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Abstract. We consider k-free numbers over Beatty sequences. New results are given. In
particular, for a fixed irrational number « > 1 of finite type 7 < co and any constant € > 0,
we can show that
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where Q). is the set of positive k-free integers and the implied constant depends only
on «, €, k and B. This improves previous results. The main new ingredient of our idea
is employing double exponential sums of the type

Z Z e(Yhn).
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1. INTRODUCTION

In this paper, we are interested in k-free integers over Beatty sequences. The
so-called Beatty sequence of integers is defined by B, g := {[an + 8]}7%,, where «
and [ are fixed real numbers and [z]| denotes the greatest integer not larger than x.
The analytic properties of such sequences have been studied by many experts. For
example, one can refer to [1], [2], [3] and the references therein. A number g is called
a k-free integer if and only if m¥|q = m = 1. For a sufficiently large = > 1, it is well
known that
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(1.1) d 1= 0] + O(z'*),
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where Qj is the set of positive k-free integers. In this paper, we are interested in the

o1
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sum

In fact, this problem has been considered by many experts. For example, in 2008,
Giiloglu and Nevans in [7] proved that
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1<n<Le
[an+B]€Q2
where a > 1 is the irrational number of finite type.
Now we recall some notion related to the type of a. The definition of an irrational
number of constant type can be cited as follows. For an irrational number a, we
define its type 7 by the relation

T = sup{f) e R: li(gg}fq9|\GQ|| = 0}~
g€zt

Let v be a nondecreasing positive function that is defined for integers. The irrational
number « is said to be of type less than 1 if g||lqa|| > 1/%(g) holds for every positive
integer q. If ¢ is a constant function, then an irrational « is also said to be of constant
type (finite type). The relation between these two definitions is that an individual
number « is of type 7 if and only if for every constant 7, there is a constant ¢(7, «)
such that « is of type 7 with q|ga|| > (7, a)g= 71
Recently, in [5] and [6], it is proved that

>, 1= % +O(Az** (log )°),
1<nLz

[an+B]€Q2

where A = max{r(m),1 < m < 2%} and o > 1 is a fixed irrational algebraic
number. More recently, Kim, Srichan and Mavecha in [9] improved the above result
by showing that

T
1= — 4+ O(z*tV/2k (10g 2)%).
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Recently, with some much more generalized arithmetic functions, in [1], [11], one
may also get some other estimates for such type of sums. However, the estimates
of [1], [11] cannot be applied to an individual «. In this paper, we give the following
formula.

Theorem 1.1. Let a > 1 be a fixed irrational number of finite type T < co. Then
for any constant € > 0, we have

Z 1ot Z 1 oM/ @h=1te | g1-1/(r4 1)t
1<n<s 1<n<[az+6]
[an+B]€Qk neQy
where the implied constant depends only on «, ¢, k and .
Then by (1.1) and the above theorem, we can obtain the following.

Corollary 1.2. Let « > 1 be a fixed irrational number of finite type 7 < oo.
Then for any constant € > 0, we have

Z 1 gh/@h—1)te e
St (k)
[an+Bl€Qx
where the implied constant depends only on «, €, k and .

In fact, our result relies heavily on the following double sum.

Theorem 1.3. Suppose for some positive integers a,q,h,q < =, h < H < x,
(a,q) =1 and

1
?a

(1.2) ‘19 - g‘ <

then for sufficiently large x and any ¢ > 0, we have
H
Z Z e(Yhn) < (Hmk/(%*l) +q+ —x)xe,
1<h<H 1<n<a 4
n€Qy

where the implied constant may depend on k and €.

Remark 1.4. One can also compare this result with the results of Briidern-
Perelli, see [4] and Tolev, see [12]. By using the argument of [4], [12], one may get
some better results for some special cases.
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2. PrROOF OF THEOREM 1.1
We will start the proof by introducing some necessary lemmas.

Lemma 2.1. Let a > 1 be of finite type T < oo and let K be sufficiently large.
For an integer w > 1, there exists a,q € N, a/q € Q with (a,q) = 1 and q satisfying
KVt=ey=1 < q < K such that

o =21 <
aw— —| < —.
ql gk

Proof. By Dirichlet approximation theorem, there is a rational number a/q with
(a,q) =1 and ¢ < K such that |ow — a/q| < 1/¢K. Then we have ||quwa| < 1/K.
—T—¢

Since « is of type 7 < oo, for a sufficiently large K, we have |qua| > (qw)
Then we get 1/K > ||qwal|| > (qw)~7¢. This gives that ¢ > K7~ *w~1. O

In order to prove the theorem, we need definition of discrepancy. Suppose that
we are given a sequence u,,, m = 1,2,..., M, of points of R/Z. Then the discrep-
ancy D(M) of the sequence is

V(T, M

(2.1) D(M) = sup )z,

Telo,1) M

where the supremum is taken over all subintervals Z = (¢, d) of the interval [0,1),
V(Z, M) is the number of positive integers m < M such that a,, € Z, and |Z| = d—c¢
is the length of |Z|.

Without losing generality, let D, s(M) denote the discrepancy of the sequence
{am+ B}, m=1,2,..., M, where {x} = 2 — [z]. The following lemma is from [2].

Lemma 2.2. Let o« > 1. An integer m has the form m = [an + (] for some
integer n if and only if

0<{at(m-B+1}<at
The value of n is determined uniquely by m.

Lemma 2.3 ([10], Chapter 2, Theorem 3.2). Let o be a fixed irrational number
of type T < co. Then for all 5 € R, we have

Da,p(M) < M~Y7HW (M — o0),
where the function implied by o(1) depends only on .
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Lemma 2.4 ([13], page 32). For any A € R such that 0 < A < § and A <
%min{'y,l — v}, there exists a periodic function VUa(z) of period 1 satisfying the

following properties:

> 0<Pa(x)< 1 forall z € R
D Ua(z)=V(z) fA<az<y—Aoary+ A<zl —A;
> Wa(x) can be represented as a Fourier series

Ua(z) =7+ Zgje(jx) + hje(—jx),

j=1

where

and the coefficients g; and h; satisfy the upper bound

max{|g;, |h;|} < min{j ™", j72AT"} (5 > 1).

Suppose that o > 1. Then we have that o and v = a~! are of the same type. This
means that 7(a) = 7(7), see [3], page 133. Let § = a~}(1 — 8) and M = [az + f].
Then by Lemma 2.2, we have

(2.2) Yoo1= > 1+01)= ) U(ym+6)+0(1),

1<n<a 1<m<M 1<m<M
[an+B]€Qy 0<{ym+6}<v meQg
meQy

where U(z) is the periodic function with period one for which

1 if0<z<y,
U(z) =
0 fy<ax<l

By a classical result of Vinogradov (see Lemma 2.4), it is known that for any A such
that 0 < A < 1 and A < 1 min{y,1—~}, there is a real-valued function ¥ (z) that
satisfies the conditions of Lemma 2.4. Hence, by (2.2), we can obtain that
(2.3)

Yoool= > Uym+6)+0(1) = > Va(ym+3)+O0(1+V (I, M)MF),

1<n<e 1<m<M 1<m<M
[an+-B]€Qy meQy meQy

where V(I, M) denotes the number of positive integers m < M such that
{ym+0} € I=[0,A)U(y—A,v+A)U(1—-A,1).
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Since || < A, it follows from the definition (2.1) and Lemma 2.3 that
(2.4) VI, M) < Az + zt~7+

where the implied constant depends only on a. By Fourier expansion for ¥a (ym+46)
(see Lemma 2.4) and changing the order of summation, we have

(2.5) Z Ua(ym+9) =7 Z 1+nge((5k) Z e(vkm)

1<m<M m<M k=1 1<m<M
meQy meQy meQy
o0
+ Z hie(—dk) Z e(vkm).
k=1 1<m<M
meQy

By Theorem 1.3, Lemmas 2.1 and 2.4, we see that for 0 < k < z(4=49/Ck=1)+e e
have

(2.6) Z gre(0k) Z e(vkm) <« gh/Gk=Dte | p1-1/(r+1)+e
1<k<a@k—1)/ (2k—1)+e 1<m<M
meQy

where we have also used the fact that a and a~! are of the same type (finite type).
Similarly, we have

(2.7) > hie(=0k) > e(vkm) < b/ Gh=re 4 g1 =1/ (m)Fe,
1<kLa(dk—4)/(2k—1)+e 1<m<M
meQy

On the other hand, the trivial bound

E e(vkm) < z
1<m<M
meQy

implies that

(2.8) Z gre(ok) Z e(ykm) < 2!t Z E2AT!

k> (Ak—4)/ (2k—1)+e 1<m<M >z (4k—4)/ (2k—1)+e
meQy

< gh/(@h=1)+e

and
(2.9) > hie(=0k) > e(ykm) < &'t > kAT
k>a(4k—4)/(2k—1)+e 1<m<M k>a(4k—4)/(2k—1)+e
meQy

< gF/(@h=1)+e
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where A = x~(F=1)/(2k=D+¢ Tnserting the bounds (2.6)—(2.9) into (2.5), we have

Z 1ot Z 1 < gh/Ck=Dte 4 p1-1/(r+1)4e

1<n< 1<n<[az+4]
[an+B]€Qk neQyg

where the implied constant depends on «, k, § and e. Substituting these bounds

and (2.4) into (2.3) and choosing A = x~(=1/k=D+e e complete the proof of
Theorem 1.1. g

3. PROOF OF THEOREM 1.3

By the Dirichlet hyperbolic method, we have

Z Z e(ahn) = Z Z w(m) e(am®lh)

1<h<H 1<n<z 1<h<H 1<mk <y 1<I<z/mk
neQy

where y is a certain parameter to be chosen later. By the well known estimate

Z e(na) < min(a:, m),

1<n<Lx
we have
T 1
Z Z p(m) Z e(amklh) < min(—]€7 7k)
1<h<H 1<m*<y 1<I<a/m* 1<h<H 1<mF<y mb " 2] ahmk|

< . (J? 1 )

min( —, ———

1<h<H 1<m<y m’ 2||lahm||

H 1

< (Hy)® min(—x, —)

L << Hy n  2||an |

where we have used the following lemma.

845



Lemma 3.1 ([8], Section 13.5). For
‘9 - g‘ g q_Qa
q
a,q € N and (a,q) = 1, we have

x 1
ing =, —— M 1) log?2
Z mln{n,2||n9”}<<( +q+xq " )log2qz,

1<n<M

where ||uf|| denotes the distance of u from the nearest integer.

For the second sum, we can use the exponential sum for Mébius function. We

Z Z Z p(m)e(am®ih) < Hry'/F =1 (logz)~4,

1<h<H 1KIKz/y 1I<SmF L/l

have

where A is any positive constant. For the third sum we need the following lemma.
Lemma 3.2 ([8], Section 13.5). For
<
q
a,q € N and (a,q) =1, we have

1 M
Z min{x, —} < (M +x + maid + q) log 2qx,
2||n0|| q

1<n<M

where ||uf|| denotes the distance of u from the nearest integer.

By Lemma 3.2, we have

/T 1
Yoo ulm) Y elamfih)y < Yo Y mm(g’auahmku)

1<h<H 1<mk<y 1<i<z/y 1<h<H 1<mk<y

X<

. (T 1
< Z Z mm(g’QHahmH)

1<h<H 1<m<y

T 1
< (Hy)® E min(—,—)
(#y) Yy 2[lan]|

1<n<Hy

<<(Hy)€<Hy+§+%+q).

/(2k—1)

Choosing y = 2* completes the proof of Theorem 1.3. O
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