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Abstract. We consider k-free numbers over Beatty sequences. New results are given. In
particular, for a fixed irrational number α > 1 of finite type τ < ∞ and any constant ε > 0,
we can show that

∑

16n6x
[αn+β]∈Qk

1−
x

ζ(k)
≪ x

k/(2k−1)+ε + x
1−1/(τ+1)+ε

,

where Qk is the set of positive k-free integers and the implied constant depends only
on α, ε, k and β. This improves previous results. The main new ingredient of our idea
is employing double exponential sums of the type

∑

16h6H

∑

16n6x
n∈Qk

e(ϑhn).
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MSC 2020 : 11L07, 11B83

1. Introduction

In this paper, we are interested in k-free integers over Beatty sequences. The

so-called Beatty sequence of integers is defined by Bα,β := {[αn + β]}∞n=1, where α

and β are fixed real numbers and [x] denotes the greatest integer not larger than x.

The analytic properties of such sequences have been studied by many experts. For

example, one can refer to [1], [2], [3] and the references therein. A number q is called

a k-free integer if and only if mk|q ⇒ m = 1. For a sufficiently large x > 1, it is well

known that
∑

n∈Qk

n−s =
ζ(s)

ζ(ks)
, Re s > 1,
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and

(1.1)
∑

n6x
n∈Qk

1 =
x

ζ(k)
+O(x1/k),

where Qk is the set of positive k-free integers. In this paper, we are interested in the

sum
∑

16n6x
[αn+β]∈Qk

1.

In fact, this problem has been considered by many experts. For example, in 2008,

Güloğlu and Nevans in [7] proved that

∑

16n6x
[αn+β]∈Q2

1 =
x

ζ(2)
+O

(x log log x

log x

)

,

where α > 1 is the irrational number of finite type.

Now we recall some notion related to the type of α. The definition of an irrational

number of constant type can be cited as follows. For an irrational number α, we

define its type τ by the relation

τ := sup

{

θ ∈ R : lim inf
q→∞
q∈Z

+

qθ‖αq‖ = 0

}

.

Let ψ be a nondecreasing positive function that is defined for integers. The irrational

number α is said to be of type less than ψ if q‖qα‖ > 1/ψ(q) holds for every positive

integer q. If ψ is a constant function, then an irrational α is also said to be of constant

type (finite type). The relation between these two definitions is that an individual

number α is of type τ if and only if for every constant τ , there is a constant c(τ, α)

such that α is of type τ with q‖qα‖ > c(τ, α)q−τ−ε+1.

Recently, in [5] and [6], it is proved that

∑

16n6x
[αn+β]∈Q2

1 =
x

ζ(2)
+O(Ax5/6(log x)5),

where A = max{τ(m), 1 6 m 6 x2} and α > 1 is a fixed irrational algebraic

number. More recently, Kim, Srichan and Mavecha in [9] improved the above result

by showing that

∑

16n6x
[αn+β]∈Qk

1 =
x

ζ(k)
+O(x(k+1)/2k(log x)3).
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Recently, with some much more generalized arithmetic functions, in [1], [11], one

may also get some other estimates for such type of sums. However, the estimates

of [1], [11] cannot be applied to an individual α. In this paper, we give the following

formula.

Theorem 1.1. Let α > 1 be a fixed irrational number of finite type τ <∞. Then

for any constant ε > 0, we have

∑

16n6x
[αn+β]∈Qk

1− α−1
∑

16n6[αx+β]
n∈Qk

1 ≪ xk/(2k−1)+ε + x1−1/(τ+1)+ε,

where the implied constant depends only on α, ε, k and β.

Then by (1.1) and the above theorem, we can obtain the following.

Corollary 1.2. Let α > 1 be a fixed irrational number of finite type τ < ∞.

Then for any constant ε > 0, we have

∑

16n6x
[αn+β]∈Qk

1−
x

ζ(k)
≪ xk/(2k−1)+ε + x1−1/(τ+1)+ε,

where the implied constant depends only on α, ε, k and β.

In fact, our result relies heavily on the following double sum.

Theorem 1.3. Suppose for some positive integers a, q, h, q 6 x, h 6 H ≪ x,

(a, q) = 1 and

(1.2)
∣

∣

∣
ϑ−

a

q

∣

∣

∣
6

1

q2
,

then for sufficiently large x and any ε > 0, we have

∑

16h6H

∑

16n6x
n∈Qk

e(ϑhn) ≪
(

Hxk/(2k−1) + q +
Hx

q

)

xε,

where the implied constant may depend on k and ε.

Remark 1.4. One can also compare this result with the results of Brüdern-

Perelli, see [4] and Tolev, see [12]. By using the argument of [4], [12], one may get

some better results for some special cases.
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2. Proof of Theorem 1.1

We will start the proof by introducing some necessary lemmas.

Lemma 2.1. Let α > 1 be of finite type τ < ∞ and let K be sufficiently large.

For an integer w > 1, there exists a, q ∈ N, a/q ∈ Q with (a, q) = 1 and q satisfying

K1/τ−εw−1 < q 6 K such that

∣

∣

∣
αw −

a

q

∣

∣

∣
6

1

qK
.

P r o o f. By Dirichlet approximation theorem, there is a rational number a/q with

(a, q) = 1 and q 6 K such that |αw − a/q| < 1/qK. Then we have ‖qwα‖ 6 1/K.

Since α is of type τ < ∞, for a sufficiently large K, we have ‖qwα‖ > (qw)−τ−ε.

Then we get 1/K > ‖qwα‖ > (qw)−τ−ε. This gives that q > K1/τ−εw−1. �

In order to prove the theorem, we need definition of discrepancy. Suppose that

we are given a sequence um, m = 1, 2, . . ., M , of points of R/Z. Then the discrep-

ancy D(M) of the sequence is

(2.1) D(M) = sup
I∈[0,1)

∣

∣

∣

V(I,M)

M
− |I|

∣

∣

∣
,

where the supremum is taken over all subintervals I = (c, d) of the interval [0, 1),

V(I,M) is the number of positive integers m 6M such that am ∈ I, and |I| = d− c

is the length of |I|.

Without losing generality, let Dα,β(M) denote the discrepancy of the sequence

{αm+ β}, m = 1, 2, . . ., M , where {x} = x− [x]. The following lemma is from [2].

Lemma 2.2. Let α > 1. An integer m has the form m = [αn + β] for some

integer n if and only if

0 < {α−1(m− β + 1)} 6 α−1.

The value of n is determined uniquely by m.

Lemma 2.3 ([10], Chapter 2, Theorem 3.2). Let α be a fixed irrational number

of type τ <∞. Then for all β ∈ R, we have

Dα,β(M) 6M−1/τ+o(1) (M → ∞),

where the function implied by o(1) depends only on α.
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Lemma 2.4 ([13], page 32). For any ∆ ∈ R such that 0 < ∆ < 1
8 and ∆ 6

1
2 min{γ, 1 − γ}, there exists a periodic function Ψ∆(x) of period 1 satisfying the

following properties:

⊲ 0 6Ψ∆(x)6 1 for all x ∈ R;

⊲ Ψ∆(x) = Ψ(x) if ∆ 6 x 6 γ −∆ or γ +∆ 6 x 6 1−∆;

⊲ Ψ∆(x) can be represented as a Fourier series

Ψ∆(x) = γ +
∞
∑

j=1

gje(jx) + hje(−jx),

where

Ψ(x) =

{

1 if 0 < x 6 γ,

0 if γ < x 6 1,

and the coefficients gj and hj satisfy the upper bound

max{|gj|, |hj |} ≪ min{j−1, j−2∆−1} (j > 1).

Suppose that α > 1. Then we have that α and γ = α−1 are of the same type. This

means that τ(α) = τ(γ), see [3], page 133. Let δ = α−1(1 − β) and M = [αx + β].

Then by Lemma 2.2, we have

(2.2)
∑

16n6x
[αn+β]∈Qk

1 =
∑

16m6M
0<{γm+δ}6γ

m∈Qk

1 +O(1) =
∑

16m6M
m∈Qk

Ψ(γm+ δ) +O(1),

where Ψ(x) is the periodic function with period one for which

Ψ(x) =

{

1 if 0 < x 6 γ,

0 if γ < x 6 1.

By a classical result of Vinogradov (see Lemma 2.4), it is known that for any ∆ such

that 0 < ∆ < 1
8 and ∆ 6 1

2 min{γ, 1− γ}, there is a real-valued function Ψ∆(x) that

satisfies the conditions of Lemma 2.4. Hence, by (2.2), we can obtain that

(2.3)
∑

16n6x
[αn+β]∈Qk

1 =
∑

16m6M
m∈Qk

Ψ(γm+ δ)+O(1) =
∑

16m6M
m∈Qk

Ψ∆(γm+ δ)+O(1 +V (I,M)M ε),

where V (I,M) denotes the number of positive integers m 6M such that

{γm+ δ} ∈ I = [0,∆) ∪ (γ −∆, γ +∆) ∪ (1−∆, 1).

843



Since |I| ≪ ∆, it follows from the definition (2.1) and Lemma 2.3 that

(2.4) V (I,M) ≪ ∆x+ x1−1/τ+ε,

where the implied constant depends only on α. By Fourier expansion for Ψ∆(γm+δ)

(see Lemma 2.4) and changing the order of summation, we have

(2.5)
∑

16m6M
m∈Qk

Ψ∆(γm+ δ) = γ
∑

m6M
m∈Qk

1 +
∞
∑

k=1

gke(δk)
∑

16m6M
m∈Qk

e(γkm)

+

∞
∑

k=1

hke(−δk)
∑

16m6M
m∈Qk

e(γkm).

By Theorem 1.3, Lemmas 2.1 and 2.4, we see that for 0 < k ≪ x(4k−4)/(2k−1)+ε, we

have

(2.6)
∑

16k6x(4k−4)/(2k−1)+ε

gke(δk)
∑

16m6M
m∈Qk

e(γkm) ≪ xk/(2k−1)+ε + x1−1/(τ+1)+ε,

where we have also used the fact that α and α−1 are of the same type (finite type).

Similarly, we have

(2.7)
∑

16k6x(4k−4)/(2k−1)+ε

hke(−δk)
∑

16m6M
m∈Qk

e(γkm) ≪ xk/(2k−1)+ε + x1−1/(τ+1)+ε.

On the other hand, the trivial bound

∑

16m6M
m∈Qk

e(γkm) ≪ x

implies that

(2.8)
∑

k>x(4k−4)/(2k−1)+ε

gke(δk)
∑

16m6M
m∈Qk

e(γkm) ≪ x1+ε
∑

k>x(4k−4)/(2k−1)+ε

k−2∆−1

≪ xk/(2k−1)+ε

and

(2.9)
∑

k>x(4k−4)/(2k−1)+ε

hke(−δk)
∑

16m6M
m∈Qk

e(γkm) ≪ x1+ε
∑

k>x(4k−4)/(2k−1)+ε

k−2∆−1

≪ xk/(2k−1)+ε
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where ∆ = x−(k−1)/(2k−1)+ε. Inserting the bounds (2.6)–(2.9) into (2.5), we have

∑

16n6x
[αn+β]∈Qk

1− α−1
∑

16n6[αx+β]
n∈Qk

1 ≪ xk/(2k−1)+ε + x1−1/(τ+1)+ε,

where the implied constant depends on α, k, β and ε. Substituting these bounds

and (2.4) into (2.3) and choosing ∆ = x−(k−1)/(2k−1)+ε, we complete the proof of

Theorem 1.1. �

3. Proof of Theorem 1.3

By the Dirichlet hyperbolic method, we have

∑

16h6H

∑

16n6x
n∈Qk

e(αhn) =
∑

16h6H

∑

16mk6y

µ(m)
∑

16l6x/mk

e(αmklh)

+
∑

16h6H

∑

16l6x/y

∑

16mk6x/l

µ(m)e(αmklh)

−
∑

16h6H

∑

16mk6y

µ(m)
∑

16l6x/y

e(αmklh),

where y is a certain parameter to be chosen later. By the well known estimate

∑

16n6x

e(nα) 6 min
(

x,
1

2‖α‖

)

,

we have

∑

16h6H

∑

16mk6y

µ(m)
∑

16l6x/mk

e(αmklh) ≪
∑

16h6H

∑

16mk6y

min
( x

mk
,

1

2‖αhmk‖

)

≪
∑

16h6H

∑

16m6y

min
( x

m
,

1

2‖αhm‖

)

≪ (Hy)ε
∑

16n6Hy

min
(Hx

n
,

1

2‖αn |

)

≪ (Hy)ε
(

Hy +
Hx

q
+ q

)

,

where we have used the following lemma.

845



Lemma 3.1 ([8], Section 13.5). For

∣

∣

∣
θ −

a

q

∣

∣

∣
6 q−2,

a, q ∈ N and (a, q) = 1, we have

∑

16n6M

min
{x

n
,

1

2‖nθ‖

}

≪ (M + q + xq−1) log 2qx,

where ‖uθ‖ denotes the distance of u from the nearest integer.

For the second sum, we can use the exponential sum for Möbius function. We

have
∑

16h6H

∑

16l6x/y

∑

16mk6x/l

µ(m)e(αmklh) ≪ Hxy1/k−1(log x)−A,

where A is any positive constant. For the third sum we need the following lemma.

Lemma 3.2 ([8], Section 13.5). For

∣

∣

∣
θ −

a

q

∣

∣

∣
6 q−2,

a, q ∈ N and (a, q) = 1, we have

∑

16n6M

min
{

x,
1

2‖nθ‖

}

≪
(

M + x+
Mx

q
+ q

)

log 2qx,

where ‖uθ‖ denotes the distance of u from the nearest integer.

By Lemma 3.2, we have

∑

16h6H

∑

16mk6y

µ(m)
∑

16l6x/y

e(αmklh) ≪
∑

16h6H

∑

16mk6y

min
(x

y
,

1

2‖αhmk‖

)

≪
∑

16h6H

∑

16m6y

min
(x

y
,

1

2‖αhm‖

)

≪ (Hy)ε
∑

16n6Hy

min
(x

y
,

1

2‖αn‖

)

≪ (Hy)ε
(

Hy +
x

y
+
Hx

q
+ q

)

.

Choosing y = xk/(2k−1) completes the proof of Theorem 1.3. �

846



Acknowledgements. I am deeply grateful to the referee(s) for carefully reading

the manuscript and making useful suggestions.

References

[1] A.G.Abercrombie, W.D. Banks, I. E. Shparlinski: Arithmetic functions on Beatty se-
quences. Acta Arith. 136 (2009), 81–89. zbl MR doi

[2] W.D.Banks, I. E. Shparlinski: Short character sums with Beatty sequences. Math. Res.
Lett. 13 (2006), 539–547. zbl MR doi

[3] W.D.Banks, A.M.Yeager: Carmichael numbers composed of primes from a Beatty
sequence. Colloq. Math. 125 (2011), 129–137. zbl MR doi

[4] J.Brüdern, A.Perelli: Exponential sums and additive problems involving square-free
numbers. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 591–613. zbl MR

[5] S. I.Dimitrov: On the distribution of consecutive square-free numbers of the form
⌊αn⌋, ⌊αn⌋+ 1. Proc. Jangjeon Math. Soc. 22 (2019), 463–470. zbl MR

[6] D.V.Goryashin: Squarefree numbers in the sequence ⌊αn⌋. Chebyshevskii Sb. 14 (2013),
42–48. (In Russian.) zbl doi
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