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Abstract. We introduce the notions of silting comodules and finitely silting comodules
in quasi-finite category, and study some properties of them. We investigate the torsion
pair and dualities which are related to finitely silting comodules, and give the equivalences
among silting comodules, finitely silting comodules, tilting comodules and finitely tilting
comodules.
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1. INTRODUCTION

Silting theory is vital for the study of representation theory. It has been developed
gradually from many aspects. Silting complexes in the triangulated category were
first introduced by Keller and Vossieck, see [9]. They are important tools to study
t-structures in the bounded derived category of representations of Dynkin quivers.
In [5], the authors introduced the notion of (partial) silting R-modules (where R is
a unital associative ring) as a common generalization of tilting modules over an ar-
bitrary ring (see [7]), as well as the notion of support 7-tilting modules over a finite
dimensional algebra, see [1]. Moreover, they showed these modules generate torsion
classes that provide left approximations, and every partial silting module admits an
analogue of the Bongartz complement, all silting modules are quasitilting modules.
In [4], Angeleri and Hrbek gave the classification of silting modules over commutative
rings, and established a bijective correspondence with Gabriel filters of finite type.
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The coalgebra theory, dual to the representation of algebra, has attracted extensive
attention of eminent scholars. Many scholars devoted themselves to investigating this
aspect and came up with some open problems, see [8], [11]. For instance, Professor
Simson in Copernicus University, pointed nine questions out, about the structure of
coalgebra and the research for representation, see [13]. The fifth is in connection with
constructing the tilting and cotilting theory in comodule category. In 1998, Wang
in [16] defined the classical tilting comodules in comodule category. In 1999, Wang
in [17] introduced the tilting comodules and partial tilting comodules over coalgebras,
and showed that every tilting comodule can induce a torsion pair. In 2008, Simson
in [14] gave a description of the f-cotilting comodules and cotilting procedures over
coalgebras, and constructed a pair of cotilting functors of Brenner-Butler type over
coalgebras. Yuan and Yao in [19] introduced the notions of silting comodules and
partial silting comodules over coalgebras, and obtained the Bongartz theorem for the
complement of partial silting comodules.

Inspired by the above researchers, in this paper, we investigate the quasi-finitely
silting comodules induced by silting comodules. And we introduce the finitely silting
comodules, also study many properties of it.

The paper is organized as follows. In Section 2, we present some necessary no-
tations and conventions which are used throughout the paper. We also state some
results which are used in next sections. In Section 3, we introduce the concept of
quasi-finitely silting comodules. In Section 4, we discuss the finitely silting comod-
ules, and study some nice properties of this new notion. In Section 5, we investigate
the torsion pair and dualities which are in connection with finitely silting comodules
and equivalences among silting comodules, finitely silting comodules, finitely tilting
comodules, and tilting comodules.

2. PRELIMINARIES

Throughout the paper, unless explicitly stated, let C', D be coalgebras over a com-
mutative ring R, and under the mild hypothesis that the involved coalgebras are flat
as R-modules. We always assume that C' and D are right semiperfect when we use
the derived functor ext’, (T, —) (exti(—,T)) of cohom functor ho(T, —) (he(—,T)).

We give some notations at first.

We denote the category of all right C-comodules (or left D-comodules) by M
(or PM). For a comodule T we denote by Add(T) (or by add(T)) the class of all
C-comodules which are isomorphic to direct summands of direct sums (or finite
direct sums) of copies of 7. Moreover, we consider the perpendicular class T+ of
a quasi-finite right C-comodule T, defined as T+ = {X € MY ext{ (T, X) = 0}.
Let Cogen(T¢) = {X: 0 — X — TW_ [ isaset}, see [16], Proposition 5.3. If X
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is a comodule, we denote the reject of X in T by Rejp(X), where Rejp(X) =
Ker f. We denote the canonical natural transformation of a quasi-

f€Com(X,T)
finite right C-comodule T, n: 1pjc — G o F, by 0x: X — he(T,X) O T,
where G = — Op Te and F = he(pTe,—). A quasi-finite comodule X is called
O-torsionless (or O-reflexive) if 6x is a monomorphism (or an isomorphism). We
recall that Reflg is the class of all #-reflexive comodules.

In order to define the notion of silting comodules, we have to give the class B, at
first. Let v: Qo — @1 be a homomorphism. We have a class of comodules

B, ={X: Com¢(X,~) is an epimorphism}.

Definition 2.1 ([19]). We say that a right comodule T¢ is silting (with respect
to ) if there exists an injective copresentation

O%TLQQLQl

of T such that Cogen(T¢) = B,,.

Definition 2.2 ([2]). A right C-comodule X is called quasi-finite if the functor
—® X: R-Mod — MY has a left adjoint. A quasi-finite left D-comodule is defined
analogously.

Notation 2.3. For a quasi-finite right C'-comodule X we denote the left adjoint
of the functor —® X by hco(X,—): MY — R-Mod. This functor is called the cohom
functor.

Lemma 2.4 ([18], Proposition 8.1.2). For a bicomodule p X¢, the following state-
ments are equivalent.
(1) X¢ is quasi-finite.
(2) The functor — Op X: MP — M has the left adjoint. In this case, the left
adjoint is given by ho(X,—): MY — MP.
It follows that there is a very useful isomorphism for any Yo and Wp:

Comp (he(X, Y),W) = ComC(Y, W Op X).
By [18], Section 8.1, if R is a field, there is (—)* = Homp(—, R) = Com¢(—, (), and
he(X,Y) = lim Come (Y, X)* = lim(X Oc Vi)™

If R is a commutative ring, we have that hc(X,Y)* = Hompg(he(X,Y),R) =
Come(Y,R® X) = Comce(Y, X) by [2], Section 3.4.
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Definition 2.5 ([12]). Let X be a C-comodule. Then X is called cocoherent
if X is finitely cogenerated and every finitely cogenerated quotient comodule of X is
finitely copresented.

We say that the coalgebra C' is right (or left) cocoherent if the C-comodule Ce
(or ¢C) is a cocoherent C-comodule.

Lemma 2.6. Assume that C is cocoherent, 0 - X — Y — Z — 0 is a short
exact sequence with X, Y being finitely copresented. Then Z is finitely copresented.

3. QUASI—FINITE SILTING COMODULES

Let T be a quasi-finite right C-comodule with co-endomorphism D = ex(T), and
we have already known that T is a (D, C)-bicomodule by [2], Section 3.4. Let Qg
and @7 be right C-comodules which are quasi-finite throughout this paper.

According to [19], we define the quasi-finite silting comodules similarly.

Definition 3.1. Let v: Q9 — @1 be a homomorphism between right C-
comodules Qg and Q1. Then we have a class of comodules as:

C, = {X is a right C-comodule: hc(vy,X) is a monomorphism}.

Lemma 3.2. Let v: Qo — @1 be a homomorphism and assume that v = 7, o,
is the canonical factorization of y. The following statements are equivalent for a right
C-comodule X .

(1) X ec,.
(2) hc(ry, X) is an isomorphism and he(my, X) is a monomorphism.

Proof. (1) = (2) he(v,X) = he(ry o1y, X) = he(my, X) 0 he(ry, X). Since
hc(v,X) is a monomorphism, we have that hc(7,, X) is a monomorphism. As
hc(—,X) is a contravariant right exact functor, we obtain that hc(7y, X) is an
epimorphism. Then h¢(7y, X) is an isomorphism. We will prove that ho(my, X) is
a monomorphism next.

Consider the natural isomorphism in the following diagram:

he (v, X)"

he(Qo, X)* he(Q1, X)*
Come (X, Qo) rom———" Come (X, Q1).
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Since h¢ (7, X) is a monomorphism, we have that Com¢ (X, ) is an epimorphism, i.e.
for any g: X — @1, thereisan f: X — Qg such that vf = ¢g. Then for any h: X —
Im~, 7, h € Comc(X, @Q1), we have that thereisan f': X — Qo such that 7, h = v f".
Therefore, Com¢c (X, m,) is an epimorphism. We consider the natural isomorphism:

ho(my, X)* .
he(Qo, X)) —2 5 he(Imy, X)

gl lg

Come (X, Qo) Come (X, Imy).

Come (X,my)
So h¢(my, X)* is an epimorphism. By the commutative diagram

heo(my,X)
he(Imy, X) ——"" 5 he(Qo, X)

he(Imy, X) o X he(Qo, X)

since g1 and g2 are injective, hc(m.,, X)** is a monomorphism, we have ho(my, X)

is a monomorphism.
(2) = (1) It is obvious. O

Corollary 3.3. Let v: Qo — @1 be a homomorphism with T = Ker(vy) and
assume that v = 7, o 7, is the canonical factorization. The following statements are
equivalent for a quasi-finite C-comodule X which belongs to T+.

(1) X ec,.
(2) he(ry, X) is an isomorphism.

Lemma 3.4. Let v: Qg — @1 be a homomorphism, the following statements
hold.

(3.1) 045 B5% x50

is an exact sequence in MY such that A and B belong to C,, and X € T, then
X eC,.
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Proof. (1) This follows from the fact that the cohom functor respects direct
sums.

(2) Let Y € Cy and f: X — Y be a monomorphism. Then h¢c(y,Y) is a monomor-
phism by Lemma 3.2. By the natural isomorphism

he(v,Y)"

he(Qo,Y)* he(Q1,Y)*
Comge (Y, Qo) Com¢ (Y, Ql)

B —
Comc (Y,y)

we learn that Comc(Y, ) is an epimorphism, i.e., Y € B,,.
And by another natural isomorphism

he(Qo, X)* —20% b (@, X)*
Comge (X, Qo) Comc (X, Ql)

B ——
Comc (X,7)

we need to show Comg (X, ) is an epimorphism.
Since B, is closed under subcomodules by [19], Lemma 2, we can get the
Come (X, ) is an epimorphism. By the commutative diagram

he(Qo, X) —20 Y h(@u, X)
Qll l@
he (Qo, X)™ he(Qu, X)*

_
he (v, X)™"

since g1 and g2 are injective, ho(y, X)** is a monomorphism, we have ho(vy, X) is
a monomorphism, i.e., X € C,.

(3) Let 0 —» X v %5 Z 5 0 be an exact sequence with X,Z € C,, ie.,
hc(y, X) and he(y,Z) are monomorphisms. Then Comce(X,v) and Come(Z, )
are epimorphisms. This means X, 7 € B,. Since B, is closed under extensions, we
have that Y € B,, i.e., Com¢(Y, ) is an epimorphism. It follows that ho(y,Y) is
a monomorphism, i.e., Y € C,.

(4) By the assumption, hc(y, X) and he(my, X) are monomorphisms. Applying
the functor he(—, X) on the exact sequence

0T -5 Qo % Imvy — 0,
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we obtain an exact sequence as follows:

he(my,X)
_—

0 —ext& (T, X) he(Im~y, X) he(Im~y, X)

he(4,X)

he(Qo, X)

hC(Ta X)

Then exts (T, X) =0, i.e., X € T+.
(5) Suppose that v = 7, o, is the canonical factorization. Applying the covariant
functor hc(Im~y, —) on the exact sequence (3.1), we can get the exact sequence

he(Imy,A) = he(Im~y, B) = he(Im~y, X) — 0.

We also apply the covariant functor hc(@Q1, —) on (3.1), then we obtain the exact
sequence
0— he(Q1,4) = he(Q1,B) = he(Q1,X) — 0.

Since A and B lie in C, it follows by Lemma 3.2 that both hc(7,, A) and he (7, B)
are isomorphisms. So hc(Im~, f) is a monomorphism. Hence, we have the following
commutative diagram with exact rows:

0 ——hc(Q1,A) ——— hc(Q1, B)

he(Q1, X) ——=0
th(T’WA) lhc(T’y,B) th(T’WX)
0 —— h¢(Im~vy, A) —— he(Im~y, B)) —— he(Imv, X) ——0.
Since A, B € C, we have that hc(7y, A), hc(7y, B) are isomorphisms. Applying the

Snake Lemma, we get that ho(7y, X) is an isomorphism. By Corollary 3.3, we can
obtain the conclusion. 0

Definition 3.5. We say that a quasi-finite right C-comodule T is
(1) a partial silting comodule (with respect to ) if there exists a quasi-finite injec-
tive copresentation of T’

0—=>T = Qo— Q1

such that T' € Cy;
(2) a silting comodule (with respect to ) if there exists a quasi-finite injective
copresentation
0—=T—=Qo— Q1

of T such that Cogen(T¢) = C,.
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Remark 3.6. Note that the differences between silting comodules in [19] and
quasi-finite silting comodules are as follows.

(1) Quasi-finite silting comodules are quasi-finite.

(2) Quasi-finite partial silting comodules are defined with respect to the class C,.
Since C, is closed under direct sums clearly, we omit this condition in the defi-
nition.

(3) Quasi-finite silting comodules are defined with respect to the class Cogen(T¢),
which is defined in Preliminaries. It is different to the class Cogen(7¢), which
is given in Definition 2.1 of silting comodules.

Proposition 3.7 ([16], Proposition 5.3). Let Tc be a quasi-finite right C-
comodule with co-endomorphism D = ec(T). The comodule X € Cogen(T¢) if
and only if 0x: X — he(T,X) O T is a monomorphism.

Lemma 3.8. Let T be a quasi-finite right C-comodule. Then
(1) X/Kerfx € Cogen(Tc).
(2) Kerfx = Rejp(X) whenever T is faithfully coflat.

Proof. For any M = Rejp(X), it is clear that f(M) = 0, where f €
Come (X, T), ie.,, Comc(M,T) = 0. By the fact that ho(T, M)* = Comc(M,T)
and ho(T, M) — he(T, M), he(T,M) O T = 0, ie., Rejp(X) C Kerfx.
Since X/Kerfx is a subcomodule of X/Rej;(X) and by [3], Corollary 8.13
X/Rejr(X) is cogenerated, we have X/ Kerfx € Cogen(T¢).

Moreover, let M = Kerfx, then he(T,M) O T = 0. Since T is faithfully coflat,
we can obtain ho(T, M) = 0. It follows that for any f € Come(X,T), f(M) =0,
i.e., M C Rejp(X). Therefore, Ker fx = Rejp(X). O

Proposition 3.9. Let T be a quasi-finite right C-comodule and T = Ker(7y),
wherey: Qo — Q1 is a homomorphism between injective right C-comodules. Then T
is a silting comodule with respect to v if and only if

(1) TW € ¢, for all sets I;
(2) Kerhe(T,—)NCy = 0.

Proof. Necessity. If T is a silting comodule with respect to =y, then we have
the equality Cogen(T¢) = C,. It follows that T € C, for all sets I. Now let
X € Kerhe(T,—)NC,, ie., he(T,X) =0and X € C,. Since X € Cogen(T¢), there
is a monomorphism 0 — X S, Now, we assume that X # 0, then f # 0,
i.e., Comeg(X,TW) £ 0. Tt is clear that Comg (X, T)) # 0 and Come (X, T) # 0.
Therefore, he (T, X) # 0, which is a contradiction. It follows that X = 0.
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Sufficiency. Suppose that statements (1) and (2) hold. Let X € Cogen(T¢), then
there is a monomorphism 0 — X R0 By (1), we have that T(!) € C,. And by
Lemma 3.4 (2), we obtain that X € C,, i.e., Cogen(T¢) C C,.

In order to show the reverse inclusion C, C Cogen(T'), we consider X € C,. Then
we have an exact sequence

0 — Kerfy “ax 2 X/Kerfx — 0.

Since, in general, X /Ker 0 x € Cogen(T), it follows from the above that X/Kerfx €C, .
By Lemma 3.4 (4), we obtain that X/Kerfy € T, ie., ext:(T, X/ Kerfx) = 0.
Hence, we have the short exact sequence

he(T.) he (T,p)

00— he(T,Kerfx) —— ho(T, X) ho(T,X/Kerfx) —0.

Since Come(p, T) is an isomorphism, we obtain that heo (T, p) is also an isomor-
phism. Since Imh¢(T,i) = Kerhe(T,p) = 0 and he(T,4) is a monomorphism
obviously, we learn that ho(T,Kerfx) = 0. Therefore, Kerfx € Kerho(T, —).
On the other hand, applying Lemma 3.4(2), it follows that Kerfx € C,. From
statement (2), Kerfx = 0. And X € Cogen(T') by Proposition 3.7. To sum up,
C, = Cogen(T), that is, T is a silting comodule. O

In particular, if T is faithfully coflat, we have Kerfx = Kerhc(T,—). Then
X € Cogen(T) clearly. The conclusion above is also right.

4. QUASI—FINITE FINITELY SILTING COMODULE

For a quasi-finite right C-comodule T, we consider the following classes Vo =
Cogen(T¢) Ncomod-C and X¢ = Ker he (T, —) N comod-C, where the comod-C rep-
resents the category of finitely cogenerated right C-comodules. And let X’ = Kerfx
from now on. Moreover, we denote exty (T, —) by I'c(—) and, in the case the coal-
gebra C' is understood, we simply write I'(—).

Lemma 4.1. Let T be a quasi-finite C-comodule such that T = Ker(v), where
v: Qo — Q1 is a C-homomorphism between injective right C-comodules. Suppose
that all C'-comodules in V¢ belong to the class C, and all C-comodules in X¢c are
finitely copresented. Let X be a finitely cogenerated C-comodule. Then the following
statements hold:

(1) X/X' € Yo if and only if ha(T, X) = he(T, X/X') if and only if X' € X¢.

(2) Ifinj.dimTe < 1, then I'(X) 2 T'(X').

(3) If R is QF, and there is an exact sequence 0 — X — C™ — K — 0, then
ext" (T, K) = ext™(T, X).
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Proof. By the hypothesis, when X/X’ € Yo, we have that X/X’ € C,. Then
I'(X/X') = 0, and we have the exact sequence

0 X -5 X -2 X/X' 0.
Applying the functor he (T, —), we can obtain that

0 = T(X/X') — he(T, X) 22T o1, x) 29C2 o, x /X —— 0

and
.= extZ (T, X/X) x) M px

Since he(T,p) is an isomorphism, we have that hC(T,X) >~ he(T,X/X') and
he(T, X') =0, i.e., X' € Ker h¢(T, —). Therefore, X' € Xc.

Conversely, for X’ € X¢, we have that X' € Ker he(T, —), i.e., he(T,X') = 0.
Therefore, ho(T,p) is an isomorphism, i.e., ha(T,X) = he(T,X/X'). By the hy-
pothesis, all C-comodules in X are finitely copresented, then X/X' is finitely co-
generated. And by X/X’ € Cogen(T¢), we learn that X/ X' € Vc.

In order to show (2), we show that ext?(7,Y) = 0 for any right C-comodule Y.
We have already known that he(T,Y)* =2 Come(Y,T) for any right C-comodule Y,
and then ext(T,Y)* = Exta(Y,T). It follows that inj.dim T < 1 if and only if
ext?(T,Y) = 0 for any right comodule Y, so is X/X’, see [18], Proposition 12.2.2.

Since R is a QF-ring, we have that the coalgebra C' over R is also projective.
Applying the cohom functor on the exact sequence

0—-X—-C"— K—0,
by the fact that ext,(T,C) = 0 for all i > 1, we can get the conclusion easily. O

Corollary 4.2. Let T be a quasi-finite right C-comodule such that T = Ker(7),
where v: Qo — Q1 is a homomorphism between injective comodules. Suppose that
all C-comodules in Yo belong to the class C,. Let X be a conoetherian C'-comodule
and let X' = Ker0x. If X is finitely cogenerated, then the following statements hold.

(1) X' e Xco.
(2) X/X' e Ve.
(3) he(T,X) 2 he(T, X/X').

Proof. Since X/X’ € Cogen(T¢) and X is conoetherian, we have X/X' €
comod-C. Thus, X/X' € Yc. By the hypothesis, we have X/X’ € C,. And
I'(X/X') = 0 by Lemma 3.4 (4). Applying the covariant hco (T, —) functor on the
canonical short exact sequence

0 X -5 X 2 X/X' >0
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we obtain the exact sequence

he(T,i) hc(T,p)

0=T(X/X") —— hc(T,X') he(T, X) —— he(T, X/X') ——0.

Since ha (T, p) is an isomorphism, i.e., ha(T, X) = he(T, X/X'), we obtain that
he(T,X') = 0, i.e., X’ € Kerho(T,—). As X’ is a subcomodule of X, we have
that X' is finitely cogenerated, i.e., X’ € comod-C. Therefore, X’ € X¢. O

Lemma 4.3. Let T be a quasi-finite C-comodule and v: Qo — (1 be a homomor-
phism between injective comodules. Suppose that T = Ker(v) and Ker he(T,—) N
C, = 0. If X is a right C-comodule such that X € C, and X/X' € C,, then
X € Cogen(T¢).

Proof. Since X/X’ € C,, and by Lemma 3.4 (4), we obtain that I'(X/X') =0
Applying the covariant he(T', —) functor on the short exact sequence

05X 5 X -2 X/X' >0

we obtain a short exact sequence

hc(T i) he(T,p)

O—>hc(T,X) hc(T X)—)hc(T X/X)—)O

and then, taking into account that ho (T, p) is an isomorphism, we have he (T, X')=0,
ie., X’ € Kerh¢(T,—). It follows that X’ € C,, by Lemma 3.4 (2). From the hypoth-
esis, we get that X’ = 0. And by Proposition 3.7, we learn that X € Cogen(T¢). O

Proposition 4.4. Let T¢ be a quasi-finite C-comodule with D = ec(T) and let
~v: Qo — Q1 be a homomorphism between injective C-comodules. Assume that T' =
Ker(y) and T € C,. Let X € Cogen(T¢). Then hc(T,X) is a finitely cogenerated
right D-comodule if and only if there is an exact sequence 0 - X — T" — Z — 0
with Z € C,.

Proof. Consider ho(T, X) is a finitely cogenerated right D-comodule. By [6],
Proposition 4.2.2, there is a monomorphism 0 — X L4 7" such that he(T, f) is
a monomorphism. Hence, we have an exact sequence
(4.1)

- 2T(X) =TT —T(2) % he(T, X) 2L (T, T7) — he(T, 2) — 0.

Since T € C,, it is immediate by Lemma 3.4 (1) that 7" € Cy and X € C,. Thus,
I(T™) = 0. Taking into account that ho (T, f) is a monomorphism, we obtain that
I'(Z) =0, ie., Z € T+. By Lemma 3.4 (5), we get that Z € C,.

Conversely, assume that there is an exact sequence

0 x L1 2740
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with Z € C,. Then there is a long exact sequence induced by hco (T, —) similar
o (4.1). Since Z € C,, we have that I'(Z) = 0. Therefore,

he(T,f)
— s

0— he(T, X) he(T, T™) = D™

is a monomorphism, i.e., ho (T, X) is a finitely cogenerated right D-comodule. O

Now, we define the concept of finitely silting right C-comodules over a field R.
Note that all finite cogenerated comodules are quasi-finitely by the example in [18],
Section 8.1.

Definition 4.5. Let T be a right C-comodule with T = Ker(y), where
v: Qo — @1 is a homomorphism between injective C-comodules. We say that T is
a finitely silting comodule with respect to «y if the following conditions are satisfied:

(1) TeCy

(2) Kerhe(T,—)NCy = 0;

(3) T is finitely cogenerated;

(4) he(T,—): MY — MP carries finitely cogenerated comodules to finitely cogen-
erated comodules, where D = e (T);

(5) if R is a commutative ring, we need T to be quasi-finite.

Remark 4.6. By Proposition 3.9 and the above definition, we observe that
finitely silting comodules are silting comodules in quasi-finite comodule category.
However, the converse is not true.

Proposition 4.7. If T is a finitely silting comodule with respect to the injective
copresentation v: Qo — @1, and T is faithfully coflat then Yo = C, N comod-C.

Proof. Let X € Yo. Then X € Cogen(T¢) and X € comod-C. If T¢ is
a finitely silting comodule with respect to 7y, we have that 7' € C, and X € C,.

For the reverse inclusion, let X € C, N comod-C. In general, we have X/X' €
Cogen(T¢). As T is faithfully coflat, it follows by Lemma 3.8 that X’ € Ker h¢ (T, —)
and moreover, X’ € X¢. Then he(T, X/X') 2 he(T, X) by Lemma 4.1. Since T¢ is
a finitely silting comodule with respect to 7, we have that T € C and ho(T, X) €
comod-D, which is the category of finitely cogenerated D-comodules. Consequently,
he(T,X/X') € comod-D. By Proposition 4.4, there is an exact sequence

0 X/X L2750

with Z € C,. From Lemma 3.4 (1), X/X’ € C,, and hence, by Lemma 4.3, we have
X € Cogen(T¢). O
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Remark 4.8. Let comod-C be closed under quotients, i.e., all finitely cogener-
ated comodules are finitely copresented, or C' is a conoetherian coalgebra, Proposi-
tion 4.7 is also true.

Proposition 4.9. Let T be a finitely silting comodule with respect to the injec-
tive copresentation v: Qo — Q1. If T is faithfully coflat, then Yo C Refly.

Proof. Let X € Yo. Then X € Cogen(T¢) and X € comod-C. Since T is finitely
silting with respect to v, we have that he (7T, X) is a finitely cogenerated D-comodule,
where D = ec(T'). Indeed, by Proposition 4.4, there is an exact sequence

0 x L 2750
with Z € C,. It follows by Lemma 3.4 (4) that I'(Z) = 0. Hence, the induced
sequence

hC(T,f) hC(T:g)
—

0—>hc(T,X)—>hc(T,Tn) hC(T,Z)—>O

is also exact. We have known that a cotensor functor is exact when one of the
variables is coflat by [15]. Now, consider the following commutative diagram with

exact rows

0 X ! " . Z 0
l/ exl eT"l ezl l
h gam h ,9)0
0— he(T, X) 0TIy o "2 e, 2y 0 T ——— 0

Since T is a finitely silting comodule and X € Cogen(T), also by [19], Theorem 1,
we have Z € Cogen(T), and 0z is a monomorphism. From the fact that 6;» is an
isomorphism, it follows by applying the Snake Lemma to the above diagram that 6x

is an isomorphism. O

Remark 4.10. If we suppose that all C-comodules in Y are finitely copresented,
then Proposition 4.9 also holds.

Proposition 4.11. Let T¢ be a conoetherian and faithfully coflat C-comodule.
If T is finitely silting with respect to the injective copresentationy: Qo — @1, then
the class Yo consists of the finitely copresented comodules belonging to the class C,.

Proof. Let X € Yo. Then X € Cogen(T¢) and X € comod-C. Since T¢ is
finitely silting with respect to v, we have that T' € C, and h¢(T, X) is a finitely
cogenerated right D-comodule, where D = ex(T'). According to Proposition 4.4, it

follows that there is an exact sequence 0 — X Torn 9y 7 5 owith Z € C,. From
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the facts that 7™ is finitely cogenrated and conoetherian, we have that Z is finitely
cogenerated. Thus, X is finitely copresented. Since 1" € C,, it follows that X € C,.
Let X be a finitely copresented C-comodule such that X € C,, then X is finitely
cogenerated. Since T is faithfully coflat, we have that X’ € Kerho (T, —). As X € C,,
we obtain X’ € C,. Moreover, T¢ is a quasi-finitely silting comodule, it follows that
X' =0, 1ie., X € Cogen(T¢). Therefore, X € Cogen(T¢) Ncomod-C, ie., X € Ve.
In particular, if finitely cogenerated comodules are closed under quotients, based
on Proposition 3.7, we can also have the necessity. (I

5. SOME RELATIONS

In this section we define the notion of finitely tilting comodules. And we discuss
the relation between it and finitely silting right C-comodules.

Definition 5.1. Assume that T is a right C-comodule. Let D = ec(T¢). If T
satisfies the following conditions, then we call T' a finitely tilting comodule.

(1) ideT <
(2) exty(T, T) =0.
(3) Ker ho(T,—) NKerext (T, —) = 0.
(4) T is finitely cogenerated.
(5) h
(6)

(T, —) respects finitely cogenerated.
If R is a commutative ring, we need T is quasi-finite.

Proposition 5.2. Let T be aright C-comodule andid¢T < 1. Then T is a finitely
silting comodule if and only if T' is a finitely tilting comodule.

Proof. Let
(5.1) 0T = Qo -5 01— 0

be an injective copresentation of T'.

Necessity. Assume that T is a finitely silting comodule. It is enough to show
that exty (T, T) = 0 and Ker he (T, —) N Kerexty (T, —) = 0. Firstly, since T € C,
and C, C 1T, we have that extl(T,T) = 0. Secondly, let X € Kerhc(T,—) N
Kerextl (T, —). So, ext:(T,X) = 0. Applying the contravariant functor hc(—, X)
on the exact sequence (5.1), we have that

0 = exte(T, X) = he(Q1, X) = he(Qo, X) — he(T, X) — 0.

Then X € C,. It follows that X € Kerha(T,—) N Cy. Since T is a finitely silting
comodule, it is immediate that X = 0.
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Sufficiency. Suppose that T' is a finitely tilting comodule. Indeed, applying the
contravariant functor he(—,T') on (5.1), we get that

0 — exts(T,T) = ho(Q1,T) — he(Qo, T) — he(T,T) — 0.

Since T is finitely tilting, it follows that exty,(7,7T) = 0. Hence, T € C,. Let
X € Kerhe(T,—)NC,. Applying the functor hc(—, X) on (5.1), we have the exact
sequence

h ,X
0 — exth (T, X) — he(Q1, X) 22020 1 (Qo, X) — he (T, X) —= 0.

As he(v,X) is a monomorphism, we can obtain extl(T,X) = 0. Then X €
Kerho (T, —) N Kerexts (T, —). Since T is a finitely tilting comodule, it follows
that X = 0. 0

Proposition 5.3. If T is finitely cogenerated and product-complete, then T is
a finitely silting comodule if and only if T is a silting comodule.

Proof. By Remark 4.6, we have that finitely silting comodules are silting.

Conversely, we assume that T is a silting comodule. We only need to prove
that ho (T, —) carries finitely cogenerated comodules to finitely cogenerated comod-
ules. Because T is product-complete, according to [10], Theorem 3.1, for any finitely
cogenerated comodule X, there is a homomorphism f: X — T() such that he (T, f)
is a monomorphism, where I is finite. Let D = ec(T), we have that ho(T, X) is
finitely cogenerated. U

Example 5.4 ([19], Example 1).

(1) It is well known that a right C-comodule T is partial tilting if and only if
Cogen(T) C ker Ext(—,T) and the class ker Exty(—,T) is a torsion-free class.
Moreover, T is tilting if and only if Cogen(T) = ker Extl,(—,T). Note that the
class ker Exty(—, T) is closed under subcomodules if and only if ide (7)) < 1, where
ide(T) denotes the injective dimension of T'. So every (partial) tilting comodule
is of injective dimension at most 1.

Let T be a right C-comodule of injective dimension at most 1, and consider an
exact sequence 0 — T i) Qo I @1 — 0 with Qg and @ injective. Then T is
(partial) tilting if and only if T is (partial) silting with respect to (. The direct
implications are obvious since B¢ = ker Extlc(—, T). If we assume that T is partial
silting with respect to ¢, we have Cogen(T") C B¢ = ker Exty(—,T). Since B¢ is
closed under direct products, it follows that T is a partial tilting comodule. More-
over, if T' is silting with respect to ¢, we obtain Cogen(T") = B, = ker Ext&(—, T),
hence T is tilting.
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(2)

(1)

Let C be a coalgebra. If (: 0 — C is the trivial homomorphism, then B contains
only the trivial comodule, hence 0 = Ker(() is a silting comodule.

Remark 5.5. Let us consider Example 5.4 in quasi-finite comodule categories.
Suppose that all comodules are quasi-finite. A quasi-finite right C-comodule T is
partial tilting if and only if Cogen(T) C T+, and T is closed under subcomodules,
direct sums and extensions. Moreover, T is tilting if and only if Cogen(T') = T+.
Note that the class T is closed under subcomodules if and only if ido(T) < 1.
So every (partial) tilting comodule is of injective dimension at most 1.

Let T be a quasi-finite right C-comodule of injective dimension at most 1, and
consider an exact sequence 0 — T’ i> Qo I @1 — 0 with Q¢ and @1 injective.
Then T is (partial) tilting if and only if T is (partial) silting with respect to ¢. In
fact, the necessity can be obtained easily from C¢ = T*. On the other hand, if we
assume that T is partial silting with respect to ¢, we have Cogen(T") C C¢ = T+,
Since C¢ is closed under direct sums, it follows that 7" is a partial tilting comodule.
Moreover, if T is silting with respect to ¢, then we obtain Cogen(T) = C; = T,
hence T is tilting.

Let C' be a semiperfect coalgebra and P be a projective generator of C. If
v: P — 0 is the trivial homomorphism, then C, contains only the trivial comod-
ule, hence 0 = Coker(7) is a quasi-finite silting comodule.

Before giving next example, we introduce the notion of endofinite comodules.

A quasi-finite right C-comodule M is said to be endofinite if it has finite length
as a comodule over its endomorphism coalgebra ec(M).
Let K be a filed, and C be the upper 2 x 2 triangular matrix coalgebra. There
are two simple comodules S = (0,K) and T = Q/S, where Q = (K, K). Let
v: @ = T®T be a homomorphism such that Kery = S, then X € C, if and only
if ext& (S, X) =0 and he(T, X) = 0.

Note that every simple comodule is quasi-finite and quasi-finite comodules are
closed under direct sums. Then S, T and @ & T are quasi-finite.

Since every indecomposable endofinite comodule is product-complete, and the
direct sums of product-complete comodules are product-complete, we have that
S and Q @ T are product-complete.

Let X € C,. Since Q@ T is an injective cogenerator of MY, there is a set I such
that X can be embedded in Q) T, By he(T, X) = 0, we have that X can be
embedded in Q). Then we can consider X as a subcomodule of Q). Since the
direct sums are exact in comodule category, we get that S is a subcomodule
of Q) such that Q) /SU) = 7)1t follows that X/(XNSW)) = (X +50)) /510
can be embedded in 7). By ho(T,X) = 0, we can obtain X C S0, ie.,
X € Cogen(S). Then C, C Cogen(S).
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Conversely, if X € Cogen(S5), it is easy to see that there is a set I such that
X =2 8. Then ext} (S, X) = 0 and he(T,X) =0. So X €C,.
In conclusion, C, = Cogen(S) and S is finitely silting by Proposition 5.3.

Corollary 5.6. Suppose that T is a product-complement and finitely cogenerated
comodule. If idcT < 1, then the following statements are equivalent.
(1) T is a silting comodule.
(2)
(3) T is a finitely tilting comodule.
(4)

T is a finitely silting comodule.

T is a tilting comodule.

Proof. By the above proposition, we have that (1)<(2). By Remark 5.5,
(1)<(4) holds. According to Proposition 5.2, we can obtain (2)<(3). O

Remark 5.7. By Remark 4.6, we have that finitely silting comodules are silting
comodules in quasi-finite comodule category. The equivalence between them can be
obtained by Proposition 5.3.

Proposition 5.8. Let pT¢ be a finitely silting comodule, also be faithfully coflat.
Then the pair (Yo, X¢) is a torsion pair in comod-C'.

Proof. Firstly, we prove that for all X € comod-C and all Y € )¢,
he(Y,X) =0 if and only if X € Xc. Let X € comod-C. If he(Y,X) = 0 for
allY € V¢, then it follows from T € Ve that he (T, X) =0, i.e., X € Ker heo (T, —).
Thus, X € A¢.

Conversely, assume that X € X¢, then X € Kerhe(T,—), ie., he(T,X) =0. If
Y € Yo, then Y € Cogen(T¢). Hence, there is a monomorphism 0 — Y L for
a set I. Applying the contravariant functor ho(—, X) on it, we obtain that

ho(f,X
ho (T, x) YD (v, x) ——0

is an epimorphism. As X € Ker he(T, —), we have that ho(Y, X) = 0.

Secondly, we prove that for every Y € comod-C and for all X € X¢, ha(Y, X) =0
if and only if Y € V¢

Let Y € comod-C. Assume that ho(Y, X) =0 for all X € X¢. Let Y’ = Ker 6y
As T is faithfully coflat, it follows that Y’ C Ker he (T, —). Since Y’ € comod-C,
we get that Y/ € Xo. Then he(Y,Y’) = 0. And taking into account that Y’ is
a subcomodule of Y, so Y/ = 0. It is enough to show Y € Cogen(T¢). More-
over, Y € Y. Conversely, suppose that Y € Ve, we obtain that Y € Cogen(T¢).
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Then there is a monomorphism 0 — Y i> T, Consider X € X, ie., X €
Kerhe(T,—) N comod-C. Then he(T,X) = 0. Since the contravariant functor
he(—, X) is right exact, we have that ho (T, X) — he(Y, X) — 0 is an epimor-
phism. Thus, he(Y, X) = 0. O

Proposition 5.9. Let T be a finitely silting comodule. If T' is injective, then
he(T,—): Yo = Yp: —0Op Tc

is a duality, where Yp = cogen(T*) N Comod-D.

Proof. Let X € Yo. Then X € Cogen(T¢) N comod-C'. Since T¢ is a finitely
silting comodule, we have h¢o (T, X) € comod-D. Since cohom functor he(T, —) is
closed under direct sums, applying hc(T,—) on 0 — X — C™) and by Lemma 2.4,
we get that

0 — he(T, X) = he(T,C) = he (T, C)™ = (Come (C,T)*)™ = (T*)™),

It means that he (T, X) € Vp.

In order to show the converse, let X € Yp. Then we have two exact sequences,
0— X — (7)™ and 0 — X — D). Applying cotensor functor — (p T¢ on them,
we obtain 0 — X Op Te — (T*)) Op Te and 0 — X Op Te — DU Op Te.
As T is finitely silting, we have T and T are finitely cogenerated. Therefore, the
first sequence is 0 - X Op T — D™ Op Ty = Tén), and the second is 0 — X Op
Te — T, So X Op Te € Ve O

Let C be a coalgebra, we denote by copres-C' the subcategory of Comod-C' con-
sisting of finitely copresented C'-comodules. Moreover, given a bicomodule pT¢, we
consider the classes V. = Cogen(T¢)Ncopres-C' and YV}, = cogen((T*)p)Ncopres-D.

Proposition 5.10. Let T¢ be a finitely silting comodule. If T is injective, then
he(T,—): Yo=Yy —0Op Te

is a duality. If T is also faithfully coflat and conoetherian, then Yo = Y.

Proof. The inclusion Vi C V¢ is obvious. Let us prove the reverse inclu-
sion. From Proposition 4.11, the class )¢ consists of finitely copresented comodules
belonging to the class C,. Hence, we have Yo C ). Therefore, Yo = V..

Similarly to Proposition 5.9, we can prove the duality is true. O

712



Before giving the next proposition for a quasi-finite bicomodule pTc, we de-
fine Te (pT) is cofaithful if up: ec(T) — D (uc: ep(T) — C) is surjective.

Proposition 5.11. Let C be a cocoherent coalgebra. Suppose T¢ is a finitely
silting comodule which is also cofaithful and faithfully coflat. If T¢ is finitely copre-
sented, and let

Sup{idcM: M € Y.} =n,
where n € N, then for any X € Y, there is a sequence
O X—->Ty—-T—...—T, >0,
where all T; € add(T¢).
Proof. Suppose X € ), by Proposition 4.4, there is a short exact sequence

0= X =>TM 5 Z; =0

with Zy € C,. According to Lemma 2.6 and Proposition 4.7, we have Zy € ).
Repeating the above process, we can get the exact sequence

(5.2) 0 X T2 . T "z, o,
(5.3) 0= Znoy = Tw 2 Z, 0

with T; € add(T¢), Ker f; € YV, i =1,2,...,n.

We assert that the short exact sequence (5.3) is split. We only need to prove that
extlc(Zn,l, Z,) = 0. We notice that Z,, is finitely copresented. Then there is an
exact sequence

0— Zn -2 Cy — Coker gg — 0,

where Cj is a finitely cogenerated free comodule. We know that Coker gq is finitely
copresented. Since T¢ is cofaithful, we have C' € Cogen(T'). Thus, C; € Y. And
again, repeating the above process, we obtain an injective resolution of Z,,

where C; are finitely cogenerated free comodules, Cokerg; € Vi, ¢ = 0,1,2,...
According to the Dimension-Shifting theorem, we can obtain that extigl(Zn,T) =~
exty (Cokerg;—1,T) =0, i = 1,2,3,... Applying hc(—, Z,) on sequence (5.2), and
by the Dimension-Shifting theorem, we get that

exty(Zn_1, Zn) = ext?(Ker fr_1, Zp) = exts (Ker f_2, Zy,)
L 2extTN(X,Z,) = 0.

IR

Indeed, in the above equation the last one is 0 by ideX < mn. Therefore, Z,,_1 €
add(T¢). O
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