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On a class of variational problems

with linear growth and radial symmetry

MICHAEL BILDHAUER, MARTIN FUCHS

Abstract. We discuss variational problems on two-dimensional domains with en-
ergy densities of linear growth and with radially symmetric data.

The smoothness of generalized minimizers is established under rather weak
ellipticity assumptions. Further results concern the radial symmetry of solutions
as well as a precise description of their behavior near the boundary.

Keywords: linear growth problem; symmetric solutions in 2D; existence of solu-
tions in 2D; uniqueness solution in 2D; (non-)attainment of boundary data

Classification: 49J45, 49N60

1. Introduction

Inspired by the fundamental work of M. Giaquinta, G. Modica and J. Soucek
([17], [18]) we here discuss the particular minimization problem

(1.1) J[w] ::/Qg(|Vw|)dz%min in uo + Wy'(Q),

where  C R? is the annulus {x € R?: g1 < |#| < 02} withradii 0 < g1 < g2 < 0.
The function wg is radially symmetric, which means

(1.2) uo(w) = ao(|z]), m;=1do(0:i), i=12,

reflecting the fact that we want to minimize the functional J among functions
with constant values on the circles |z;| = g;, i = 1,2. Moreover, we assume that
g(|Vu|) is of linear growth with respect to |Vul.

The purpose of our note is threefold.

(1) We give a general regularity theory for the minimizing problem (1.1), (1.2).
In particular, we exclude the occurrence of an autonomous counterpart of the
famous singular example of M. Giaquinta, G. Modica and J. Soucek, see [1§],
see also the twodimensional variant given in [7]. Note that we establish the
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smoothness of solutions up to the boundary which essentially differs from the
attainment of the boundary data (compare (1.16)).

(2) We allow a wide range of ellipticity since we do not require a balancing
condition like

"
(1.3) 9°(5) <C forall s>1 and ¢t € E,Zs},

which is a part of the main assumption in [4]. In fact, this condition is used for
the construction of barriers such that the attainment of boundary data can be
proved as in [4] supposing (1.9) of that paper.

We like to point out, that the construction of barriers, i.e. the balancing con-
dition in connection with (1.9) of [4], serves as the main tool in [4] for reducing
the problem to the analysis of an ordinary differential equation with an explicit
representation of the solution. For this reason we could not adapt these kind of ar-
guments to the proof of Theorem 1.1. Let us postpone a more detailed discussion
to Remark 3.1.

Since our arguments leading to the regularity of solutions do not incorporate
some detailed estimates concerning the first derivative of the energy density, we
also do not impose an analogue to (1.7) of Theorem 1.1 given in [14].

(3) Following [10], it is easily shown that boundary data are respected at least
for |z| = o2 which gives the uniqueness of solutions.

Moreover, the possible non-attainment of the boundary data in the radially
symmetric case has a complete interpretation.

Remark 1.1. Regardless of the fundamental difficulties sketched in Remark 3.1,
large parts of our note could be presented in a one-dimensional setting by exploit-
ing the radial symmetry of the problem under consideration.
While the main arguments could be translated following the same lines as in
two dimensions, we would be faced with the difficulty of finding precise citations.
For this reason and since the primal problem under consideration is given in
the two-dimensional setting, we like to keep this as the general framework.

Of course we first have to introduce the problem more precisely.
In what follows g: [0,00) — [0,00) is a function of class C%([0,00)) satisfying
(with suitable constants a, A >0, b, B € R)

(1.4) at —b<g(t) < At+ B forall t >0
as well as

(1.5) 0=g(0) =g'(0).
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Let us require for the moment that we just have the inequality
(1.6) 1+ <g"(t) <w(+1)7 >0,

for some exponent u > 1, vy, ve denoting positive constants. This type of u-
elliptic integrand occurs as a special case of the densities discussed, for instance,
in [8] and a series of further papers.

Observe that the minimal surface case is included with the choice g(t) =
V1412 — 1 leading to (1.6) with 4 = 3. Other examples are (p > 1, k > 1,
compare Section 4)

o)== [ [0 naras
1

1
t——— (141" — —— if 2
t—In(1+1) if =2,
(1.8) Ge(t) == (1 + 5k —1, t>0,

where in the latter case we have (1.6) with p = k4 1. We also note that in recent
years the example from (1.8) becomes more and more popular and in some sense
serves as a model for strain-limiting elastic models with linear growth, see, for
instance, [3], [13], [11] and [12].

Associated to our density is the strictly convex integrand

G:R* - [0,00), G(p) = g(|p|)7 pe RQ;
being of linear growth and satisfying the common condition of p-ellipticity
(1.9) vi(L+[p))™[al* < D*G(p)(q,q) < va(1+ Ip))~"]al*.

In fact, (1.9) follows from the formula

2 2
(110)  DGW)a.0) = <o (o) [l - L] + (o) L
p Ip| Pl
in combination with (1.6).

Let us return to our variational problem (1.1). As a matter of fact, the existence
of a solution in the subclass ug + WO1 1(Q) of the non-reflexive Sobolev space
Wh(Q), (see, e.g., [1] for a definition of the various Sobolev classes W*P(Q) and
their local variants) cannot be guaranteed. Therefore one has to pass to a suitable
relaxed version of (1.1). This approach to linear growth problems is nowadays
standard and outlined, for example, in the monographs [2], [21] and [19], [20].
A comprehensive survey of the topic including the historical background is also
presented in the more recent paper [5].
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A relaxed version of (1.1) is given by

/G dx—i—/G (|§Sw|)d|w wl

(1.11)
/ Goo ((uo — w)N) dH' — min in BV(Q),
00

where A is the outward unit normal to 9, G is the recession function of G,
and V%w, V*w denote the regular and the singular part of Vw with respect to
the Lebesgue measure. For a definition of the space BV () we refer to [2] or [21].

From the convexity of G together with the linear growth condition we obtain
the boundedness of DG, moreover,

exists in (0, 00) and the recession function is given by
Goo(p) = glpl,  peER™

Thus (1.11) simply reads

Klu)= [ g(1v"u) do -+ gt [7°ul(©)

(1.12) @

—|—g’oo/ lup — w|dH' — min in BV(Q),
o

and clearly it holds
Kw] = J[w], whenever w € ug + Wy ().
We summarize some known results in the following proposition.

Proposition 1.1. Let the conditions (1.2), (1.4)—~(1.6) hold for some exponent
1> 1. Then we have:
(1) The functional K is lower semicontinuous with respect to convergence in
LY(Q).
(2) Problem (1.12) admits at least one solution u € BV(Q).
(3) It holds that
inf J= inf K.

uo+Wa () BV(Q)
(4) A function v € BV(Q) is K-minimizing if and only if v € M, where
M :={ve L}Q): v is a L' (Q)-cluster point

of some J-minimizing sequence from ug + W, (Q)}.
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(5) Suppose that (1.12) admits a solution u € BV(Q) N C*(Q). Then any
solution v is of the form v = u + ¢ for some ¢ € R. Moreover, it holds
u(r) = a(lz]).

(6) For any K-minimizer v we have

Slgllp lu| < max{[mi], [ma}.

In fact, the proposition is based on classical results as the representation for-
mula of C. Goffman and J. Serrin in [22] and Reshetnyak’s continuity theorem
in [23]. We refer to [7], Appendix A, for a detailed discussion of (3) and (4) which
in particular leads to uniqueness Theorem A.9 stated there, hence to (5). Note
that a variant of the mentioned Theorem A.9 is also given in [6], Corollary 2.5.
Finally, the last claim is due to Corollary 1 of [9].

Remark 1.2. On account of particular relevance for our note let us shortly
recall one way to prove the radial symmetry of general minimizers. We start with
a suitable regularization us and immediately have this property for us. Then,
passing to the limit, the symmetry is carried over to any cluster point uw*. If
there exists any generalized solution which is of class C', then uniqueness up
to a constant gives the radial symmetry of any generalized minimizer. In fact,
the reasoning of [7], Section 4.4, shows that C! may even be replaced by partial
regularity.

Part (5) of Proposition 1.1 raises the first challenging question under which
conditions a regular solution u € BV(Q2) N C*(Q) c WhH(Q) exists which is
immediately leading to the second question, if this minimizer takes the boundary
values ug thereby solving (1.1).

Roughly speaking, we have a positive answer to the first problem provided that

(1.13) <3,

see, e.g., [7] or [5], and from the work [4] by L. Beck, M. Buli¢ek and E. Maringova
we deduce that u = ug on 99, if (1.13) is replaced by the requirement pu < 2 and
if the second inequality in (1.6) is replaced by the condition ¢”(t) < vo(1 +t)~*.

In the situation at hand we neither require any upper bound on the exponent u
nor a balancing condition in the sense of (1.3) still giving a positive answer to the
existence of a smooth K-minimizer.

We just need the limitation (1.15) for the range of anisotropy admissible in
the behavior of g”, which is quite similar to the superlinear analogue q < p + 2
in the case of anisotropic growth conditions (see [7] for an overview and a list of
references).

Let us now state our main results.
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Theorem 1.1. Suppose that p € (1,00), let (1.2), (1.4), (1.5) hold and replace
(1.6) by the condition

(1.14) ri(14+6)7" < g"(t) <vg(l+1t)7F, t >0,
for some exponent Ti € [1, u] such that

(1.15) p—T < 2.

Then the relaxed problem (1.12) admits a solution

we WHHQ)NCY@Q)NCHQ) NWE3(Q)

loc

which in addition is of the form u(x) = 4(|x|). Moreover, the solution is unique
up to additive constants.

Remark 1.3. (1) In the case u, > 1 we deduce from (1.14) and (1.5) the
inequality
e, (1) < glt) < CBu(1)

with @ defined in (1.7), which means that (1.4) automatically holds.
(2) Note that in particular the one parameter family of energy densities given

in (1.8) and suitable generalizations are covered by our considerations.
(3) We may take any function 1 (t) satisfying for some constants c1,ca € R

a(l+0)7" <) Se(1+8)77, >0,

and obtain a function

\Il(t)/ot/osw(r)drds

which clearly satisfies (1.14) but in general violates a balancing condition
like given in (1.8) of [4].

We do not know if the solution u takes the boundary values wug for |z| = p.
However, the following theorem yields a complete description of the boundary
behavior.

Theorem 1.2. The minimizer given in Theorem 1.1 in fact is the unique solution
of problem (1.12). Moreover, we have:

(1) The minimizer respects the boundary data for |xz| = g2, hence it is the
solution of the minimizing problem

/ g(|Vw|) dz —|—g’oo/ |w —m|dH' — min
Q lz|=01

weWh(Q), w=ms on {|z] =02}

(1.16)
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(2) Suppose that mg is fixed, abbreviate m = my and let Uy, (x) = U (|z|)
denote the unique solution of (1.16).
Suppose without loss of generality that m < mo. Then we have
(a) for any o € (01, 02) it holds that ,,(0) > m;
(b) as a function depending on m, the quantity .,(01) is a non-decreas-
ing function, i.e.

G <G= ﬁ’Cl (Ql) < ’&’Cz(gl)'
As a corollary we obtain in particular:

Corollary 1.1. With the notation of Theorem 1.2 we suppose that there exists
m < mq such that the boundary data are not attained for |z| = 9.
Then for any ¢ < m we have u¢ = Up,.

2. Proof of Theorem 1.1

We proceed by induction showing that the statements of the theorem hold
provided p € (1, k) for some k > 2.

Let in the beginning & = 3. From (1.14) we immediately get (1.9) (recall (1.10))
and from Theorem 4.32 in [7] we deduce the existence of a unique (up to constants)
generalized minimizer u of class BV () N C1(Q2) ¢ WH1(Q). Alternatively, we can
quote Theorem 4.16 from this reference observing that Assumption 4.11 trivially
holds for the situation at hand.

Proposition 1.1 (5), implies that u(z) = a(|z|) with @ € Whl(p1,02) C
C%(o1, 02]), see [15, Chapter 2], hence u € C°(Q). In order to show
(2.1) ueWE2(Q)

loc

it is sufficient to prove uniform local W22-bounds for the solutions us of the
regularized problem

b
Js[w] = §/Q|Vw|2dz+/ﬂg(|Vw|)dz%min in ug + W, 2(Q).

To this purpose we just quote Lemma 4.19, i), in [7] choosing the exponent s so
large that the left hand side of the Caccioppoli inequality is bounded from below
by

a / n?|V2us|?* d, o denoting a suitable uniform constant.
Q

On the right hand side we observe Theorem 4.25 from [7], which gives the desired
uniform bound for us € W>2(Q) leading to (2.1).
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Suppose next that k£ > 3 and that Theorem 1.1 is true for exponents p € (1, k).
We then claim the validity of Theorem 1.1 for

(2.2) gk k+1).

So let the density g satisfy (1.14) with exponent 7 € [1,u] such that (1.15) is
true. We choose

(2.3) T € (p — 2, min{k, 7})

and observe the inequalities

(2.4) T <k, T <H, w—7<2.
For § € (0,1) we introduce the density

(2.5) gs(t) = 0, (1) + g(t), >0,
with function @, from (1.7). Moreover, we let

(2.6) Gs(p) == gs(Ipl),  peR”

Then it holds
gs(t) =o(r =)L +8)""+4"(t)

and the second inequality in (2.4) together with (1.14) shows
(2.7) (@) +1)77 <g5(t) < ()1 +18)77

with constants ¢;(d) > 0. Recalling the first inequality in (2.4) and observing
(2.7) our inductive hypothesis applies to the regularized problem

(2.8) Ks[w] — min in BV(Q),

where Kj is defined according to (1.11) and (1.12) with G and g replaced by G
and gs, respectively. Let

(2.9) us € WHH(Q) N CO(Q) N CHQ) N WH2(Q)

loc

denote the unique (up to constants) solution to (2.8) which additionally satisfies
us(x) = Gs(|z]). The regularity properties of us stated in (2.9) are in turn
sufficient to derive the Caccioppoli inequality from Lemma 4.19, ii), in [7], i.e. it
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holds

i D?G5(Vus)(0, Vus,0, Vus)Tin? da
(2.10)
< c/ D2Gs(Vus)(Vn, V)n?' =2 Vus|*T§ do
Q

for any s > 0, 1 € Nand n € C}(Q2), 0 < n < 1, where we have abbreviated
[s:=1+ |Vus|> and the sum is taken with respect to the index 7.
Letting n(z) = 7(|z|) we set

N x ~t X
p=as(lz))—,  a=0"(lz))—,
|z] ]
and observe that we have in (1.10)
|Q|2* (p'Q)Q} -0
[p[?

This reduces (2.10) to the inequality
@1 [ Vel VP de < ¢ [ g (Va9 da

with constant ¢ > 0 not depending on 6. Applying (1.14) and recalling Defini-
tion 2.5 we arrive at (neglecting the d-term on the left hand side of (2.11))

/n2llv2u5|2rf§7u/2 dz
(2.12) ¢ )
< 0{5/ 7721—2|V77|2F§+14/2 dx—i—/ 772l_2|V77|2F§+1*“/2 da
Q2 Q

Next we choose ¢ := ugF?ﬂan as admissible (recall (2.9)) test function in the
Euler equation

(2.13) 0= / DG&(VU&) . Vgﬁ d:L‘,
Q

where n and [ are as above and a > 0 is some number to be fixed later. With
this choice (2.13) gives

/ DGs(Vug) - Vuﬂ‘?ﬂnm dx

Q

(2.14) = - / DG5(Vus) - Vit 20us T8 da
Q

— / DG5(Vuys) - VF?/2n2lu5 de =: Ty + Ts.
Q
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‘We have
DG5(Vus) - Vus = g5(t)t > ¢'(t)t, t:=|Vus|,

and from the first inequality in (1.14) we get

g'(t) = C/O (1+5)"ds 2 e[l — (1+1) "]

and in conclusion

DG@(VU@) -Vugs > C[|VU6| - 1];

where as usual the value of ¢ may vary from line to line. Therefore we get

(2.15) left hand side of (2.14) > c|:/ p((sa+1)/27721 da — /
Q

772lI’§‘/2 dx} .
Q

For Ty,T5 on the right hand side of (2.14) we use, see Proposition 1.1 (6)

Slgllp lus| < max{|ma], [mal},

as well as the uniform boundedness of

DGs(p) = gg<|p|>§,

which is immediate by the definition of g5 and the properties of g. We obtain

Ty < c /Q P2 de,

ITy| < c/ 72 [V 2us T2 4,
Q

Returning to (2.14), using (2.15) and the inequalities for T}, it is shown (¢ = ¢(1))
that

/772l11((5a+1)/2dx§ C[/ nQZF?/de—i—/ |V77|7721_1F?/2dx
Q Q Q

(2.16) +/n2l|v2u5|Fga1)/2dac]
Q

= C[Sl + SQ + Sg]
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To the quantities S;, ¢ = 1,2, 3, we apply Young’s inequality:

S < 5/ n2lfga+1)/2 dz + c(s)/ 77211’((;&71)/2 dz,
Q Q

Sy < 5/ nmfgaﬂ)/z dz + c(e)/ n21_2|Vn|2Fga71)/2 dz,
Q Q

So<e [Pk ele) [ o IVPus P da,
Q Q
For ¢ sufficiently small we obtain from (2.16)

/ n2lfga+1)/2 dz
Q

(2.17)
SC[/ n2lrga73)/2|v2u6|2dz+/ 7]21_2[772+|V7]|2]F((;a71)/2d$ _
Q Q

In a final step we estimate
/§2n2l—2|vn|2rga*1)/2 da = /Qn2l—2rz(sa+1)/4|vn|2rga*3)/4 dx

5/ TS At efe) / (VTP da
Q Q

< 5/ nzlfgaﬂ)p dx + c(s)/ |V77|4F((5a_3)/2 dz,
Q Q

IN

where we have used 7741*4 < 7]2[, I > 2, on account of 0 <7 < 1. Clearly it holds
/ PITE D2 4y < ¢ / P2 4 4 o(e) / T2 g
Q Q Q
and (2.17) implies

/ 772lI‘ga+1)/2 dz
Q

(2.18)
Sc[/ n21F§“*3>/2|v2u6|2dx+/[|Vn|4+n2l]r§”‘*3>/2 dx].
Q Q

Let us choose oo = 3 in (2.18) yielding

(2.19) / T2 dr < c{/ ! V2us)? da + c(n)] .
Q Q

335
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On the right hand side of (2.19) we apply (2.12) for the choice s = /2 yielding

/anlrg dz < 0[5/§2n212|vn|2rg/2+1—r/2 da

(2.20)
* / P72 |VnPrE PR 4 4 ()|
Q

Moreover, (2.4) implies
+1<2

o=
ol

and from (1.15) it follows

VIS
VIR

+1<2,

thus we have to handle terms like
/772l_2f§|V77|2 dz
Q

with exponent p € (1,2) on the right hand side of (2.20). Evidently it holds for [
sufficiently large

/QnQZ’QWnFFf; dr < 5/07]2l1“§ dz + c(e,n)
and therefore (2.20) implies
(2.21) |Vus| € L () uniformly in 4.

Next we let & = 7 in (2.18) and s = 2 + p/2 in (2.12). Taking into account
(2.21) a repetition of the preceeding calculations leads to [Vus| € LY () and by
iteration we find for any g < oo

(2.22) |Vus| € LL () uniformly in 4.

loc

With (2.22) we deduce from (2.12) with the choice s = p/2 uniform higher
weak differentiability, i.e.

(2.23) us € VVli’CQ(Q) uniformly in 4.

From
Klus] < Ksus) < Ks[uo] < e(ug) < 0o
together with
lus|| Loo () < max{|mi], |ma|}
it follows
sup |Jusllwi1(a) < 00,
<5<
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hence there is a function u € BV(£2) such that
(2.24) us —u  in LY(Q)

at least for a subsequence. We claim that u is K-minimizing. Let v € BV(Q2). By
Proposition 1.1 (1), and (2.24) it holds

Klu] < lim Kus].
6—0
At the same time we have by the minimizing property of us
Klus] < Kslus] < Kslv] = K[v]  as 6 =0,

which proves our claim. Obviously (2.24) implies the validity of (2.22) and (2.23)
for the function u. Moreover, the radial symmetry of us extends to u. Since,
by embedding, 4 € Wi’f(gl, 02) implies u € C1(Q2), the proof of Theorem 1.1 is

completed. 0

3. Proof of Theorem 1.2 and Corollary 1.1

PROOF OF THEOREM 1.2: Suppose that @ is any given solution of (1.12). The
first part of Theorem 1.1 guarantees that u is sufficiently smooth such that any
solution of (1.12) is of the form @ + ¢, ¢ € R.

In order to show uniqueness together with claim (1), we distinguish four dif-
ferent cases which correspond to the different scenarios for the comparison with
a shifted function:

Case 1. The data are attained on the whole boundary 9.

Then, if u + ¢, ¢ € R, is a candidate for a possibly different minimizer, then
on account of

o:/ |a—u0|cm1=/ |+ ¢ — ug| dH* = |c|H (09),
o o

¢ = 0 is immediate, hence @ is the unique solution. (Case 1 corresponds to [5,
Lemma 5.5].)

Case 2. Both for |z| = p; and for |z| = g2 the solution @ does not attain the
boundary data.

Following [10], we let for any w € BV(Q)

0¥ = {x € 0Q: w(x) (x
YO = {x € 90: w(x) (x
Oy = {x € 00: w(z) = up(x

~—
——

> Ug
< U

~— ~—
[ )
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and observe that Theorem 2.4 of this reference just needs the hypothesis of the
strict convexity of the linear growth energy density. Thus, Theorem 2.4 shows for
the solution u

(3.1) (1 (9TQ) — H(9Q)| < H ().

Since the boundary data are completely ignored in the case under consideration,
we have
(3.2) HY(OEQ) =0 and in conclusion H(01 Q) = H (0" ).

This, however, is not possible on account of

(3-3) {lz| = 1} < [{]2] = e2}I-

Case 8. The boundary data are attained for |z| = g1, they are not attained for
|| = oo

In this case

9 ={lz| = o1}

gives a contradiction referring to (3.1) and (3.3).

Case 4. The boundary data are attained for |z| = g2, they are not attained for
lz| = o1.

This case is possible and in accordance with our claim

U =msy on {|z| = g2} for any solution @ of (1.12).

Since by Theorem 1.1 uniqueness up to additive constants holds true, we now
even have the uniqueness of solutions on account of the attainment of the data
for |z| = 2.

Next we prove our claim (2). In the following my is fixed and we suppose by
the first part of the theorem that for any solution under consideration we have

u(02) = up(02) = ma and without lost of generality mo > mp =: m.

In the case my < m; the analogous arguments are obvious.
Let us define for any w € BV(Q) satisfying w = mq for |z| = g2 and for any
real number ¢ < mqy the energies

K] = / o(|Veuw]) da,

Klw] == /Q G(IVou) de + g V5] () + gl / w — ¢ K

|z|=01
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By the first part and by Theorem 1.1, the unique solution u¢(z) = @¢(|z|) of the
minimizing problem
K¢[w] — min in BV(Q)

in particular is of class W1(Q), hence

(3.4) Kifud = [ a(Vuchas+o [ fu—clan’

|z|=01

and K[w] takes the form (3.4) whenever w € W11(Q).
Establishing our claim (a) we suppose by contradiction that there exists g €

(01, 02) such that u¢(p) < ¢.
Then the continuity of u¢ yields a real number ¢ € (g, g2) such that 4c(9) = ¢
and the choice .
- UC(IL‘) for |IL‘| € (Qa 92)5
we¢ (IL‘) = f ~
¢ or |z] € (e1,0]
immediately contradicts the minimality of wu¢.
In order to prove claim (b) we suppose that there exist real numbers

(3.5) Q<G and  dg(er) =& <P =g (a1).

Part (a) shows that in this case we have
(3.6) G <G < <me

which guarantees the positive sign of the penalty terms below.
Note that, given two real numbers £, k such that mg > £ > k, part (a) also
implies the representation formula

Kelug) = Klug) + g [ Jug—€lan!

|z|=01
(3.7) = K [ug] + 95201 (iig (01) — €)
= KO[“&] + gho2mo1(te (01) — k) — 9o, 2m01(E — K)
= Ky[ue] — g5.2m01(§ — K).

Now we proceed by observing

Ko ue,] = K%ug,] + gho2mon (¢ = ¢1)

= K%uc,] + gl 2mo1 (¢ — o) + g/ 2mo1 (G2 — 1)
> K¢, [ue,] + gho2mo1(Ge — G1)
= KC1 [uCz]a

(3.8)
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where we recall (3.6) for the discussion of the absolute values in the penalty term.
Moreover, the inequality

K¢, ) + gh2mo1 (¢ — ) = Keug ] > Ke,lug,]

follows from the minimality of wuc, and the last equality in (3.8) is due to (3.7).
Finally we observe that inequality (3.8) would give u¢, = u¢, by uniqueness of

minimizers which contradicts the hypothesis (3.5), i.e. we have a contradiction to

C2(+) < C{Jr), and the proof of Theorem 1.2 is complete. O

PROOF OF COROLLARY 1.1: Using the notation of Theorem 1.1 we first recall
two facts that are already established above:

(1) @ e Wh(o1, 02) N C (01, 02);
(2) 1(02) = ma.
For the reader’s convenience we sketch some general observations on the Euler

equation which can also be found in [4]:
Given a test function n € C5°(£2) we have

g'(IVul)
3.9 /7Vu~Vndx:0.
&) o Vel
Inserting
x
Vu =4 (|z|)—,
(1
and choosing n(x) = 7(|x|) we obtain
N 11(|$|) N, 2 a4,
3.10) O:/g’ '])— 7' (|z|) dz = 27 g (|@']) —=—#"r dr.
( [ D i (o " 1w

Note that on account of (1.5) the expression g'(t)/t is well defined in the limit
t—0.

Using (3.10), Du Bois—Reymond’s lemma as variant of the fundamental lemma
implies the existence of a real number A € R such that

(3.11) o) =5

If @ # 0, then zeroes of @ are excluded by (3.11) and supposing without loss
of generality m; < mg we have 4’ > 0 and (3.11) reduces to

(3.12) g'(@'(r)) = % for all r € (01, 02)-
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By assumption g is a strictly convex function, i.e. ¢’ is a strictly increasing
function and we have that

g (0,00) = (0,9%) is one-to-one,

hence we obtain from (3.12)

(3.13) 0<a'(r) = (g")" (%) for all € (o1, 02).

Note the validity of (3.12) for all € (g1, 02) and in conclusion the possible values
of X are given by

(3.14) 0< A< o015

Finally we consider the possible range for realizing boundary data:

Q2
Am(Y) = u(e2) ~ uler) = [ (g7 (2) an
01
where we note that Am(\) — 0 as A — 0.

Now, on account of (3.14), for any g1 < ¢ < g2 the function (¢')~*(\/r) is
bounded in (g, g2] with a constant not depending on A, hence a critical behavior
may just be expected at g1 in the limit A — 019/, .

Summarizing these observation we obtain that, if

02 by

lim (g')_l(—) dr = oo,
A—019L 01 T

then Am(\) takes any value in (0,00) and for all m; < mg € R problem (1.12)

admits a solution taking the boundary data.

If 0 \
lim (g (—) dr =: Amge < 00,
A—=019L o1 r

then a solution taking the boundary data exists if and only if mo —m1 < Amee.

At this point we note that, given {; < {2 such that u¢,(01) = ¢, (01), the
arguments yielding monotonicity imply #¢, = ¢, (compare (3.5) and (3.6) in the
case C2(+) < Cfﬂ).

Let us finally suppose that (1 < (2 < mg — Amy, for some real number (. By
the above considerations we have

ﬁ’Cl(gl) = '&Cz(gl) =ma — Amoo,

and the limit number ms — Am, serves as the boundary datum for ¢, as well
as for #¢,, which immediately gives the corollary. (]
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Remark 3.1. Having (3.13) in mind, one may try to attack the problem via
this explicit representation of the derivative of the solution. However, recall that
(3.13) is derived by supposing the solution to be sufficiently regular. We also recall
that the Giaquinta-Modica—Soucek example of [18] is based on a contradiction to
the assumption of Sobolev regularity.

Hence, the first step on the way towards the use of explicit solutions should be
the construction of a suitable regularization.

In order to illustrate the main difficulty, let us concentrate on the minimal
surface energy with standard quadratic regularization as a model case, i.e. we
consider for fixed 6 > 0

gty =1+t gs(t) =g(t) + th, gs(t) = ﬁ

Exactly as in (3.13) we derive (is denoting the smooth solution of the regularized

+6t, t>0.

problem)

A
as(r) = (g5)~* (—) with one-to-one function (g5)~*: (0,00) — (0,00).
r
Note that we have the analogue of (3.12) again on (g1, 02) but in contrast to
(3.14) any positive constant As provides a suitable choice.

Let us abbreviate for the moment (rs € (01, 02) fixed)

A
75 = Us(rs) >0, ys = 22 >0, ie. by (3.12) ys i

rs :\/1+T§

+5T5,

hence we obtain

(3.15) (1= ) = v - [2073 1+ 72 + 8 7E L+ 7).

Note that the left hand side of (3.15) proves the right hand side of (3.15) to be
positive whenever ys < 1 and to be negative whenever ys > 1.

We estimate the zeroes with some asymptotic considerations (which can be
validated by simple numerical experiments) and observe for small §

(3.16) ys =1 =75 ~ 613,

We summarize that, if for any 6 > 0 there exists some r5 € (01, 02) such that
As = rs, then by (3.16) the regularizing sequence is not uniformly Lipschitz.
If we would have an initial condition like

(3.17)  ajs(o1) =c, ¢ denoting a positive constant not depending on &
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for the ODE under consideration, then we would obtain the desired estimate
As < o1 on account of

g = g5(a5(01)) = ﬁ +dc<1
by choosing ¢ sufficiently small.

An estimate in the spirit of (3.17) in fact is the main result of [4], see (4.5),
and established by the construction of barrier functions.

This is in accordance with the examples given in the next section. The first
examples are explicitely solved with parameter A < g1, hence @'(01) remains
bounded. In the third example A has to pass to the limit gy if mo—my approaches
(and crosses) the finite value Am.

It remains an open question, whether, for instance, a refined regularization
process could eliminate the problems sketched above.

Concerning these remarks and the following examples we finally like to refer
to the classical paper [16] by R. Finn in the minimal surface case.

4. Examples

We finally sketch three characteristic examples by presenting explicit solutions.
To this purpose we recall the one parameter family given in (1.7) (now denoted

by g,.)
1 1
t— ———(1+t)2F — —— if 2
Z*u( +1) P n# 2,
t—In(l+1¢) if p=2.

gu(t) =

Note that g, =1 for any p > 1.
With this choice of g, the Euler equation (3.13) reads as

(41) o L i )\}1/(#—1)

We note that the condition (1.9) of [4] motivates to consider examples choosing
1<p<2, p=2, u> 3, respectively.
(1) Suppose that y =3/2,i.e. 1 <y < 2. Then

2

r—A\

a(r) =2 In(r — A) — + ¢, c€eR,

provides an exact solution. With the notation from above we have

)\2
01— A .

)\2

02 —

Am()) = [2A1n(92 — ) - /\} - {2)\ln(gl — ) -



344

M. Bildhauer, M. Fuchs
We see that in this case we have
Am(A) = oo as A — o1,

and with the right choice of the free parameters A, ¢ we obtain a smooth
solution to (1.12) taking the boundary data.
(2) Consider the limit case p = 2. We then have

a(r) = Aln(r — X) + ¢
and as above we find for any given boundary data a solution realizing this

data.
(3) In the case u = 3 we find as solution of the Euler equation

A2 — A+ 2V =
a(r) = Vi = —t+ S [~ +2 T2 ],

Now we note that
Am, < 00,

hence that boundary data cannot be attained if Amgs, < mao — my.
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