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Abstract. We introduce the notions of silting comodules and finitely silting comodules
in quasi-finite category, and study some properties of them. We investigate the torsion
pair and dualities which are related to finitely silting comodules, and give the equivalences
among silting comodules, finitely silting comodules, tilting comodules and finitely tilting
comodules.
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1. Introduction

Silting theory is vital for the study of representation theory. It has been developed

gradually from many aspects. Silting complexes in the triangulated category were

first introduced by Keller and Vossieck, see [9]. They are important tools to study

t-structures in the bounded derived category of representations of Dynkin quivers.

In [5], the authors introduced the notion of (partial) silting R-modules (where R is

a unital associative ring) as a common generalization of tilting modules over an ar-

bitrary ring (see [7]), as well as the notion of support τ -tilting modules over a finite

dimensional algebra, see [1]. Moreover, they showed these modules generate torsion

classes that provide left approximations, and every partial silting module admits an

analogue of the Bongartz complement, all silting modules are quasitilting modules.

In [4], Angeleri and Hrbek gave the classification of silting modules over commutative

rings, and established a bijective correspondence with Gabriel filters of finite type.
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The coalgebra theory, dual to the representation of algebra, has attracted extensive

attention of eminent scholars. Many scholars devoted themselves to investigating this

aspect and came up with some open problems, see [8], [11]. For instance, Professor

Simson in Copernicus University, pointed nine questions out, about the structure of

coalgebra and the research for representation, see [13]. The fifth is in connection with

constructing the tilting and cotilting theory in comodule category. In 1998, Wang

in [16] defined the classical tilting comodules in comodule category. In 1999, Wang

in [17] introduced the tilting comodules and partial tilting comodules over coalgebras,

and showed that every tilting comodule can induce a torsion pair. In 2008, Simson

in [14] gave a description of the f-cotilting comodules and cotilting procedures over

coalgebras, and constructed a pair of cotilting functors of Brenner-Butler type over

coalgebras. Yuan and Yao in [19] introduced the notions of silting comodules and

partial silting comodules over coalgebras, and obtained the Bongartz theorem for the

complement of partial silting comodules.

Inspired by the above researchers, in this paper, we investigate the quasi-finitely

silting comodules induced by silting comodules. And we introduce the finitely silting

comodules, also study many properties of it.

The paper is organized as follows. In Section 2, we present some necessary no-

tations and conventions which are used throughout the paper. We also state some

results which are used in next sections. In Section 3, we introduce the concept of

quasi-finitely silting comodules. In Section 4, we discuss the finitely silting comod-

ules, and study some nice properties of this new notion. In Section 5, we investigate

the torsion pair and dualities which are in connection with finitely silting comodules

and equivalences among silting comodules, finitely silting comodules, finitely tilting

comodules, and tilting comodules.

2. Preliminaries

Throughout the paper, unless explicitly stated, let C, D be coalgebras over a com-

mutative ring R, and under the mild hypothesis that the involved coalgebras are flat

as R-modules. We always assume that C and D are right semiperfect when we use

the derived functor extiC(T,−) (extiC(−, T )) of cohom functor hC(T,−) (hC(−, T )).

We give some notations at first.

We denote the category of all right C-comodules (or left D-comodules) by MC

(or DM). For a comodule T we denote by Add(T ) (or by add(T )) the class of all

C-comodules which are isomorphic to direct summands of direct sums (or finite

direct sums) of copies of T . Moreover, we consider the perpendicular class T⊥ of

a quasi-finite right C-comodule T , defined as T⊥ = {X ∈ MC : ext1C(T,X) = 0}.

Let Cogen(TC) = {X : 0 → X → T (I), I is a set}, see [16], Proposition 5.3. If X
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is a comodule, we denote the reject of X in T by RejT (X), where RejT (X) =
⋂

f∈Com(X,T )

Ker f . We denote the canonical natural transformation of a quasi-

finite right C-comodule T , η : 1MC → G ◦ F , by θX : X → hC(T,X) � T ,

where G = − �D TC and F = hC(DTC ,−). A quasi-finite comodule X is called

θ-torsionless (or θ-reflexive) if θX is a monomorphism (or an isomorphism). We

recall that Reflθ is the class of all θ-reflexive comodules.

In order to define the notion of silting comodules, we have to give the class Bγ at

first. Let γ : Q0 → Q1 be a homomorphism. We have a class of comodules

Bγ = {X : ComC(X, γ) is an epimorphism}.

Definition 2.1 ([19]). We say that a right comodule TC is silting (with respect

to γ) if there exists an injective copresentation

0 → T
f

−→ Q0
γ

−→ Q1

of T such that Cogen(TC) = Bγ .

Definition 2.2 ([2]). A right C-comodule X is called quasi-finite if the functor

−⊗X : R-Mod → MC has a left adjoint. A quasi-finite left D-comodule is defined

analogously.

Notation 2.3. For a quasi-finite right C-comodule X we denote the left adjoint

of the functor −⊗X by hC(X,−) : MC → R-Mod. This functor is called the cohom

functor.

Lemma 2.4 ([18], Proposition 8.1.2). For a bicomodule DXC , the following state-

ments are equivalent.

(1) XC is quasi-finite.

(2) The functor − �D X : MD → MC has the left adjoint. In this case, the left

adjoint is given by hC(X,−) : MC → MD.

It follows that there is a very useful isomorphism for any YC and WD:

ComD(hC(X,Y ),W ) ∼= ComC(Y,W �D X).

By [18], Section 8.1, if R is a field, there is (−)∗ = HomR(−, R) ∼= ComC(−, C), and

hC(X,Y ) = lim−→ComC(Yi, X)∗ ∼= lim−→(X �C Y ∗
i )

∗.

If R is a commutative ring, we have that hC(X,Y )∗ = HomR(hC(X,Y ), R) ∼=

ComC(Y,R ⊗X) = ComC(Y,X) by [2], Section 3.4.
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Definition 2.5 ([12]). Let X be a C-comodule. Then X is called cocoherent

if X is finitely cogenerated and every finitely cogenerated quotient comodule of X is

finitely copresented.

We say that the coalgebra C is right (or left) cocoherent if the C-comodule CC

(or CC) is a cocoherent C-comodule.

Lemma 2.6. Assume that C is cocoherent, 0 → X → Y → Z → 0 is a short

exact sequence with X , Y being finitely copresented. Then Z is finitely copresented.

3. Quasi-finite silting comodules

Let T be a quasi-finite right C-comodule with co-endomorphism D = eC(T ), and

we have already known that T is a (D,C)-bicomodule by [2], Section 3.4. Let Q0

and Q1 be right C-comodules which are quasi-finite throughout this paper.

According to [19], we define the quasi-finite silting comodules similarly.

Definition 3.1. Let γ : Q0 → Q1 be a homomorphism between right C-

comodules Q0 and Q1. Then we have a class of comodules as:

Cγ = {X is a right C-comodule : hC(γ,X) is a monomorphism}.

Lemma 3.2. Let γ : Q0 → Q1 be a homomorphism and assume that γ = τγ ◦ πγ

is the canonical factorization of γ. The following statements are equivalent for a right

C-comodule X .

(1) X ∈ Cγ .

(2) hC(τγ , X) is an isomorphism and hC(πγ , X) is a monomorphism.

P r o o f. (1) ⇒ (2) hC(γ,X) = hC(τγ ◦ πγ , X) = hC(πγ , X) ◦ hC(τγ , X). Since

hC(γ,X) is a monomorphism, we have that hC(τγ , X) is a monomorphism. As

hC(−, X) is a contravariant right exact functor, we obtain that hC(τγ , X) is an

epimorphism. Then hC(τγ , X) is an isomorphism. We will prove that hC(πγ , X) is

a monomorphism next.

Consider the natural isomorphism in the following diagram:

hC(Q0, X)∗

∼=

��

hC(γ,X)∗
// hC(Q1, X)∗

∼=

��

ComC(X,Q0)
ComC(X,γ)

// ComC(X,Q1).
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Since hC(γ,X) is a monomorphism, we have that ComC(X, γ) is an epimorphism, i.e.

for any g : X → Q1, there is an f : X → Q0 such that γf = g. Then for any h : X →

Im γ, τγh ∈ ComC(X,Q1), we have that there is an f
′ : X → Q0 such that τγh = γf ′.

Therefore, ComC(X, πγ) is an epimorphism. We consider the natural isomorphism:

hC(Q0, X)∗

∼=

��

hC(πγ ,X)∗
// hC(Im γ,X)∗

∼=

��

ComC(X,Q0)
ComC(X,πγ)

// ComC(X, Imγ).

So hC(πγ , X)∗ is an epimorphism. By the commutative diagram

hC(Im γ,X)

̺1

��

hC(πγ ,X)
// hC(Q0, X)

̺2

��

hC(Im γ,X)∗∗
hC(πγ ,X)∗∗

// hC(Q0, X)∗∗

since ̺1 and ̺2 are injective, hC(πγ , X)∗∗ is a monomorphism, we have hC(πγ , X)

is a monomorphism.

(2) ⇒ (1) It is obvious. �

Corollary 3.3. Let γ : Q0 → Q1 be a homomorphism with T = Ker(γ) and

assume that γ = τγ ◦ πγ is the canonical factorization. The following statements are

equivalent for a quasi-finite C-comodule X which belongs to T⊥.

(1) X ∈ Cγ .

(2) hC(τγ , X) is an isomorphism.

Lemma 3.4. Let γ : Q0 → Q1 be a homomorphism, the following statements

hold.

(1) The class Cγ is closed under direct sums.

(2) If Q1 is injective, then the class Cγ is closed under subcomodules.

(3) If Q0 is injective, then the class Cγ is closed under extensions.

(4) If Q0 is injective and T = Ker(γ), then Cγ ⊆ T⊥.

(5) Assume that Q1 is injective. If T = Ker(γ) and

(3.1) 0 → A
f

−→ B
g

−→ X → 0

is an exact sequence inMC such that A and B belong to Cγ and X ∈ T⊥, then

X ∈ Cγ .
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P r o o f. (1) This follows from the fact that the cohom functor respects direct

sums.

(2) Let Y ∈ Cγ and f : X → Y be a monomorphism. Then hC(γ, Y ) is a monomor-

phism by Lemma 3.2. By the natural isomorphism

hC(Q0, Y )∗

∼=

��

hC(γ,Y )∗
// hC(Q1, Y )∗

∼=

��

ComC(Y,Q0)
ComC(Y,γ)

// ComC(Y,Q1)

we learn that ComC(Y, γ) is an epimorphism, i.e., Y ∈ Bγ .

And by another natural isomorphism

hC(Q0, X)∗

∼=

��

hC(γ,X)∗
// hC(Q1, X)∗

∼=

��

ComC(X,Q0)
ComC(X,γ)

// ComC(X,Q1)

we need to show ComC(X, γ) is an epimorphism.

Since Bγ is closed under subcomodules by [19], Lemma 2, we can get the

ComC(X, γ) is an epimorphism. By the commutative diagram

hC(Q0, X)

̺1

��

hC(γ,X)
// hC(Q1, X)

̺2

��

hC(Q0, X)∗∗
hC(γ,X)∗∗

// hC(Q1, X)∗∗

since ̺1 and ̺2 are injective, hC(γ,X)∗∗ is a monomorphism, we have hC(γ,X) is

a monomorphism, i.e., X ∈ Cγ .

(3) Let 0 → X
f

−→ Y
g

−→ Z → 0 be an exact sequence with X,Z ∈ Cγ , i.e.,

hC(γ,X) and hC(γ, Z) are monomorphisms. Then ComC(X, γ) and ComC(Z, γ)

are epimorphisms. This means X,Z ∈ Bγ . Since Bγ is closed under extensions, we

have that Y ∈ Bγ , i.e., ComC(Y, γ) is an epimorphism. It follows that hC(γ, Y ) is

a monomorphism, i.e., Y ∈ Cγ .

(4) By the assumption, hC(γ,X) and hC(πγ , X) are monomorphisms. Applying

the functor hC(−, X) on the exact sequence

0 → T
i

−→ Q0
πγ

−→ Im γ → 0,

700



we obtain an exact sequence as follows:

0 // ext1C(T,X) // hC(Im γ,X)
hC(πγ ,X)

// hC(Im γ,X)

hC(i,X)
// hC(Q0, X) // hC(T,X) // 0.

Then ext1C(T,X) = 0, i.e., X ∈ T⊥.

(5) Suppose that γ = τγ ◦πγ is the canonical factorization. Applying the covariant

functor hC(Im γ,−) on the exact sequence (3.1), we can get the exact sequence

hC(Im γ,A) → hC(Im γ,B) → hC(Im γ,X) → 0.

We also apply the covariant functor hC(Q1,−) on (3.1), then we obtain the exact

sequence

0 → hC(Q1, A) → hC(Q1, B) → hC(Q1, X) → 0.

Since A and B lie in Cγ , it follows by Lemma 3.2 that both hC(τγ , A) and hC(τγ , B)

are isomorphisms. So hC(Im γ, f) is a monomorphism. Hence, we have the following

commutative diagram with exact rows:

0 // hC(Q1, A)

hC(τγ ,A)

��

// hC(Q1, B)

hC(τγ ,B)

��

// hC(Q1, X)

hC(τγ ,X)

��

// 0

0 // hC(Im γ,A) // hC(Im γ,B)) // hC(Im γ,X) // 0.

Since A,B ∈ Cγ , we have that hC(τγ , A), hC(τγ , B) are isomorphisms. Applying the

Snake Lemma, we get that hC(τγ , X) is an isomorphism. By Corollary 3.3, we can

obtain the conclusion. �

Definition 3.5. We say that a quasi-finite right C-comodule T is

(1) a partial silting comodule (with respect to γ) if there exists a quasi-finite injec-

tive copresentation of T

0 → T → Q0 → Q1

such that T ∈ Cγ ;

(2) a silting comodule (with respect to γ) if there exists a quasi-finite injective

copresentation

0 → T → Q0 → Q1

of T such that Cogen(TC) = Cγ .
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Remark 3.6. Note that the differences between silting comodules in [19] and

quasi-finite silting comodules are as follows.

(1) Quasi-finite silting comodules are quasi-finite.

(2) Quasi-finite partial silting comodules are defined with respect to the class Cγ .

Since Cγ is closed under direct sums clearly, we omit this condition in the defi-

nition.

(3) Quasi-finite silting comodules are defined with respect to the class Cogen(TC),

which is defined in Preliminaries. It is different to the class Cogen(TC), which

is given in Definition 2.1 of silting comodules.

Proposition 3.7 ([16], Proposition 5.3). Let TC be a quasi-finite right C-

comodule with co-endomorphism D = eC(T ). The comodule X ∈ Cogen(TC) if

and only if θX : X → hC(T,X) � T is a monomorphism.

Lemma 3.8. Let TC be a quasi-finite right C-comodule. Then

(1) X/KerθX ∈ Cogen(TC).

(2) Ker θX = RejT (X) whenever T is faithfully coflat.

P r o o f. For any M = RejT (X), it is clear that f(M) = 0, where f ∈

ComC(X,T ), i.e., ComC(M,T ) = 0. By the fact that hC(T,M)∗ ∼= ComC(M,T )

and hC(T,M) →֒ hC(T,M)∗∗, hC(T,M) � T = 0, i.e., RejT (X) ⊆ Ker θX .

Since X/KerθX is a subcomodule of X/RejT (X) and by [3], Corollary 8.13

X/RejT (X) is cogenerated, we have X/Ker θX ∈ Cogen(TC).

Moreover, let M = Ker θX , then hC(T,M) � T = 0. Since T is faithfully coflat,

we can obtain hC(T,M) = 0. It follows that for any f ∈ ComC(X,T ), f(M) = 0,

i.e., M ⊆ RejT (X). Therefore, Ker θX = RejT (X). �

Proposition 3.9. Let T be a quasi-finite right C-comodule and T = Ker(γ),

where γ : Q0 → Q1 is a homomorphism between injective rightC-comodules. Then T

is a silting comodule with respect to γ if and only if

(1) T (I) ∈ Cγ for all sets I;

(2) KerhC(T,−) ∩ Cγ = 0.

P r o o f. Necessity. If T is a silting comodule with respect to γ, then we have

the equality Cogen(TC) = Cγ . It follows that T
(I) ∈ Cγ for all sets I. Now let

X ∈ KerhC(T,−)∩Cγ , i.e., hC(T,X) = 0 and X ∈ Cγ . Since X ∈ Cogen(TC), there

is a monomorphism 0 → X
f

−→ T (I). Now, we assume that X 6= 0, then f 6= 0,

i.e., ComC(X,T (I)) 6= 0. It is clear that ComC(X,T )(I) 6= 0 and ComC(X,T ) 6= 0.

Therefore, hC(T,X) 6= 0, which is a contradiction. It follows that X = 0.
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Sufficiency. Suppose that statements (1) and (2) hold. Let X ∈ Cogen(TC), then

there is a monomorphism 0 → X
f

−→ T (I). By (1), we have that T (I) ∈ Cγ . And by

Lemma 3.4 (2), we obtain that X ∈ Cγ , i.e., Cogen(TC) ⊆ Cγ .

In order to show the reverse inclusion Cγ ⊆ Cogen(T ), we consider X ∈ Cγ . Then

we have an exact sequence

0 → Ker θX
i

−→ X
p

−→ X/Ker θX → 0.

Since, in general,X/Ker θX∈Cogen(T ), it follows from the above thatX/KerθX∈Cγ .

By Lemma 3.4 (4), we obtain that X/KerθX ∈ T⊥, i.e., ext1C(T,X/Ker θX) = 0.

Hence, we have the short exact sequence

0 // hC(T,Ker θX)
hC(T,i)

// hC(T,X)
hC(T,p)

// hC(T,X/KerθX) // 0.

Since ComC(p, T ) is an isomorphism, we obtain that hC(T, p) is also an isomor-

phism. Since ImhC(T, i) = KerhC(T, p) = 0 and hC(T, i) is a monomorphism

obviously, we learn that hC(T,Ker θX) = 0. Therefore, Ker θX ∈ KerhC(T,−).

On the other hand, applying Lemma 3.4 (2), it follows that Ker θX ∈ Cγ . From

statement (2), Ker θX = 0. And X ∈ Cogen(T ) by Proposition 3.7. To sum up,

Cγ = Cogen(T ), that is, T is a silting comodule. �

In particular, if T is faithfully coflat, we have Ker θX = KerhC(T,−). Then

X ∈ Cogen(T ) clearly. The conclusion above is also right.

4. Quasi-finite finitely silting comodule

For a quasi-finite right C-comodule TC , we consider the following classes YC =

Cogen(TC)∩ comod-C and XC = KerhC(T,−)∩ comod-C, where the comod-C rep-

resents the category of finitely cogenerated right C-comodules. And let X ′ = Ker θX

from now on. Moreover, we denote ext1C(T,−) by ΓC(−) and, in the case the coal-

gebra C is understood, we simply write Γ(−).

Lemma 4.1. Let T be a quasi-finite C-comodule such that T = Ker(γ), where

γ : Q0 → Q1 is a C-homomorphism between injective right C-comodules. Suppose

that all C-comodules in YC belong to the class Cγ and all C-comodules in XC are

finitely copresented. LetX be a finitely cogenerated C-comodule. Then the following

statements hold:

(1) X/X ′ ∈ YC if and only if hC(T,X) ∼= hC(T,X/X ′) if and only if X ′ ∈ XC .

(2) If inj.dim TC 6 1, then Γ(X) ∼= Γ(X ′).

(3) If R is QF, and there is an exact sequence 0 → X → Cn → K → 0, then

extn+1(T,K) ∼= extn(T,X).
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P r o o f. By the hypothesis, when X/X ′ ∈ YC , we have that X/X ′ ∈ Cγ . Then

Γ(X/X ′) = 0, and we have the exact sequence

0 → X ′ i
−→ X

p
−→ X/X ′ → 0.

Applying the functor hC(T,−), we can obtain that

0 = Γ(X/X ′) // hC(T,X
′)

hC(T,i)
// hC(T,X)

hC(T,p)
// hC(T,X/X ′) // 0

and

. . . → ext2C(T,X/X ′)
δ1

−→ Γ(X ′)
Γ(i)
−→ Γ(X) → 0.

Since hC(T, p) is an isomorphism, we have that hC(T,X) ∼= hC(T,X/X ′) and

hC(T,X
′) = 0, i.e., X ′ ∈ KerhC(T,−). Therefore, X ′ ∈ XC .

Conversely, for X ′ ∈ XC , we have that X
′ ∈ KerhC(T,−), i.e., hC(T,X

′) = 0.

Therefore, hC(T, p) is an isomorphism, i.e., hC(T,X) ∼= hC(T,X/X ′). By the hy-

pothesis, all C-comodules in XC are finitely copresented, then X/X ′ is finitely co-

generated. And by X/X ′ ∈ Cogen(TC), we learn that X/X ′ ∈ YC .

In order to show (2), we show that ext2C(T, Y ) = 0 for any right C-comodule Y .

We have already known that hC(T, Y )∗ ∼= ComC(Y, T ) for any right C-comodule Y ,

and then extnC(T, Y )∗ ∼= ExtnC(Y, T ). It follows that inj.dim TC 6 1 if and only if

ext2C(T, Y ) = 0 for any right comodule Y , so is X/X ′, see [18], Proposition 12.2.2.

Since R is a QF-ring, we have that the coalgebra C over R is also projective.

Applying the cohom functor on the exact sequence

0 → X → Cn → K → 0,

by the fact that extiC(T,C) = 0 for all i > 1, we can get the conclusion easily. �

Corollary 4.2. Let T be a quasi-finite right C-comodule such that T = Ker(γ),

where γ : Q0 → Q1 is a homomorphism between injective comodules. Suppose that

all C-comodules in YC belong to the class Cγ . Let X be a conoetherian C-comodule

and let X ′ = Ker θX . If X is finitely cogenerated, then the following statements hold.

(1) X ′ ∈ XC .

(2) X/X ′ ∈ YC .

(3) hC(T,X) ∼= hC(T,X/X ′).

P r o o f. Since X/X ′ ∈ Cogen(TC) and X is conoetherian, we have X/X ′ ∈

comod-C. Thus, X/X ′ ∈ YC . By the hypothesis, we have X/X ′ ∈ Cγ . And

Γ(X/X ′) = 0 by Lemma 3.4 (4). Applying the covariant hC(T,−) functor on the

canonical short exact sequence

0 → X ′ i
−→ X

p
−→ X/X ′ → 0
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we obtain the exact sequence

0 = Γ(X/X ′) // hC(T,X
′)

hC(T,i)
// hC(T,X)

hC(T,p)
// hC(T,X/X ′) // 0.

Since hC(T, p) is an isomorphism, i.e., hC(T,X) ∼= hC(T,X/X ′), we obtain that

hC(T,X
′) = 0, i.e., X ′ ∈ KerhC(T,−). As X ′ is a subcomodule of X , we have

that X ′ is finitely cogenerated, i.e., X ′ ∈ comod-C. Therefore, X ′ ∈ XC . �

Lemma 4.3. Let T be a quasi-finite C-comodule and γ : Q0 → Q1 be a homomor-

phism between injective comodules. Suppose that T = Ker(γ) and KerhC(T,−) ∩

Cγ = 0. If X is a right C-comodule such that X ∈ Cγ and X/X ′ ∈ Cγ , then

X ∈ Cogen(TC).

P r o o f. Since X/X ′ ∈ Cγ , and by Lemma 3.4 (4), we obtain that Γ(X/X ′) = 0.

Applying the covariant hC(T,−) functor on the short exact sequence

0 → X ′ i
−→ X

p
−→ X/X ′ → 0

we obtain a short exact sequence

0 // hC(T,X
′)

hC(T,i)
// hC(T,X)

hC(T,p)
// hC(T,X/X ′) // 0

and then, taking into account that hC(T, p) is an isomorphism, we have hC(T,X
′)=0,

i.e., X ′ ∈ KerhC(T,−). It follows thatX ′ ∈ Cγ , by Lemma 3.4 (2). From the hypoth-

esis, we get that X ′ = 0. And by Proposition 3.7, we learn that X ∈ Cogen(TC). �

Proposition 4.4. Let TC be a quasi-finite C-comodule with D = eC(T ) and let

γ : Q0 → Q1 be a homomorphism between injective C-comodules. Assume that T =

Ker(γ) and T ∈ Cγ . Let X ∈ Cogen(TC). Then hC(T,X) is a finitely cogenerated

right D-comodule if and only if there is an exact sequence 0 → X → T n → Z → 0

with Z ∈ Cγ .

P r o o f. Consider hC(T,X) is a finitely cogenerated right D-comodule. By [6],

Proposition 4.2.2, there is a monomorphism 0 → X
f

−→ T n such that hC(T, f) is

a monomorphism. Hence, we have an exact sequence

(4.1)

. . . δ1
// Γ(X) // Γ(T n) // Γ(Z)

δ0
// hC(T,X)

hC(T,f)
// hC(T, T

n) // hC(T, Z) // 0.

Since T ∈ Cγ , it is immediate by Lemma 3.4 (1) that T
n ∈ Cγ and X ∈ Cγ . Thus,

Γ(T n) = 0. Taking into account that hC(T, f) is a monomorphism, we obtain that

Γ(Z) = 0, i.e., Z ∈ T⊥. By Lemma 3.4 (5), we get that Z ∈ Cγ .

Conversely, assume that there is an exact sequence

0 → X
f

−→ T n g
−→ Z → 0
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with Z ∈ Cγ . Then there is a long exact sequence induced by hC(T,−) similar

to (4.1). Since Z ∈ Cγ , we have that Γ(Z) = 0. Therefore,

0 // hC(T,X)
hC(T,f)

// hC(T, T
n) ∼= Dn

is a monomorphism, i.e., hC(T,X) is a finitely cogenerated right D-comodule. �

Now, we define the concept of finitely silting right C-comodules over a field R.

Note that all finite cogenerated comodules are quasi-finitely by the example in [18],

Section 8.1.

Definition 4.5. Let T be a right C-comodule with T = Ker(γ), where

γ : Q0 → Q1 is a homomorphism between injective C-comodules. We say that T is

a finitely silting comodule with respect to γ if the following conditions are satisfied:

(1) T ∈ Cγ ;

(2) KerhC(T,−) ∩ Cγ = 0;

(3) T is finitely cogenerated;

(4) hC(T,−) : MC → MD carries finitely cogenerated comodules to finitely cogen-

erated comodules, where D = eC(T );

(5) if R is a commutative ring, we need T to be quasi-finite.

Remark 4.6. By Proposition 3.9 and the above definition, we observe that

finitely silting comodules are silting comodules in quasi-finite comodule category.

However, the converse is not true.

Proposition 4.7. If TC is a finitely silting comodule with respect to the injective

copresentation γ : Q0 → Q1, and T is faithfully coflat then YC = Cγ ∩ comod-C.

P r o o f. Let X ∈ YC . Then X ∈ Cogen(TC) and X ∈ comod-C. If TC is

a finitely silting comodule with respect to γ, we have that T ∈ Cγ and X ∈ Cγ .

For the reverse inclusion, let X ∈ Cγ ∩ comod-C. In general, we have X/X ′ ∈

Cogen(TC). As T is faithfully coflat, it follows by Lemma 3.8 thatX
′ ∈ KerhC(T,−)

and moreover, X ′ ∈ XC . Then hC(T,X/X ′) ∼= hC(T,X) by Lemma 4.1. Since TC is

a finitely silting comodule with respect to γ, we have that T ∈ Cγ and hC(T,X) ∈

comod-D, which is the category of finitely cogenerated D-comodules. Consequently,

hC(T,X/X ′) ∈ comod-D. By Proposition 4.4, there is an exact sequence

0 → X/X ′ f
−→ T n g

−→ Z → 0

with Z ∈ Cγ . From Lemma 3.4 (1), X/X ′ ∈ Cγ , and hence, by Lemma 4.3, we have

X ∈ Cogen(TC). �
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Remark 4.8. Let comod-C be closed under quotients, i.e., all finitely cogener-

ated comodules are finitely copresented, or C is a conoetherian coalgebra, Proposi-

tion 4.7 is also true.

Proposition 4.9. Let TC be a finitely silting comodule with respect to the injec-

tive copresentation γ : Q0 → Q1. If T is faithfully coflat, then YC ⊆ Reflθ.

P r o o f. LetX ∈YC . ThenX ∈Cogen(TC) andX ∈ comod-C. Since T is finitely

silting with respect to γ, we have that hC(T,X) is a finitely cogeneratedD-comodule,

where D = eC(T ). Indeed, by Proposition 4.4, there is an exact sequence

0 → X
f

−→ T n g
−→ Z → 0

with Z ∈ Cγ . It follows by Lemma 3.4 (4) that Γ(Z) = 0. Hence, the induced

sequence

0 // hC(T,X)
hC(T,f)

// hC(T, T
n)

hC(T,g)
// hC(T, Z) // 0

is also exact. We have known that a cotensor functor is exact when one of the

variables is coflat by [15]. Now, consider the following commutative diagram with

exact rows

0

��

// X

θX

��

f
// T n

θTn

��

g
// Z

θZ

��

// 0

��

0 // hC(T,X) � T
hC(T,f)�T

// hC(T, T
n) � T

hC(T,g)�T
// hC(T, Z) � T // 0

Since T is a finitely silting comodule and X ∈ Cogen(T ), also by [19], Theorem 1,

we have Z ∈ Cogen(T ), and θZ is a monomorphism. From the fact that θTn is an

isomorphism, it follows by applying the Snake Lemma to the above diagram that θX

is an isomorphism. �

Remark 4.10. If we suppose that all C-comodules in YC are finitely copresented,

then Proposition 4.9 also holds.

Proposition 4.11. Let TC be a conoetherian and faithfully coflat C-comodule.

If TC is finitely silting with respect to the injective copresentation γ : Q0 → Q1, then

the class YC consists of the finitely copresented comodules belonging to the class Cγ .

P r o o f. Let X ∈ YC . Then X ∈ Cogen(TC) and X ∈ comod-C. Since TC is

finitely silting with respect to γ, we have that T ∈ Cγ and hC(T,X) is a finitely

cogenerated right D-comodule, where D = eC(T ). According to Proposition 4.4, it

follows that there is an exact sequence 0 → X
f

−→ T n g
−→ Z → 0 with Z ∈ Cγ . From

707



the facts that T n is finitely cogenrated and conoetherian, we have that Z is finitely

cogenerated. Thus, X is finitely copresented. Since T ∈ Cγ , it follows that X ∈ Cγ .

Let X be a finitely copresented C-comodule such that X ∈ Cγ , then X is finitely

cogenerated. Since T is faithfully coflat, we have thatX ′ ∈ KerhC(T,−). AsX ∈ Cγ ,

we obtain X ′ ∈ Cγ . Moreover, TC is a quasi-finitely silting comodule, it follows that

X ′ = 0, i.e., X ∈ Cogen(TC). Therefore, X ∈ Cogen(TC) ∩ comod-C, i.e., X ∈ YC .

In particular, if finitely cogenerated comodules are closed under quotients, based

on Proposition 3.7, we can also have the necessity. �

5. Some relations

In this section we define the notion of finitely tilting comodules. And we discuss

the relation between it and finitely silting right C-comodules.

Definition 5.1. Assume that T is a right C-comodule. Let D = eC(TC). If T

satisfies the following conditions, then we call T a finitely tilting comodule.

(1) idCT 6 1.

(2) ext1C(T, T ) = 0.

(3) KerhC(T,−) ∩Ker ext1C(T,−) = 0.

(4) T is finitely cogenerated.

(5) hC(T,−) respects finitely cogenerated.

(6) If R is a commutative ring, we need T is quasi-finite.

Proposition 5.2. Let T be a rightC-comodule and idCT 6 1. Then T is a finitely

silting comodule if and only if T is a finitely tilting comodule.

P r o o f. Let

(5.1) 0 → T → Q0
ζ

−→ Q1 → 0

be an injective copresentation of T .

Necessity. Assume that T is a finitely silting comodule. It is enough to show

that ext1C(T, T ) = 0 and KerhC(T,−) ∩ Ker ext1C(T,−) = 0. Firstly, since T ∈ Cγ
and Cγ ⊆ ⊥T , we have that ext1C(T, T ) = 0. Secondly, let X ∈ KerhC(T,−) ∩

Ker ext1C(T,−). So, ext1C(T,X) = 0. Applying the contravariant functor hC(−, X)

on the exact sequence (5.1), we have that

0 → ext1C(T,X) → hC(Q1, X) → hC(Q0, X) → hC(T,X) → 0.

Then X ∈ Cγ . It follows that X ∈ KerhC(T,−) ∩ Cγ . Since T is a finitely silting

comodule, it is immediate that X = 0.
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Sufficiency. Suppose that T is a finitely tilting comodule. Indeed, applying the

contravariant functor hC(−, T ) on (5.1), we get that

0 → ext1C(T, T ) → hC(Q1, T ) → hC(Q0, T ) → hC(T, T ) → 0.

Since T is finitely tilting, it follows that ext1C(T, T ) = 0. Hence, T ∈ Cγ . Let

X ∈ KerhC(T,−)∩Cγ . Applying the functor hC(−, X) on (5.1), we have the exact

sequence

0 // ext1C(T,X) // hC(Q1, X)
hC(γ,X)

// hC(Q0, X) // hC(T,X) // 0.

As hC(γ,X) is a monomorphism, we can obtain ext1C(T,X) = 0. Then X ∈

KerhC(T,−) ∩ Ker ext1C(T,−). Since T is a finitely tilting comodule, it follows

that X = 0. �

Proposition 5.3. If T is finitely cogenerated and product-complete, then T is

a finitely silting comodule if and only if T is a silting comodule.

P r o o f. By Remark 4.6, we have that finitely silting comodules are silting.

Conversely, we assume that T is a silting comodule. We only need to prove

that hC(T,−) carries finitely cogenerated comodules to finitely cogenerated comod-

ules. Because T is product-complete, according to [10], Theorem 3.1, for any finitely

cogenerated comodule X , there is a homomorphism f : X → T (I) such that hC(T, f)

is a monomorphism, where I is finite. Let D = eC(T ), we have that hC(T,X) is

finitely cogenerated. �

Example 5.4 ([19], Example 1).

(1) It is well known that a right C-comodule T is partial tilting if and only if

Cogen(T ) ⊆ kerExt1C(−, T ) and the class kerExt1C(−, T ) is a torsion-free class.

Moreover, T is tilting if and only if Cogen(T ) = kerExt1C(−, T ). Note that the

class kerExt1C(−, T ) is closed under subcomodules if and only if idC(T ) 6 1, where

idC(T ) denotes the injective dimension of T . So every (partial) tilting comodule

is of injective dimension at most 1.

Let T be a right C-comodule of injective dimension at most 1, and consider an

exact sequence 0 → T
f

−→ Q0
ζ

−→ Q1 → 0 with Q0 and Q1 injective. Then T is

(partial) tilting if and only if T is (partial) silting with respect to ζ. The direct

implications are obvious since Bζ = kerExt1C(−, T ). If we assume that T is partial

silting with respect to ζ, we have Cogen(T ) ⊆ Bζ = kerExt1C(−, T ). Since Bζ is

closed under direct products, it follows that T is a partial tilting comodule. More-

over, if T is silting with respect to ζ, we obtain Cogen(T ) = Bζ = kerExt1C(−, T ),

hence T is tilting.
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(2) Let C be a coalgebra. If ζ : 0 → C is the trivial homomorphism, then Bζ contains

only the trivial comodule, hence 0 = Ker(ζ) is a silting comodule.

Remark 5.5. Let us consider Example 5.4 in quasi-finite comodule categories.

(1) Suppose that all comodules are quasi-finite. A quasi-finite right C-comodule T is

partial tilting if and only if Cogen(T ) ⊆ T⊥, and T⊥ is closed under subcomodules,

direct sums and extensions. Moreover, T is tilting if and only if Cogen(T ) = T⊥.

Note that the class T⊥ is closed under subcomodules if and only if idC(T ) 6 1.

So every (partial) tilting comodule is of injective dimension at most 1.

Let T be a quasi-finite right C-comodule of injective dimension at most 1, and

consider an exact sequence 0 → T
f

−→ Q0
ζ

−→ Q1 → 0 with Q0 and Q1 injective.

Then T is (partial) tilting if and only if T is (partial) silting with respect to ζ. In

fact, the necessity can be obtained easily from Cζ = T⊥. On the other hand, if we

assume that T is partial silting with respect to ζ, we have Cogen(T ) ⊆ Cζ = T⊥.

Since Cζ is closed under direct sums, it follows that T is a partial tilting comodule.

Moreover, if T is silting with respect to ζ, then we obtain Cogen(T ) = Cζ = T⊥,

hence T is tilting.

(2) Let C be a semiperfect coalgebra and P be a projective generator of C. If

γ : P → 0 is the trivial homomorphism, then Cγ contains only the trivial comod-

ule, hence 0 = Coker(γ) is a quasi-finite silting comodule.

Before giving next example, we introduce the notion of endofinite comodules.

A quasi-finite right C-comodule M is said to be endofinite if it has finite length

as a comodule over its endomorphism coalgebra eC(M).

(3) Let K be a filed, and C be the upper 2 × 2 triangular matrix coalgebra. There

are two simple comodules S = (0,K) and T = Q/S, where Q = (K,K). Let

γ : Q → T ⊕T be a homomorphism such that Ker γ = S, then X ∈ Cγ if and only

if ext1C(S,X) = 0 and hC(T,X) = 0.

Note that every simple comodule is quasi-finite and quasi-finite comodules are

closed under direct sums. Then S, T and Q⊕ T are quasi-finite.

Since every indecomposable endofinite comodule is product-complete, and the

direct sums of product-complete comodules are product-complete, we have that

S and Q⊕ T are product-complete.

Let X ∈ Cγ . Since Q⊕T is an injective cogenerator ofMC , there is a set I such

that X can be embedded in Q(I)⊕T (I). By hC(T,X) = 0, we have that X can be

embedded in Q(I). Then we can consider X as a subcomodule of Q(I). Since the

direct sums are exact in comodule category, we get that S(I) is a subcomodule

of Q(I) such that Q(I)/S(I) ∼= T (I). It follows that X/(X∩S(I)) ∼= (X+S(I))/S(I)

can be embedded in T (I). By hC(T,X) = 0, we can obtain X ⊆ S(I), i.e.,

X ∈ Cogen(S). Then Cγ ⊆ Cogen(S).
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Conversely, if X ∈ Cogen(S), it is easy to see that there is a set I such that

X ∼= S(I). Then ext1C(S,X) = 0 and hC(T,X) = 0. So X ∈ Cγ .

In conclusion, Cγ = Cogen(S) and S is finitely silting by Proposition 5.3.

Corollary 5.6. Suppose that T is a product-complement and finitely cogenerated

comodule. If idCT 6 1, then the following statements are equivalent.

(1) T is a silting comodule.

(2) T is a finitely silting comodule.

(3) T is a finitely tilting comodule.

(4) T is a tilting comodule.

P r o o f. By the above proposition, we have that (1)⇔(2). By Remark 5.5,

(1)⇔(4) holds. According to Proposition 5.2, we can obtain (2)⇔(3). �

Remark 5.7. By Remark 4.6, we have that finitely silting comodules are silting

comodules in quasi-finite comodule category. The equivalence between them can be

obtained by Proposition 5.3.

Proposition 5.8. Let DTC be a finitely silting comodule, also be faithfully coflat.

Then the pair (YC ,XC) is a torsion pair in comod-C.

P r o o f. Firstly, we prove that for all X ∈ comod-C and all Y ∈ YC ,

hC(Y,X) = 0 if and only if X ∈ XC . Let X ∈ comod-C. If hC(Y,X) = 0 for

all Y ∈ YC , then it follows from TC ∈ YC that hC(T,X) = 0, i.e., X ∈ KerhC(T,−).

Thus, X ∈ XC .

Conversely, assume that X ∈ XC , then X ∈ KerhC(T,−), i.e., hC(T,X) = 0. If

Y ∈ YC , then Y ∈ Cogen(TC). Hence, there is a monomorphism 0 → Y
f

−→ T (I) for

a set I. Applying the contravariant functor hC(−, X) on it, we obtain that

hC(T
(I), X)

hC(f,X)
// hC(Y,X) // 0

is an epimorphism. As X ∈ KerhC(T,−), we have that hC(Y,X) = 0.

Secondly, we prove that for every Y ∈ comod-C and for all X ∈ XC , hC(Y,X) = 0

if and only if Y ∈ YC .

Let Y ∈ comod-C. Assume that hC(Y,X) = 0 for all X ∈ XC . Let Y
′ = Ker θY .

As T is faithfully coflat, it follows that Y ′ ⊆ KerhC(T,−). Since Y ′ ∈ comod-C,

we get that Y ′ ∈ XC . Then hC(Y, Y
′) = 0. And taking into account that Y ′ is

a subcomodule of Y , so Y ′ = 0. It is enough to show Y ∈ Cogen(TC). More-

over, Y ∈ YC . Conversely, suppose that Y ∈ YC , we obtain that Y ∈ Cogen(TC).
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Then there is a monomorphism 0 → Y
f

−→ T (I). Consider X ∈ XC , i.e., X ∈

KerhC(T,−) ∩ comod-C. Then hC(T,X) = 0. Since the contravariant functor

hC(−, X) is right exact, we have that hC(T
(I), X) → hC(Y,X) → 0 is an epimor-

phism. Thus, hC(Y,X) = 0. �

Proposition 5.9. Let TC be a finitely silting comodule. If T is injective, then

hC(T,−) : YC ⇄ YD : − �D TC

is a duality, where YD = cogen(T ∗) ∩ Comod-D.

P r o o f. Let X ∈ YC . Then X ∈ Cogen(TC) ∩ comod-C. Since TC is a finitely

silting comodule, we have hC(T,X) ∈ comod-D. Since cohom functor hC(T,−) is

closed under direct sums, applying hC(T,−) on 0 → X → C(m) and by Lemma 2.4,

we get that

0 → hC(T,X) → hC(T,C
(m)) = hC(T,C)(m) = (ComC(C, T )

∗)(m) = (T ∗)(m).

It means that hC(T,X) ∈ YD.

In order to show the converse, let X ∈ YD. Then we have two exact sequences,

0 → X → (T ∗)(m) and 0 → X → D(I). Applying cotensor functor − �D TC on them,

we obtain 0 → X �D TC → (T ∗)(m) �D TC and 0 → X �D TC → D(I) �D TC .

As T is finitely silting, we have T and T ∗ are finitely cogenerated. Therefore, the

first sequence is 0 → X �D TC → D(n) �D TC
∼= T

(n)
C , and the second is 0 → X �D

TC → TC
(I). So X �D TC ∈ YC . �

Let C be a coalgebra, we denote by copres-C the subcategory of Comod-C con-

sisting of finitely copresented C-comodules. Moreover, given a bicomodule DTC , we

consider the classes Y ′
C = Cogen(TC)∩copres-C and Y ′

D = cogen((T ∗)D)∩copres-D.

Proposition 5.10. Let TC be a finitely silting comodule. If T is injective, then

hC(T,−) : Y ′
C ⇄ Y ′

D : − �D TC

is a duality. If T is also faithfully coflat and conoetherian, then YC = Y ′
C .

P r o o f. The inclusion Y ′
C ⊆ YC is obvious. Let us prove the reverse inclu-

sion. From Proposition 4.11, the class YC consists of finitely copresented comodules

belonging to the class Cγ . Hence, we have YC ⊆ Y ′
C . Therefore, YC = Y ′

C .

Similarly to Proposition 5.9, we can prove the duality is true. �
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Before giving the next proposition for a quasi-finite bicomodule DTC , we de-

fine TC (DT ) is cofaithful if uD : eC(T ) → D (uC : eD(T ) → C) is surjective.

Proposition 5.11. Let C be a cocoherent coalgebra. Suppose TC is a finitely

silting comodule which is also cofaithful and faithfully coflat. If TC is finitely copre-

sented, and let

Sup{idCM : M ∈ Y ′
C} = n,

where n ∈ N, then for any X ∈ Y ′
C , there is a sequence

0 → X → T0 → T1 → . . . → Tn → 0,

where all Ti ∈ add(TC).

P r o o f. Suppose X ∈ Y ′
C , by Proposition 4.4, there is a short exact sequence

0 → X → T (n) → Z0 → 0

with Z0 ∈ Cγ . According to Lemma 2.6 and Proposition 4.7, we have Z0 ∈ Y ′
C .

Repeating the above process, we can get the exact sequence

0 → X → T0
f0
−→ T1 → . . . → Tn−1

fn−1

−→ Zn−1 → 0,(5.2)

0 → Zn−1 → Tn
fn
−→ Zn → 0(5.3)

with Ti ∈ add(TC), Ker fi ∈ Y ′
C , i = 1, 2, . . . , n.

We assert that the short exact sequence (5.3) is split. We only need to prove that

ext1C(Zn−1, Zn) = 0. We notice that Zn is finitely copresented. Then there is an

exact sequence

0 → Zn
g0
−→ C0 → Coker g0 → 0,

where C0 is a finitely cogenerated free comodule. We know that Coker g0 is finitely

copresented. Since TC is cofaithful, we have C ∈ Cogen(T ). Thus, Ci ∈ Y ′
C . And

again, repeating the above process, we obtain an injective resolution of Zn

0 → Zn
g0
−→ C0

g1
−→ . . .

gi
−→ Ci → . . . ,

where Ci are finitely cogenerated free comodules, Coker gi ∈ Y ′
C , i = 0, 1, 2, . . .

According to the Dimension-Shifting theorem, we can obtain that exti+1
C (Zn, T ) ∼=

ext1C(Coker gi−1, T ) = 0, i = 1, 2, 3, . . . Applying hC(−, Zn) on sequence (5.2), and

by the Dimension-Shifting theorem, we get that

ext1C(Zn−1, Zn) ∼= ext2C(Ker fn−1, Zn) ∼= ext3C(Ker fn−2, Zn)

∼= . . . ∼= extn+1
C (X,Zn) = 0.

Indeed, in the above equation the last one is 0 by idCX 6 n. Therefore, Zn−1 ∈

add(TC). �
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