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Chromatic number of the product of graphs,

graph homomorphisms, antichains and

cofinal subsets of posets without AC

Amitayu Banerjee, Zalán Gyenis

Abstract. In set theory without the axiom of choice (AC), we observe new rela-
tions of the following statements with weak choice principles.
◦ If in a partially ordered set, all chains are finite and all antichains are count-
able, then the set is countable.
◦ If in a partially ordered set, all chains are finite and all antichains have size ℵα,
then the set has size ℵα for any regular ℵα.
◦ Every partially ordered set without a maximal element has two disjoint cofinal
sub sets – CS.
◦ Every partially ordered set has a cofinal well-founded subset – CWF.
◦ Dilworth’s decomposition theorem for infinite partially ordered sets of finite
width – DT.
We also study a graph homomorphism problem and a problem due to A. Hajnal
without AC. Further, we study a few statements restricted to linearly-ordered
structures without AC.

Keywords: chromatic number of product of graphs; ultrafilter lemma; permuta-
tion model; Dilworth’s theorem; chain; antichain; Loeb’s theorem; application of
Loeb’s theorem

Classification: 05C15, 03E25, 03E35

1. Introduction

Firstly, the first author observes the following in ZFA (Zermelo–Fraenkel set

theory with atoms).

(1) In Problem 15, Chapter 11 of [13], applying Zorn’s lemma, P. Komjáth

and V. Totik proved the statement ‘Every partially ordered set without

a maximal element has two disjoint cofinal subsets’ (CS). In Theorem 3.26

of [9], P. Howard, D. I. Saveliev and E. Tachtsis proved that CS does not

imply ‘there are no amorphous sets’ in ZFA. We observe that CS 6→ ACωfin
(the axiom of choice for countably infinite familes of nonempty finite sets),

CS 6→ AC−
n (Every infinite family of n-element sets has a partial choice
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function)1 for every 2 ≤ n < ω and CS 6→ LOKW−
4 (every infinite linearly

orderable family A of 4-element sets has a partial Kinna–Wagner selection

function)2 in ZFA.

(2) In Problem 14, Chapter 11 of [13], applying the well-ordering theorem,

P. Komjáth and V. Totik proved the statement ‘Every partially ordered

set has a cofinal well-founded subset’ (CWF). In Theorem 10 (ii) of [18],

E. Tachtsis proved that CWF holds in the basic Fraenkel model. More-

over, in Lemma 5 of [18], E. Tachtsis proved that CWF is equivalent

to AC in ZF. We observe that CWF 6→ ACωfin, CWF 6→ AC−
n for every

2 ≤ n < ω and CWF 6→ LOKW−
4 in ZFA.

(3) In Problem 7, Chapter 11 of [13], applying Zorn’s lemma, P. Komjáth

and V. Totik proved that if in a partially ordered set, all chains are finite

and all antichains are countable, then the set is countable. We observe

that the statement ‘If in a partially ordered set, all chains are finite and

all antichains are countable, then the set is countable’ neither implies

AC−
n nor implies ‘There are no amorphous sets’ in ZFA for any n ≥ 2.

Moreover, we prove that ‘For any regular ℵα, if in a partially ordered

set, all chains are finite and all antichains have size ℵα, then the set has

size ℵα’ neither implies AC−
n nor implies ‘There are no amorphous sets’

in ZFA for any n ≥ 2.

(4) R. P. Dilworth in [3] proved the following statement in ZFC: ‘If P is

an arbitrary partially ordered set (p.o. set), and k is a natural number

such that P has no antichains of size k + 1 while at least one k-element

subset of P is an antichain, then P can be partitioned into k chains’, we

abbreviate by DT, see Problem 4, Chapter 11 of [13] also. E. Tachtsis in

[19] investigated the possible placement of DT in the hierarchy of weak

choice principles. He proved that DT does not imply ACωfin as well as AC2

(every family of pairs has a choice function). We observe that DT does not

imply AC−
n for any 2 ≤ n < ω in ZFA. In particular, we observe that DT

holds in the permutation model of Theorem 8 of [5], due to L. Halbeisen

and E. Tachtsis. We also observe that a weaker form of  Loś’s lemma,

Form 253 of [8], fails in the permutation model of Theorem 8 of [5].

(5) P. Komjáth sketched the following generalization of the n-coloring the-

orem (for every graph G = (V,E) such that if every finite subgraph

of G is n-colorable then G is n-colorable) applying the Boolean prime

ideal theorem (BPI): ‘For an infinite graph G = (VG, EG) and a finite

graph H = (VH , EH), if every finite subgraph of G has a homomorphism

1It is easy to see that AC−

n follows from ACn (axiom of choice for n-element sets).
2We denote the principle ‘Every infinite linearly orderable family A of n-element sets has

a partial Kinna–Wagner selection function’ by LOKW−

n , see [5].
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into H, then so has G’ we abbreviate by PG,H . We observe that if

X ∈ {AC3,ACωfin}, then PG,H restricted to finite graph H with 2 vertices

does not imply X in ZFA.

Secondly, we study a weaker formulation of a problem due to A. Hajnal in ZFA.

(1) In Theorem 2 of [4], A. Hajnal proved that if the chromatic number of

a graph G1 is finite (say k < ω), and the chromatic number of another

graph G2 is infinite, then the chromatic number of G1 × G2 is k using

the Gödel’s compactness theorem. In the solution of Problem 12, Chap-

ter 23 of [13], P. Komjáth provided another argument using the Ultrafilter

lemma. For a natural number k < ω, we denote by Pk the following state-

ment.

‘χ(EG1
) = k < ω and χ(EG2

) ≥ ω implies χ(EG1×G2
) = k.’

We observe that if X ∈ {AC3,ACωfin}, then Pk 6→ X in ZFA when k = 3.

Lastly, we study a few algebraic and graph-theoretic statements restricted to

linearly-ordered structures without AC. We abbreviate the statement ‘The union

of a well-orderable family of finite sets is well-orderable’ by UT(WO, fin,WO). In

Theorem 3.1 (i) of [19], E. Tachtsis proved DT for well-ordered infinite p.o. sets

with finite width in ZF applying the following theorem.

Theorem 1.1 (Theorem 1 of [14]). Let {Xi}i∈I be a family of compact spaces

which is indexed by a set I on which there is a well-ordering ≤. If I is an infinite

set and there is a choice function F on the collection {C : C is closed, C 6= ∅,

C ⊂ Xi for some i ∈ I}, then the product space
∏

i∈I Xi is compact in the

product topology.

Using the same technique from Theorem 3.1 of [19], we prove a few algebraic

and graph-theoretic statements restricted to well-ordered sets, either in ZF or

in ZF + UT(WO, fin,WO). Consequently, those statements restricted to linearly

ordered sets are true, in permutation models where LW (every linearly ordered

set can be well-ordered) holds. In particular, we observe the following.

(1) In Theorem 18 of [10], P. E. Howard and E. Tachtsis obtained that for ev-

ery finite field F = 〈F, . . . 〉 and for every nontrivial vector space V over F ,

there exists a nonzero linear functional f : V → F applying BPI. Fix an

arbitrary 2 ≤ n < ω. We observe that ‘For every finite field F = 〈F, . . . 〉

and for every nontrivial linearly-ordered vector space V over F , there ex-

ists a nonzero linear functional f : V → F ’ 6→ ACωfin, 6→ LOKW−
4 , and

6→ AC−
n in ZFA.

(2) Fix an arbitrary 2 ≤ n < ω. We observe that ‘For an infinite graph

G = (VG, EG) on a linearly-ordered set of vertices VG and a finite graph
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H = (VH , EH), if every finite subgraph of G has a homomorphism into H,

then so has G’ 6→ ACωfin, 6→ LOKW−
4 , and 6→ AC−

n in ZFA.

(3) Fix an arbitrary 2 ≤ n < ω. We prove that for every 3 ≤ k < ω, the

statement ‘Pk if the graph G1 is on some linearly-orderable set of vertices’

6→ ACωfin, 6→ LOKW−
4 , and 6→ AC−

n in ZFA.

CACℵα

DT

CWF

CS

Statement 1

Statement 2

Statement 3

Statement 4

PG,H restricted to finite graph H with 2 vertices, P3 6−→ AC3,ACωfin

There are no
amorphous sets.

AC−
n for every

2 ≤ n < ω

LOKW−
4

ACωfin

Figure 1.

(4) M. Hall in [6] proved that if S is a set and {Si}i∈I is an indexed family

of finite subsets of S, and if the following property

(P) for every finite F ⊆ I, there is an injective choice function for {Si}i∈F ,

holds then there is an injective choice function for {Si}i∈I . We abbreviate

the above assertion by MHT. We recall that BPI implies MHT and MHT

implies the axiom of choice for finite sets (ACfin) in ZF, c.f. [8]. Fix an
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arbitrary 2 ≤ n < ω. We prove that MHT restricted to a linearly-ordered

collection of finite subsets of a set does not imply AC−
n in ZFA.

In Figure 1 we sketch the results of this note in ZFA. For each regular ℵα, we

denote by CACℵα the statement ‘if in a partially ordered set, all chains are finite

and all antichains have size ℵα, then the set has size ℵα’. We use Statement 4

to denote ‘Pk for the graph G1 on some linearly-orderable set of vertices’ for

a natural number k ≥ 3. We use Statement 3 to denote ‘For every finite field

F = 〈F, . . . 〉 and for every nontrivial linearly-ordered vector space V over F ,

there exists a nonzero linear functional f : V → F ’. We use Statement 2 to denote

‘For an infinite graph G = (VG, EG) on a linearly-ordered set of vertices VG and

a finite graph H = (VH , EH), if every finite subgraph of G has a homomorphism

into H , then so has G’. We use Statement 1 to denote Marshall Hall’s theorem

for linearly-ordered collection of finite subsets of a set.

2. A list of forms and definitions

(1) The axiom of choice, AC (Form 1 in [8]): Every family of nonempty sets

has a choice function.

(2) The axiom of choice for finite sets, ACfin (Form 62 in [8]): Every family

of nonempty finite sets has a choice function.

(3) AC2 (Form 88 in [8]): Every family of pairs has a choice function.

(4) ACn for each n ∈ ω, n ≥ 2 (Form 61 in [8]): Every family of n element sets

has a choice function. We denote by AC−
n the statement ‘Every infinite

family of n-element sets has a partial choice function’ (Form 342 (n)

in [8], denoted by C−
n in Definition 1 (2) of [5]). We denote by LOKW−

n

the statement ‘Every infinite linearly orderable family A of n-element

sets has a partial Kinna–Wagner selection function’ (c.f. Definition 1 (2)

of [5]).

(5) ACωfin (Form 10 in [8]): Every countably infinite family of nonempty finite

sets has a choice function. We denote by PACωfin the statement ‘Every

countably infinite family of nonempty finite sets has a partial choice func-

tion’.

(6) The principle of dependent choice, DC (Form 43 in [8]): If S is a relation

on a nonempty set A and for all x ∈ A there exists y ∈ A(xSy), then

there is a sequence a0, a1, . . . of elements of A such that for all n ∈ ω,

(anSan+1).

(7) LW (Form 90 in [8]): Every linearly-ordered set can be well-ordered.

(8) UT(WO, WO, WO) (Form 231 in [8]): The union of a well-ordered col-

lection of well-orderable sets is well-orderable.
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(9) UT(WO, fin, WO) (Form 122A in [8]): The union of a well-orderable

family of finite sets is well-orderable.

(10) For all α, UT(ℵα,ℵα,ℵα) (Form 23 in [8]): For every ordinal α, if A and

every member of A has cardinality ℵα, then
∣

∣

⋃

A
∣

∣ = ℵα.

(11) UT(ℵ0, fin, ℵ0) (Form 10A in [8]): The union of a denumerable collection

of finite sets is countable.

(12) The Boolean prime ideal theorem, BPI (Form 14 in [8]): Every Boolean

algebra has a prime ideal. We recall the following equivalent formulations

of BPI.

◦ (Form 14AW in [8]): The Compactness theorem for propositional

logic.

◦ The Ultrafilter lemma, UL (Form 14A in [8]): Every proper filter

over a set S in P(S) can be extended to an ultrafilter.

◦ The n-coloring theorem for n ≥ 3, (Form 14G(n) n ∈ ω, n ≥ 3

in [8]): For every graph G = (V,E) if every finite subgraph of G is

n-colorable then G is n-colorable. This is De Bruijn–Erdős theorem

for n ≥ 3 colorings.

(13) The Principle of consistent choice, PCC (Form 14AH in [8]): Let A =

{Ai}i∈I be a family of finite sets and R is a symmetric binary relation on
⋃

i∈I Ai. Suppose that for every finite W ⊂ I, there is an R-consistent

choice function for {Ai}i∈W , then there is an R-consistent choice function

for {Ai}i∈I .

We note that Form 14AH in [8] is different than the above formulation.

J.  Loś and C. Ryll–Nardzewski in [15] introduced both the formulations

where it was noted that they are equivalent. Let n ∈ ω\{0, 1}. We recall

the notation Fn introduced by R. H. Cowen in [2], which is PCC restricted

to families A = {Ai : i ∈ I}, where |Ai| ≤ n for all i ∈ I.

(14) Marshall Hall’s theorem, MHT (Form 107 in [8]): If S is a set and {Si}i∈I
is an indexed family of finite subsets of S, and if the following property

(P) for every finite F ⊆ I, there is an injective choice function for {Si}i∈F ,

holds then there is an injective choice function for {Si}i∈I .

Philip Hall’s theorem states that the property (P) is equivalent to Hall’s

condition which states that ‘for all F ∈ [I]<ω ,
∣

∣

⋃

i∈F Si
∣

∣ ≥ |F |’. We recall

that Philip Hall’s theorem or finite Hall’s theorem can be proved in ZF

without using any choice principles.

(15) A weaker form of  Loś’s lemma, LT (Form 253 in [8]): If A = 〈A,RA〉

is a nontrivial relational L-structure over some language L, and U be an

ultrafilter on a nonempty set I, then the ultrapower AI/U and A are

elementarily equivalent.
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(16) MCC (c.f. Definition 5 and Definition 6 of [18]): Every topological space

with the minimal cover property is compact.

(17) Bounded and unbounded amorphous sets: An infinite set X is called

amorphous if X cannot be written as a disjoint union of two infinite sub-

sets. There are two types of amorphous sets, namely bounded amorphous

sets and unbounded amorphous sets. Let U be a finitary partition of an

amorphous set X . Then all but finitely many elements of U have the same

cardinality, say n(U). Let Π(X) be the set of all finitary partitions of X

and n(X) = sup{n(U) : U ∈ Π(X)}. If n(X) is finite, then X is called

bounded amorphous and if n(X) is infinite, then X is called unbounded

amorphous. We recall Theorem 6 of [18] which states that MCC implies

‘there are no bounded amorphous sets’.

(18) (Form 64 in [8]): There are no amorphous sets.

(19) Martin’s axiom (c.f. [16]): If κ is a well-ordered cardinal, we denote by

MA(κ) the principle ‘If (P,<) is a nonempty, countable chain condition

(c.c.c.) quasi order and D is a family of ≤ κ dense sets in P , then there

is a filter F of P such that F ∩ D 6= ∅ for all D ∈ D’. We recall from

Remark 2.7 of [16] that ACωfin +MA(ℵ0) implies ‘for every infinite set X ,

2X is Baire’ and ‘for every infinite set X , 2X is Baire’ implies ‘there are

no amorphous sets’.

(20) Dilworth’s decomposition theorem for infinite p.o. sets of finite width,

DT, c.f. [19]: If P is an arbitrary p.o. set, and k is a natural number

such that P has no antichains of size k + 1 while at least one k-element

subset of P is an antichain, then P can be partitioned into k chains. We

abbreviate the above formulation as DT. We recall Theorem 3.1 (i) of [19],

which states that DT for well-ordered infinite p.o. sets with finite width

is provable in ZF.

(21) The Chain/Antichain principle, CAC (Form 217 in [8]): Every infinite

p.o. set has an infinite chain or an infinite antichain. We recall that CAC

implies ACωfin from Lemma 4.4 of [20].

(22) CS, c.f. [9]: Every partially ordered set without a maximal element has

two disjoint cofinal subsets.

(23) CWF, c.f. Definition 6 (11) of [18]: Every partially ordered set has a co-

final well-founded subset.

(24) Chromatic number of the product of graphs: We recall a few basic termi-

nology of graphs. An independent set is a set of vertices in a graph, no

two of which are connected by an edge. A good coloring of a graph G =

(VG, EG) with a color set C is a mapping f : VG → C such that for every

{x, y} ∈ EG, f(x) 6= f(y). The chromatic number χ(EG) of a graph G =
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(VG, EG) is the smallest cardinal κ such that the graphG can be colored by

κ colors. We define the cartesian product of two graphs G1 = (VG1
, EG1

)

and G2 = (VG2
, EG2

) as the graph G1 × G2 = (VG1×G2
, EG1×G2

) =

(VG1
× VG2

, {{(x0, x1), (y0, y1)} : {x0, y0} ∈ EG1
, {x1, y1} ∈ EG2

}) where

VG1
× VG2

is the cartesian product of the vertex sets VG1
and VG2

. It

can be seen that χ(EG1×G2
) ≤ min(χ(EG1

), χ(EG2
)). In particular, if

χ(EG1
) = k < ω then χ(EG1×G2

) = k, since if f : VG1
→ {1, . . . , k} is

a good k-coloring of G1, then F (〈x, y〉) = f(x) is a good k-coloring of

G1 × G2. In Theorem 2 of [4], A. Hajnal proved that if χ(EG1
) is finite

(say k < ω), and χ(EG2
) is infinite, then χ(EG1×G2

) is k. For a natural

number k < ω, we denote by Pk the following statement.

‘χ(EG1
) = k < ω and χ(EG2

) ≥ ω implies χ(EG1×G2
) = k.’

2.1 Permutation models. Let M be a model of ZFA + AC where A is a set

of atoms or ur-elements. Each permutation π : A→ A extends uniquely to a per-

mutation of π′ : M → M by ε-induction. Let G be a group of permutations

of A and F be a normal filter of subgroups of G. For x ∈ M , we denote the

symmetric group with respect to G by symG(x) = {g ∈ G : g(x) = x}. We say

x is F-symmetric if symG(x) ∈ F and x is hereditarily F-symmetric if x is F -

symmetric and each element of transitive closure of x is symmetric. We define the

permutation model N with respect to G and F to be the class of all hereditarily

F -symmetric sets. It is well-known that N is a model of ZFA, see Theorem 4.1

of [11]. If I ⊆ P(A) is a normal ideal, then the set {fixGE : E ∈ I} generates

a normal filter over G. Let I be a normal ideal generating a normal filter FI

over G. Let N be the permutation model determined by M , G, and FI . We say

E ∈ I supports a set σ ∈ N if fixGE ⊆ symG(σ).

3. Well-ordered structures in ZF

3.1 Applications of Loeb’s theorem. We recall the following fact from [12].

Lemma 3.1 (ZF). If X is well-orderable, then 2X is compact.

Remark. We can also prove Lemma 3.1 applying Theorem 1 of [14].

Observation 3.2. UT(WO, fin, WO) implies Marshall Hall’s theorem for any

well-ordered collection of finite subsets of a set.

Proof: Let S be a set and {Si}i∈I be a well-ordered indexed family of finite

subsets of S such that the following property holds,

(P) for every finite F ⊆ I, there is an injective choice function for {Si}i∈F .
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We work with the propositional language L with the following sentence symbols

A′
i,j where j ∈ Si and i ∈ I.

Let F be the set of all formulae of L and Σ ⊂ F be the collection of the following

formulae

(1) ¬(A′
i,m ∧A′

j,m) for i 6= j, m ∈ Si ∩ Sj,

(2) ¬(A′
i,j ∧ A

′
i,l) for any l 6= j ∈ Si where i ∈ I,

(3) A′
i,y1

∨ A′
i,y2

∨ · · · ∨ A′
i,yk

for each i ∈ I where Si = {y1, . . . , yk}.

We enumerate Var = {A′
i,j : i ∈ I, j ∈ Si} since each Si is finite, I is well-

orderable and UT(WO, fin, WO) is assumed. For every W ∈ [I]<ω\{∅}, we let

ΣW be the subset of F , which is defined as Σ except that the subscripts in the

formulae are from the set W ∪
⋃

i∈W Si. Endow the discrete 2-element space

{0, 1} with the discrete topology and consider the product space 2Var with the

product topology. Let FW = {f ∈ 2Var : for all ϕ ∈ ΣW (f ′(ϕ) = 1)} where

for f ∈ 2Var, the element f ′ of 2F denotes the valuation mapping determined

by f . By Philip Hall’s theorem which is provable in ZF without using any choice

principles, each FW is nonempty and the family X = {FW : W ∈ [I]<ω\{∅}} has

the finite intersection property. Also for each W ∈ [I]<ω\{∅}, FW is closed in

the topological space 2Var. By Lemma 3.1 since 2Var is compact in ZF,
⋂

X is

nonempty. Pick an f ∈
⋂

X and let f ′ ∈ 2F be the unique valuation mapping

that extends f . Clearly, f ′(ϕ) = 1 for all ϕ ∈ Σ. Consequently, we obtain an

injective choice function for {Si}i∈I by the following claim.

Claim 3.3. If v is a truth assignment which satisfies Σ, then we can define

a system of distinct representatives by

y ∈ Si if and only if v(A′
i,y) = T.

Proof: By (2) and (3) for each i ∈ I, each collection Si gets assigned a unique

representative. By (1), distinct sets Si and Sj get assigned distinct representa-

tives. �

The proof of Observation 3.2 is completed. �

B. Banaschewski in [1] proved the uniqueness of the algebraic closure of an

arbitrary field applying BPI.3

Observation 3.4. UT(WO, fin, WO) implies ‘If a field K has an algebraic clo-

sure, and the ring of polynomials K[x] is well-orderable, then the algebraic closure

is unique’.

3C.f. the last paragraph of page 384 and page 385 of [1].
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Proof: Let K be a field, and suppose E and F be two algebraic closures of K.

We prove that there is an isomorphism from E onto F which fix K pointwise. Let

Eu and Fu be the splitting fields of u ∈ K[x] inside E and F , respectively. Let

Hu be the set of all isomorphisms from Eu onto Fu which fix K. Clearly, Hu is

a nonempty finite set. Also, we can see that
⋃

u Eu = E and
⋃

uFu = F . Let

H =
∏

u∈K[x]Hu, and if v|w define Hv,w = {(hu) ∈ H : hv = hw ↾ Ev}. Clearly,

Hv,w has finite intersection property and they are closed in the product topology

of H, where each Hu is discrete. Since K[x] is well-orderable as assumed and for

each u ∈ K[x], Hu is finite, we have that
⋃

u∈K[x]Hu is well-orderable by UT(WO,

fin, WO). By Theorem 1 of [14], H is compact. Consequently,
⋂

v|wHv,w 6= ∅ and

each (hu) in this intersection determines a unique embedding h :
⋃

u Eu →
⋃

uFu
which is onto and fixes K. �

Observation 3.5. The statement ‘For an infinite graph G = (VG, EG) on a well-

ordered set of vertices VG and a finite graph H = (VH , EH), if every finite subgraph

of G has a homomorphism into H, then so has G’ is provable in ZF.

Proof: Fix a finite graph H = (VH , EH) and a graph G = (VG, EG) on a well-

ordered set of vertices VG. We consider VH = {v1, . . . , vk} for some k < ω. We

work with the propositional language L with the following sentence symbols

A′
xi,vj

where vj ∈ VH and xi ∈ VG.

Let F be the set of all formulae of L and Σ ⊂ F be the collection of the following

formulae

(1) A′
xi,vm

∧ A′
xj ,vl

if and only if {xi, xj} ∈ EG implies {vm, vl} ∈ EH ,

(2) ¬(A′
xi,vj

∧A′
xi,vl

) for any vl, vj ∈ VH such that vl 6= vj and each xi ∈ VG,

(3) A′
xi,v1

∨ A′
xi,v2

∨ · · · ∨ A′
xi,vk

for each xi ∈ VG.

By our assumption VG is well-orderable and VH is finite. So VH is well-or-

derable. Consequently, VG × VH is well-orderable in ZF. We enumerate Var =

{A′
xi,vj

: xi ∈ VG, vj ∈ VH}. By assumption, for every s ∈ [VG]<ω there is

a homomorphism fs : G ↾ s→ H of G ↾ s into H . Following the methods used in

the proof of Observation 3.2, we may obtain an f ′ ∈ 2F such that f ′(ϕ) = 1 for

all ϕ ∈ Σ. Consequently, we can obtain a homomorphism h from G to H . �

Observation 3.6. The statement ‘For every finite field F = 〈F, . . . 〉 and for

every nontrivial well-ordered vector space V over F , there exists a nonzero linear

functional f : V → F ’ is provable in ZF.

Proof: We follow the proof of Theorem 3.14 of [10] and modify it in the con-

text of well-orderable vector space. Fix a finite field F = 〈F, . . . 〉 where F =

{v1, . . . , vk} and a nontrivial well-ordered vector space V over F . We work with
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the propositional language L with the following sentence symbols

A′
xi,vj

where vj ∈ F and xi ∈ V.

Let F ′ be the set of all formulae of L and Σ ⊂ F ′ be the collection of the

following formulae

(1) A′
a,1,

(2) A′
xi,vj

→ A′
vkxi,vkvj

for vk, vj ∈ F and xi ∈ V ,

(3) A′
xi,vj

∧A′
xi′ ,vj′

→ A′
xi+xi′ ,vj+vj′

for xi, xi′ ∈ V and vj , vj′ ∈ F ,

(4) ¬(A′
xi,vj

∧ A′
xi,vl

) for any vl, vj ∈ F such that vl 6= vj and each xi ∈ V ,

(5) A′
xi,v1

∨ A′
xi,v2

∨ · · · ∨ A′
xi,vk

for each xi ∈ V .

By our assumption V is well-orderable and F is finite. So F is well-orderable.

Consequently, V × F is well-orderable. We enumerate Var = {A′
xi,vj

: xi ∈ V,

vj ∈ F}. Fix V ′ ∈ [V ]<ω. Let W be the subspace of V generated by the finite

set V ′ ∪ {a}. We can see that W is finite since F is finite. Consequently, a linear

functional f : W → F with f(a) = 1 can be constructed in ZF. Following the

methods used in the proof of Observation 3.2, we can obtain a nonzero linear

functional f : V → F . �

Observation 3.7. For every 3 ≤ k < ω, the statement Pk for the graph G1 on

some well-orderable set of vertices is provable under ZF.

Proof: Fix 3 ≤ k < ω. Suppose χ(EG1
) = k, χ(EG2

) ≥ ω, and G1 is a graph on

some well-orderable set of vertices. First we observe that if g : VG1
→ {1, . . . , k}

is a good k-coloring of G1, then G(〈x, y〉) = g(x) is a good k-coloring of G1×G2.

So, χ(EG1×G2
) ≤ k. For the sake of contradiction assume that F : VG1

× VG2
→

{1, . . . , k − 1} is a good coloring of G1 × G2. For each color c ∈ {1, . . . , k − 1}

and each vertex x ∈ VG1
we let Ax,c = {y ∈ VG2

: F (x, y) = c}.

Claim 3.8 (ZF). For all finite F ⊂ VG1
, there exists a mapping iF : F →

{1, . . . , k− 1} such that for any x, x′ ∈ F , Ax,iF (x) ∩Ax′,iF (x′) is not independent.

Proof: Since any superset of nonindependent set is nonindependent, it is enough

to show that for all finite F ⊂ VG1
, there exists an iF : F → {1, . . . , k − 1}

such that
⋂

x∈F Ax,iF (x) is not independent. For the sake of contradiction as-

sume that there exists a finite F ⊂ VG1
such that for all iF : F → {1, . . . , k − 1},

⋂

x∈F Ax,iF (x) is independent. Now, VG2
=

⋃

iF : F→{1,...,k−1}

⋂

x∈F Ax,iF (x). Con-

sequently VG2
can be written as a finite union of independent sets which contra-

dicts the fact that χ(EG2
) is infinite. Thus for all finite F ⊂ VG1

, we can obtain

a mapping iF : F → {1, . . . , k−1} such that
⋂

x∈F Ax,iF (x) is not independent. �
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VG1x y

VG2

Ax,f(x)
. . .

Ay,f(y)

VG2

. . .

Figure 2. A map f : VG1
→ {1, . . . , k−1} such that intersection

of any two elements in {Ax,f(x) : x ∈ VG1
} is not independent.

Endow {1, 2, . . . , k−1} with the discrete topology. Since VG1
is well-orderable,

{1, 2, . . . , k − 1} × VG1
is well-orderable under ZF. Applying Theorem 1 of [14],

{1, 2, . . . , k−1}VG1 is compact. For s ∈ [VG1
]<ω, let Fs = {f ∈ {1, 2, . . . , k−1}VG1:

x, y ∈ s, x 6= y → Ax,f(x) ∩ Ay,f(y) is not independent}. By Claim 3.8 for each

s ∈ [VG1
]<ω we have that Fs is nonempty. We can see that {Fs : s ∈ [VG1

]<ω} has

finite intersection property as Fs0∪···∪sk ⊆ Fs0 ∩ · · · ∩ Fsk . Thus by compactness

of {1, 2, . . . , k − 1}VG1 , there is a f ∈
⋂

{Fs : s ∈ [VG1
]<ω}. Clearly, for any

x, x′ ∈ VG1
, Ax,f(x) ∩ Ax′,f(x′) is not independent, see Figure 2. Since x → f(x)

is not a good coloring in G1 as χ(EG1
) = k, there are x, x′ ∈ VG1

with f(x) =

f(x′) = j and {x, x′} ∈ EG1
. Consequently, A′ = Ax,f(x) ∩ Ax′,f(x′) is not

independent. Pick y, y′ ∈ A′ joined by an edge in EG2
. Then (x, y) and (x′, y′)

are joined in EG1
×EG2

and get the same color j which is a contradiction to the

fact that F is a good coloring of G1 ×G2. �

3.2 On partially ordered sets based on a well-ordered set of elements.

The first author modifies the arguments from Claim 5 of [17] and observes the

following.

Observation 3.9. The following holds.

(1) UT(ℵ0,ℵ0,ℵ0) implies ‘If in a partially ordered set based on a well-ordered

set of elements, all chains are finite and all antichains are countable, then

the set is countable’.

(2) UT(ℵα,ℵα,ℵα) implies ‘If in a partially ordered set based on a well-

ordered set of elements, all chains are finite and all antichains have

size ℵα, then the set has size ℵα’ for any regular ℵα.
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Proof: We prove Observation 3.9 (1). For the sake of contradiction, assume that

all antichains of (P,≤) are countable, all chains of (P,≤) are finite, but the set P

is uncountable and well-ordered. We construct an infinite chain in (P,≤) using

UT(ℵ0,ℵ0,ℵ0) and obtain the desired contradiction.

Claim 3.10. We have that ≤ is a well-founded relation on P , i.e., every nonempty

subset of P has a ≤-minimal element.

Proof: Let P be well-orderable, say by �. We claim that ≤ is a well-founded

relation on P . Otherwise, there is a nonempty subset P1 ⊆ P with no minimal

elements. Consequently, using the fact that � is a well-ordering in P , we can

obtain a strictly ≤-decreasing sequence of elements of P1. This contradicts the

assumption that P has no infinite chains. �

Without loss of generality we may assume P =
⋃

{Pα : α < κ} where κ is

a well-ordered cardinal, P0 is the set of minimal elements of P and for each

α < κ, Pα is the set of minimal elements of P\
⋃

{Pβ : β < α}. For each α < κ,

Pα is countable since Pα is an antichain.

◦ We note that P =
⋃

{Pp : p ∈ P0} where Pp = {q ∈ P : p ≤ q}. Since P is

uncountable and P0 is countable, Pp is uncountable for some p ∈ P0. Oth-

erwise for all p ∈ P0, Pp is either countable or finite and UT(ℵ0,ℵ0,ℵ0) +

UT(ℵ0, fin,ℵ0) implies P is countable which is a contradiction. Now

UT(ℵ0,ℵ0,ℵ0) implies UT(ℵ0, fin,ℵ0) in ZF, thus UT(ℵ0,ℵ0,ℵ0) suffices.

Since {q ∈ P0 : Pq is uncountable} is a nonempty subset of P , we can find

a least p0 ∈ P0 with respect to � such that Pp0 is uncountable.

◦ Let us consider P ′ = Pp0\{p0}. So, P ′ is uncountable. Again if P ′
1 is the

set of minimal elements of P ′, we can write P ′ =
⋃

{Pp : p ∈ P ′
1} where

Pp = {q ∈ P : p ≤ q}. Since P ′ is uncountable and P ′
1 is countable (since

all antichains of (P,≤) are countable by assumption), once again applying

UT(ℵ0,ℵ0,ℵ0) as in the previous paragraph, Pp is uncountable for some

p ∈ P ′
1. Since {q ∈ P ′

1 : Pq is uncountable} is a nonempty subset of P , we

can find a least p1 ∈ P ′
1 with respect to � such that Pp1 is uncountable.

We can see that p0 < p1.

Continuing this process step by step we obtain a sequence 〈pn : n ∈ ω〉 of

elements of P such that pn < pn+1 for each n ∈ ω. Consequently, we obtain an

infinite chain. �

Remark. Similarly for any regular ℵα, assuming UT(ℵα,ℵα,ℵα) we can prove

the following since alephs are well-ordered. ‘If in a partially ordered set based on

well-ordered set of elements, all chains are finite and all antichains have size ℵα,

then the set has size ℵα.’ Consequently, we can prove Observation 3.9 (2).
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4. Consistency results

Theorem 4.1. For every natural number n ≥ 2, there is a permutation model N

of ZFA where CAC holds and AC−
n fails. Moreover, we can observe the following

in the model.

(1) CS, as well as CWF, holds.

(2) DT holds, MA(ℵ0) fails, MCC fails, LT fails.

(3) If in a partially ordered set, all chains are finite and all antichains are

countable, then the set is countable. Moreover, if in a partially ordered

set, all chains are finite and all antichains have size ℵα, then the set has

size ℵα for any regular ℵα.

(4) The following statements hold.

(a) Marshall Hall’s theorem for linearly-ordered collection of finite sub-

sets of a set.

(b) For every 3 ≤ k < ω, Pk holds for any graph G1 on some linearly-

orderable set of vertices.

(c) For an infinite graph G = (VG, EG) on a linearly-ordered set of ver-

tices VG and a finite graph H = (VH , EH), if every finite subgraph

of G has a homomorphism into H , then so has G.

(d) For every finite field F = 〈F, . . . 〉 and for every nontrivial linearly-

orderable vector space V over F , there exists a nonzero linear func-

tional f : V → F .

Proof: In Theorem 8 of [5], L. Halbeisen and E. Tachtsis constructed a per-

mutation model N where for arbitrary n ≥ 2, AC−
n fails but CAC holds. We

fix an arbitrary integer n ≥ 2 and recall the model constructed in the proof of

Theorem 8 of [5] as follows.

◦ Defining the ground model M . We start with a ground model M of ZFA

+ AC where A is a countably infinite set of atoms written as a disjoint

union
⋃

{Ai : i ∈ ω} where for each i ∈ ω, Ai = {ai1 , ai2 , . . . , ain}.

◦ Defining the group G of permutations and the filter F of subgroups of G.

– Defining G. The group G is defined in [5] in a way so that if η ∈ G,

then η only moves finitely many atoms and for all i ∈ ω, η(Ai) = Ak
for some k ∈ ω. We recall the details from [5] as follows. For all

i ∈ ω, let τi be the n-cycle ai1 7→ ai2 7→ · · · 7→ ain 7→ ai1 . For

every permutation ψ of ω, which moves only finitely many natural

numbers, let ϕψ be the permutation of A defined by ϕψ(aij ) =

aψ(i)j for all i ∈ ω and j = 1, 2, . . . , n. Let η ∈ G if and only if

η = ̺ϕψ where ψ is a permutation of ω which moves only finitely

many natural numbers and ̺ is a permutation of A for which there
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is a finite F ⊆ ω such that for every k ∈ F , ̺ ↾ Ak = τ jk for some

j < n, and ̺ fixes Am pointwise for every m ∈ ω\F .

– Defining F . Let F be the filter of subgroups of G generated by

{fixG(E) : E ∈ [A]<ω}.

◦ Defining the permutation model. Consider the permutation model N

determined by M , G and F .

Following point 1 in the proof of Theorem 8 of [5], both A and A = {Ai}i∈ω are

amorphous in N and no infinite subfamily B of A has a Kinna–Wagner selection

function. Consequently, AC−
n fails. The first author observes the following.

Lemma 4.2. In N , DT, CS as well as CWF holds. Moreover the following holds

in N .

◦ If in a partially ordered set, all chains are finite and all antichains are

countable, then the set is countable.

◦ ‘If in a partially ordered set, all chains are finite and all antichains have

size ℵα, then the set has size ℵα’ for any regular ℵα.

Proof: We follow the steps below.

(1) Let (P,≤) be a p.o. set in N and E ∈ [A]<ω be a support of (P,≤). We can

write P as a disjoint union of fixG(E)-orbits, i.e., P =
⋃

{OrbE(p) : p ∈ P}, where

OrbE(p) = {ϕ(p) : ϕ ∈ fixG(E)} for all p ∈ P . The family {OrbE(p) : p ∈ P} is

well-orderable in N since fixG(E) ⊆ SymG(OrbE(p)) for all p ∈ P (cf. Claim 3.6

of [19]).

(2) Since if η ∈ G, then η only moves finitely many atoms, OrbE(p) is an

antichain in P for each p ∈ P . Otherwise there is a p ∈ P , such that OrbE(p)

is not an antichain in (P,≤). Thus, for some ϕ, ψ ∈ fixG(E), ϕ(p) and ψ(p) are

comparable. Without loss of generality we may assume ϕ(p) < ψ(p). Since if

η ∈ G, then η only moves finitely many atoms, there exists some k < ω such that

ϕk = 1A. Let π = ψ−1ϕ. Consequently, π(p) < p and πk = 1A for some k ∈ ω.

Thus, p = πk(p) < πk−1(p) < · · · < π(p) < p. By transitivity of <, p < p, which

is a contradiction (cf. Claim 3.5 of [19]).

(3) We prove that in N , DT holds. Let E ⊂ A be a finite support of an

infinite p.o. set P = (P,<) with finite width. Then P =
⋃

{OrbE(p) : p ∈ P}.

Following (2), OrbE(p) is an antichain in P. Consequently, OrbE(p) is finite for

each p ∈ P since the width of P is finite. Following (1), {OrbE(p) : p ∈ P}

is well-orderable in N . Following point 4 in the proof of Theorem 8 of [5] and

Lemma 3 of [17], UT(WO,WO,WO) holds in N , and so P is well-orderable in N .

Applying Theorem 3.1 (i) of [19], DT holds in N .

(4) To see that CS as well as CWF holds in N we follow Theorem 3.26 of [9]

and Theorem 10 (ii) of [18], respectively. We sketch the important steps below.
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(a) We follow Theorem 3.26 of [9] to see that CS holds in N as follows. Let

(P,≤) be a poset without maximal elements supported by E. Following (1),

O = {OrbE(p) : p ∈ P} is a well-ordered partition of P . Define � on O, as

X � Y ↔ ∃x ∈ X, ∃ y ∈ Y such that x ≤ y.

Since (P,≤) has no maximal element, (O,�) has no maximal element follow-

ing (2). Since O is well-ordered there exists a partition UO = {Q,R} of O in 2

cofinal subsets. Consequently, UP =
{
⋃

Q,
⋃

R
}

is a partition of P in 2 cofinal

subsets.

(b) We follow Theorem 10 (ii) of [18] to see that CWF holds in N as follows.

Let (P,≤) be a poset supported by N . Since O = {OrbE(p) : p ∈ P} is well-

orderable, it has a cofinal well-founded subset W = {Wα : α < γ} such that

for β < α, Wα 6� Wβ for all β, α < γ. Consequently, C =
⋃

W is a cofinal

well-founded subset of P .

(5) We show the following in N .

‘If in a partially ordered set, all chains are finite and all antichains are

countable, then the set is countable.’

It is known that in every FM -model UT(WO,WO,WO) implies for all α

UT(ℵα,ℵα,ℵα), c.f. page 176 of [8]. Consequently, UT(ℵ0,ℵ0,ℵ0) holds in N .

Let (P,<) be an uncountable p.o. set in N where all antichains are countable

and E ∈ [A]<ω be a support of (P,<). Following (1), O = {OrbE(p) : p ∈ P} is

a well-ordered partition of P since for all p ∈ P , E is a support of OrbE(p). Fol-

lowing (2), OrbE(p) is an antichain and hence countable. Consequently, OrbE(p)

is well-orderable. Since UT(WO,WO,WO) holds in N , P is well-orderable. By

Observation 3.9 (1), since UT(ℵ0,ℵ0,ℵ0) holds in N , there is an infinite chain

in N .

(6) Following (5) and Observation 3.9 (2), we can prove the following in N .

‘If in a partially ordered set (P,<), all chains are finite and all antichains have

size ℵα, then the set has size ℵα’.

�

Remark. The referee pointed out that the statements ‘If in a partially ordered

set based on a well-ordered set of elements all chains are finite and all antichains

are countable then the set is countable’ and ‘If in a partially ordered set based on

a well-ordered set of elements all chains are finite and all antichains have size ℵα
then the set has size ℵα’ are true in all Fraenkel–Mostowski permutation models.

So Observation 3.9 (1) and Observation 3.9 (2) are not needed in the proofs of

parts (5) and (6) of the proof of Lemma 4.2.
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Lemma 4.3. In N , MA(ℵ0) fails.

Proof: Since A is amorphous, the statement ‘for all infinite X , 2X is Baire’

is false following Remark 2.7 of [16]. Since CAC holds in N , ACωfin holds as

well, c.f. Lemma 4.4 of [20]. Consequently, MA(ℵ0) fails following Remark 2.7

of [16]. �

Lemma 4.4. In N , MCC fails.

Proof: Modifying the proof of Theorem 8 (ii) of [18], we can see that n(A) = n.

Thus there is a bounded amorphous set A. Consequently, MCC fails by Theorem 6

of [18]. �

Lemma 4.5. In N , LT fails.

Proof: Since A is an amorphous set of nonempty sets which has no choice

function in N , following Lemma 4.1 (i) of [20], LT fails in N . �

Lemma 4.6. In N , the following statements hold for linearly-ordered structures.

(1) Marshall Hall’s theorem for linearly-ordered collection of finite subsets of

a set.

(2) For every 3 ≤ k < ω, Pk holds for any graph G1 on some linearly-

orderable set of vertices.

(3) For an infinite graphG = (VG, EG) on a linearly-ordered set of vertices VG
and a finite graph H = (VH , EH), if every finite subgraph of G has

a homomorphism into H , then so has G.

(4) For every finite field F = 〈F, . . . 〉 and for every nontrivial linearly-order-

able vector space V over F , there exists a nonzero linear functional

f : V → F .

Proof: Since UT(WO,WO,WO) and LW holds in N , c.f. pt 4 and pt 3 in the

proof of Theorem 8 in [5], (1), (2), (3) and (4) hold in N following the observations

in Section 3. �

The proof of Theorem 4.1 is completed. �

Remark 4.7. In Theorem 7 of [20], E. Tachtsis generalized the above construction

and proved that ACLO+LW 6→ LT by constructing a permutation model N . Since

ACWO holds in N , DC holds in N as well, c.f. Theorem 8.2 of [11]. We observe

another standard argument to see that DC holds in N . Since I is closed under

countable unions in the model, we can see that DC holds in N . Let R be a relation

in N such that if x ∈ dom(R), there exists a y such that xRy. Consequently,

there is a sequence 〈xn : n ∈ ω〉 in the ground model M such that for each n ∈ ω,

xnRxn+1. If xn is supported by En for every n ∈ ω, then 〈xn : n ∈ ω〉 is supported
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by
⋃

n∈ω En. Since I is closed under countable unions, the sequence 〈xn : n ∈ ω〉

is in N .

A class of models Mℵα
for any regular cardinal ℵα (similar to the model Mℵ1

constructed in Theorem 7 of [20]) can be defined where ACLO and LW hold but

LT fails, by replacing ℵ1 by ℵα. Moreover in Mℵα
, DC<ℵα

holds since I is closed

under less than ℵα unions.

Remark 4.8. In the permutation model N of [17], CS, as well as CWF, holds

following the work in this section. Moreover, the following statement holds in N ,

following the work in this section.

‘If in a partially ordered set, all chains are finite and all antichains are

countable, then the set is countable.’

Theorem 4.9. There is a permutation model N of ZFA, where there is an

amorphous set. Moreover, the following holds in N .

(1) If in a partially ordered set, all chains are finite and all antichains are

countable, then the set is countable.

(2) If in a partially ordered set, all chains are finite and all antichains have

size ℵα, then the set has size ℵα for any regular ℵα.

Proof: We consider the basic Fraenkel model (labeled as Model N1 in [8]) where

‘there are no amorphous sets’ is false and UT(WO,WO,WO) holds, c.f. [8]. Let

(P,≤) be a p.o. set in N1, and E be a finite support of (P,≤). By (1) in the proof

of Lemma 4.2, O = {OrbE(p) : p ∈ P} is a well-ordered partition of P . Now for

each p ∈ P , OrbE(p) is an antichain, c.f. the proof of Lemma 9.3 in [11]. Thus,

by methods of Lemma 4.2, (1) and (2) hold in N1. �

Theorem 4.10. There is a permutation model of ZFA where CS, as well as

CWF, holds, but ACωfin fails. Moreover, the following statements hold in the

model.

(1) For every 3 ≤ k < ω, Pk holds for any graph G1 on some linearly-

orderable set of vertices.

(2) For an infinite graphG = (VG, EG) on a linearly-ordered set of vertices VG
and a finite graph H = (VH , EH), if every finite subgraph of G has

a homomorphism into H , then so has G.

(3) For every finite field F = 〈F, . . . 〉 and for every nontrivial linearly-order-

able vector space V over F , there exists a nonzero linear functional

f : V → F .

Proof: We recall Lévy’s permutation model (labeled as Model N6 in [8]).

◦ Defining the ground model M . We start with a ground model M of ZFA +

AC where A is a countably infinite set of atoms written as a disjoint union
⋃

{Pn :

n ∈ ω}, where Pn = {an1 , . . . , a
n
pn
} such that pn is the nth-prime number.
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◦ Defining the group G of permutations and the filter F of subgroups of G.

– Defining G. Let G be the group generated by the following permuta-

tions πn of A.

πn : an1 7→ an2 7→ · · · 7→ anpn 7→ an1 and πn(x) = x for all x ∈ A\Pn.

– Defining F . Let F be the filter of subgroups of G generated by {fixG(E) :

E ∈ [A]<ω}.

◦ Defining the permutation model. Consider the permutation model N6 deter-

mined by M , G and F .

It is well-known that in N6, ACωfin fails since {Pi : i ∈ ω} has no (partial) choice

function, c.f. [11]. Consequently, following Lemma 4.4 of [20], CAC fails in N6.

Since every permutation ϕ ∈ G moves only finitely many atoms, following the

arguments in Lemma 4.2, we can observe that CS, as well as CWF, holds in N6.

Lemma 4.11. In N6, LW holds.

Proof: Let (X,≤) be a linearly ordered set in N6 supported by E. We show

fixGE ⊆ fixGX which implies that X is well-orderable in N6. For the sake of

contrary assume fixGE 6⊆ fixGX . So there is an element y ∈ X which is not

supported by E and there is a ϕ ∈ fixGE such that ϕ(y) 6= y. Since ϕ(y) 6= y

and ≤ is a linear order on X , we obtain either ϕ(y) < y or y < ϕ(y). Let

ϕ(y) < y. Since every permutation ϕ ∈ G moves only finitely many atoms there

exists some k < ω such that ϕk = 1A. Thus, p = ϕk(p) < ϕk−1(p) < · · · <

ϕ(p) < p which is a contradiction. Similarly we can arrive at a contradiction if

we assume y < ϕ(y). �

Since LW holds in N6, we can observe (1), (2) and (3) in N6 by observations

in Section 3. �

Theorem 4.12. There is a permutation model of ZFA where CS, as well as

CWF, holds, but LOKW−
4 fails. Moreover, the following statements hold in the

model.

(1) For every 3 ≤ k < ω, Pk holds for any graph G1 on some linearly-

orderable set of vertices.

(2) For an infinite graphG = (VG, EG) on a linearly-ordered set of vertices VG
and a finite graph H = (VH , EH), if every finite subgraph of G has a ho-

momorphism into H , then so has G.

(3) For every finite field F = 〈F, . . . 〉 and for every nontrivial linearly-order-

able vector space V over F , there exists a nonzero linear functional

f : V → F .
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Proof: We recall the permutation model M from the second assertion of Theo-

rem 10 (ii) of [5].

◦ Defining the ground model M . Let κ be any infinite well-ordered car-

dinal number. We start with a ground model M of ZFA + AC where A is

a κ-sized set of atoms written as a disjoint union
⋃

{Aα : α < κ}, where Aα =

{aα,1, aα,2, aα,3, aα,4} such that |Aα| = 4 for all α < κ.

◦ Defining the group G of permutations and the filter F of subgroups of G.

– Defining G. Let G be the weak direct product of Gα’s where Gα is the

alternating group on Aα for each α < κ.

– Defining F . Let F be the normal filter of subgroups of G generated by

{fixG(E) : E ∈ [A]<ω}.

◦ Defining the permutation model. Consider the permutation model M deter-

mined by M , G and F .

In M, LOKW−
4 fails, c.f. Theorem 10 (ii) of [5]. Since every permutation

ϕ ∈ G moves only finitely many atoms, following the arguments in Lemma 4.2,

we can observe that CS, as well as CWF, holds in M. Since LW holds in M,

c.f. Theorem 10 (ii) of [5], we can observe (1), (2) and (3) in M by observations

in Section 3. �

5. Observations in Howard’s model

Theorem 5.1. For any 3 ≤ k < ω, Pk follows from Fk−1 in ZF. Moreover, if

X ∈ {AC3,ACωfin}, then the statement Pk does not imply X in ZFA when k = 3.

Proof: Fix 3 ≤ k < ω. Suppose χ(EG1
) = k, χ(EG2

) ≥ ω and G1 is a graph on

some well-orderable set of vertices. First we observe that if g : VG1
→ {1, . . . , k}

is a good k-coloring of G1, then G(〈x, y〉) = g(x) is a good k-coloring of G1×G2.

So, χ(EG1×G2
) ≤ k. For the sake of contradiction assume that F : VG1

× VG2
→

{1, . . . , k− 1} is a good coloring of G1×G2. For each color c ∈ {1, . . . , k− 1} and

each vertex x ∈ VG1
we let Ax,c = {y ∈ VG2

: F (x, y) = c}. Define a relation R

on {1, . . . , k − 1} as (v1, i)R(v2, j) if and only if ‘v1 6= v2 implies Av1,i ∩ Av2,j is

not independent’ for v1, v2 ∈ VG1
. By Fk−1 and Claim 3.8 there exists a choice

function f such that for any x, x′ ∈ VG1
, Ax,f(x) ∩ Ax′,f(x′) is not independent.

Since x→ f(x) is not a good coloring in G1 as χ(EG1
) = k, there are x, x′ ∈ VG1

with f(x) = f(x′) = j and {x, x′} ∈ EG1
. Consequently, A′ = Ax,f(x) ∩ Ax′,f(x′)

is not independent. Pick y, y′ ∈ A′ joined by an edge in EG2
. Then (x, y) and

(x′, y′) are joined in EG1
×EG2

and get the same color j which is a contradiction

to the fact that F is a good coloring of G1 ×G2.
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For the second assertion, we consider the permutation model N from Section 3

of [7] where AC3 fails, and F2 holds. Consequently, P3 holds in N . In N , there

is a countable family A = {Ai : i ∈ ω} which has no partial choice function.

Consequently, PACωfin fails. Since PACωfin is equivalent to ACωfin, see the proof of

Lemma 4.4 of [20], ACωfin fails in N . �

Question 5.2. If k > 3, does UL follow from Pk? Otherwise is there any model

of ZF or ZFA, where Pk holds for k > 3, but UL fails?

Theorem 5.3. For any 2 ≤ k < ω, PG,H restricted to finite graph H with k ver-

tices follows from Fk in ZF. Moreover, if X ∈ {AC3,ACωfin}, then PG,H restricted

to finite graph H with 2 vertices does not imply X in ZFA.

Proof: Fix 2 ≤ k < ω. Let VH = {v1, . . . , vk}. For each x ∈ VG, let Ax =

{(x, v1), . . . , (x, vk)}. Define a relation R on
⋃

x∈VG
Ax by (x, vi)R(x′, vj) if and

only if ‘{x, x′} ∈ EG implies {vi, vj} ∈ EH ’ for (x, vi) ∈ Ax, (x
′, vj) ∈ Ax′ . By

assumption, for all finite F ⊂ VG, there exists a homomorphism hF : G ↾ F → H .

For any finite F ⊂ VG, and a homomorphism hF of F , let hF
∗(j) = (j, hF (j))

for j ∈ F . Clearly, hF
∗ is an R-consistent choice function for {Ax}x∈F . By Fk,

there is an R-consistent choice function hF
∗ for {Ax}x∈VG

. Define hVG
on VG by

hVG

∗(j) = (j, hVG
(j)) for j ∈ VG. Let (j, j′) ∈ EG such that j, j′ ∈ VG. Since

iI
∗ is R-consistent, (j, hVG

(j))R(j′, hVG
(j′)). By the definition of R, (hVG

(j),

hVG
(j′)) ∈ EH .

For the second assertion, we once more consider the permutation model N from

Section 3 of [7] where AC3 and ACωfin fail, and F2 holds. Consequently, ‘PG,H for

a finite graph H with 2 vertices’ holds in N . �
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