “integrability degree” of noninvolutive C1 distributions D, mainly by providing
upper bounds for dimH(τ(M,D)) as M varies among all the N -dimensional C2

submanifolds of U (where dimH denotes the Hausdorff dimension).
(1) Let HHk be the horizontal subbundle of the tangent bundle to the Heisenberg

group Hk, that is the distribution of rank 2k on R2k+1 generated by the vector
fields

(x1, . . . , x2k+1) 7→ ∂

∂xi
+ 2xk+i

∂

∂x2k+1
(i = 1, . . . , k)

(x1, . . . , x2k+1) 7→ ∂

∂xk+i
− 2xi

∂

∂x2k+1
(i = 1, . . . , k) .

This distribution is noninvolutive everywhere and one has

(1.1) dimH

(
τ(M, HHk)

)
≤ k

for every (2k)-dimensional C2 submanifold M of R2k+1 (see [1, Theorem 1.2],
[2, Example 6.5], [7, Corollary 4.1]).

(2) An explicit estimate of the number

sup{dimH(τ(M,D)) : M is C2-smooth}

is provided by [2, Theorem 1.3] in terms of the involutiveness degree of D. An
elementary proof, based on the implicit function theorem, can be found in [6].
In [2, Example 6.5], already mentioned above, this result is used to prove the
inequality (1.1).

(3) If D is of class C∞ and fulfils the Hörmander noninvolutiveness condition
(see [2, Definition 4.1]), then one has

sup{dimH(τ(M,D)) : M is C2-smooth} ≤ N − 1
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compare [2, Theorem 4.5]. The well-known result by Derridj [10, Theorem 1]
follows immediately from this property.

(4) Roughly speaking, the C1 smooth submanifoldsM are expected to produce
much larger tangencies (with respect to D) than those produced by C2 smooth
submanifolds. In fact, even if there are no points at which D is involutive,
it can well be that a C1 smooth M exists such that HN (τ(M,D)) > 0.
According to [2, Proposition 8.2], this is true for a large class of distributions
including HHk and there are good reasons to believe that it is true in general
(compare [2, Problem 8.3]).

(5) If D is a C1 distribution of rank N on an open set U ⊂ RN+m and M is
a N -dimensional C1 submanifold of U , then D must be involutive at each
point z0 ∈M which is a (N + 1)-density point of τ(M,D) (relative toM) [8,
Corollary 5.1]. In other words: despite (4), if D is not involutive at a point
z0 ∈ M then there is no N -dimensional C1 submanifold M of U such that
z0 ∈M and z0 is a (N + 1)-density point (relative to M) of τ(M,D).

As we observed in [9], the result mentioned in (5) follows at once from Theorem
1.1. Analogously, the following corollary follows immediately from Theorem 1.2.

Corollary 1.1. If D is a C2 distribution of rank N on an open set U ⊂ RN+m and
M is a N -dimensional C2 submanifold of U , then D must be 2-involutive at each
point z0 ∈M which is a (N+2)-density point of τ(M,D) (relative toM). In other
words: if D is not 2-involutive at a point z0 ∈M then there is no N -dimensional
C2 submanifold M of U such that z0 ∈ M and z0 is a (N + 2)-density point
(relative to M) of τ(M,D).

When we started working on Theorem 1.2, our belief that it could be valid was
rather weak, while (by virtue of Theorem 1.1 and Theorem 1.2) we are now firmly
convinced that the following conjecture is true and will be the subject of future
work.

Conjecture 1.1. Given an open set U ⊂ RN+m, consider Φ1, . . . ,Φk+1 ∈
Ck(U,RN+m) and a N -dimensional Ck submanifold M of U (with k ≥ 1). Moreo-
ver define

T :=
{
z ∈M : Φ1(z), . . . ,Φk+1(z) ∈ TzM

}
.

and assume that z0 ∈M is a (N + k)-density point of T (relative to M). Then all
the iterated Lie brackets of order less or equal to k

Φi1(z0), [Φi1 ,Φi2 ](z0), [[Φi1 ,Φi2 ],Φi3 ](z0), . . . (h, ih ≤ k + 1)
belong to Tz0M.

We conclude by observing that, just as Corollary 1.1 followed at once from
Theorem 1.2, this property follows immediately for all k ≥ 1 such that Conjecture
1.1 holds:

If D is a Ck distribution of rank N on an open set U ⊂ RN+m

and M is a N -dimensional Ck submanifold of U , then D must be
k-involutive at each point z0 ∈M which is a (N + k)-density point
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of τ(M,D) (relative toM). In other words: if D is not k-involutive
at a point z0 ∈M then there is no N -dimensional Ck submanifold
M of U such that z0 ∈ M and z0 is a (N + k)-density point
(relative to M) of τ(M,D).

2. General notation and preliminaries

We will have to deal with maps from RN to Rm. The standard basis of RN+m and
the corresponding coordinates are denoted by e1, . . . , eN+m and (x1, . . . , xN , y1,
. . . , ym), respectively. We may also write RNx in place of RN and Rmy in place of
Rm. If U is an open subset of RNx × Rmy and G ∈ C1(U,Rk), then DxG and DyG
denote the Jacobian matrix of G with respect to x and the Jacobian matrix of G
with respect to y, respectively, that is

DxG :=
( ∂G
∂x1

∣∣∣∣ . . . ∣∣∣∣ ∂G∂xN
)
, DyG :=

( ∂G
∂y1

∣∣∣∣ . . . ∣∣∣∣ ∂G∂ym
)
.

In general, the Jacobian matrix of any C1 vector field F is denoted by DF . The
Hessian matrix of any C2 function f is denoted by D2f , while D2

ijf stands for the
(i, j)-entry of D2f . The hth-order derivative of a Ch function of one variable g is
indicated with g(h). For simplicity, we define

D1 := ∂

∂x1
, . . . , DN := ∂

∂xN
, DN+1 := ∂

∂y1
, . . . , DN+m := ∂

∂ym
.

For α = (α1, . . . , αN ) ∈ NN , define

|α| := α1 + · · ·+ αN , Dα := ∂|α|

∂xα1
1 · · · ∂x

αN
N

.

The Euclidean norms involved throughout this paper are all denoted by ‖ · ‖. The
constants depending only on p, q, . . . are indicated by C(p, q, . . .). Let U be an open
subset of RN+m. If k ≥ 1 and

H = (H1, . . . ,HN+m), K = (K1, . . . ,KN+m) ∈ Ck(U,RN+m)

then we recall that the Lie bracket product of H,K is the vector field

[H,K] = ([H,K]1, . . . , [H,K]N+m) ∈ Ck−1(U,RN+m)

where

(2.1) [H,K]j :=
N+m∑
i=1

(HiDiKj −KiDiHj), j = 1, . . . , N +m

compare [12, Remark 2.4.5]. Recall that the Lie bracket product is anti-symmetric,
bilinear and verifies the following identity

(2.2) [fH, gK] = f(H·Dg)K − g(K·Df)H + fg[H,K] (f, g ∈ Ck(U))

compare [4, Chapter 1, Theorem 4.2]. If k ≥ 1 and X := {X1, . . . , Xp} ⊂
Ck(U,RN+m), then we state the following inductive definition of hth-order iterated
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Lie brackets of the vector fields Xi, with 0 ≤ h ≤ k and 1 ≤ i1, . . . , ih+1 ≤ p:

ΛX(i1,...,ih+1) :=
{
Xi1 if h = 0[
ΛX(i1,...,ih), Xih+1

]
if 1 ≤ h ≤ k

e.g. ΛX(1) = X1, ΛX(1,2) = [X1, X2], ΛX(1,2,1) = [[X1, X2], X1] (provided k ≥ 2).
Observe that
(2.3) ΛX(i1,...,ih+1) ∈ C

k−h(U,RN+m).

Let LXh (z) be the vector space spanned by the family of the hth-order iterated Lie
brackets (of the vector fields Xi) at z ∈ U , namely

LXh (z) := span
{

ΛX(i1,...,ih+1)(z) : 1 ≤ i1, . . . , ih+1 ≤ p
}

for all z ∈ U and 0 ≤ h ≤ k.
Let M be a N -dimensional C1 submanifold of RN+m and let d denote the

distance defined on each connected component of M by taking the infimum over
the joining paths (compare [3, Section 1.6]). Then for z0 ∈M and r > 0 we define

BM(z0, r) := {z ∈M(z0) | d(z, z0) < r}
where M (z0) is the connected component of M containing z0. Recall that for r
small enough expz0 maps BTz0M(0, r) diffeomorphically onto a neighborhood of z0
and one has

expx0

(
BTz0M(0, r)

)
= BM(z0, r)

compare [3, Theorem 1.6 and Corollary 1.1]. In the special case when m = 0 and
M = RN the distance d reduces to the usual Euclidean distance and we denote
BRN (z0, r) simply by Br(z0).

The Lebesgue outer measure on RN and the N -dimensional Hausdorff measure
on RN+m will be denoted by LN and HN , respectively.

A point x ∈ RN is said to be a (N + k)-density point of E ⊂ RN (where
k ∈ [0,+∞)) if

LN (Br(x) \ E) = o(rN+k) (as r → 0+) .
The set of all (N + k)-density points of E is denoted by E(N+k). Analogously, if
M is a N -dimensional C1 submanifold of RN+m and z0 ∈M, then we say that z0
is a (N + k)-density point of E ⊂M (relative to M) if

HN (BM(z0, r) \ E) = o(rN+k) (as r → 0+).
The set of all (N + k)-density points of E (relative to M) is denoted by E(N+k).
Observe that

E(N+k) ⊂ E(N+h)

for all h ∈ [0, k]. In particular, if k is a positive integer, one has
(2.4) E(N+k) ⊂ E(N+k−1) ⊂ · · · ⊂ E(N) .

By [11, 3.2.46] and the area formula [11, Theorem 3.2.3] one can prove that
C1 embeddings preserve density-degree, namely the following property holds [8,
Proposition 3.3].
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Proposition 2.1. Let M be a N -dimensional C1 submanifold of RN+m, let Ω be
an open subset of RN and let F : Ω→ RN+m be an injective immersion of class
C1 such that F (Ω) ⊂ M. Moreover let E be a subset of Ω and let x0 ∈ Ω. Then
(for k ≥ 0) one has

LN (Br(x0) \ E) = o(rN+k) (as r → 0+)

if and only if

HN (BM(F (x0), r) \ F (E)) = o(rN+k) (as r → 0+) .

In particular, x0 ∈ E(N+k) if and only if F (x0) ∈ F (E)(N+k).

We conclude this section with a remark which will be very useful below.

Remark 2.1. Let H = (H1, . . . ,HN+m) be a vector field of class C1 in an open
set U ⊂ RNx ×Rmy . Moreover let Ω be an open subset of RNx and f = (f1, . . . , fm) ∈
C1(Ω,Rmy ). Denote by Γ the graph of f , that is Γ := F (Ω) where

F : Ω→ RNx × Rmy , F (x) :=
(
x, f(x)

)
and assume that Γ ⊂ U . Given x ∈ Ω, obviously one has that H(F (x)) ∈ TF (x)Γ if
and only if H(F (x)) ∈ Im(DF ). Recalling that

DF =
(
I
Df

)
we get at once the following property: H(F (x)) ∈ TF (x)Γ if and only if

(2.5) H#
(
F (x)

)
= Df(x)H∗

(
F (x)

)
where we have defined

H∗ := (H1, . . . ,HN ) , H# := (HN+1, . . . ,HN+m) .

Moreover, if K = (K1, . . . ,KN+m) is another vector field of class C1 in U and if
one has H(F (x)),K(F (x)) ∈ TF (x)Γ for a certain x ∈ Ω, then

(2.6) DH
(
F (x)

)
K
(
F (x)

)
= D(H ◦ F )(x)K∗

(
F (x)

)
compare [9, Lemma 4.1].

3. Some localization properties at a superdensity point

Consider a function g ∈ Ck(R), with k ≥ 1, such that

0 ≤ g ≤ 1, g|(−∞,0] ≡ 1, g|[1,+∞) ≡ 0

and, for ρ ∈ (0, 1), define

ψρ(x) := g
(‖x‖ − ρ

1− ρ

)
, x ∈ RN .

Observe that
ψρ|Bρ(0) ≡ 1 , ψρ|RN\B1(0) ≡ 0 .
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Proposition 3.1. For all α ∈ NN \ {0} one has

Dαψρ(x) =
|α|∑
h=1

(1− ρ)−hg(h)
(‖x‖ − ρ

1− ρ

) ∑
{β1,...,βh}∈Ph(α)

Dβ1‖x‖ · · ·Dβh‖x‖

where

Ph(α) :=
{
{β1, . . . , βh} : βi ∈ NN \ {0},

h∑
i=1

βi = |α|
}
.

Proof. The statement is obvious if |α| = 1. Then let k be a positive integer and
assume that the identity holds whenever |α| ≤ k. We have to prove that it continues
to be true for any α ∈ NN such that |α| = k + 1. To this aim, without loss of
generality, we can suppose that α1 ≥ 1. If define

ε1 := (1, 0, . . . , 0), ε2 := (0, 1, . . . , 0), . . . , εN := (0, . . . , 0, N)

then one has |α− ε1| = k, hence (by assumption)

Dα−ε1ψρ(x) =
k∑
h=1

(1− ρ)−hg(h)
(‖x‖ − ρ

1− ρ

) ∑
{β1,...,βh}∈Ph(α−ε1)

Dβ1‖x‖ · · ·Dβh‖x‖ .

Thus

Dαψρ(x) = Dε1 (Dα−ε1ψρ) (x)

=
k∑
h=1

(1− ρ)−h−1g(h+1)
(‖x‖ − ρ

1− ρ

)
Dε1‖x‖

∑
{β1,...,βh}∈Ph(α−ε1)

Dβ1‖x‖ · · ·Dβh‖x‖

+
k∑
h=1

(1− ρ)−hg(h)
(‖x‖ − ρ

1− ρ

) ∑
{β1,...,βh}∈Ph(α−ε1)

(
Dβ1+ε1‖x‖Dβ2‖x‖ · · ·Dβh‖x‖

+Dβ1‖x‖Dβ2+ε1‖x‖ · · ·Dβh‖x‖+ · · ·+Dβ1‖x‖ · · ·Dβh−1‖x‖Dβh+ε1‖x‖
)

= (1− ρ)−1g(1)
(‖x‖ − ρ

1− ρ

)
Dα‖x‖+

k∑
h=2

(1− ρ)−hg(h)
(‖x‖ − ρ

1− ρ

)
×
[ ∑
{β1,...,βh−1}∈Ph−1(α−ε1)

Dε1‖x‖Dβ1‖x‖ · · ·Dβh−1‖x‖

+
∑

{β1,...,βh}∈Ph(α−ε1)

(
Dβ1+ε1‖x‖Dβ2‖x‖ · · ·Dβh‖x‖

+Dβ1‖x‖Dβ2+ε1‖x‖ · · ·Dβh‖x‖+ · · ·+Dβ1‖x‖ · · ·Dβh−1‖x‖Dβh+ε1‖x‖
)]

+ (1− ρ)−k−1g(k+1)
(‖x‖ − ρ

1− ρ

)
Dε1‖x‖Dα1−1

ε1
‖x‖Dα2

ε2
‖x‖ · · ·DαN

εN ‖x‖

hence the conclusion follows immediately. �
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Remark 3.1. By a completely standard argument (e.g. by induction) one can
easily prove that for all α ∈ NN one has

Dα‖x‖ = pα(x)
‖x‖2|α|−1 (x 6= 0)

where pα is a homogeneous polynomial of degree |α| whose coefficients depend only
on α. It follows that

max
x∈B1(0)\Bρ(0)

∣∣Dα‖x‖
∣∣ ≤ C(α)

ρ2|α|−1 .

Corollary 3.1. Let x0 ∈ RN , r > 0, ρ ∈ (1/2, 1) and define

ϕρ,r(x) := ψρ

(x− x0

r

)
, x ∈ RN .

Then, for all α ∈ NN , one has

‖Dαϕρ,r‖∞ ≤
C(α)

(1− ρ)|α|r|α|
.

Proof. The statement is obvious for |α| = 0, so we can assume |α| ≥ 1. Observe
that

Dαϕρ,r(x) = r−|α|(Dαψρ)
(x− x0

r

)
, x ∈ RN .

Hence, by Proposition 3.1 and Remark 3.1, we get

‖Dαϕρ,r‖∞ = r−|α|‖Dαψρ‖∞
= r−|α| max

x∈B1(0)\Bρ(0)
|Dαψρ(x)|

≤ r−|α|
|α|∑
h=1

‖g(h)‖∞
(1− ρ)h

∑
{β1,...,βh}∈Ph(α)

C(β1) . . . C(βh)
ρ2|β1|−1 . . . ρ2|βh|−1

≤ C(α)
r|α|

|α|∑
h=1

1
(1− ρ)hρ2|α|−h .

The conclusion follows by observing that if 1/2 < ρ < 1, then one has

(1− ρ)hρ2|α|−h ≥ (1− ρ)|α|

22|α| (for h = 1, . . . , |α|) .

�

Proposition 3.2. Let Θ be a continuous function defined in a neighborhood of
x0 ∈ RN . Assume that for all ρ ∈ (1/2, 1) one has

(3.1)
∫
Br(x0)

Θ(x)ϕρ,r(x) dx = o(rN )

as r → 0+. Then Θ(x0) = 0.

Proof. As in [9, Proposition 3.1]. �
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Proposition 3.3. Let E be a measurable subset of RN and x0 ∈ E(N+k), with
k ≥ 1. Moreover let Θ and Λ be a couple of continuous real valued functions defined
in a neighborhood of x0 such that Θ|E∩Br(x0) = Λ|E∩Br(x0) (for r small enough).
If ρ ∈ (1/2, 1), then one has∫

Br(x0)
ΘDαϕρ,r dx =

∫
Br(x0)

ΛDαϕρ,r dx+ o(rN ) (as r → 0+)

for all α ∈ Nn such that |α| ≤ k.

Proof. Let α ∈ Nn be such that |α| ≤ k and observe that (since the integral is
linear) it will be enough to prove the statement for Λ ≡ 0. Then∣∣∣ ∫

Br(x0)
ΘDαϕρ,r dx

∣∣∣ =
∣∣∣ ∫
Br(x0)\E

ΘDαϕρ,r dx
∣∣∣

≤
(

sup
Br(x0)

|Θ|
)
‖Dαϕρ,r‖∞LN (Br(x0) \ E) .

We conclude by Corollary 3.1 and recalling that x0 ∈ E(N+k). �

Definition 3.1. Let Θ and Λ be a couple of real valued functions, each one defined
and summable in a neighborhood of x0 ∈ RN , such that∫

Br(x0)
Θ(x)ϕρ,r(x) dx =

∫
Br(x0)

Λ(x)ϕρ,r(x) dx+ o(rN ) (as r → 0+)

for all ρ ∈ (1/2, 1). Then we write Θ∼x0 Λ and say that Θ and Λ are equivalent at
x0.

Remark 3.2. It is trivial to verify that ∼x0 is actually an equivalence relation on
the family of real valued functions defined and summable in a neighborhood of x0.

Proposition 3.4. Let Θ and Λ be a couple of real valued functions, each one
defined and continuous in a neighborhood of x0 ∈ RN , such that Θ∼x0 Λ. Moreover,
let g be a function of class C1 in a neighborhood of x0. Then one has gΘ∼x0

gΛ.

Proof. For r sufficiently small and ρ ∈ (0, 1), one has∣∣∣∣ ∫
Br(x0)

g(x)Θ(x)ϕρ,r(x) dx−
∫
Br(x0)

g(x)Λ(x)ϕρ,r(x) dx
∣∣∣∣

=
∣∣∣∣ ∫
Br(x0)

[g(x)− g(x0)]Θ(x)ϕρ,r(x) dx−
∫
Br(x0)

[g(x)− g(x0)]Λ(x)ϕρ,r(x) dx

+ g(x0)
(∫

Br(x0)
Θ(x)ϕρ,r(x) dx−

∫
Br(x0)

Λ(x)ϕρ,r(x) dx
)∣∣∣∣

≤ C(N) sup
Br(x0)

|g − g(x0)|
(

sup
Br(x0)

|Θ|+ sup
Br(x0)

|Λ|
)
rN + |g(x0)| o(rN ) .

Moreover, for all x ∈ Br(x0), one has

g(x)− g(x0) =
∫ 1

0
Dg(x0 + t(x− x0))·(x− x0) dt
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hence
sup
Br(x0)

|g − g(x0)| ≤
(

sup
Br(x0)

‖Dg‖
)
r .

It follows that∫
Br(x0)

g(x)Θ(x)ϕρ,r(x) dx−
∫
Br(x0)

g(x)Λ(x)ϕρ,r(x) dx = o(rN ) (as r → 0+) .

�

From Proposition 3.3 and the integration by parts formula it follows at once the
following result.

Theorem 3.1. Let E be a measurable subset of RN and x0 ∈ E(N+k), with
k ≥ 1. Moreover let Θ and Λ be a couple of real valued functions of class Ck in a
neighborhood of x0 such that Θ|E∩Br(x0) = Λ|E∩Br(x0) (for r small enough). Then
one has

DαΘ∼
x0
DαΛ (hence DαΘ(x0) = DαΛ(x0), by Proposition 3.2)

for all α ∈ Nn such that |α| ≤ k.

4. The proof of Theorem 1.2 (main result)

This section is devoted to the proof Theorem 1.2. It is an example of how
Theorem 3.1 can serve to extend to (N + k)-density points a property which is
known to hold at interior points. Actually we will prove the following result which
is trivially equivalent to Theorem 1.2, by Theorem 1.1 and (2.4) (with k = 2 and
E = T ). We state it by using a subscript-free notation that will produce shorter
formulas.

Theorem 4.1. Let H, K, L be three vector fields of class C2 in an open set
U ⊂ RN+m. Moreover let M be a N -dimensional C2 submanifold of U and define

T :=
{
z ∈M : H(z),K(z), L(z) ∈ TzM

}
.

If z0 ∈ M is a (N + 2)-density point of T (relative to M) then [[H,K], L](z0) ∈
Tz0M.

Proof. Since M is locally the graph of a C2 function, we can assume that there
exist an open set Ω ⊂ RNx and f = (f1, . . . , fm) ∈ C2(Ω,Rmy ) such that

z0 ∈ Γ := {(x, f(x)) : x ∈ Ω} ⊂ M .

Define F ∈ C2(Ω,RN+m) by
F (x) :=

(
x, f(x)

)
, x ∈ Ω .

Moreover let
x0 := F−1(z0) , T := F−1(T )

and observe that
x0 ∈ Ω ∩ T (N+2) (hence also x0 ∈ Ω ∩ T (N+1))

by Proposition 2.1. The following notation will be useful: if A and B are functions
defined in Ω such that A|T = B|T , then we write A=T B.
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If for all h = 1, . . . ,m define Dh ∈ C(Ω) as

Dh(x) :=
(
Df(x)[[H,K], L]∗(F (x))− [[H,K], L]#(F (x))

)
· eN+h

then, by Remark 2.1, we have to prove that

(4.1) Dh(x0) = 0 (h = 1, . . . ,m) .

From now on the argument is a very long and technical computation, divided into
steps, whose hardest details are collected in the next section.
Step 1. First of all, observe that

[[H,K], L]j =
N+m∑
i=1

([H,K]iDiLj − LiDi[H,K]j)

=
N+m∑
i,l=1

(
HlDlKiDiLj −KlDlHiDiLj − LiDi(HlDlKj −KlDlHj)

)
= [(DK)H] ·DLj − [(DH)K] ·DLj − [(D2Kj)H] · L+
− [(DH)L] ·DKj + [(D2Hj)K] · L+ [(DK)L] ·DHj

by (2.1). Hence we get (compare Section 5.1)

(4.2) Dh∼
x0 Gh(H,K,L)− Gh(K,H,L)

where

(4.3)

Gh(H,K,L) := [D(K◦F )(H∗◦F )]·
( N∑
p=1

[(DLp)◦F ]Dpfh − [(DLN+h)◦F ]
)

+ [D(K◦F )(L∗◦F )]·
( N∑
p=1

[(DHp)◦F ]Dpfh − [(DHN+h)◦F ]
)

−
N∑
p=1

Dpfh
(
[(D2Kp)◦F ](H◦F )

)
·(L◦F )

+
(
[(D2KN+h)◦F ](H◦F )

)
·(L◦F ) .

Thus we are reduced to prove that

Gh(H,K,L)(x0) = Gh(K,H,L)(x0) (h = 1, . . . ,m) .

Step 2. For l = 1, . . . , N +m the following identity holds (compare Section 5.2)(
[(D2Kl)◦F ](H◦F )

)
·(L◦F )∼

x0 Al(H,K,L)
− [D(H◦F )(L∗◦F )]·[(DKl)◦F ]

(4.4)

where
Al(H,K,L) := D[D(Kl◦F )·(H∗◦F )]·(L∗◦F ).
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Step 3. From (4.3) and (4.4), we obtain

Gh(H,K,L)∼
x0 [D(K◦F )(H∗◦F )]·

( N∑
p=1

[(DLp)◦F ]Dpfh − [(DLN+h)◦F ]
)

+
N∑
p=1

Dpfh[D(K◦F )(L∗◦F )]·[(DHp)◦F ]+

−
N∑
p=1

DpfhAp(H,K,L) +
N∑
p=1

Dpfh[D(H◦F )(L∗◦F )]·[(DKp)◦F ]

+AN+h(H,K,L)− [D(H◦F )(L∗◦F )]·[(DKN+h)◦F ]
− [D(K◦F )(L∗◦F )]·[(DHN+h)◦F ]

that is

Gh(H,K,L)∼
x0 Bh(H,K,L) + Ch(H,K,L)

+ S(1)
h (H,K,L) + S(2)

h (H,K,L)
(4.5)

where

Bh(H,K,L) := AN+h(H,K,L)−
N∑
p=1

DpfhAp(H,K,L)

Ch(H,K,L) := [D(K◦F )(H∗◦F )]·
( N∑
p=1

[(DLp)◦F ]Dpfh − [(DLN+h)◦F ]
)

S(1)
h (H,K,L) :=−[D(H◦F )(L∗◦F )]·[(DKN+h)◦F ]

− [D(K◦F )(L∗◦F )]·[(DHN+h)◦F ]

S(2)
h (H,K,L) :=

N∑
p=1

Dpfh[D(K◦F )(L∗◦F )]·[(DHp)◦F ]

+
N∑
p=1

Dpfh[D(H◦F )(L∗◦F )]·[(DKp)◦F ] .

Observe that S(1)
h (H,K,L) and S(2)

h (H,K,L) are symmetric with respect to the
couple (H,K), that is

S(1)
h (H,K,L) = S(1)

h (K,H,L), S(2)
h (H,K,L) = S(2)

h (K,H,L) .

Step 4. One has (compare Section 5.3)

(4.6) Ch(H,K,L)∼
x0 Fh(H,K,L) + S(3)

h (H,K,L)
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where

Fh(H,K,L) := −
N∑
i=1

[D(Ki◦F )·(H∗◦F )][Di(Dfh)·(L∗◦F )]

S(3)
h (H,K,L) :=

m∑
q=1

[D2fq(K∗◦F )]·(H∗◦F )

×
(
[(DN+qL∗)◦F ]·Dfh − [(DN+qLN+h)◦F ]

)
.

Observe that S(3)
h (H,K,L) is symmetric with respect to the couple (H,K).

Step 5. One has (compare Section 5.4)

Bh(H,K,L)+Fh(H,K,L)∼
x0 div

(
[D(KN+h◦F )·(H∗◦F )](L∗◦F )

)
− div

( N∑
i=1

Difh[D(Ki◦F )·(H∗◦F )](L∗◦F )
)

+ S(4)
h (H,K,L)

(4.7)

where
S(4)
h (H,K,L) := −[D2fh(K∗◦F )]·(H∗◦F ) div(L∗◦F )

which is symmetric with respect to (H,K). From (4.5), (4.6) and (4.7) we obtain

Gh(H,K,L)∼
x0 div

(
[D(KN+h◦F )·(H∗◦F )](L∗◦F )

)
− div

( N∑
i=1

Difh[D(Ki◦F )·(H∗◦F )](L∗◦F )
)

+ Sh(H,K,L)

(4.8)

where

Sh(H,K,L) :=
4∑
l=1
S(l)
h (H,K,L) .

Step 6. One has (compare Section 5.5)∫
Br(x0)

ϕρ,rdiv
(
[D(KN+h◦F )·(H∗◦F )](L∗◦F )

)
dx

−
∫
Br(x0)

ϕρ,rdiv
( N∑
i=1

Difh[D(Ki◦F )·(H∗◦F )](L∗◦F )
)
dx

= σh(H,K,L) + o(rN )

(4.9)

as r → 0+, where

σh(H,K,L) := −
∫
Br(x0)

[D2fh(K∗◦F )]·(H∗◦F )[(L∗◦F )·Dϕρ,r] dx .



INVOLUTIVITY DEGREE OF A DISTRIBUTION. . . 209

Step 7 (the conclusion). One has∫
Br(x0)

ϕρ,r Gh(H,K,L) dx =
∫
Br(x0)

ϕρ,r Sh(H,K,L) dx

+ σh(H,K,L) + o(rN )
(4.10)

as r → 0+, by (4.8) and (4.9). Since the right hand side of (4.10) is symmetric
with respect to the couple (H,K), we obtain

Gh(H,K,L)∼
x0 Gh(K,H,L)

that is
Dh∼

x0 0
by (4.2). Finally, the identity (4.1) follows from Proposition 3.2. �

Remark 4.1. Actually in [9] we have not proved Theorem 1.1, but the following
“step-1” analogous of Theorem 4.1, which is however trivially equivalent to Theorem
1.1.

Theorem 4.2. let H,K be two vector fields of class C1 in an open set U ⊂ RN+m.
Moreover let M be a N -dimensional C1 submanifold of U and define

T :=
{
z ∈M : H(z),K(z) ∈ TzM

}
.

If z0 ∈M is a (N + 1)-density point of T (relative to M) then [H,K](z0) ∈ Tz0M.

It is now quite clear that Theorem 4.1 and Theorem 4.2 strongly support the
following conjecture, which is equivalent to Conjecture 1.1, by (2.4) (with E = T ).

Conjecture 4.1. Consider an open set U ⊂ RN+m, a N -dimensional Ck subma-
nifold M of U , a family Φ := {Φ1, . . . ,Φk+1} ⊂ Ck(U,RN+m) (with k ≥ 1) and
define

T :=
{
z ∈M : Φ1(z), . . . ,Φk+1(z) ∈ TzM

}
.

If z0 ∈M is a (N + k)-density point of T (relative to M) then ΛΦ
(1,...,k+1)(z0) ⊂

Tz0M.

5. Collection of the computational details
needed to prove Theorem 4.1

5.1. Proof of (4.2). One has

Dh =
N∑
p=1

Dpfh[[H,K], L]p◦F − [[H,K], L]N+h◦F

=
N∑
p=1

(
[(DK)◦F ](H◦F )

)
·[(DLp)◦F ]Dpfh

−
N∑
p=1

(
[(DH)◦F ](K◦F )

)
·[(DLp)◦F ]Dpfh
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−
N∑
p=1

(
[(DH)◦F ](L◦F )

)
·[(DKp)◦F ]Dpfh

+
N∑
p=1

(
[(DK)◦F ](L◦F )

)
·[(DHp)◦F ]Dpfh

−
N∑
p=1

Dpfh
(
[(D2Kp)◦F ](H◦F )

)
·(L◦F )+

N∑
p=1

Dpfh
(
[(D2Hp)◦F ](K◦F )

)
·(L◦F )

−
(
[(DK)◦F ](H◦F )

)
·[(DLN+h)◦F ] +

(
[(DH)◦F ](K◦F )

)
·[(DLN+h)◦F ]

+
(
[(DH)◦F ](L◦F )

)
·[(DKN+h)◦F ]−

(
[(DK)◦F ](L◦F )

)
·[(DHN+h)◦F ]

+
(
[(D2KN+h)◦F ](H◦F )

)
·(L◦F )−

(
[(D2HN+h)◦F ](K◦F )

)
·(L◦F )

where

[(DK)◦F ](H◦F ) =
T

D(K◦F )(H∗◦F ), [(DH)◦F ](K◦F ) =
T

D(H◦F )(K∗◦F ),

[(DK)◦F ](L◦F ) =
T

D(K◦F )(L∗◦F ), [(DH)◦F ](L◦F ) =
T

D(H◦F )(L∗◦F )

by (2.6). Hence
Dh∼

x0 Gh(H,K,L)− Gh(K,H,L)
by Theorem 3.1.

5.2. Proof of (4.4). By (2.6), one has

[(DKl)◦F ]·(H◦F ) =
T

[(DKl◦F )]·(H∗◦F )

that is
N+m∑
j=1

[(DjKl)◦F ](Hj◦F ) =
T

N∑
i=1

Di(Kl◦F )(Hi◦F ) .

By applying Theorem 3.1 with k = 1, we get (for all p = 1, . . . , N)

Dp

(N+m∑
j=1

[(DjKl)◦F ](Hj◦F )
)
∼
x0
Dp

( N∑
i=1

Di(Kl◦F )(Hi◦F )
)

namely
N+m∑
j=1

(
[(D2

pjKl)◦F ] +
m∑
q=1

[(D2
j,N+qKl)◦F ]Dpfq

)
(Hj◦F )

+
N+m∑
j=1

[(DjKl)◦F ]
(

[(DpHj)◦F ] +
m∑
q=1

[(DN+qHj)◦F ]Dpfq

)

∼
x0

N∑
i=1

D2
pi(Kl◦F )(Hi◦F ) +

N∑
i=1

Di(Kl◦F )Dp(Hi◦F ) .
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Hence

(
[(D2Kl)◦F ](H◦F )

)
·(L◦F ) =

N+m∑
i,j=1

[(D2
ijKl)◦F ](Hj◦F )(Li◦F )

=
N∑
p=1

N+m∑
j=1

[(D2
pjKl)◦F ](Hj◦F )(Lp◦F )

+
m∑
q=1

N+m∑
j=1

[(D2
N+q,jKl)◦F ](Hj◦F )(LN+q◦F )

∼
x0

m∑
q=1

N+m∑
j=1

[(D2
N+q,jKl)◦F ](Hj◦F )(LN+q◦F )

+
N∑

i,p=1
D2
ip(Kl◦F )(Hi◦F )(Lp◦F ) +

N∑
i,p=1

Di(Kl◦F )Dp(Hi◦F )(Lp◦F )

−
N+m∑
j=1

N∑
p=1

[(DjKl)◦F ][(DpHj)◦F ](Lp◦F )

−
N+m∑
j=1

N∑
p=1

m∑
q=1

[(DjKl)◦F ][(DN+qHj)◦F ](Lp◦F )Dpfq

−
N+m∑
j=1

N∑
p=1

m∑
q=1

[(D2
N+q,jKl)◦F ](Hj◦F )(Lp◦F )Dpfq

=
N∑
p=1

Dp[D(Kl◦F )·(H∗◦F )](Lp ◦ F )−
N∑

i,p=1
Di(Kl◦F )Dp(Hi◦F )(Lp◦F )

+
N+m∑
j=1

m∑
q=1

[(D2
N+q,jKl)◦F ](Hj◦F )

[
(LN+q◦F )−

N∑
p=1

(Lp◦F )Dpfq

]
︸ ︷︷ ︸

=T 0 by (2.5)

−
N+m∑
j=1

m∑
q=1

[(DjKl)◦F ][(DN+qHj)◦F ]
N∑
p=1

(Lp◦F )Dpfq︸ ︷︷ ︸
=T LN+q◦F by (2.5)

−
N+m∑
j=1

N∑
p=1

[(DjKl)◦F ][(DpHj)◦F ](Lp◦F )

+
N∑

i,p=1
Di(Kl◦F )Dp(Hi◦F )(Lp◦F )
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∼
x0

N∑
p=1

Dp[D(Kl◦F )·(H∗◦F )](Lp ◦ F )

−
N+m∑
j=1

[(DjKl)◦F ] [(DHj)◦F ]·(L◦F )︸ ︷︷ ︸
=TD(Hj◦F )·(L∗◦F ) by (2.6)

∼
x0 Al(H,K,L)− [D(H◦F )(L∗◦F )]·[(DKl)◦F ] .

5.3. Proof of (4.6). Recall that

LN+h◦F =
T

Dfh·(L∗◦F )

by (2.5). Then, from Theorem 3.1, we obtain (for i = 1, . . . , N)

Di(LN+h◦F )∼
x0
Di[Dfh·(L∗◦F )]

= Di(Dfh)·(L∗◦F ) +Dfh·Di(L∗◦F )
= Di(Dfh)·(L∗◦F )

+ [(DiL∗)◦F ]·Dfh +
m∑
q=1

Difq[(DN+qL∗)◦F ]·Dfh.

(5.1)

Analogously (for i = 1, . . . , N and q = 1, . . . ,m)

(5.2) Di(KN+q◦F )∼
x0
Di(Dfq)·(K∗◦F ) +Dfq·Di(K∗◦F ).

From (5.1) it follows that (for i = 1, . . . , N)

[(DiL∗)◦F ]·Dfh∼
x0
Di(LN+h◦F )

−Di(Dfh)·(L∗◦F )−
m∑
q=1

Difq[(DN+qL∗)◦F ]·Dfh

= [(DiLN+h)◦F ] +
m∑
q=1

[(DN+qLN+h)◦F ]Difq

−Di(Dfh)·(L∗◦F )−
m∑
q=1

Difq[(DN+qL∗)◦F ]·Dfh .

(5.3)
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By (5.2), (5.3) and Proposition 3.4, we get

Ch(H,K,L) =
N∑
i=1

D(Ki◦F )·(H∗◦F )
(
[(DiL∗)◦F ]·Dfh − [(DiLN+h)◦F ]

)
+

m∑
q=1

D(KN+q◦F )·(H∗◦F )
(
[(DN+qL∗)◦F ]·Dfh − [(DN+qLN+h)◦F ]

)
∼
x0

N∑
i=1

D(Ki◦F )·(H∗◦F )
( m∑
q=1

[(DN+qLN+h)◦F ]Difq

−Di(Dfh)·(L∗◦F )−
m∑
q=1

Difq[(DN+qL∗)◦F ]·Dfh
)

+
m∑
q=1

N∑
i=1

Di(Dfq)·(K∗◦F )(Hi◦F )
(
[(DN+qL∗)◦F ]·Dfh − [(DN+qLN+h)◦F ]

)
+

m∑
q=1

N∑
p=1

Dfq·Dp(K∗◦F )(Hp◦F )
(
[(DN+qL∗)◦F ]·Dfh − [(DN+qLN+h)◦F ]

)
= Fh(H,K,L) + S(3)

h (H,K,L)

5.4. Proof of (4.7). One has

Bh(H,K,L) = D[D(KN+h◦F )·(H∗◦F )]·(L∗◦F )

−
N∑
p=1

DpfhD[D(Kp◦F )·(H∗◦F )]·(L∗◦F )

= div
(
[D(KN+h◦F )·(H∗◦F )](L∗◦F )

)
− [D(KN+h◦F )·(H∗◦F )]div(L∗◦F )

−
N∑
p=1

Dpfhdiv
(
[D(Kp◦F )·(H∗◦F )](L∗◦F )

)
+

N∑
p=1

Dpfh[D(Kp◦F )·(H∗◦F )]div(L∗◦F )

where

[D(KN+h◦F )·(H∗◦F )]div(L∗◦F )∼
x0
D
( N∑
p=1

Dpfh(Kp◦F )
)
·(H∗◦F ) div(L∗◦F )

=
N∑
p=1

Dpfh[D(Kp◦F )·(H∗◦F )] div(L∗◦F )

− S(4)
h (H,K,L)
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by (2.5), Theorem 3.1 and Proposition 3.4. Hence

Bh(H,K,L)∼
x0 div

(
[D(KN+h◦F )·(H∗◦F )](L∗◦F )

)
−

N∑
p=1

Dpfhdiv
(
[D(Kp◦F )·(H∗◦F )](L∗◦F )

)
+ S(4)

h (H,K,L)

= div
(
[D(KN+h◦F )·(H∗◦F )](L∗◦F )

)
− div

( N∑
p=1

Dpfh[D(Kp◦F )·(H∗◦F )](L∗◦F )
)

+
N∑
p=1

[D(Kp◦F )·(H∗◦F )][D(Dpfh)·(L∗◦F )]︸ ︷︷ ︸
=−Fh(H,K,L)

+S(4)
h (H,K,L) .

5.5. Proof of (4.9). Integrating by parts and using Proposition 3.3, one obtains

σh(H,K,L) +
∫
Br(x0)

ϕρ,rdiv
( N∑
i=1

Difh[D(Ki◦F )·(H∗◦F )](L∗◦F )
)
dx

= −
∫
Br(x0)

[D2fh(K∗◦F )]·(H∗◦F )[(L∗◦F )·Dϕρ,r] dx

−
∫
Br(x0)

N∑
i=1

Difh[D(Ki◦F )·(H∗◦F )][(L∗◦F )·Dϕρ,r] dx

= −
∫
Br(x0)

(
D[Dfh·(K∗◦F )]·(H∗◦F )

)
[(L∗◦F )·Dϕρ,r] dx

= −
∫
Br(x0)

(
div[Dfh·(K∗◦F )(H∗◦F )]

)
[(L∗◦F )·Dϕρ,r] dx

+
∫
Br(x0)

[Dfh·(K∗◦F ) div(H∗◦F )](L∗◦F )·Dϕρ,r dx

where, by Proposition 3.3, one has:

−
∫
Br(x0)

(
div[Dfh·(K∗◦F )(H∗◦F )]

)
[(L∗◦F )·Dϕρ,r] dx

=
∫
Br(x0)

Dfh·(K∗◦F )(H∗◦F )·D[(L∗◦F )·Dϕρ,r] dx

=
N∑
i=1

∫
Br(x0)

Dfh·(K∗◦F )(H∗◦F )·D[(Li◦F )Diϕρ,r] dx
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=
N∑
i=1

∫
Br(x0)

Dfh·(K∗◦F )[(H∗◦F )·D(Li◦F )]︸ ︷︷ ︸
=T (KN+h◦F )[(H∗◦F )·D(Li◦F )] by (2.5)

Diϕρ,r dx

+
N∑
i=1

∫
Br(x0)

(Li◦F )Dfh·(K∗◦F )(H∗◦F )︸ ︷︷ ︸
=T (Li◦F )(KN+h◦F )(H∗◦F ) by (2.5)

·DDiϕρ,r dx

=
N∑
i=1

∫
Br(x0)

(KN+h◦F )[(H∗◦F )·D(Li◦F )]Diϕρ,r dx

+
N∑
i=1

∫
Br(x0)

(Li◦F )(KN+h◦F )(H∗◦F )·DDiϕρ,r dx+ o(rN )

=
∫
Br(x0)

(KN+h◦F )(H∗◦F )·D[(L∗◦F )·Dϕρ,r] dx+ o(rN )

and ∫
Br(x0)

[Dfh·(K∗◦F ) div(H∗◦F )](L∗◦F )︸ ︷︷ ︸
=T [(KN+h◦F )div(H∗◦F )](L∗◦F ) by (2.5)

·Dϕρ,r dx

=
∫
Br(x0)

[(KN+h◦F ) div(H∗◦F )](L∗◦F )·Dϕρ,r dx+ o(rN )

as r → 0+. Hence

σh(H,K,L) +
∫
Br(x0)

ϕρ,rdiv
( N∑
i=1

Difh[D(Ki◦F )·(H∗◦F )](L∗◦F )
)
dx

=
∫
Br(x0)

(KN+h◦F ) div[(L∗◦F )·Dϕρ,r (H∗◦F )] dx+ o(rN )

= −
∫
Br(x0)

(L∗◦F )·Dϕρ,r [(H∗◦F )·D(KN+h◦F )] dx+ o(rN )

=
∫
Br(x0)

ϕρ,rdiv[(H∗◦F )·D(KN+h◦F ) (L∗◦F )] dx+ o(rN )

as r → 0+.

6. Appendix on k-involutive distributions

For the convenience of the reader we begin this section by recalling the definition
of k-involutive distribution given in the Introduction. Here, as throughout the
section, the letters k, N , m are used to denote three positive integers.

Definition 6.1. Let D be a Ck distribution of rank N on an open set U ⊂ RN+m.
Then D is said to be k-involutive at z0 ∈ U if there exist a neighborhood V of z0,
with V ⊂ U , and a family X := {Xj}Nj=1 ⊂ Ck(V,RN+m) satisfying the following
conditions:
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(i) LX0 (z) = span{Xj(z) : 1 ≤ j ≤ N} = D(z) for all z ∈ V ;

(ii) LXh (z0) ⊂ D(z0) for all h = 0, . . . , k.
When k = 1 we will simply say “involutive” instead of “1-involutive”.

The following result shows that Definition 6.1 does not depend on the choice of
the family {Xj}Nj=1.

Proposition 6.1. Given an open set V ⊂ RN+m, consider a Ck distribution D
of rank N on V and two families {Xj}Nj=1, {Yj}Nj=1 ⊂ Ck(V,RN+m) satisfying

span{Xj(z) : 1 ≤ j ≤ N} = span{Yj(z) : 1 ≤ j ≤ N} = D(z)
for all z ∈ V . Then, for all z0 ∈ V and h ∈ {1, . . . , k}, one has

h⋃
q=0
LXq (z0) =

h⋃
q=0
LYq (z0)

with X := {Xj}Nj=1 and Y := {Yj}Nj=1.

Before proving it, we provide an example showing that, under the assumptions
of Proposition 6.1, for h ≥ 1 the equality LXh (z0) = LYh (z0) does not necessarily
take place. Indeed, it may even happen that the inclusions LXh (z0) ⊂ LYh (z0) and
LXh (z0) ⊃ LYh (z0) are both false.

Example 6.1 (N = 2, m = 1). Let U be any open set in R3 not intersecting the
plane x1 = 0 and consider the vector fields X1, X2, Y1, Y2 on U defined by

X1(z) := (1, 0, 2x2), X2(z) := (0, 1,−2x1)
and

Y1(z) := X1(z) = (1, 0, 2x2), Y2(z) := x1X2(z) = (0, x1,−2x2
1)

for all z = (x1, x2, y1) ∈ U . Then
span{X1(z), X2(z)} = span{Y1(z), Y2(z)}

for all z ∈ U . Moreover, from (2.1) we easily obtain
[X1, X2](z) = (0, 0,−4), [Y1, Y2](z) = (0, 1,−6x1)

for all z = (x1, x2, y1) ∈ U , hence (if X := {X1, X2} and Y := {Y1, Y2})

LX1 (z) 6⊂ LY1 (z), LX1 (z) 6⊃ LY1 (z)
for all z ∈ U .

Proposition 6.1 is an immediate consequence of

Lemma 6.1. Let D be a Ck distribution of rank N on an open set V ⊂ RN+m

and consider {Xj}Nj=1, {Yj}Nj=1 ⊂ Ck(V,RN+m) satisfying

span{Xj(z) : 1 ≤ j ≤ N} = span{Yj(z) : 1 ≤ j ≤ N} = D(z)
for all z ∈ V . Then for all integers h, i1, . . . , ih+1 such that

0 ≤ h ≤ k, 1 ≤ ii, . . . , ih+1 ≤ N
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there exists a family of functions α(i1,...,ih+1)
(j1,...,jq+1), with 0 ≤ q ≤ h and 0 ≤ ji, . . . , jq+1 ≤

N , such that

(6.1) α
(i1,...,ih+1)
(j1,...,jq+1) ∈ C

k−h+q(V )

and

(6.2) ΛY(i1,...,ih+1) =
h∑
q=0

N∑
j1,...,jq+1=1

α
(i1,...,ih+1)
(j1,...,jq+1)Λ

X
(j1,...,jq+1)

where X := {Xj}Nj=1 and Y := {Yj}Nj=1.

Proof. First of all, let {a(i)
p : 1 ≤ i, p ≤ N} ⊂ Ck(V ) be such that

Yi =
N∑
p=1

a(i)
p Xp (i = 1, . . . , N) .

We proceed by induction on h. If h = 0, one has obviously

ΛY(i1) = Yi1 =
N∑
p=1

a(i1)
p Xp =

N∑
j1=1

a
(i1)
j1

ΛX(j1)

that is (6.2) with α
(i1)
(j1) := a

(i1)
j1
∈ Ck(V ). Then assume the statement is true for

h ≤ d and prove that it holds for h = d+ 1 (where d ≤ k − 1). Indeed, setting for
simplicity

I := (i1, . . . , id+1), Ir := {1, . . . , N}r ,
one has, by (2.2):

ΛY(i1,...,id+2) = [ΛYI , Yid+2 ] =
d∑
q=0

∑
J∈Iq+1

N∑
p=1

[αIJΛXJ , a(id+2)
p Xp]

=
N∑
p=1

d∑
q=0

∑
J∈Iq+1

αIJ(ΛXJ ·Da(id+2)
p )Xp −

d∑
q=0

N∑
J∈Iq+1

N∑
p=1

a(id+2)
p (Xp ·DαIJ)ΛXJ

+
d∑
q=0

∑
J∈Iq+1

N∑
p=1

αIJa
(id+2)
p [ΛXJ , Xp]

that is

ΛY(i1,...,id+2) =
N∑
j1=1

d∑
q=0

∑
L∈Iq+1

αIL(ΛXL ·Da
(id+2)
j1

)ΛX(j1)

−
d∑
q=0

∑
J∈Iq+1

N∑
p=1

a(id+2)
p (Xp ·DαIJ)ΛXJ

+
d∑
q=1

∑
J∈Iq

N∑
jq+1=1

αIJa
(id+2)
jq+1

ΛXJ×{jq+1} +
∑

J∈Id+1

N∑
jd+2=1

αIJa
(id+2)
jd+2

ΛXJ×{jd+2} .
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Hence

α
(i1,...,id+2)
(j1) =

d∑
q=0

∑
L∈Iq+1

αIL(ΛXL ·Da
(id+2)
j1

)−
N∑
p=1

a(id+2)
p (Xp ·DαI(j1)) ,

α
(i1,...,id+2)
(j1,...,jd+2) = αI(j1,...,jd+1)a

(id+2)
jd+2

and, for q = 1, . . . , d

α
(i1,...,id+2)
j1,...,jq+1

= αI(j1,...,jq)a
(id+2)
jq+1

−
N∑
p=1

a(id+2)
p (Xp ·DαI(j1,...,jq+1)) .

Now verifying the regularity of the coefficients is a trivial exercise based on (2.3)
and (6.1). For example, for q = 0:

α
(i1,...,id+2)
(j1) =

d∑
r=0

∑
L∈Ir+1

αIL︸︷︷︸
∈Ck−d+r

( ΛXL︸︷︷︸
∈Ck−r

·Da(id+2)
j1︸ ︷︷ ︸

∈Ck−1

)−
N∑
p=1

a(id+2)
p︸ ︷︷ ︸
∈Ck

( Xp︸︷︷︸
∈Ck

· DαI(j1)︸ ︷︷ ︸
∈Ck−d−1

)

hence α(i1,...,id+2)
(j1) ∈ Ck−(d+1)(V ) = Ck−(d+1)+q(V ). Analogously one verifies the

other cases. �

Proposition 6.2. Let D be a Ck distribution of rank N on an open set U ⊂ RN+m.
Then D is k-involutive everywhere if and only if it is involutive everywhere.

Proof. If D is k-involutive everywhere, then it is obviously involutive everywhere
too. Vice versa, assume that D is involutive everywhere and consider an arbitrary
z0 ∈ U . We have to prove that D is k-involutive at z0. Indeed, from the Frobenius
theorem [12, Theorem 2.11.9] it follows that there is a Ck submanifoldM of U such
that z0 ∈M and τ(M,D) =M. If X := {Xj}Nj=1 ⊂ Ck(V,RN+m) generates D in a
neighborhood V ⊂ U of z0, then we obtain LXh (z0) ⊂ D(z0) for all h = 0, . . . , k. �

Example 6.2 (N = 2, m = 1). Let D be the distribution of rank 2 on R3 defined
as

D(z) := span{H(z),K(z)}, z = (x1, x2, y1) ∈ R3

where
H(z) := (1, 0, 0), K(z) := (0, 1, x2

1) .
By a short computation based on (2.1), we find

[H,K](z) = (0, 0, 2x1), [[H,K], H](z) = (0, 0,−2), [[H,K],K](z) = 0
for all z = (x1, x2, y1) ∈ R3. In particular, setting X := {H,K}, one has
LX0 (0) = D(0) = span{H(0),K(0)} = span{(1, 0, 0), (0, 1, 0)} = R2 × {0}
LX1 (0) = span{[H,K](0)} = span{(0, 0, 0)} ⊂ D(0)

and
LX2 (0) = span{[[H,K], H](0), [[H,K],K](0)} = span{(0, 0,−2)}

hence
LX2 (0) 6⊂ D(0) .
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Then:
• The distribution D is 1-involutive (that is involutive) at 0 but it is not

2-involutive at 0;

• Moreover D cannot be involutive everywhere (or at every point in a neighbo-
rhood of 0), by Proposition 6.2;

• From Corollary 1.1 it follows that there is no 2-dimensional C2 submanifold
M of R3 such that 0 ∈ M and 0 is a 4-density point (relative to M) of
τ(M,D).
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