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Abstract. Let p be an odd prime, and let a be an integer not divisible by p. When m
is a positive integer with p = 1 (mod 2m) and 2 is an mth power residue modulo p, we

determine the value of the product  [[ (1 + tan(nak/p)), where
k€Rum (p)

Rimn(p) ={0 < k < p: k € Z is an mth power residue modulo p}.

In particular, if p = 22 + 64y with z,y € Z, then

H (1 thanna—k) = (71)9(,2)(1’—1)/8.
k€Ra(p) p
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1. INTRODUCTION

It is well known that the function tan ta has period 1. For any positive odd num-
ber n and complex number xz with = — % ¢ 7, Sun, in Lemma 2.1 of [4], proved that

) - () (3 o),
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where (--) is the Jacobi symbol. In particular, for any odd prime p and integer a # 0
(mod p) we have

= ak = r 2
H <1+ta,n]'[—) = H (1+tann_) — (_)2(?*1)/2.
k=1 p r=0

p p

Let p be an odd prime. Then

9 A gy 2
1

modulo p give all the 5(p — 1) quadratic residues modulo p. Sun, in Theorem 1.4

(r—1)/2
of [4], determined the value of the product [] (1 + tan(rak?/p)) for any integer
k=1
a not divisible by p; in particular,
(p—1)/2 2
k
H (1 + tan T[a—>
k=1 p
(— 1)l 1sk<p/4: (=1} g(p—1)/4 if p=1 (mod 8),
| (~plaskers <%>=‘”‘2<p*1)/4(%)653(%)“’” if p=5 (mod 8),

where () is the Legendre symbol, and ¢, and h(p) are the fundamental unit and
the class number of the real quadratic field Q(,/p), respectively.

Let m € 7t = {1,2,3,...}, and let p be a prime with p = 1 (mod m). If a € 7
is not divisible by p, and ™ = a (mod p) for an integer x, then a is called an mth
power residue modulo p. The set

(1.1) R,(p) ={ke{l,...,p—1}: k is an mth power residue modulo p}

has cardinality (p—1)/m, and {k+pZ: k € R,,(p)} is a subgroup of the multiplicative
group {k+pZ: k =1,...,p—1}. For an integer a #Z 0 (mod p), the mth power
residue symbol (%)m is a unique mth root ¢ of unity such that

aP=D/™ = ¢ (mod p)

in the ring of all algebraic integers. (Note that a primitive root g modulo p has order
p — 1, which is a multiple of m.) In particular,

(;1) — (—1)®-D/m,

p
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Let p be a prime with p =1 (mod 2m), where m € Z*. Note that p — 1 € R,,,(p)
since (—1)P~V/™ = 1. If 2 € R,,,(p), then —2 = (—1) x 2 is an mth power residue
modulo p, hence

(_2) { 1 if —2 is a 2mth power residue modulo p,
2m n

p —1 otherwise,
and
—2\m -2
L2 (5 ) = (5)
(1.2) > o p
since

(%)2“; = ((~2)P D/ Cmym = (g)r-1/2 = (_72> (mod p).

Now we state our main theorem.

Theorem 1.1. Let m € Z%, and let p be a prime with p =1 (mod 2m). Suppose
that 2 is an mth power residue modulo p. For any integer a not divisible by p we have

(1.3) I1 (1 —l—tann%f) — (__Q)Qm,(_g)(p—l)/@m) _ (E)ng(p—n/(zmx

ke Ron () p p

To prove Theorem 1.1, we need the following auxiliary result.

Theorem 1.2. Let m be a positive integer, and let p be a prime with p = 1
(mod 2m). Suppose that 2 is an mth power residue modulo p. For any integer a # 0
(mod p) we have

(1.4) II (i_ezniak/p):(—_z> J(p-1)/(2m)
2m

kERm(p) p

and

(1.5) [T G+ exmion/r) = (2) {1/ (2m)
kE€Rm (p) przm

Let p be an odd prime with p = 1 (mod m), where m is 3 or 4. Then there are
unique z,y € ZF such that p = 22 + my?, cf. [2], pages 7-12. It is well known that
2 € Ry (p) if and only if p = 22 + m(my)? for some x,y € Z+, cf. Proposition 9.6.2
of [3], page 119, and Exercise 26 of [3], page 64.
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Theorem 1.1 with m = 3 has the following consequence.

Corollary 1.1. Let p = z? + 27y? be a prime with x,y € Z+. For any integer
a # 0 (mod p) we have

(1.6) H (1 +tan7‘c%) _ (_1)zy/2(_2)(p71)/6.
keR3(p) p

From Theorem 1.1 in the case m = 4, we can deduce the following result.

Corollary 1.2. Let p = 2% + 64y> be a prime with z,y € Z+. For any integer
a # 0 (mod p) we have

an ) Z (_1)v(_g)r-D/3
(1.7) I1 (1+t p) (—1)¥(~2) .

k€R4(p)

We will prove Theorems 1.1 and 1.2 in the next section, and deduce Corollaries 1.1
and 1.2 in Section 3.

2. PROOFS OF THEOREMS 1.1 AND 1.2

Lemma 2.1. Let m be a positive integer, and let p be a prime with p = 1
(mod 2m). Then we have
—1
Z E— p(p )
2m
k€Rm (p)

Proof. Note that —1 is an mth power residue modulo p since (p—1)/m is even.
For k e {1,...,p— 1}, clearly p — k € R,,(p) if and only if k € R,,(p). Thus

—1
2 > k= ) (k+(p—k)):p><|Rm(p)|:%~
kERm(p) k€Rm (p)

This ends the proof of Lemma 2.1. O
Proof of Theorem 1.2. Let
c:i= H (i— ez"'i“k/p).
k€ERm (p)

974



As k € 7 is an mth power residue modulo p if and only if —k& is an mth power residue

c = H (1 _ eQnia(—k)/p).

k€Rm (p)

modulo p, we also have

Thus

2= H (1 _ eQniak/p)(i _ e—2niak/p)
k€ERm (p)
_ H (i2 41— i(e2niak/p + ef2rciak/p))
k€ERm (p)
_ (_i)|Rm(P)‘ H (eZEiak/p +672miak/p)
k€ERm (p)
— (_i)(p—l)/m H ef2rtiak/p(1 + e41‘tiak/p)
k€ERm (p)

X 1— eQni(L(4k)/p
()P 1D)/(2m) =27 Sy, @/ 1 erialtt/p
- ( 1) € R Hm () H 1 — e2nia(2k)/p”
k€Rm(p)

Note that
e 2 X ke Ry (p) OF/P _ o—2ria(p—1)/(2m) _ ¢

by Lemma 2.1. As 2 is an mth power residue modulo p, we also have

H (1 _ eQniak/p) — H (1 _ eQnia(Qk)/p) — H (1 _ eQnia(4k)/p).

k€Rm (p) k€ R (p) k€ Ry (p)
Combining the above, we see that

2 = (_1)(:0—1)/(2m) x1x1= (_1)(?—1)/(27”).
Write ¢ = §iP~1)/™) with § € {£1}. In the ring of all algebraic integers, we have

P = H (i— e2niak/p)p = H (P —1) = (i* — 1)(p—1)/m

EERy (p) k€Rm (p)
= ((i" - 1)2)(p71)/(2m) - (_Qip)(pfl)/@m) (mod p).

Thus
o=/ Cm) — b = (—2)@=D/CmpE=1/Em) (mod p)
and hence 2
5= (=2)®-D/em) = (_) (mod p).
P /2m

Therefore § = (_72)2»”1 and hence (1.4) holds.
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Taking conjugates of both sides of (1.4), we get

11 (_i_emiak/p):(—_?) (—i)e=1)/ 2m)
2m

k€ERm (p) p
and hence
_ye-1)/m L 2map-k)/py _ (T2) (ZL) se-v/em)
(-1) (i+e ) i .
P /2m \ D /2m
k€ERm (p)

This is equivalent to (1.5) since {p — k: k € R, (p)} = Rm(p).
In view of the above, we have completed the proof of Theorem 1.2.

Proof of Theorem 1.1. For any k € Z we have

k i k ink/p _ o—ink/pY /(9] 2nik/p 4 1 _ 9
1—|—tanrc—:1—1—78111(]-E /p):l—f—(e, ¢ . )/(1):1_14e _+
p cos(nk/p) (eimk/p 4 e—irk/p) /2 o2nik/p 4 1
) 2i ) i—1 . e2mk/p g
:1_1+62ni/€/p+1 :(1_1)(1+62nik/[)+1):( _I)GQKik/p_iQ
i—1 eQni(Qk)/p _ 12

= - X - .
i — e2nik/p e2rik/p _ {2

Therefore

ak (1 — 1)|R'rn(p)‘
(2.1) 1+tann— ) = - - .
kelg(p) ( p ) HkERm (p) (1 o 627‘ ak/p)

Recall (1.4) and note that
(i— 1)\Rm(p)\ = (G- 1)2)(p71)/(2m) = (_21)(13*1)/(2"7‘).

So (2.1) yields that

(—2i)p=1)/(m)

ak L ) )
kezlz_[@) <1+tanﬂ?) T ()amie-D/Cm) T (7)%(—2)@ 1)/(2m)

:(3) o(p—1)/(2m)
pP/2m

This concludes our proof of Theorem 1.1.
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3. PrROOFS OF COROLLARIES 1.1 AND 1.2

Lemma 3.1. For any prime p = z2? + 27y? with x,y € Z*, we have

(3.1) <__2) = (1),

p

Proof. Clearly p = 1 (mod 6) and 2 # y (mod 2) since p = 22 + 27y%. Note
that (3.1) has the equivalent form:

(3.2) 4| zy < p=1,3 (mod 8).
Case 1: x is odd and y is even. In this case,
_ .2 2 _ 2 _ y\? _ Y\?
p=x"+27y*=1+3y*=1+12 5 =1+4 3 (mod 8)
and hence
p51,3(mod8)¢>p51(mod8)<:>2|g<:>4|y<:>4|xy.
Case 2: x is even and y is odd. In this case,
A2
p:x2+27y25m2+3y2:4(§> + 3 (mod 8)
and hence
p51,3(modS)@pE?;(m0d8)®2|§®4|m®4|xy.

In view of the above, we have completed the proof of Lemma 3.1. O

Proof of Corollary 1.1. As p = 22 + 27y?, we see that p = 1 (mod 6) and 2 is
a cubic residue modulo p. By Lemma 3.1 and (1.2) with m = 3, we have

(__2) - (__2) = (—1)"¥/2,
p /6 p
Combining this with Theorem 1.1 in the case m = 3, we immediately obtain the

desired (1.6). O

Proof of Corollary 1.2.  As p = 22 + 64y, we see that p = 1 (mod 8) and 2 is
a quartic residue modulo p. By Theorem 7.5.7 or Corollary 7.5.8 of [1], pages 227—228,

we have 5
—) =(-1)v.
()=t
Combining this with Theorem 1.1 in the case m = 4, we immediately obtain the
desired (1.7). O
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