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K Y B E R N E T I K A — V O L U M E 5 7 ( 2 0 2 1 ) , N U M B E R 4 , P A G E S 7 1 4 – 7 3 6

GENERATING METHODS FOR PRINCIPAL TOPOLOGIES
ON BOUNDED LATTICES

Funda Karaçal, Ümit Ertuğrul and M. Nesibe Kesicioğlu

In this paper, some generating methods for principal topology are introduced by means
of some logical operators such as uninorms and triangular norms and their properties are
investigated. Defining a pre-order obtained from the closure operator, the properties of the
pre-order are studied.

Keywords: principal topology, bounded lattice, generating method, uninorm, triangular
norm

Classification: 03E72, 03B52, 08A72, 54A10, 06B30, 06F30

1. INTRODUCTION

The notion of principal space introduced by [1], with the name of Diskrete Ra̋ume, is
a topological space in which any intersections of open sets is also open. Later on, this
kind of topologies has been called as principal spaces [5, 18, 19, 20, 22, 25].

Principal spaces have significant roles in the topological sense. [22] has shown that
the lattice of topologies on any set is complemented and each topology has a principal
topology complement. This demonstrates the importance of them.

Principal spaces with more applications like geometry, digital topology, diverse branches
of computer sciences, natural and social sciences are used in theoretical physics [23].

Finite spaces are special forms of principal spaces [3]. Note that principal topologies
are also known as Alexandrov topologies and there exists a one-to-one correspondence
between Alexandrov topologies and preorders [18, 25]. The close relationships between
the principal spaces and posets raise the question of whether it is possible to obtain a
principle topology by means of some operators on bounded lattices. In this paper, we
give some generating methods for principal topologies. In this sense, triangular norms
and uninorms known existence on bounded lattices provide a very rich resource for
generating principal topologies. The paper is organized as follows: In Section 2, we
review some basic concepts and notations which will be used in the paper. In Section
3, for a set X and a family of the functions {fi}i∈I with for all i ∈ I, fi : X → X,
we define a topology denoted by T〈{fi}i∈I〉. We show that (X, T〈{fi}i∈I〉) is a quasi-
Hausdorff space. We give a relationship between the principal topology given in [13]
and 〈{Ux0}x0∈A〉-topology on a bounded lattice L. We introduce 〈{fi}i∈I〉-point for
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the topological space (X, T〈{fi}i∈I〉). We determine a relationship between the notions
of minimal point and 〈{Ux0

}x0∈A〉-point. We present some properties of 〈{Ux0
}x0∈A〉-

point when U is a t-norm or t-conorm. Also, we show that the topology (L,P(Tx0
)) is

a T0 space. We introduce the notion of fixed point for the topology (L, T〈{fi}i∈I〉). We
present a relationship between a 〈{Ux0

}x0∈A〉-point and a fixed point. In Section 4, we
give two topological closure operators c∗U,A and c∗∗U,A by means of a uninorm U and a set
A ⊆ L with under some conditions. We define two topologies Tc∗U,A

and Tc∗∗U,A
obtained

from the introduced closure operators. We investigate some properties of the introduced
topologies. We show that Tc∗U,A

is a principal topology. Also, we present that Tc∗U,A
is

a quasi Hausdorff space but it is not a Hausdorff space. We investigate the relationship
between the topologies TcU,A

, Tc∗U,A
and Tc∗∗U,A

.

2. NOTATIONS, DEFINITIONS AND A REVIEW OF PREVIOUS RESULTS

In this section, we recall some basic notions and results.

A bounded lattice (L,6) has a top and a bottom element, denoted by 1 and 0,
respectively, i. e., there exist two elements 1, 0 ∈ L such that 0 6 x 6 1, for all x ∈ L.

Definition 2.1. (Karaçal and Mesiar [14]) Let (L,≤, 0, 1) be a bounded lattice. An
operation U : L2 → L is called a uninorm on L, if it is commutative, associative,
increasing with respect to the both variables and has a neutral element e ∈ L.

Definition 2.2. (Ma and Wu [21]) An operation T (S) on a bounded lattice L is called
a triangular norm (triangular conorm) if it is commutative, associative, increasing with
respect to the both variables and has a neutral element 1 (0).

Recall that a uninorm U possessing a neutral element e = 1 is, in fact, a triangular
norm. Similarly, a uninorm U with a neutral element e = 0 is, in fact, a triangular
conorm.

Definition 2.3. (Grabisch et al. [12], Kesicioğlu et al. [17]) A uninorm U is called
conjunctive or disjunctive if
U(0, 1) = 0 or U(0, 1) = 1 respectively.

Definition 2.4. (Kelley [16]) A map c : ℘(X) → ℘(X) is called a topological closure
operator on non-empty set X if it satisfies following contitions;

C1. c(∅) = ∅,

C2. A ⊆ c(A) for all A ⊆ X,

C3. c(c(A)) = c(A) for all A ⊆ X,

C4. c(A ∪B) = c(A) ∪ c(B) for all A,B ⊆ X.

Note that a closure operator c on X is called algebraic if

c(A) =
⋃
{c(F ) : F is a finite subset of A}.
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The following theorem of Kuratowski shows that these four statements are actually
characteristic of closure. The topology defined below is the topology associated with a
closure operator.

Theorem 2.5. (Kelley [16]) Let c be a topological closure operator on X, Let F be the
family of all subsets A of X for which c(A) = A, and let T be the family of complements
of members of F. That is, T = {L \ A : A ∈ F}. Then T is a topology for X, and c(A)
is the τc-closure of A for each subset A of X.

Definition 2.6. (Kelley [16]) Let X be a topological space. X is called T0 − space iff
for each x, y ∈ X such that x 6= y there is an open set U ⊆ X so that U contains one of
x and y but not the other.

Proposition 2.7. (Kelley [16]) Let X be a topological space. Then, X is a T0− space
if and only if either x /∈ c({y}) or y /∈ c({x}) for all x, y ∈ X such that x 6= y.

Definition 2.8. (Dixmier [6]) A topological space X is said to be a Hausdorff space if
any two distinct points of X admit disjoint neighborhoods.

Definition 2.9. (Echi [8]) A space X is said to be a quasi-Hausdorff space if for each
distinct points x, y ∈ X, either there exists z ∈ X such that x, y ∈ c({z}) or x and y
have disjoint neighborhoods.

Definition 2.10. (Echi [8]) Let X be a set and f : X → X a function. A subset A of
X is called f -invariant if the condition f(A) ⊆ A holds.

Definition 2.11. (Echi [8]) Let X be a set and f : X → X be a function. The
topology P(f) on X is defined with closed sets exactly those A which are f -invariant,
i. e., f(A) ⊆ A.

Clearly, P(f) provides a principal topology on X.

Definition 2.12. (Echi [8]) The pre-order determined by (X,P(f)) is given by: for all
x, y ∈ X

x ≤f y ⇔ fn(y) = x for some n ∈ N.

Definition 2.13. (Echi [8]) A minimal point of a pre-ordered set (X,≤) is an x ∈ X
satisfying the property: for each y ∈ X if y ≤ x, then x ≤ y.

Definition 2.14. (Echi [8]) An element x is called a fixed point of the topology
(X,P(f)) if f(x) = x holds.
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3. THE T〈{fi}i∈I〉-TOPOLOGY

In this section, we define a topology denoted by T〈{fi}i∈I〉 for a family of the functions
{fi}i∈I with fi : X → X for a set X and all i ∈ I. Some properties of the topology are
investigated. Especially, some properties of (X,≤〈{Ux0

}x0∈A〉) are investigated.
Let X be a set, the family of the functions {fi}i∈I with for all i ∈ I, fi : X → X.

Define the sets as follows:

〈{fi}i∈I〉 = {fn1
i1
◦ fn2

i2
◦ · · · ◦ fnk

ik
| k, n1, n2, . . . , nk ∈ N, i1, i2, . . . , ik ∈ I}

and for all x ∈ X

O〈{fi}i∈I〉(x) = {fn1
i1
◦ fn2

i2
◦ · · · ◦ fnk

ik
(x)| k, n1, n2, . . . , nk ∈ N, i1, i2, . . . , ik ∈ I}.

Proposition 3.1. Let X be a set and A ⊆ X. The operation c : ℘(X)→ ℘(X) defined
by c(A) =

⋃
h∈〈{fi}i∈I〉 h(A) is a closure operator.

P r o o f . (i) For j ∈ I, consider the function h∗ = fj ∈ 〈{fi}i∈I〉. Since A = id(A) =
fj(A) ⊆

⋃
h∈〈{fi}i∈I〉 h(A), we have that A ⊆ c(A).

(ii) Now, let us show that c(c(A)) = c(A).

c(c(A)) =
⋃

h∈〈{fi}i∈I〉

h(c(A))

=
⋃

h∈〈{fi}i∈I〉

h(
⋃

h∗∈〈{fi}i∈I〉

h∗(A))

=
⋃

h′=h◦h∗∈〈{fi}i∈I〉

h
′
(A) = c(A).

(iii) Let A,B ⊆ X. Then,

c(A ∪B) =
⋃

h∈〈{fi}i∈I〉

h(A ∪B)

=
⋃

h∈〈{fi}i∈I〉

(h(A) ∪ h(B))

=
⋃

h∈〈{fi}i∈I〉

h(A) ∪
⋃

h∈〈{fi}i∈I〉

h(B)

= c(A) ∪ c(B).

�

The topology defined by T〈{fi}i∈I〉 = {A′ | A ∈ C〈{fi}i∈I〉} is the topology with the
closure operator c, where C〈{fi}i∈I〉 = {A ⊆ X| c(A) = A}. The topology T〈{fi}i∈I〉 is
called 〈{fi}i∈I〉-topology.

Definition 3.2. The pre-order determined by (X, T〈{fi}i∈I〉) is given by for any a, b ∈ X
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a ≤〈{fi}i∈I〉 b⇔ ∃h ∈ 〈{fi}i∈I〉 such that h(b) = a.

Proposition 3.3. Let X be a set and x ∈ X. Then,

(i) c({x}) =O〈{fi}i∈I〉(x) = (↓ x)〈{fi}i∈I〉, where (↓ x)〈{fi}i∈I〉 = {y ∈ X| y ≤〈{fi}i∈I〉
x}.

(ii) The smallest open set containing x is the set defined by

V〈{fi}i∈I〉(x) = {y ∈ X | there exists h ∈ 〈{fi}i∈I〉 such that h(y) = x} =
(x ↑)≤〈{fi}i∈I〉 , where (x ↑)≤〈{fi}i∈I〉 = {y ∈ X| x ≤〈{fi}i∈I〉 y}

(iii) (X, T〈{fi}i∈I〉) is a quasi-Hausdorff space.

P r o o f . (i) Since c({x}) =
⋃
h∈〈{fi}i∈I〉 h({x}), we have that

O〈{fi}i∈I〉(x) = {h(x)| h ∈ 〈{fi}i∈I〉} ⊆ c({x}).

Let a ∈ c({x}). Then, there exists h∗ ∈ 〈{fi}i∈I〉 such that a ∈ h∗({x}), whence
a = h∗(x) ∈ O〈{fi}i∈I〉(x). Thus, c({x}) ⊆ O〈{fi}i∈I〉(x) holds. By the definitions of the
sets, it is clear that O〈{fi}i∈I〉(x) = (↓ x)〈{fi}i∈I〉.

(ii) For j ∈ I, consider the function h = fj ∈ 〈{fi}i∈I〉. Since h(x) = x, it is clear
that x ∈ V〈{fi}i∈I〉(x). Now, let us show that V〈{fi}i∈I〉(x) ∈ T〈{fi}i∈I〉. That is, it is
sufficient to prove that

c(X \ V〈{fi}i∈I〉(x)) = X \ V〈{fi}i∈I〉(x).

Let y ∈ c(X \ V〈{fi}i∈I〉(x)) =
⋃
h∈〈{fi}i∈I〉 h(X \ V〈{fi}i∈I〉(x)). Then, there exists

h∗ ∈ 〈{fi}i∈I〉 and t ∈ X \ V〈{fi}i∈I〉(x) such that

y = h∗(t).

If y ∈ V〈{fi}i∈I〉(x), it would exist h∗∗ ∈ 〈{fi}i∈I〉 such that h∗∗(y) = x. Then, it would
be obtained that

x = h∗∗(y) = h∗∗(h∗(t))

= (h∗∗ ◦ h∗)(t).

Since h∗∗ ◦ h∗ ∈ 〈{fi}i∈I〉, we would have t ∈ V〈{fi}i∈I〉(x), a contradiction. Then,
c(X \ V (x)) ⊆ X \ V〈{fi}i∈I〉(x). Thus, the equality

c(X \ V〈{fi}i∈I〉(x)) = X \ V〈{fi}i∈I〉(x)

is satisfied. Let us prove that V〈{fi}i∈I〉(x) is the smallest open set containing the element
x. Let M ∈ T〈{fi}i∈I〉 be a set containing x. Then,

X \M = c(X \M) =
⋃

h∈〈{fi}i∈I〉

h(X \M).
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Let y ∈ V〈{fi}i∈I〉(x). Then, there exists h ∈ 〈{fi}i∈I〉 such that h(y) = x ∈ M .
Suppose that y 6∈ M . Then, y ∈ X \M =

⋃
h∈〈{fi}i∈I〉 h(X \M). Thus, there exists

h∗ ∈ 〈{fi}i∈I〉 and k ∈ X\M such that y = h∗(k). Then, h(y) = h(h∗(k)) = (h◦h∗)(k) ∈⋃
h∈〈{fi}i∈I〉 h(X \M) = X \M , whence h(y) 6∈ M , contradiction. Thus, it must be

y ∈M . Hence, we have that V〈{fi}i∈I〉(x) ⊆M .

(iii) For the smallest open sets V〈{fi}i∈I〉(x) and V〈{fi}i∈I〉(y) containing x and y,
respectively, if V〈{fi}i∈I〉(x) ∩ V〈{fi}i∈I〉(y) = ∅, the proof is clear.

Let V〈{fi}i∈I〉(x) ∩ V〈{fi}i∈I〉(y) 6= ∅. Then, there exists an element z such that
z ∈ V〈{fi}i∈I〉(x) ∩ V〈{fi}i∈I〉(y). Thus, there exists h, h∗ ∈ 〈{fi}i∈I〉 such that h(z) = x
and h∗(z) = y, whence x ∈ c({z}) and y ∈ c({z}). Thus, (X, T〈{fi}i∈I〉) is a quasi-
Hausdorff space. �

Remark 3.4. Let X be a set. Consider the topology (X,P(f)). By Proposition 1.2.
[8], we know that for any x, y ∈ X, either Vf (x) ∩ Vf (y) = ∅ or Vf (x) and Vf (y) are
comparable.

If we take the topology (X, T〈{fi}i∈I〉), the claim stated above need not be true. Let
us look at the following example.

Example 3.5. Consider the lattice (L,≤, 0, 1) whose lattice diagram is depicted as in
Figure 1.

0

a b

1

Fig. 1. (L,≤, 0, 1).

Take the topology (L, T〈{Tx0
}x0∈L〉) defined by Tx0

(x) = T (x0, x), where T is a t-norm

on L. For T = TW =
{

x ∧ y x = 1 or y = 1
0 otherwise, , it is clear that T0(x) = 0, T1(x) = x,

Tb(x) =
{

b x = 1,
0 otherwise, and Ta(x) =

{
a x = 1,
0 otherwise.

In this case, V〈{Tx0
}x0∈L〉(a) = {1, a} an V〈{Tx0

}x0∈L〉(b) = {1, b}. As seen, V〈{Tx0
}x0∈L〉(a)∩

V (b) 6= ∅ and no one of the sets V〈{Tx0
}x0∈L〉(a) and V〈{Tx0

}x0∈L〉(b) do not contain the
other one.
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Proposition 3.6. (Karaçal and Köroğlu [13]) Let L be a bounded lattice and U be a
uninorm on L with the neutral element e. Let A be a subset of L such that e ∈ A and
U(A,A) ⊆ A. The operator cU,A : ℘(L) → ℘(L) defined by cU,A(X) = U(X,A) is a
topological closure operator on L.

Definition 3.7. (Karaçal and Köroğlu [13]) A subset X of L is called a closed subset
if cU,A(X) = X. The family of all closed subsets of L is denoted by FcU,A

= {X ⊆ L :
cU,A(X) = X}.

Proposition 3.8. (Karaçal and Köroğlu [13]) Let cU,A(X) be the closure of X ⊆ L.
Then, TcU,A

= {L \X : X ∈ FcU,A
} is a principal topology on L.

Proposition 3.9. The principal topology TcU,A
given in [13] is a 〈{Ux0}x0∈A〉-topology,

where Ux0
: L→ L defined by Ux0

(x) = U(x0, x), x0 ∈ A.

P r o o f . Let K ∈ FcU,A
. Then, cU,A(K) = U(K,A) = K. Suppose that K 6∈

C〈{Ux0
}x0∈A〉. Then, c(K) 6= K. Thus, K ( c(K). Then, there exists an element

k ∈ c(K) such that k 6∈ K. Since k ∈ c(K) =
⋃
〈{Ux0

}x0∈A〉
h(K), there exists an

h ∈ 〈{Ux0
}x0∈A〉 such that k ∈ h(K). Thus, there exists an element k∗ ∈ K such that

for some x0 ∈ A
k = h(k∗) = Ux0

(k∗) = U(x0, k
∗) 6∈ K.

For x0 ∈ A and k∗ ∈ K, since k = U(x0, k
∗) ∈ cU,A(K) = K, we have a contradiction.

Conversely, let B ∈ C〈{Ux0
}x0∈A〉. Then, c(B) = B. Let us show that U(A,B) = B.

Since c(B) =
⋃
h∈〈{Ux0

}x0∈A〉
h(B), B =

⋃
h∈〈{Ux0

}x0∈A〉
h(B). Since e ∈ A, it is clear

that B = U({e}, B) ⊆ U(A,B). Let U(x, y) ∈ U(A,B) for x ∈ A and y ∈ B. Since
Ux ∈ 〈{Ux0}x0∈A〉, it is clear that U(x, y) = Ux(y) ∈

⋃
h∈〈{Ux0}x0∈A〉

h(B) = B, whence

U(A,B) ⊆ B. Thus, since cU,A(B) = U(A,B) = B, we have that B ∈ FcU,A
. �

Remark 3.10. Let L be a lattice, U be a uninorm on L and A ⊆ L. Consider the set
{Ux0}x0∈A. Let Ux0 ◦Uy0 ∈ {Ux0}x0∈A for any x0, y0 ∈ A. Then, there exists an element
z0 ∈ A such that

Ux0
◦ Uy0 = Uz0 .

It is clear that Ux0
◦ Uy0 = UU(x0,y0). Thus,

U(z0, x) = Uz0(x) = UU(x0,y0)(x) = U(U(x0, y0), x).

If we take as x = e, it can be easily seen that U(x0, y0) = z0 from the last equalities.
Thus, for any x0, y0 ∈ A, we have that U(x0, y0) ∈ A, which means that U(A,A) ⊆ A.

Definition 3.11. Let X be a set and A be closed set with respect to 〈{fi}i∈I〉-topology.
The subset A of X is called a minimal set of 〈{fi}i∈I〉-topology if A is a minimal element
in the set of all nonempty closed sets.

Definition 3.12. Consider the topological space (X, T〈{fi}i∈I〉). An element x ∈ X is
said to be a 〈{fi}i∈I〉- point if there exists some h ∈ 〈{fi}i∈I〉 with h 6= id such that
h(x) = x.
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Note that, in Definition 3.12 if we take only one function instead of family, then it is
clear that 〈{fi}i∈I〉- point coincides the periodic point notion.

Proposition 3.13. (i) The minimal sets of the topology (X, T〈{fi}i∈I〉) are exactly
the closures of 〈{fi}i∈I〉- points, where fi 6= id for all i ∈ I.

(ii) Let L be a lattice and ∅ 6= A ⊆ L. If x is a minimal point of (X,≤〈{Ux0
}x0∈A〉),

then x is a 〈{Ux0
}x0∈A〉- point, where Ux0

6= id for x0 ∈ A.

P r o o f .
(i) Let A ⊆ X be a minimal subset and x ∈ A. Then, {x} ⊆ A. Since A is a closed

set, it is clear that c({x}) ⊆ c(A) = A, whence c({x}) ⊆ A. Since A is minimal set, we
have that

c({x}) = A.

Now, let us show that for any x ∈ A and h ∈ 〈{fi}i∈I〉, A coincides with the closure
of h(x). Since c({x}) =

⋃
h∗∈〈{fi}i∈I〉 h

∗(x), it is clear that h(x) ∈ c({x}) = A. Then,

{h(x)} ⊆ A. Since A is closed, it is obtained that

c({h(x)}) ⊆ A.

By the minimality of A again, we have that

O〈{fi}i∈I〉(h(x)) = c({h(x)}) = A.

Thus, we obtain that

A = O〈{fi}i∈I〉(h(x)) = c({x}) = c({h(x)}).

Since x ∈ c({x}) = c({h(x)}) =
⋃
h∗∈〈{fi}i∈I〉 h

∗(h(x)), there exists an h∗ ∈ 〈{fi}i∈I〉
such that x = h∗(h(x)) = (h∗ ◦ h)(x). Thus, x is a 〈{fi}i∈I〉- point.

Conversely, let x be a 〈{fi}i∈I〉- point. Let us prove that the closure of x is a minimal
set. Since c({x}) = O〈{fi}i∈I〉(x) and c({x}) is the least closed set containing x, it is
minimal.

(ii) Let x be a minimal point. By h(x) = h1(x), it is clear that
h(x) ≤〈{Ux0

}x0∈A〉 x. Since x is a minimal point, we have that x ≤〈{Ux0
}x0∈A〉 h(x).

Then, there exists h∗ ∈ 〈{Ux0
}x0∈A〉 such that h∗(h(x)) = x. Thus, x is a 〈{Ux0

}x0∈A〉-
point. �

Remark 3.14. Let L be a bounded lattice, ∅ 6= A ⊆ L and T be a t-norm on L.
Consider the topology (L, T〈{Txi

}xi∈A〉). If 1 is a 〈{Txi
}xi∈A〉- point, then 1 ∈ A. Indeed,

suppose that 1 is a 〈{Txi}xi∈A〉- point. Then, there exists h ∈ 〈{Txi}xi∈A〉 such that
h(1) = 1. Since h ∈ 〈{Txi}xi∈A〉, there exists n1, n2, . . . , nk ∈ N, x1, x2, . . . , xk ∈ A such
that

h = Tn1
x1
◦ Tn2

x2
◦ · · · ◦ Tnk

xk
.

Thus,

1 = h(1) = Tn1
x1

(Tn2
x2
· · ·Tnk−1

xk−1
(Tnk
xk

(1)))
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= Tn1
x1

(Tn2
x2
· · ·Tnk−1

xk−1
(Tnk−1
xk

(Txk
(1))))

= Tn1
x1

(Tn2
x2
· · ·Tnk−1

xk−1
(Tnk−1
xk

(T (xk, 1))))

= Tn1
x1

(Tn2
x2
· · ·Tnk−1

xk−1
(Tnk−1
xk

(xk)))

= Tn1
x1

(Tn2
x2
· · ·Tnk−1

xk−1
((xk)nk−1

T ))

≤ Tn1
x1

(Tn2
x2
· · ·Tnk−2

xk−2
(Tnk−1
xk−1

(1)))

= · · · = Tn1
x1

(Tn2
x2
· · ·Tnk−2

xk−2
((xk−1)

nk−1−1
T ))

≤ Tn1
x1

(Tn2
x2
· · ·Tnk−2

xk−2
(1)) ≤ · · · ≤ Tn1

x1
(1)

= Tn1−1
x1

(Tx1
(1)) = Tn1−1

x1
(T (x1, 1))

= Tn1−1
x1

(x1) = (x1)n1−1
T ≤ T (x1, 1) = x1,

whence we have that 1 = x1 ∈ A.

Proposition 3.15. Let L be a lattice and ∅ 6= A ⊆ L. In the topological space
(L, T〈{Ux0

}x0∈A〉), the following are satisfied.

(i) If all points of A are 〈{Ux0
}x0∈A〉- points, then A ⊆ U(A,A).

(ii) If U is a t-norm (t-conorm, resp.), then 0 (1, resp.) is a 〈{Ux0
}x0∈A〉- point.

(iii) Let x, y be two 〈{Ux0
}x0∈A〉- points. If U is a t-norm (or t-conorm), U(x, y) is also

a 〈{Ux0
}x0∈A〉- point.

P r o o f . (i) Let all points of A be 〈{Ux0
}x0∈A〉- point and a ∈ A. Then, there exists

Ux0
∈ 〈{Ux0

}x0∈A〉 such that Ux0
(a) = a. Since U(x0, a) = a, it is clear that A ⊆

U(A,A).

(ii) Let U be a t-norm. For any element x ∈ A, since Ux(0) = U(x, 0) = 0, it is clear
that 0 is a 〈{Ux0}x0∈A〉- point.

Similarly, it can be easily shown that 1 is 〈{Ux0}x0∈A〉- point when U is a t-conorm.

(iii) Let U be a t-norm. Since x and y are two 〈{Ux0}x0∈A〉- points,

x = (Ux0 ◦ Ux1 ◦ · · · ◦ Uxn)(x) and y = (Ux0
′ ◦ Ux1

′ ◦ · · · ◦ Uxm
′ )(y).

Then,

U(x, y) = U((Ux0 ◦ Ux1 ◦ · · · ◦ Uxn)(x), (Ux0
′ ◦ Ux1

′ ◦ · · · ◦ Uxm
′ )(y))

= U(U(x0, U(x1, U(x2, . . . , U(xn, x)))), U(x0
′
, U(x1

′
, U(x2

′
,

. . . , U(xm
′
, y)))))

= U(U(x, U(x1, U(x2, . . . , U(xn, x0)))), U(y, U(x1
′
, U(x2

′
,

. . . , U(xm
′
, x0

′
)))))

= U(U(x, a), U(y, b)) = U(U(x, U(a, U(y, b))))

= U(U(x, U(y, U(a, b)))) = U(U(x, y), U(a, b))
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= UU(a,b)
(U(x, y)),

where U(a,b) ∈ 〈{Ux0
}x0∈A〉, a := U(x1, U(x2, . . . , U(xn, x0))) and

b := U(y, U(x1
′
, U(x2

′
, . . . , U(xm

′
, x0

′
)))). Thus, U(x, y) is a 〈{Ux0

}x0∈A〉- point. �

Proposition 3.16. Let (L,≤, 0, 1) be a bounded lattice and ∅ 6= A ⊆ L. Consider the
topology (L,P(Tx0

)) such that T is a t-norm and x0 ∈ A. If x is a 〈{Tx0
}x0∈A〉- point,

then x ≤ x0.

P r o o f . Let x be 〈{Tx0}x0∈A〉- point. Then, there exists an element m ∈ N∗ such that

Tmx0
(x) = x,

since x = Tmx0
(x) = T ((x0)mT , x) ≤ (x0)mT ≤ x0, x ≤ x0. �

Proposition 3.17. Let (L,≤, 0, 1) be a bounded lattice, ∅ 6= A ⊆ L and T be a t-norm.
Then,

(i) The topology (L,P(Tx0
)) is a T0-space.

(ii) (L,P(Tx0)) does not have any 〈Tx0〉- point except for fixed points.

P r o o f . (i) Let c({x}) = c({y}) for any x, y ∈ L. Since x ∈ c({y}), there exists n ∈ N∗
such that x = Tnx0

(y), whence x = T ((x0)nT , y) ≤ y. Similarly, it can be shown that
y ≤ x. Thus, we have that x = y.

(ii) Let x be a 〈Tx0
〉- point. Since

c({x}) = {x, Tx0
(x), T 2

x0
(x), . . . , Tn−1

x0
(x), Tnx0

(x) = x} and
c({Tx0(x)}) = {Tx0(x), T 2

x0
(x), . . . , Tnx0

(x) = x, Tn+1
x0

(x) = Tx0(x)}, it is clear that
c({x}) = c({Tx0(x)}). By (i), since (L,P(Tx0)) is a T0-space, x = Tx0(x), whence x
is a fixed point. �

Remark 3.18. Let L = [0, 1]. For the topology (L,P(Tx0
)) with x0 6= 1, the only fixed

point is the point 0. Indeed, for any n ∈ N, since x ≤ (x0)nT , it is clear that

x ≤ lim(x0)nT = 0,

whence x = 0.

Proposition 3.19. Let (L,≤, 0, 1) be a bounded lattice, U be a uninorm with the
neutral element e ∈ L. For any x0, y0 ∈ L such that x0 ≤ e and y0 > e, if P(Ux0

) =
P(Uy0), then x0 and y0 are 〈{Ux0

}〉- points.

P r o o f . It is clear that the closures of the set {x0} in the spaces (L,P(Ux0)) and
(L,P(Uy0)) are respectively as follows:

cP(Ux0 )({x0}) = {x0, Ux0
(x0), . . . , Unx0

(x0), . . .}
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and

cP(Uy0
)({x0}) = {x0, Uy0(x0), . . . , Uny0(x0), . . .}

= {x0, U(y0, x0), . . . , U((y0)nUy0
, x0), . . .}.

Since U(x0, y0) ∈ c({x0}), there exists an m ∈ N∗ such that

U(x0, y0) = Umx0
(x0) = U((x0)mUx0

, x0).

Then, it follows x0 ≤ U(x0, y0) = U((x0)mUx0
, x0) = (x0)m+1

Ux0
≤ x0 from x0 ≤ e. Thus,

(x0)m+1
Ux0

= x0, that is, x0 is a 〈{Ux0
}x0∈A〉- point.

Similarly, it can be easily seen that y0 is a 〈{Ux0
}x0∈A〉- point. �

Example 3.20. Take the uninorm [4] defined by

U(x, y) =



2xy (x, y) ∈ [0, 1
2 )2,

1 x, y ∈ ( 1
2 , 1]2,

0 x = 0 or y = 0,

x y = 1
2 ,

y x = 1
2 ,

min(x, y) otherwise.

Suppose that there exists n ∈ N such that Unx0
(x0) ≥ 1

2 for x0 <
1
2 . Since U((x0)n−1

U , x0) =
2n−1.xn0 ≥ 1

2 , we have that x0 ≥ 1
2 , contradiction. Then, for any x0 <

1
2 , it must be

U(x0)n(x0) < 1
2 . Now, let us show that x0 is not a 〈{Ux0

}x0∈A〉- point. Suppose that
x0 is a 〈{Ux0}x0∈A〉- point. Then, there exists n ∈ N∗ such that Unx0

(x0) = x0. Since

2n−1.xn0 = x0, we have that xn−1
0 = (1

2 )n−1, whence x0 = 1
2 . This is a contradiction.

Thus, x0 is not a 〈{Ux0
}x0∈A〉- point. That is, x0 is a 〈{Ux0

}x0∈A〉- point in the topology
([0, 1], T〈Ux0

〉). An element y0 >
1
2 being P(Ux0) = P(Uy0) does not exist.

Remark 3.21. Take the function defined by

U(x, y) =


0 x, y ∈ [0, 1

2 ],

max(x, y) x, y ∈ ( 1
2 , 1],

min(x, y) otherwise.

The function U is a t-norm [9]. Consider the topology (L,P(U 2
3
)). For any x ≥ 2

3 ,

since U 2
3
(x) = U( 2

3 , x) = x, x is a 〈{Ux0}x0∈A〉- point. Let 1
2 < x < 2

3 . Since U 2
3
(x) =

U( 2
3 , x) = 2

3 , x cannot be a fixed point. For x ≤ 1
2 , since U 2

3
(x) = U( 2

3 , x) = x, any

element x ∈ [0, 1
2 ] is a fixed point. Suppose that an element x belongs to the interval

( 1
2 ,

2
3 ) is a 〈{Ux0

}x0∈A〉- point. There must exist n ∈ N such that U 2
3
n(x) = x. Since

U(( 2
3 )Un

2
3

, x) = U( 2
3 , x) = 2

3 6= x, this is a contradiction. Thus, the points in the interval

( 1
2 ,

2
3 ) cannot be 〈{Ux0}x0∈A〉- points. Since any fixed points are also 〈{Ux0}x0∈A〉-

points, the set of 〈{Ux0}x0∈A〉- points in the topology (L,P(U 2
3
)) is equal to [0, 1

2 ]∪[ 2
3 , 1].
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Lemma 3.22. Let (L,≤, 0, 1) be a bounded lattice, ∅ 6= A ⊆ L. Let T be a t-norm and
x0 ∈ A. Every 〈Tx0

〉- point in the topology (L,P(Tx0
)) is a fixed point.

P r o o f . Let x be a 〈Tx0〉- point in the topology (L,P(Tx0)). There exists an m ∈ N∗
such that (x)mTx0

= x. Then,

Tm+1
x0

(x) = Tx0
(Tmx0

(x)) = Tx0
(x).

Since c({x}) = {Tnx0
(x)| n ∈ N}, it is clear that Tm+1

x0
(x) ∈ c({x}). Thus, {Tx0

(x)} ⊆
c({x}), whence we have that

c({Tx0
(x)}) ⊆ c({x}).

Then, c({Tx0
(x)}) = c({x}). Thus, we have that Tx0

(x) = x, that is, x is a fixed point.
�

The Lemma 3.22 may not be true for any uninorm U . Also, the topological space
(L,P(Ux0)) need not be a T0-space.

Example 3.23. Let (L,≤, 0, 1) be a bounded lattice whose lattice diagram as in Fig-
ure 2.

0

a e

1

Fig. 2. (L,≤, 0, 1).

Take the uninorm U : L2 → L defined as in Table 1:

U 0 a e 1
0 0 0 0 1
a 0 e a 1
e 0 a e 1
1 1 1 1 1

Tab. 1. The uninorm U .
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Consider the topology (L, T〈Ua〉). Since U2
a (a) = Ua(U(a, a)) = Ua(e) = a, a is 〈Ua〉-

point. But, Ua(a) = U(a, a) = e, that is, it is not a fixed point.

Corollary 3.24. Consider the topology (L,P(Ux0
)) with x0 < e. If any element x with

x < e is a 〈Ux0
〉- point, it is a fixed point.

Especially, when L is a chain, Lemma 3.22 is also true for uninorms. Let us investigate
the following proposition.

Proposition 3.25. Let (L,≤, 0, 1) be a chain, ∅ 6= A ⊆ L. Let U be a uninorm with
the neutral element e and x0 ∈ A. 〈Ux0

〉- point in the topology (L,P(Ux0
)) is a fixed

point.

P r o o f . If x0 = e, for any element x ∈ L, since Ue(x) = x, x is a fixed point, whence
it is 〈{Ux0

}x0∈A〉- point. Now, let x0 6= e and x be a 〈{Ux0
}x0∈A〉- point. Then, there

exists an n ∈ N∗ such that Unx0
(x) = x. Since L is a chain, either x0 ≤ e or x0 ≥ e.

Let x0 ≤ e. Since x = Unx0
(x) = U((x0)nU , x) ≤ U(x0, x) ≤ U(e, x) = x, we have that

Ux0(x) = x, that is, x is a fixed point.
Let x0 ≥ e. Since x = Unx0

(x) = U((x0)nU , x) ≥ U(x0, x) ≥ U(e, x) = x, we have that
Ux0

(x) = x, that is, x is a fixed point in this case. �

Corollary 3.26. Let (L,≤, 0, 1) be a chain, ∅ 6= A ⊆ L. Let U be a uninorm with the
neutral element e and x0 ∈ A. Consider the topology (L,P(Ux0)). x is a 〈Ux0〉- point
iff it is a fixed point.

The topologies 〈Ux0
〉 of different points may be coincident. Let us look at the following

example.

Example 3.27. Let (L,≤, 0, 1) be a bounded lattice whose lattice diagram as in Fig-
ure 3.

0

b a

1

e

Fig. 3. (L,≤, 0, 1).

Consider the uninorm given in Table 2.
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U 0 a b e 1
0 0 0 0 0 0
a 0 1 1 a 1
b 0 1 1 b 1
e 0 a b e 1
1 0 1 1 1 1

Tab. 2. The uninorm U .

Although a 6= b, T〈Ua〉 = {∅′ , {0}′ , {1}′ , {0, 1}′ , L′} = T〈Ub〉. Indeed,

Ua(∅) ⊆ ∅, (Ub(∅) ⊆ ∅),
Ua({0}) ⊆ {0} (Ub({0}) ⊆ {0}),
Ua({1}) ⊆ {1}, (Ub({1}) ⊆ {1}),

Ua({0, 1}) ⊆ {0, 1}, (Ub({0, 1}) ⊆ {0, 1}),
Ua(L) ⊆ L, (Ub(L) ⊆ L).

4. SOME DIFFERENT GENERATING METHODS FOR PRINCIPAL
TOPOLOGIES

In this section, two topological closure operators c∗U,A and c∗∗U,A are given by means of a
uninorm U and a set A ⊆ L with under some conditions. Also, two topologies Tc∗U,A

and
Tc∗∗U,A

are presented and some properties of the introduced topologies are investigated.
Moreover, we search the relationship between the topologies TcU,A

, Tc∗U,A
and Tc∗∗U,A

.

Proposition 4.1. Let L be a bounded lattice, e ∈ L, A ⊆ L such that [0, e] ∩ A 6= ∅,
U be a uninorm on L with the neutral element e and U(A,A) ⊆ A. The operation
c∗U,A : ℘(L)→ ℘(L) defined by

c∗U,A(X) = {y ∈ L : there exists a ∈ A and x ∈ X such that U(a, x) ≤ y}

is a topological closure operator.

P r o o f . (i) Let x ∈ X be arbitrary element. U(a, x) ≤ U(e, x) = x for a ∈ [0, e] ∩ A.
Thus, it is obtained that x ∈ c∗U,A(X). Then, X ⊆ c∗U,A(X).

(ii) Now, let us show that c∗U,A(c∗U,A(X)) = c∗U,A(X) for all X ∈ ℘(L) . It is clearly
obtained from (i) that c∗U,A(X) ⊆ c∗U,A(c∗U,A(X)). Conversely, k ∈ c∗U,A(c∗U,A(X)) be an
arbitrary element. Then, there exists u ∈ c∗U,A(X) and a ∈ A such that U(u, a) ≤ k. It
is obtained that U(x′, a′) ≤ u such that a′ ∈ A and x′ ∈ X from u ∈ c∗U,A(X). Then, k ∈
c∗U,A(X) since U(x′, U(a′, a)) = U(U(a′, x′), a) ≤ U(u, a) ≤ k. Thus, c∗U,A(c∗U,A(X)) ⊆
c∗U,A(X). c∗U,A(c∗U,A(X)) = c∗U,A(X) is obtained.

(iii) Let’s first show c∗U,A(K) ⊆ c∗U,A(L) for K ⊆ L.
m ∈ c∗U,A(K) be arbitrary element. Then, there exists a ∈ A and k ∈ K such that
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U(a, k) ≤ m. Since k ∈ L, m ∈ c∗U,A(L). Therefore, it is obtained that c∗U,A(K) ⊆
c∗U,A(L).

Since X,Y ⊆ X ∪ Y , we have c∗U,A(X) ∪ c∗U,A(Y ) ⊆ c∗U,A(X ∪ Y ). Conversely, let
s ∈ c∗U,A(X ∪ Y ). Then, there exists a ∈ A and t ∈ X ∪ Y such that U(a, t) ≤ s.
t is either an element of X or an element of Y . It follows from that s ∈ c∗U,A(X) or
s ∈ c∗U,A(Y ), respectively. Thus, c∗U,A(X ∪ Y ) ⊆ c∗U,A(X) ∪ c∗U,A(Y ). �

The topology defined by Tc∗U,A
= {L \ X | X ∈ Fc∗U,A

} is the topology with the

closure operator c∗U,A, where Fc∗U,A
= {X ⊆ L| c∗U,A(X) = X}.

Remark 4.2. In Proposition 4.1, [0, e]∩A 6=∅ means that A 6=∅ if U is a t-norm on L.

Proposition 4.3. Let L be a bounded lattice, e ∈ L, A ⊆ L such that [e, 1] ∩ A 6=
∅, U be a uninorm on L with neutral element e and U(A,A) ⊆ A. The operation
c∗∗U,A : ℘(L) → ℘(L) defined by c∗∗U,A(X) = {y ∈ L : there exists a ∈ A and x ∈
X such that U(a, x) ≥ y} is a topological closure operator.

P r o o f . The proof is similar to Proposition 4.1. �

The topology defined by Tc∗∗U,A
= {X ′ | X ∈ Fc∗∗U,A

} is the topology with the closure

operator c∗∗U,A, where Fc∗∗U,A
= {X ⊆ L| c∗∗U,A(X) = X}.

Proposition 4.4. Let (L, 0, 1,≤) be a bounded lattice, A,B ⊆ L be nonempty sets
such that 1 ∈ A and 0 ∈ B, T be a t-norm on L, S be a t-conorm on L and x, y ∈ L.
Consider topological closure operators c∗S,B , c∗∗T,A.

(i) c∗∗T,A({x}) ∩ c∗S,B({y}) 6= ∅ if and only if y ≤ x.

(ii) c∗S,B({x}) = x ↑.

(iii) c∗∗T,A({x}) = x ↓.

(iv) c∗∗T,A({x}) ∩ c∗S,B({x}) = {x}.

P r o o f . (i) Let z ∈ c∗∗T,A({x}) ∩ c∗S,B({y}) be an arbitrary element. Then, there exists
a1 ∈ A and a2 ∈ B such that z ≤ T (x, a1) and S(a2, y) ≤ z. Therefore, z ≤ x and
y ≤ z. Thus, y ≤ x. Conversely, let y ≤ x. Since y ≤ x = T (x, 1) for 1 ∈ A1,
y ∈ c∗∗T,A({x}).Thus, y ∈ c∗∗T,A({x}) ∩ c∗S,B({y}).

(ii) Let t ∈ c∗S,B({x}). Then, there exists an element a2 ∈ B such that S(a2, x) ≤ t. It
follows from x ≤ t that t ∈ x ↑. Conversely, let k ∈ x ↑. Thus, x ≤ k. Since S(0, x) ≤ k
for 0 ∈ B, k ∈ c∗S,B({x}).

(iii) It can be proved in similar ways as done in (ii).

(iv) It is immediately obtained from (ii) and (iii). �
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Lemma 4.5. Let L be a bounded lattice, e ∈ L, A ⊆ L such that [0, e] ∩ A 6= ∅, U be
a uninorm on L with neutral element e and U(A,A) ⊆ A. The operation c∗U,A : ℘(L)→
℘(L) defined by c∗U,A(X) = {y ∈ L : there exists a ∈ A and x ∈ X such that U(a, x) ≤
y} is an algebraic closure operator.

P r o o f . Let u ∈ c∗U,A(Y ). Then, U(a, y) ≤ u such that there exists a ∈ A and y ∈ Y .
Therefore, u ∈ c∗U,A({y}). Thus, u ∈

⋃
X⊆Y

X is finite set
{c∗U,A(X) : X ⊆ Y is finite set}.

Conversely, it is well known that c∗U,A(X) ⊆ c∗U,A(Y ) for X ⊆ Y since c∗U,A topological
closure operator. Then,⋃

X⊆Y
X is finite set

{c∗U,A(X) : X ⊆ Y is finite set} ⊆ c∗U,A(Y ).

�

Lemma 4.6. Let L be a bounded lattice, e ∈ L, A ⊆ L such that [0, e] ∩ A 6= ∅, U be
a uninorm on L with the neutral element e and U(A,A) ⊆ A. Consider the topological
closure operator c∗U,A. Then, c∗U,A(X) =

⋃
x∈X c

∗
U,A({x}).

P r o o f . c∗U,A({x}) ⊆ c∗U,A(X) since c∗U,A is topological closure operator. Then,⋃
x∈X c

∗
U,A({x}) ⊆ c∗U,A(X). Conversely, let u ∈ c∗U,A(X) be an arbitrary element. It

follows that U(x, a) ≤ u, where x ∈ X and a ∈ A. Thus, u ∈ c∗U,A({x}). Then,
c∗U,A(X) ⊆

⋃
x∈X c

∗
U,A({x}). �

Remark 4.7. Lemma 4.6 also shows that c∗U,A is an algebraic closure operator.

Proposition 4.8. Let L be a bounded lattice, e ∈ L, A ⊆ L such that [0, e] ∩ A 6= ∅,
U be a uninorm on L with the neutral element e and U(A,A) ⊆ A. Consider the
topological closure operator c∗U,A.

(i) If 0 ∈ X, c∗U,A(X) = L.

(ii) 1 ∈ c∗U,A(X) for every set ∅ 6= X ⊆ L.

P r o o f . (i) U(a, 0) ≤ U(e, 0) = 0 for a ∈ [0, e]∩A since [0, e]∩A 6= ∅ and 0 ∈ X. Thus,
U(a, 0) = 0 ≤ y for all y ∈ L, i. e., y ∈ c∗U,A(X) for all y ∈ L. Therefore, c∗U,A(X) = L.

(ii) Since U(a, x) ≤ 1 for a ∈ A and x ∈ X, 1 ∈ c∗U,A(X). �

Throughout the paper, denote by X the upper bound of a set X.

Corollary 4.9. Let L be a bounded lattice, e ∈ L, A ⊆ L such that [0, e] ∩ A 6= ∅, U
be a uninorm on L with the neutral element e, U(A,A) ⊆ A and x, y ∈ L. Consider the
topological closure operator c∗U,A.

(i) X ⊆ c∗U,A(X) for every X ⊆ L.
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(ii) If A = {e}, c∗U,A(X) =
⋃
x∈X

x ↑.

(iii) If A = {e}, c∗U,A({x}) = c∗U,A({y})⇔ x = y.

(iv) As a clear result of (iii), if A = {e}, the topology defined by Tc∗U,A
is T0-space.

P r o o f . (i) Let y ∈ X. Then, x ≤ y for every x ∈ X. Since [0, e] ∩A 6= ∅, there exists
t ∈ [0, e] ∩A. Thus, y ∈ c∗U,A(X) since U(t, x) ≤ U(e, x) = x ≤ y for every x ∈ X.

(ii) Let A = {e}. Then, c∗U,A(X) = {y ∈ L : there existsx ∈ X such thatU(x, e) ≤
y} = {y ∈ L : there existsx ∈ X such thatx ≤ y} =

⋃
x∈X

x ↑.

(iii) Let A = {e} and c∗U,A({x}) = c∗U,A({y}). x ∈ c∗U,A({x}) = c∗U,A({y}), then y ≤
U(y, e) ≤ x. Similarly, y ∈ c∗U,A({y}) = c∗U,A({x}), then x ≤ U(x, e) ≤ y. Therefore,
x = y. If x = y, c∗U,A({x}) = c∗U,A({y}) is clear. �

The converse of Corollary 4.9 (i) may not be true. Let us investigate the following
example.

Example 4.10. Consider the lattice (L,≤, {0, a, b, 1}) whose lattice diagram is depicted
as in Figure 1.

Take the t-norm TW on L and A = {1, b}. If we consider the set X = {b}, it is clearly
seen that X = {1, b} but c∗TW ,A(X) = L.

If we consider the set X = {0}, it is clearly seen that X = c∗TW ,A(X) = L but A = {1, b}.

The converse of Corollary 4.9 (iv) may not be true. Let us look at the following
proposition.

Proposition 4.11. Let L be a bounded lattice, e ∈ L, A ⊆ L such that [0, e]∩A 6= ∅, U
be a uninorm on L with a neutral element e and U(A,A) ⊆ A. Consider the topological
closure operator c∗U,A. If there exist the elements a, b satisfying a is smaller than all
elements of A, a 6= b and U(b, a) = a, then c∗U,A({a}) = c∗U,A({b}) = a ↑, i. e., Tc∗U,A

is
not T0-space.

P r o o f . Since U(a, e) = a, y ∈ c∗U,A({a}) for every element y such that a ≤ y. Suppose
that there exists an element t < a such that t ∈ c∗U,A({a}). Then, there exists at ∈ A
such that U(a, at) ≤ t. Since a is the lowest element of A, U(a, at) ≤ U(a, e) = a.
Considering U(A,A) ⊆ A, it is obtained that U(a, a) = a. Therefore, we have a =
U(a, a) ≤ U(a, x) ≤ t < a, contradiction. Then, c∗U,A({a}) = a ↑.

Since U(a, b) = a, y ∈ c∗U,A({b}) for every element y such that a ≤ y. Suppose that
there exists element s < a such that s ∈ c∗U,A({b}). Then, there exists as ∈ A such that
U(a, as) ≤ s. Therefore, we have a = U(a, b) ≤ U(as, b) ≤ t < a, contradiction. Then,
c∗U,A({b}) = a ↑.

Since c∗U,A({a}) = c∗U,A({b}) = a ↑ when a 6= b, Tc∗U,A
is not T0-space. �

Theorem 4.12. The topology Tc∗U,A
is a principal topology.
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P r o o f . Let us consider the arbitrary family of open sets {Oτ : τ ∈ I}. Then,
c∗U,A(L\Oτ ) = L\Oτ for all τ ∈ I. We have to show that

⋂
τ∈I Oτ is open set, i. e.,

L\(
⋂
τ∈I Oτ ) =

⋃
τ∈I(L\Oτ ) is closed set.

⋃
τ∈I(L\Oτ ) ⊆ c∗U,A(

⋃
τ∈I(L\Oτ )) is trivial

since c∗U,A is a closure operator on L. Conversely, p ∈ c∗U,A(
⋃
τ∈I(L\Oτ )) be an arbitrary

element. Then, there exists a ∈ A and m ∈
⋃
τ∈I(L\Oτ ) such that U(a,m) ≤ p.

Therefore, there exists τ∗ ∈ I such that m ∈ L\Oτ∗ since m ∈
⋃
τ∈I(L\Oτ ). Obviously,

p ∈ c∗U,A(L\Oτ∗) ⊆
⋃
τ∈I c

∗
U,A(L\Oτ ) since U(a,m) ≤ p. Then, c∗U,A(

⋃
τ∈I(L\Oτ )) ⊆⋃

τ∈I(c
∗
U,A(L\Oτ )). Therefore, c∗U,A(

⋃
τ∈I(L\Oτ )) =

⋃
τ∈I(c

∗
U,A(L\Oτ )),

i. e., Tc∗U,A
is a principal topology. �

Proposition 4.13. (Karaçal and Köroğlu [13]) Consider the uninorms U1 and U2 on
bounded lattices L1 and L2 with the neutral elements e1, e2 respectively. Then, the
direct product U1 × U2 of U1 and U2, defined by

U1 × U2((x1, y1), (x2, y2)) = (U1(x1, x2), U2(y1, y2))

is a uninorm with the neutral element (e1, e2) on the product lattice L1 × L2.

Lemma 4.14. Let L be a bounded lattice, e ∈ L, A1, A2 ⊆ L such that [0, e] ∩ A1 6=
∅, [0, e] ∩ A2 6= ∅ and U1, U2 be uninorms on L with neutral element e satisfying
U1(A1, A1) ⊆ A1 and U2(A2, A2) ⊆ A2, respectively, and consider topological closure
operator c∗U1×U2,A1×A2

. Then, c∗U1×U2,A1×A2
({(x, y)}) = c∗U1,A1

({x}) × c∗U2,A2
({y}) for

x, y ∈ L.

P r o o f .
Let (m, l) ∈ c∗U1×U2,A1×A2

({(x, y)}). Then,

(m, l) ∈ c∗U1×U2,A1×A2
({(x, y)})⇔ There exists (a1, a2) ∈ A1 ×A2

such that U1 × U2((a1, a2), (x, y)) ≤ (m, l)

⇔ (U1(a1, x), U2(a2, y)) ≤ (m, l)

where a1 ∈ A1 and a2 ∈ A2.

⇔ U1(a1, x) ≤ m and U2(a2, y) ≤ l
where a1 ∈ A1 and a2 ∈ A2.

⇔ m ∈ c∗U1,A1
({x}) and l ∈ c∗U2,A2

({y})
where a1 ∈ A1 and a2 ∈ A2.

⇔ (m, l) ∈ c∗U1,A1
({x})× c∗U2,A2

({y}).

�

Lemma 4.15. Let L be a bounded lattice, e ∈ L, A1, A2 ⊆ L such that [0, e]∩A1 6= ∅,
[0, e] ∩ A2 6= ∅ and U1, U2 be uninorms on L with the neutral element e satisfying
U1(A1, A1) ⊆ A1 and U2(A2, A2) ⊆ A2, respectively. Then, Tc∗U1,A1

× Tc∗U2,A2
=

Tc∗U1×U2,A1×A2
.
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P r o o f . Let O1 ×O2 ∈ Tc∗U1,A1
× Tc∗U2,A2

. Considering Lemma 4.14,

c∗U1×U2,A1×A2
((L× L)\(O1 ×O2)) = c∗U1×U2,A1×A2

(((L\O1)× L)

∪ (L× (L\O2)))

= c∗U1×U2,A1×A2
((L\O1)× L)

∪ c∗U1×U2,A1×A2
(L× (L\O2))

= c∗U1,A1
(L\O1)× c∗U2,A2

(L)

∪ c∗U1,A1
(L)× c∗U2,A2

(L\O2)

= (L\O1)× L ∪ L× (L\O2)

= (L× L)\(O1 ×O2).

Thus, O1 ×O2 ∈ Tc∗U1×U2,A1×A2
. Then, Tc∗U1,A1

× Tc∗U2,A2
⊆ Tc∗U1×U2,A1xA2

.

Conversely, let O ∈ Tc∗U1×U2,A1×A2
. Then, c∗U1×U2,A1×A2

(K) = K where (L × L)\O =

K ∈ Fc∗U1×U2,A1×A2
. By Lemma 4.6 and K =

⋃
(x,y)∈K{(x, y)}, we have that

K = c∗U1×U2,A1×A2
(K) = c∗U1×U2,A1×A2

 ⋃
(x,y)∈K

{(x, y)}


=

⋃
(x,y)∈K

c∗U1×U2,A1×A2
({(x, y)})

=
⋃

(x,y)∈K

(
c∗U1,A1

({x})× c∗U2,A2
({y})

)
.

Since c∗U1,A1
({x}) ∈ Fc∗U1,A1

, c∗U2,A2
({y}) ∈ Fc∗U2,A2

and the product of the principle

topologies is again a principal topology, c∗U1,A1
({x})× c∗U2,A2

({y}) ∈ Fc∗U1,A1
× Fc∗U2,A2

.

Moreover, since the union of close sets is close set,
⋃

(x,y)∈K
(
c∗U1,A1

({x})× c∗U2,A2
({y})

)
is close set. Thus, O ∈ Tc∗U1,A1

× Fc∗U2,A2
. Then, it is obtained that Tc∗U1×U2,A1xA2

⊆
Tc∗U1,A1

× Tc∗U2,A2
. �

Proposition 4.16. Let (L,≤, 0, 1) be a bounded lattice, e ∈ L, A ⊆ L such that
[0, e] ∩ A 6= ∅, U be a uninorm on L with the neutral element e and U(A,A) ⊆ A.
Consider the topological closure operator c∗U,A.

(i) Tc∗U,A
is not Hausdorff space.

(ii) Tc∗U,A
is a quasi-Hausdorff space.

P r o o f . (i) The proof is clear by Proposition 4.8 (ii).

(ii) x, y ∈ c∗U,A({0}) for all x, y ∈ L such that x 6= y since c∗U,A({0}) = L. Then, Tc∗U,A
is

a quasi-Hausdorff space. �
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We can compare the topologies obtained from the closure operators cU,A, c∗U,A and
c∗∗U,A as follows.

Proposition 4.17. The topology TcU,A
is finer than the topology Tc∗U,A

.

P r o o f .
Let K ∈ Tc∗U,A

. Then, c∗U,A(L\K) = L\K. We aim to show that cU,A(L\K) = L\K.

Let y ∈ cU,A(L\K). Then, there exists a ∈ A and x ∈ L\K such that y = U(a, x). Since
U(a, x) ≤ y, it is obtained that y ∈ c∗U,A(L\K) = L\K. Therefore, cU,A(L\K) ⊆ L\K.
It clearly follows that cU,A(L \K) = L \K. Then, K ∈ TcU,A

. �

Proposition 4.18. The topology TcU,A
is finer than the topology Tc∗∗U,A

.

P r o o f . The proof is similar to the proof of Proposition 4.17. �

The topologies Tc∗U,A
and Tc∗∗U,A

may not be compared. Let us investigate the following
example.

Example 4.19. Consider the lattice (L,≤, {0, a, b, 1}) whose lattice diagram is depicted
as in Figure 3, the uninorm given in Table 2 and A = {e}. If we consider the set
B = {0, e, b}, it is easily seen that B ∈ Tc∗U,A

and B /∈ Tc∗∗U,A
. Similarly, it is easily seen

that C /∈ Tc∗U,A
and C ∈ Tc∗∗U,A

when we consider the set C = {e, b, 1}.

5. RELATIONSHIP BETWEEN ORDER TOPOLOGY AND THE THREE NEWLY
GENERATED TOPOLOGIES

It is well-known fact that a lattice possesses an order, thus inducing Alexandroff topology.
In this section, we investigate the relationship between the order topology on the lattice
and newly generated topologies TcU,A

, Tc∗U,A
and Tc∗∗U,A

.

We refer our readers to the Section 2 of [18] for the detailed information of the
Alexandrov topology induced by an order and its open sets.

Definition 5.1. (Karaçal and Köroğlu [13]) Let U be a uninorm with the neutral
element e on a bounded lattice L and a subset A of L such that U(A,A) ⊆ A, e ∈ A.
The preorder x �cU,A

y ⇔ x ∈ cU,A({y}) is called a U -preorder for U.

Definition 5.2. Let L be a bounded lattice, e ∈ L, A ⊆ L such that [0, e]∩A 6= ∅, U be
a uninorm on L with the neutral element e and U(A,A) ⊆ A. The preorder x �c∗U,A

y

is defined with x ∈ c∗U,A({y}).

Definition 5.3. Let L be a bounded lattice, e ∈ L, A ⊆ L such that [e, 1]∩A 6= ∅, U be
a uninorm on L with the neutral element e and U(A,A) ⊆ A. The preorder x �c∗∗U,A

y

is defined with x ∈ c∗∗U,A({y}).
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The following Propositions 5.4, 5.5 and 5.6 show that the order topology coincides
with the topologies generated topologies TcU,A

, Tc∗U,A
and Tc∗∗U,A

in some particular cases.

Proposition 5.4. Let U be a uninorm with the neutral element e on a bounded lattice
L and a subset A of L such that U(A,A) ⊆ A, e ∈ A. Consider the topological closure
operator cU,A, U = ∧ and A = L. Then, �cU,A

=≤ .

P r o o f . For x, y ∈ L,

x �c∧,L y ⇔ x ∈ c∧,L({y})
⇔ y ∧ x = x for x ∈ L.
⇔ x ≤ y.

�

Proposition 5.5. Let L be a bounded lattice, e ∈ L, A ⊆ L such that [0, e] ∩ A 6= ∅,
U be a uninorm on L with the neutral element e and U(A,A) ⊆ A. Consider the
topological closure operator c∗U,A and U = ∨. Then, �c∗U,A

=≥ .

P r o o f . For x, y ∈ L,

x �c∗∨,A y ⇔ x ∈ c∗∨,A({y})

⇔ there exists an element a ∈ A such that y ∨ a ≤ x.
⇔ y ≤ x.

�

Proposition 5.6. Let L be a bounded lattice, e ∈ L, A ⊆ L such that [e, 1]∩A 6= ∅, U
be a uninorm on L with the neutral element e, U(A,A) ⊆ A. Consider the topological
closure operator c∗U,A and U = ∧. Then, �c∗∗U,A

=≤ .

P r o o f . For x, y ∈ L,

x �c∗∗∧,A y ⇔ y ∈ c∗∗∧,A({x})

⇔ there exists an element a ∈ A such that x ≤ y ∧ a.
⇔ x ≤ y.

�

With Propositions 5.4, 5.5 and 5.6, it has been shown above that the order topology
coincides with the topologies TcU,A

, Tc∗U,A
and Tc∗∗U,A

in some particular cases. But in
general, the order topology is different from the the topologies TcU,A

, Tc∗U,A
and Tc∗∗U,A

.
We note that the Alexandrov topology induced by an order only satisfies T0 separation

axiom (it is not Hausdorff), we refer our readers to the Section 2 of [18] for the detailed
information.
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6. CONCLUDING REMARKS

It is well-known fact that there exists always a t-norm or uninorm on any bounded lattice.
Taking into consideration the fact, some construction methods of principal topologies are
presented in this paper. The topology T〈{fi}i∈I〉 is defined and showed that it is a quasi-
Hausdorff space. Moreover, 〈{fi}i∈I〉-point and some related notions are investigated.
It is worth noting that (L,P(Tx0

)) is a T0 space. x0 ∈ A〉-point and a fixed point. Also,
two topological closure operators c∗U,A and c∗∗U,A are proposed by means of a uninorm U
and a set A ⊆ L and some properties of the introduced topologies are investigated. The
relationship between the order topology and the topologies TcU,A

, Tc∗U,A
and Tc∗∗U,A

are
investigated.

(Received January 14, 2020)
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[9] Ü. Ertuğrul, M. N. Kesicioğlu, and F. Karaçal: Ordering based on uninorms. Inform. Sci.
330 (2016), 315–327. DOI:10.1016/j.ins.2015.10.019
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