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Abstract. We prove that eight dihedral angles in a pyramid with an arbitrary quadrilateral
base always sum up to a number in the interval (3π, 5π). Moreover, for any number in
(3π, 5π) there exists a pyramid whose dihedral angle sum is equal to this number, which
means that the lower and upper bounds are tight. Furthermore, the improved (and tight)
upper bound 4π is derived for the class of pyramids with parallelogramic bases. This includes
pyramids with rectangular bases, often used in finite element mesh generation and analysis.
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1. Introduction

An estimation of angles and their sums for simplices (see, e.g., [4], [5], [1], [6], and

references therein) has been addressed for many decades by geometers. However,

this issue has also important applications in numerics; for example, in finite element

mesh generation and analysis. Thus, in order to guarantee a priori convergence,

or to preserve qualitative properties of models by finite element approximations,

one has to use simplicial meshes with certain geometric properties, which are often

described in terms of various angles, e.g., minimum/maximum angle conditions and

acuteness/nonobtuseness [9], [8], [2].

Besides simplices, some other shapes of solids are often considered in finite element

analysis and modelling—say prisms, blocks and pyramids [3], [11]. While computing

the sums of angles is a trivial issue for blocks, since all angles are right, the case

of pyramids was an open problem. Here we derive tight bounds for the sum of the
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eight dihedral angles of pyramids in general, and we narrow these bounds for some

special practical cases. We believe that our results will be important later on in

deriving an analogue of the maximum angle condition (constructed for simplices [8]

and prisms [7] so far) for pyramidal finite elements [10], thus allowing the use of

various degenerating element shapes for meshing complicated 3D geometries.

It is worth mentioning that it is possible to construct pure pyramidal meshes;

however, pyramidal elements are mostly used in hybrid meshes for a transition from

hexahedral to tetrahedral elements, as depicted in Figure 1.

Figure 1. Hybrid mesh with pyramids connecting hexahedra and tetrahedra, see [10].

2. Bounds for a general pyramid

In the following, we will consider the class of pyramids with a quadrilateral base.

Definition 1. A (convex) pyramid is defined as the convex hull of five points,

four of which form a planar, convex quadrilateral, with the fifth point (called the

apex ) being outside the plane of this quadrilateral.

A non-convex pyramid allows a non-convex quadrilateral base, see Section 4.

Definition 2. A dihedral angle in a three-dimensional polyhedron is the internal

angle between two faces intersecting along an edge, such as depicted in Figure 2. The

dihedral angle along an edge, say AB, is denoted by αAB, etc. Also, in what follows

we denote by σP the sum of all the dihedral angles of a polyhedron P .

αAB

B

A

Figure 2. The dihedral angle αAB along the edge AB.
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The dihedral angles can be computed in terms of the outward unit normals of the

faces. This is further explained in Section 3.

In contrast to the two-dimensional case, where the angle sum of a triangle is always

constant and equal to π, it may vary in the case of tetrahedra; see the following result.

Theorem 1. Consider a tetrahedron T with its dihedral angle sum σT . Then

(a) σT satisfies 2π < σT < 3π,

(b) for any number σ ∈ (2π, 3π) there is a tetrahedron T whose dihedral angle sum

σT = σ.

For the proof, see [4]. Part (b) of Theorem 1 can also be proved by the following

example (which uses a different argumentation than [4]).

E x am p l e 1. Consider the family of tetrahedra depicted in Figure 3, where α

is an arbitrary angle between 0 and π. As h → 0, we obtain the following values and

limits of dihedral angles:

(1) αAB =
π

2
, αAC =

π

2
, αAD = α, αBC → 0, αBD →

π

2
, αCD →

π

2
.

Thus, the sum of the dihedral angles in this family of tetrahedra is getting arbitrarily

close to 2π+α. Varying α ∈ (0, π), we obtain any value of σT ∈ (2π, 3π), thus proving

Theorem 1 (b).

A(0, 0, 0)
C(cosα, sinα, 0)

D(0, 0, h)

︸
︷
︷

︸

h

B(1, 0, 0)
x

y

z

α

Figure 3. As h → 0, the dihedral angle sum approaches 2π + α.

Theorem 2. Consider a pyramid P with its dihedral angle sum σP . Then

(a) σP satisfies 3π < σP < 5π,

(b) for any number σ ∈ (3π, 5π) there is a pyramid whose dihedral angle sum

σP = σ.
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P r o o f. (a) Let ABCDE be any pyramid, as depicted in Figure 4. This pyramid

is also the union of the two tetrahedra T1 = ABCE and T2 = ACDE. From

Theorem 1, their dihedral angle sums satisfy 2π < σTi
< 3π for i = 1, 2. Now,

subtracting the two dihedral angles at the interfaceACE between the two tetrahedra,

whose sum always equals π, we obtain the following estimation for the dihedral angle

sum of a pyramid:

(2) 3π < σT1
+ σT2

− π = σT = σT1
+ σT2

− π < 5π.

A

B

C

D

E

Figure 4. The pyramid ABCDE split into two tetrahedra ABCE and ACDE.

(b) Starting from the tetrahedron from Figure 3, we introduce a new vertex E

at (0, 0, h/2), thus defining the degenerate pyramid ABCDE with a degenerated

(to a triangle) base ABDE (see Figure 5). In this construction, we obtain the new

degenerated dihedral angle αCE = π, and αAE = αDE = α.

A(0, 0, 0)
C(cosα, sinα, 0)

D(0, 0, h)

E(0, 0, h

2
)

︸
︷
︷

︸

h

2

B(1, 0, 0)
x

y

z

α

Figure 5. A degenerated pyramid with a degenerate quadrilateral base ABDE.

Now, to construct a proper, non-degenerate pyramid, we move the point E a small

distance ε in the negative x-direction, as depicted in Figure 6, thus making ABDE

a real, convex, quadrilateral base for the pyramid.
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A(0, 0, 0)
C(cosα, sinα, 0)

D(0, 0, h)

E(−ε, 0, h

2
)

B(1, 0, 0)
x

y

z

α

Figure 6. A non-degenerate pyramid with a quadrilateral base ABDE in the xz-plane.

Consider α fixed. Taking the limits ε → 0 and h → 0, with the condition ε ≪ h,

we obtain the following values and limits of dihedral angles:

(3) αAB =
π

2
, αAC →

π

2
, αBC → 0, αBD →

π

2
,

αCD →
π

2
, αAE → α, αDE → α, αCE → π.

Thus, the sum of the dihedral angles of this pyramid is getting arbitrarily close to

3π + 2α. By varying α ∈ (0, π), we see that σP can take every value of σ ∈ (3π, 5π).

�

3. Pyramids with a parallelogramic base

Consider now a pyramid P with a parallelogramic base. Let n1 be the outward

unit normal vector for the face AED, and similarly we define n2, n3, n4, n5 for the

other four faces (see Figure 7). Looking at the edge AE, the dihedral angle αAE

for the pyramid along this edge has the relationship cosαAE = −n1 · n2. We write

ninj for the angle between ni and nj , which is also equal to the distance between

the two vectors considered as points on the unit sphere. We obtain the relationship

αAE+n1n2 = π. Now, using this connection and summing over the eight edges in P ,

one gets

(4) σP +
∑

ninj = 8π.

Here and later, we suppress the summation range. In detail, it is
∑

ninj := n1n2 + n1n4 + n1n5 + n2n3 + n2n5 + n3n4 + n3n5 + n4n5.

We have the following theorem for the bounds of the sum of dihedral angles in

a pyramid with parallelogramic base.
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Theorem 3. Consider a pyramid P with a parallelogramic base, whose dihedral

angle sum is denoted σP . Then

(a) σP satisfies 3π < σP < 4π,

(b) for any number σ ∈ (3π, 4π) there is a pyramid with a parallelogramic base

whose dihedral angle sum σP = σ.

A B

CD

E

n5

n2

n3
n1

n4

Figure 7. A pyramid ABCDE with a parallelogramic base and outward unit normals.

n5

N
n1

n2

n3

n4

Figure 8. The normals of the pyramid depicted on the unit sphere.

P r o o f. Refer to Figure 7 for the notation used.

(a) The lower bound 3π < σP follows from Theorem 2. The base is a parallelogram,

AD ‖ BC, which implies

(5) AD ⊥ n1, AD ⊥ n3, AD ⊥ n5.

Similarly, AB ‖ DC implies

(6) AB ⊥ n2, AB ⊥ n4, AB ⊥ n5.

We can depict the normals on the unit sphere as in Figure 8. Here, n5 is located

on the south pole, and let N be the north pole of the unit sphere. From (5), we

observe that n1, n3 and n5 lie on a great circle, and from (6) that n2, n4 and n5 also

lie on a great circle. The vectors n1 and n3 are normals to planes intersecting E in

a line parallel to AD. Also, n2 and n4 are normals to planes intersecting E in a line

parallel to AB. Therefore, it is obvious that n1Nn3 < n1n5n3, where n1Nn3 is the

arc along the unit sphere from n1 to N to n3, and likewise for n2Nn4 < n2n5n4.

Additionally, we have the identity

(7) n5n1 + n1N + n3N + n3n5 + n5n2 + n2N + n4N + n4n5 = 4π.
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To prove the bounds for the dihedral angles of a pyramid with a parallelogramic

base, we first introduce the following lemma.

Lemma 1. With the notation introduced above,

(8) n1N + n2N + n3N + n4N < n1n2 + n2n3 + n3n4 + n4n1.

P r o o f. By the triangle inequality, we observe that

(9) n1N + n3N = n1n3 6 n1n2 + n2n3, n1N + n3N = n1n3 6 n1n4 + n4n3,

n2N + n4N = n2n4 6 n2n1 + n1n4, n2N + n4N = n2n4 6 n2n3 + n3n4.

This yields

(10) 2(n1N + n2N + n3N + n4N) 6 2(n1n2 + n2n3 + n3n4 + n4n1).

To show that the inequality is strict, we note that if n1n3 = n1n2 + n2n3, n2 has

to lie on a great circle arc between n1 and n3. Since N also has this property, it

follows that n1 and n3 are antipodal. This in turn means that the two triangular

faces ADE and BCE are parallel, which is a contradiction. Therefore, (9) and (10)

are strict inequalities. �

To conclude the proof of Theorem 3 (a), we have from (7) and (8) that

(11) 4π = n5n1 + n1N + n3N + n3n5 + n5n2 + n2N + n4N + n4n5 <
∑

ninj .

Thus, from (11) and (4), it follows that

(12) σP = 8π −
∑

ninj < 4π.

For part (b), we give a constructive proof. Consider a pyramid with a parallel-

ogramic base ABCD, in the plane z = 0, and apex E. Now, let the projection

x = projABCD E of the apex point E onto the plane ABCD lie to the right of the

edge BC, while also lying between the extended edges AB and CD, as depicted in

Figure 9.

A B

CD

x=projABCDE

Figure 9. x lies to the right of BC and between the extended edges AB and CD.
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As h → 0, the apex E(x1, y1, h) approaches the plane ABCD, as depicted in

Figure 10. This yields the following limits of dihedral angles:

(13) αAB → 0, αAD → 0, αAE → π, αBC → π,

αBE → 0, αCD → 0, αCE → 0, αDE → π.

A B

CD

x=projABCDE

E(x1, y1, h)

h→ 0

h→∞

Figure 10. A representation of the diagram in Figure 9, including a depiction of the two
limit cases, where the apex E approaches the plane ABCD, and ∞.

Thus, the dihedral angle sum approaches 3π. As h → ∞, this yields the following

limits of dihedral angles

αAE + αBE + αCE + αDE → 2π,(14)

αAB →
π

2
, αBC →

π

2
, αCD →

π

2
, αAD →

π

2
.

Now the dihedral angle sum approaches 4π. Since the dihedral angle sum varies

continuously between these two limit values, there always exists a pyramid with

a parallelogramic base whose angle sum σP = σ for any σ ∈ (3π, 4π), proving (b). �

4. Final remarks

Theorem 2 also holds for non-convex pyramids with the same proof (however, this

is less applicable e.g., for the finite element method).

Consider five points in R
3 such that no four of them are in the same plane, and

such that no one of them is in the convex hull of the others. Then the convex hull of

the five points is a polyhedron that can be split into two tetrahedra sharing a common

triangle. Compared to the case of pyramids, there is one additional edge, so a total

of nine dihedral angles to consider. By arguing as in the proof of Theorem 2 part (a),
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we see that the sum of the dihedral angles is in the interval (4π, 6π). In this case, the

argument is slightly simpler, as we do not have the two angles adding up to π along

a diagonal in the quadrilateral base. The arguments of Theorem 2 part (b) can be

adapted by one small change: add a small value to the y-coordinate of the point E.

The resulting family will then show that all values in (4π, 6π) appear as the dihedral

angle sum of a polyhedron of this form.

By using the known results for tetrahedra (as in Theorem 1), one can give näıve

estimates for the dihedral angle sums of any polyhedron in a class of polyhedra with

the same combinatorial triangulation. There are a number of questions one can ask

in this generality, including whether these bounds are tight. Another problem would

be to compute these bounds in terms of easily understood basic characteristics of the

polyhedra one considers. For example, are the bounds for the dihedral angles sums

if we consider (convex) polyhedra with N3 triangular faces, N4 quadrilateral faces,

and so on, computable in terms of the finite sequence {Nk}k?
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