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Abstract. We establish necessary and sufficient conditions under which weak Banach-
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1. Introduction

Recall from [3] that an operator T from a Banach space X into a Banach space Y

is called weak Banach-Saks if every weakly null sequence (xn) inX has a subsequence

such that (T (xnk
)) is Cesàro convergent in the norm of Y , that is, the sequence of

arithmetic means
(

N−1
N
∑

k=1

T (xnk
)
)

N
is convergent for the norm of Y . A nonempty

bounded subset A of a Banach lattice E is said to be L-weakly compact if for every

disjoint sequence (xn) in the solid hull of A, we have lim
n→∞

‖xn‖ = 0. An operator T

from a Banach space X into E is L-weakly compact if T (BX) is L-weakly compact

in E, where BX denotes the closed unit ball of X . An operator T : E → X from

a Banach lattice E into a Banach space X is said to be M-weakly compact if for

every disjoint sequence (xn) in BE we have lim
n→∞

‖T (xn)‖ = 0, where BE denotes

the closed unit ball of E (see [11]).

Firstly, we note that a weak Banach-Saks operator is not necessary weakly com-

pact (respectively, L-weakly compact; respectively, M-weakly compact). In fact, the
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identity operator Idl1 of the Banach lattice l
1 (respectively, Idc0), is weak Banach-

Saks (because l1 and c0 has the weak Banach-Saks property) but Idl1 is not weakly

compact (respectively, Idc0 is neither L-weakly compact nor M-weakly compact).

The b-weak compactness of weak Banach-Saks operators has been widely studied

(see [3]). Let us recall that an operator T from a Banach lattice E into a Banach

space Y is said to be b-weakly compact if it maps each subset of E which is b-order

bounded (i.e. order bounded in the topological bidual E′′) into a relatively weakly

compact subset in Y . In [9], the M-weak compactness and the L-weak compactness

of a weakly compact operator was investigated, and in [4] Aqzzouz et al. charac-

terize Banach lattices on which each Dunford-Pettis operator is M-weakly compact

(respectively, L-weakly compact).

The main purpose of this work is to characterize Banach lattices on which each

weak Banach-Saks operator is weakly compact (respectively, L-weakly compact; re-

spectively, M-weakly compact).

The article is organized as follows. In the next section, we give all the common

notations and definitions of operators and Banach lattice theory that we will need.

After, in the main results section, we study the weak compactness of weak Banach-

Saks operators in the first subsection, the L-weak compactness of weak Banach-Saks

operators in the second subsection, and the M-weak compactness of weak Banach-

Saks operators in the last subsection.

2. Preliminaries

The notion of Banach-Saks property and weak Banach-Saks property are intro-

duced in [13]. Note that the last property is introduced in the first time in [8] with

the name Banach-Saks-Rosenthal property.

A Banach space X is said to have the Banach-Saks property (respectively, weak

Banach-Saks property) if every bounded sequence (xn) (respectively, weakly null

sequence) in X has a subsequence (xnk
) which is Cesàro convergent. It is proved

that a space with the Banach-Saks property must be reflexive, but not all reflexive

spaces have the Banach-Saks property. However, a reflexive space with weak Banach-

Saks property is Banach-Saks (see [7] and [12]).

To state our results, we need to fix some notations and recall some definitions.

A Banach lattice is a Banach space (E, ‖·‖) such that E is a vector lattice and its

norm satisfies the following property: for each x, y ∈ E such that |x| 6 |y|, we have

‖x‖ 6 ‖y‖. A norm ‖·‖ of a Banach lattice E is order continuous if for every net

(xα)α such that xα ↓ 0 in E, (xα) converges to 0 in the norm ‖·‖ where the notation

xα ↓ 0 means that (xα) is decreasing, its infimum exists and inf(xα) = 0. Note that
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if E is a Banach lattice, its topological dual E′, endowed with the dual norm and

the dual order, is also a Banach lattice.

A Banach lattice E is said to have the positive Schur property if every weakly

convergent sequence to 0 in E+ is norm convergent to zero. For example, the Banach

space l1 has the positive Schur property. A Banach lattice E is called a KB-space

whenever every increasing norm bounded sequence of E+ is norm convergent. As

an example, each reflexive Banach lattice is a KB-space. A subset A of a vector

lattice E is called order bounded, if A is included in an order interval of E. A linear

mapping T from a vector lattice E into a vector lattice F is order bounded if it carries

order bounded subsets of E into order bounded subsets of F . We will use the term

operator T : E → F between two Banach lattices to mean a bounded linear mapping.

Operator T is positive if T (x) > 0 in F whenever x > 0 in E. Note that each positive

linear mapping on a Banach lattice is continuous. If an operator T : E → F between

two Banach lattices is positive, then its adjoint T ′ : F ′ → E′ is likewise positive,

where T ′ is defined by T ′(f)(x) = f(T (x)) for each f ∈ F ′ and for each x ∈ E. For

terminologies concerning Banach lattice theory and positive operators we refer the

reader to the excellent book of Aliprantis-Burkinshaw (see [1]).

3. Main results

3.1. Weak compactness of weak Banach-Saks operators. The following

result gives necessary conditions under which each weak Banach-Saks operator is

weakly compact.

Theorem 3.1. Let E be a Banach lattice and X a Banach space. If each weak

Banach-Saks operator T : E → X is weakly compact, then one of the following

assertions is valid:

(1) the norm of E′ is order continuous;

(2) X is reflexive.

P r o o f. We have to show that if the norm of E′ is not order continuous, then X

is reflexive. Using the Eberlein-Smulian’s theorem (see [1], Theorem 3.40) it suffices

to show that every sequence (xn) in the closed unit ball ofX has a subsequence which

converges weakly to an element of X . For this, we construct an operator T : l1 → X

(for more details about this operator, see the proof of Theorem 2.1 in [6]) such that

T (en) = xn, where (en) is the standard basis of l
1. As the class of weak Banach-

Saks operators is a two sided ideal, the operator T is weak Banach-Saks (because E

contains a sublattice isomorphic to l1) and hence by our hypothesis, T is weakly
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compact. So, (xn) has a subsequence which converges weakly to an element of X .

This ends the proof. �

R em a r k 3.2. The second necessary condition in Theorem 2.1 is sufficient, but

the first one is not sufficient. Indeed, the identity operator Idc0 of the Banach

lattice c0 is weak Banach-Saks and the norm of (c0)
′ = l1 is order continuous, but Idc0

is not weakly compact.

Let us recall from Theorem 4.70 of [1] that a Banach lattice E is reflexive if and

only if E and E′ are both KB-spaces. So, whenever E is a KB-space, we can derive

from the above theorem the following characterization.

Theorem 3.3. Let E be a KB-space and let X be a Banach space. The following

assertions are equivalent:

(1) each operator T : E → X is weakly compact;

(2) each weak Banach-Saks operator T : E → X is weakly compact;

(3) one of the following assertions holds:

(a) E is reflexive;

(b) X is reflexive.

As consequence of Theorem 3.3, we derive the following characterizations.

Corollary 3.4. Let E be a KB-space and X a non reflexive Banach space. The

following assertions are equivalent:

(1) each weak Banach-Saks operator T : E → X is weakly compact;

(2) the norm of E′ is order continuous.

P r o o f. It suffices to note that E is reflexive if and only if E is a KB-space and

the norm of E′ is order continuous. �

Corollary 3.5. LetX be a Banach space. The following assertions are equivalent:

(1) each operator T : l1 → X is weakly compact;

(2) X is reflexive.

P r o o f. It suffices to note that l1 is a KB-space but not reflexive. �

Whenever E and F are two Banach lattices, we obtain the following characteriza-

tion.

Theorem 3.6. Let E and F be two Banach lattices such that E is a KB-space.

The following assertions are equivalent:
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(1) each weak Banach-Saks operator T : E → F is weakly compact;

(2) each positive weak Banach-Saks operator T : E → F is weakly compact;

(3) one of the following assertions holds:

(a) E is reflexive;

(b) F is reflexive.

P r o o f. (1) ⇒ (2) and (3) ⇒ (1) are straightforward. For (2) ⇒ (3) we assume

that E is not reflexive and we show that F is reflexive. Since F is a Banach lattice, a

solid set A ⊂ F is relatively weakly compact if and only if every sequence of positive

elements of A has a subsequence which is weakly convergent to some element x of A

(the Eberlein-Smulian’s theorem in a Banach lattice). Hence, it suffices to show

that every sequence (xn) of a positive elements in the closed unit ball of F has a

subsequence which converges weakly to an element of F , that is F is reflexive. To

this end, we proceed as in the proof of Theorem 3.1. �

R em a r k 3.7. The assumption “E is a KB-space” is essential in Theorem 3.6.

For instance, it follows from Theorem 6.7 of [14] that each positive operator T :

c0 → (l∞)′ is weakly compact. However, neither c0 nor (l
∞)′ is reflexive.

On the other hand, we observe that if E is a Banach lattice, the second power of

a weak Banach-Saks operator T : E → E is not necessary weakly compact. In fact,

the identity operator Idl1 is weak Banach-Saks but its second power (Idl1)
2 = Idl1 is

not weakly compact.

In the following, we give a necessary and sufficient conditions for which the second

power of a weak Banach-Saks operator is always weakly compact. Note that there

exists a KB-space such that the norm of its topological dual is not order continuous.

In fact, the Banach lattice l1 is a KB-space, but the norm of (l1)′ = l∞ is not order

continuous.

Theorem 3.8. Let E be a KB-space. The following assertions are equivalent:

(1) for all positive operators S and T from E into E with 0 6 S 6 T and T weak

Banach-Saks, S is weakly compact;

(2) each positive weak Banach-Saks operator T : E → E is weakly compact;

(3) for each positive weak Banach-Saks operator T : E → E, the second power T 2

is weakly compact;

(4) the norm of E′ is order continuous.

P r o o f. (1) ⇒ (2): Let T : E → E be a positive weak Banach-Saks operator.

Since 0 6 T 6 T , then by our hypothesis T is weakly compact.

(2) ⇒ (3): By our hypothesis, T is weakly compact and hence T 2 is weakly

compact.
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(3) ⇒ (4): By way of contradiction, suppose that the norm of E′ is not order

continuous. We have to construct a positive weak Banach-Saks operator such that

its second power is not weakly compact.

Since the norm of E′ is not order continuous, it follows from Theorem 2.4.14 and

Proposition 2.3.11 of [11] that E contains a complemented copy of l1 and that there

exists a positive projection P : E → l1.

Consider the operator T = i ◦ P , where i is the canonical injection of l1 in E.

Clearly the operator T is weak Banach-Saks but it is not weakly compact. Otherwise,

the operator P ◦T ◦i = Idl1 would be weakly compact, and this is impossible. Hence,

the operator T 2 = T is not weakly compact.

(4) ⇒ (1): Since E is a KB-space and the norm of E′ is order continuous, The-

orem 4.70 of [1] implies that E is reflexive and hence each operator T : E → E is

weakly compact. �

We end this paragraph by proving a necessary condition for which a positive weak

Banach-Saks operator is compact. In fact, we have the following result:

Theorem 3.9. Let E and F be two Banach lattices. If each positive weak Banach-

Saks operator T : E → F is compact, then one of the following assertions holds:

(1) the norm of E′ is order continuous;

(2) F is finite dimensional.

P r o o f. We suppose that the two statements are not true and we construct a

positive weak Banach-Saks operator T : E → F which is not compact.

As the norm of E′ is not order continuous, it follows from Theorem 4.69 of [1]

that E contains a sublattice which is isomorphic to l1 and there exists a positive

projection P from E onto l1.

On the other hand, if F is infinite dimensional, then by Lemma 2.3 from [5]

there exists a disjoint norm bounded sequence (yn) of F
+ which does not converge

to zero in norm. We consider the positive operator S from l1 into F defined by

S((λn)n) =
∞
∑

n=1

λnyn for each (λn) ∈ l1. Since S(en) = yn for each n, where (en) is

the standard basis sequence of l1, the operator S is not compact.

Now, consider the composed operator T = S ◦ P : E → l1 → F . Note that T is

weak Banach-Saks. However, the operator T is not compact. If not, the operator

S = T ◦ i would be compact, where i is the inclusion operator of l1 in E. This is a

contradiction and so the proof is done. �

R em a r k 3.10. The second necessary condition in Theorem 3.9 is sufficient, but

the first one is not sufficient. In fact, for p > 1, the operator Tp : Xp → c0 mentioned
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in [10] is weak Banach-Saks but not compact. However, the norm of (Xp)
′ is order

continuous.

As consequence of Theorem 3.9, we obtain the following result.

Corollary 3.11. Let E and F be Banach lattices. If the norm of the topological

dual E′ of E is not order continuous, then each positive weak Banach-Saks operator

from E into F is compact if and only if F is finite-dimensional.

3.2. L-weak compactness of weak Banach-Saks operators. In the following

result, we give necessary conditions under which each positive weak Banach-Saks

operator is L-weakly compact:

Theorem 3.12. Let E and F be two Banach lattices such that the norm of F is

order continuous. If each positive weak Banach-Saks operator T from E into F is

L-weakly compact, then one of the following conditions holds:

(1) F is a KB-space;

(2) E′ has the positive Schur property.

P r o o f. We suppose that F is not a KB-space. Then Theorem 2.4.12 from [11]

implies that F contains a sublattice isomorphic to c0, and since the norm of F is

order continuous, it follows from Corollary 2.4.3 of [11] that there exists a positive

projection P : F → c0 and i : c0 → F the canonical embedding.

Applying Theorem 3.1 from [9], it suffices to show that each disjoint weakly null

sequence (x′

n)n ⊂ (E′)+ is norm convergent to 0.

Let (x′

n)n ⊂ (E′)+ be a disjoint weakly null sequence. Consider the operator

T : E → c0 defined by

T (x) = (x′

n(x))n.

Let S = i◦T : E → c0 → F . Since S = i◦ Idc0 ◦T , S is a positive weak Banach-Saks

operator, hence by our hypothesis it is L-weakly compact.

Theorem 5.64 of [1] implies that S′ : F ′ → l1 → E′ is M-weakly compact. Hence,

S′ ◦ P ′ = T ′ is M-weakly compact. As T ′ : l1 → E′ satisfies T ′((λn)n) =
∞
∑

n=1

λnx
′

n,

we have T ′(en) = x′

n for all n ∈ N, where (en) is the standard basis of l
1 and so we

conclude that ‖x′

n‖ → 0. That is, E′ has the positive Schur property. �

Now we give a necessary conditions under which each weak Banach-Saks operator

is L-weakly compact.
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Theorem 3.13. Let E and F be two Banach lattices. If each positive weak

Banach-Saks operator T : E → F is L-weakly compact, then one of the following

assertions is valid:

(1) E = {0};

(2) F is finite dimensional;

(3) the norms of E′ and F are order continuous.

P r o o f. The proof follows along the lines of the proof of Theorem 3.3 of [4]. We

prove separately the two following assertions:

(a) If the norm of E′ is not order continuous, then F is finite-dimensional.

(b) If the norm of F is not order continuous, then E = {0}.

Assume that (a) is false, i.e. the norm of E′ is not order continuous and F is

infinite dimensional. It follows from Theorem 3.1 of [4] that there exists a disjoint

norm bounded sequence (yn) of F
+ which does not converge in norm to zero. Also,

since the norm of E′ is not order continuous, it follows from Theorem 2.4.14 and

Proposition 2.3.11 of [11] that E contains a sublattice isomorphic to l1 and there

exists a positive projection P : E → l1.

To finish the proof, we have to construct a positive weak Banach-Saks operator

which is not L-weakly compact. Consider the operator S : l1 → F defined by

S((λn)) =

∞
∑

n=1

λnyn for each (λn) ∈ l1.

The operator S is well defined and it is a positive weak Banach-Saks, because l1 has

the weak Banach-Saks property. But S is not L-weakly compact. Otherwise, since

S(en) = yn for all n > 1 where (en) is the standard basis of l
1 and (yn) is a disjoint

sequence, (yn) is norm convergent to zero and this is false.

On the other hand, since the identity operator of the Banach lattice l1 is weak

Banach-Saks, the composed operator T = S ◦ P : E → l1 → F is a positive weak

Banach-Saks, because S ◦ P = S ◦ Idl1 ◦P . However, T is not L-weakly compact.

Otherwise, T ◦i = S is L-weakly compact where i : l1 → E is the canonical embedding

of l1 into E, and this is a contradiction.

Now, assume that (b) is false, i.e. the norm of F is not order continuous and

E 6= {0}. Choose z ∈ E+ such that ‖z‖ = 1. Hence, it follows from Theorem 39.3

of [15] that there exists ϕ ∈ (E′)+ such that ϕ(z) = ‖ϕ‖ = 1.

On the other hand, since the norm of F is not order continuous, there exists some

y ∈ F+ and there exists a disjoint sequence (yn) ⊂ [0, y] which does not converge to

zero in norm.
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We consider the operator T : E → F defined as follows

T (x) = ϕ(x)y for each x ∈ E.

It is clear that T is positive and compact (because its rank is one) and hence T is a

positive weak Banach-Saks operator. But T is not L-weakly compact. In fact, since

‖z‖ = 1 and T (z) = ϕ(z)y = y then, y ∈ T (BE). As (yn) ⊂ [0, y], we conclude that

(yn) is a disjoint sequence in the solid hull of T (BE). If T is L-weakly compact, then

lim
n→∞

‖yn‖ = 0 and this is a contradiction. �

R em a r k 3.14. The two necessary conditions (1) and (2) in Theorem 3.13 are

sufficient, but the condition (3) is not. In fact, the identity operator of the Banach

lattice c0 is weak Banach-Saks, but it is not L-weakly compact. However, the norms

of (c0)
′ = l1 and of c0 are order continuous.

Recall from [2] that an operator T from a Banach lattice E into a Banach space X

is said to be b-weakly compact if it carries each b-order bounded subset of E (i.e. order

bounded in E′′) into a relatively weakly compact subset of X .

Our following result gives sufficient conditions under which each weak Banach-Saks

operator is L-weakly compact.

Theorem 3.15. Let E and F be two Banach lattices such that the norm of E

is order continuous. Then each weak Banach-Saks operator T from E into F is

L-weakly compact if one of the following statements is valid:

(1) E = {0};

(2) F is finite dimensional;

(3) E′ has an order continuous norm and F has the positive Schur property.

P r o o f. (1) Obvious.

(2) Since F is finite dimensional, it follows from Corollary 3.2 of [4] that T is

L-weakly compact.

(3) Let T : E → F be a weak Banach-Saks operator. Since F has the positive

Schur property, F is a KB-space and so it follows from Theorem 2.1 of [3] that T is

b-weakly compact. As E′ has order continuous norm, it follows from Theorem 2.14

of [6] that T is weakly compact. Since F has the positive Schur property, Theorem 3.4

of [9] implies that T is L-weakly compact. �

As consequence of Theorem 3.13 and Theorem 3.15, we give the following result.

Corollary 3.16. Let E be a nonzero Banach lattice with order continuous norm

and F be a Banach lattice with the positive Schur property. Then the following

statements are equivalent:
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(1) each weak Banach-Saks operator T : E → F is L-weakly compact;

(2) each positive weak Banach-Saks operator T : E → F is L-weakly compact;

(3) One of the following is valid:

(a) E′ has an order continuous norm,

(b) F is finite dimensional.

3.3. M-weak compactness of weak Banach-Saks operator. Our following

result gives necessary conditions under which each weak Banach-Saks operator is

M-weakly compact.

Theorem 3.17. Let E be a Banach lattice and F a nonzero Banach lattice. If

each weak Banach-Saks operator T : E → F is M-weakly compact, then E′ has an

order continuous norm.

P r o o f. Assume by way of contradiction that the norm of E′ is not order

continuous. To finish the proof, we have to construct a weak Banach-Saks operator

T : E → F which is not M-weakly compact. Since the norm of E′ is not order

continuous, it follows from Theorem 2.4.14 and Proposition 2.3.11 of [11] that E

contains a closed sublattice which is isomorphic to l1 and there exists a positive

projection P : E → l1.

On the other hand, as F 6= {0}, there exists a non-null element y ∈ F+. Now, we

consider the operator S : l1 → F defined by

S((λn)) =

( ∞
∑

n=1

λn

)

y for each (λn) ∈ l1.

It is clear that S is well defined. Also, S is weak Banach-Saks. Hence the operator

T = S ◦ P : E → l1 → F

is weak Banach-Saks but it is notM-weakly compact. In fact, if we denote by (en) the

canonical basis of l1 ⊂ E, the sequence (en) is disjoint and bounded in E. Moreover

we have T ((en)) = y for each n > 1. Then, ‖T ((en))‖ 9 0 (because y 6= 0). So, T is

not M-weakly compact and this proves the result. �

R em a r k 3.18. The necessary condition in Theorem 3.17 is not sufficient. In

fact, the identity operator of the Banach lattice c0 is weak Banach-Saks but is not

M-weakly compact. However, the norm of (c0)
′ = l1 is order continuous.
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In the following result, we give sufficient conditions under which each weak Banach-

Saks is M-weakly compact:

Theorem 3.19. Let E and F be two Banach lattices, F 6= {0}.

(1) If E is a KB-space and E′ has the positive Schur property, then each weak

Banach-Saks operator T : E → F is M-weakly compact.

(2) If the norms of E and E′ are order continuous and F has the positive Schur

property, then each order bounded weak Banach-Saks operator T : E → F is

M-weakly compact.

P r o o f. (1) Let T : E → F be a weak Banach-Saks operator. Since E is a

KB-space, it follows from Theorem 2.1 of [3] that T is b-weakly compact. As the

norms of E and E′ are order continuous, Theorem 2.12 of [6] implies that T is weakly

compact.

Now, since E′ has the positive Schur property, it follows from Theorem 3.3 of [9]

that T is M-weakly compact.

(2) Let T : E → F be an order bounded weak Banach-Saks operator. By Theo-

rem 3.15, T is L-weakly compact, since F has the positive Schur property. Therefore,

by [1], Theorem 5.67, T is M-weakly compact. �

The following characterization is a consequence of Theorem 3.19 and the proof of

Theorem 3.17, since the operator S : l1 → F is order bounded.

Corollary 3.20. Let E and F , F 6= {0}, be two Banach lattices such that the

norm of E is order continuous and F has the positive Schur property. Then each

order bounded weak Banach-Saks operator T : E → F is M-weakly compact if and

only if E′ has an order continuous norm.
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