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Abstract. Let p be an odd prime, and let a be an integer not divisible by p. When m
is a positive integer with p ≡ 1 (mod 2m) and 2 is an mth power residue modulo p, we
determine the value of the product

∏

k∈Rm(p)

(1 + tan(πak/p)), where

Rm(p) = {0 < k < p : k ∈ Z is an mth power residue modulo p}.

In particular, if p = x2 + 64y2 with x, y ∈ Z, then

∏

k∈R4(p)

(

1 + tan π

ak

p

)

= (−1)y(−2)(p−1)/8.
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1. Introduction

It is well known that the function tan πx has period 1. For any positive odd num-

ber n and complex number x with x− 1
2 6∈ Z, Sun, in Lemma 2.1 of [4], proved that

n−1
∏

r=0

(

1 + tan π

x+ r

n

)

=
( 2

n

)

2(n−1)/2
(

1 +
(−1

n

)

tan πx
)

,
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where ( ·
n ) is the Jacobi symbol. In particular, for any odd prime p and integer a 6≡ 0

(mod p) we have

p−1
∏

k=1

(

1 + tan π

ak

p

)

=

p−1
∏

r=0

(

1 + tan π

r

p

)

=
(2

p

)

2(p−1)/2.

Let p be an odd prime. Then

12, 22, . . . ,
(p− 1

2

)2

modulo p give all the 1
2 (p − 1) quadratic residues modulo p. Sun, in Theorem 1.4

of [4], determined the value of the product
(p−1)/2
∏

k=1

(1 + tan(πak2/p)) for any integer

a not divisible by p; in particular,

(p−1)/2
∏

k=1

(

1 + tan π

ak2

p

)

=







(−1)|{16k<p/4 : ( k
p
)=1}|2(p−1)/4 if p ≡ 1 (mod 8),

(−1)|{16k<p/4 : ( k
p
)=−1}|2(p−1)/4

(a

p

)

ε
−3(a

p
)h(p)

p if p ≡ 5 (mod 8),

where ( ·
p ) is the Legendre symbol, and εp and h(p) are the fundamental unit and

the class number of the real quadratic field Q(
√
p), respectively.

Let m ∈ Z+ = {1, 2, 3, . . .}, and let p be a prime with p ≡ 1 (mod m). If a ∈ Z

is not divisible by p, and xm ≡ a (mod p) for an integer x, then a is called an mth

power residue modulo p. The set

(1.1) Rm(p) = {k ∈ {1, . . . , p− 1} : k is an mth power residue modulo p}

has cardinality (p−1)/m, and {k+pZ : k ∈ Rm(p)} is a subgroup of the multiplicative
group {k + pZ : k = 1, . . . , p − 1}. For an integer a 6≡ 0 (mod p), the mth power

residue symbol (ap )m is a unique mth root ζ of unity such that

a(p−1)/m ≡ ζ (mod p)

in the ring of all algebraic integers. (Note that a primitive root g modulo p has order

p− 1, which is a multiple of m.) In particular,

(−1

p

)

m
= (−1)(p−1)/m.
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Let p be a prime with p ≡ 1 (mod 2m), where m ∈ Z+. Note that p− 1 ∈ Rm(p)

since (−1)(p−1)/m = 1. If 2 ∈ Rm(p), then −2 = (−1) × 2 is an mth power residue

modulo p, hence

(−2

p

)

2m
=

{

1 if − 2 is a 2mth power residue modulo p,

−1 otherwise,

and

(1.2)
(−2

p

)m

2m
=

(−2

p

)

since
(−2

p

)m

2m
≡ ((−2)(p−1)/(2m))m = (−2)(p−1)/2 ≡

(−2

p

)

(mod p).

Now we state our main theorem.

Theorem 1.1. Let m ∈ Z+, and let p be a prime with p ≡ 1 (mod 2m). Suppose

that 2 is anmth power residue modulo p. For any integer a not divisible by p we have

(1.3)
∏

k∈Rm(p)

(

1 + tan π

ak

p

)

=
(−2

p

)

2m
(−2)(p−1)/(2m) =

(2

p

)

2m
2(p−1)/(2m).

To prove Theorem 1.1, we need the following auxiliary result.

Theorem 1.2. Let m be a positive integer, and let p be a prime with p ≡ 1

(mod 2m). Suppose that 2 is an mth power residue modulo p. For any integer a 6≡ 0

(mod p) we have

(1.4)
∏

k∈Rm(p)

(i− e2πiak/p) =
(−2

p

)

2m
i(p−1)/(2m)

and

(1.5)
∏

k∈Rm(p)

(i + e2πiak/p) =
(2

p

)

2m
i(p−1)/(2m).

Let p be an odd prime with p ≡ 1 (mod m), where m is 3 or 4. Then there are

unique x, y ∈ Z+ such that p = x2 +my2, cf. [2], pages 7–12. It is well known that

2 ∈ Rm(p) if and only if p = x2 +m(my)2 for some x, y ∈ Z+, cf. Proposition 9.6.2

of [3], page 119, and Exercise 26 of [3], page 64.
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Theorem 1.1 with m = 3 has the following consequence.

Corollary 1.1. Let p = x2 + 27y2 be a prime with x, y ∈ Z+. For any integer

a 6≡ 0 (mod p) we have

(1.6)
∏

k∈R3(p)

(

1 + tan π

ak

p

)

= (−1)xy/2(−2)(p−1)/6.

From Theorem 1.1 in the case m = 4, we can deduce the following result.

Corollary 1.2. Let p = x2 + 64y2 be a prime with x, y ∈ Z+. For any integer

a 6≡ 0 (mod p) we have

(1.7)
∏

k∈R4(p)

(

1 + tan π

ak

p

)

= (−1)y(−2)(p−1)/8.

We will prove Theorems 1.1 and 1.2 in the next section, and deduce Corollaries 1.1

and 1.2 in Section 3.

2. Proofs of Theorems 1.1 and 1.2

Lemma 2.1. Let m be a positive integer, and let p be a prime with p ≡ 1

(mod 2m). Then we have
∑

k∈Rm(p)

k =
p(p− 1)

2m
.

P r o o f. Note that −1 is anmth power residue modulo p since (p−1)/m is even.

For k ∈ {1, . . . , p− 1}, clearly p− k ∈ Rm(p) if and only if k ∈ Rm(p). Thus

2
∑

k∈Rm(p)

k =
∑

k∈Rm(p)

(k + (p− k)) = p× |Rm(p)| = p(p− 1)

m
.

This ends the proof of Lemma 2.1. �

P r o o f of Theorem 1.2. Let

c :=
∏

k∈Rm(p)

(i− e2πiak/p).
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As k ∈ Z is anmth power residue modulo p if and only if −k is anmth power residue

modulo p, we also have

c =
∏

k∈Rm(p)

(i− e2πia(−k)/p).

Thus

c2 =
∏

k∈Rm(p)

(i− e2πiak/p)(i− e−2πiak/p)

=
∏

k∈Rm(p)

(i2 + 1− i(e2πiak/p + e−2πiak/p))

= (−i)|Rm(p)|
∏

k∈Rm(p)

(e2πiak/p + e−2πiak/p)

= (−i)(p−1)/m
∏

k∈Rm(p)

e−2πiak/p(1 + e4πiak/p)

= (−1)(p−1)/(2m)e−2πi
∑

k∈Rm(p) ak/p
∏

k∈Rm(p)

1− e2πia(4k)/p

1− e2πia(2k)/p
.

Note that

e−2πi
∑

k∈Rm(p) ak/p = e−2πia(p−1)/(2m) = 1

by Lemma 2.1. As 2 is an mth power residue modulo p, we also have

∏

k∈Rm(p)

(1− e2πiak/p) =
∏

k∈Rm(p)

(1− e2πia(2k)/p) =
∏

k∈Rm(p)

(1 − e2πia(4k)/p).

Combining the above, we see that

c2 = (−1)(p−1)/(2m) × 1× 1 = (−1)(p−1)/(2m).

Write c = δi(p−1)/(2m) with δ ∈ {±1}. In the ring of all algebraic integers, we have

cp =
∏

k∈Rm(p)

(i− e2πiak/p)p ≡
∏

k∈Rm(p)

(ip − 1) = (ip − 1)(p−1)/m

= ((ip − 1)2)(p−1)/(2m) = (−2ip)(p−1)/(2m) (mod p).

Thus

δip(p−1)/(2m) = cp ≡ (−2)(p−1)/(2m)ip(p−1)/(2m) (mod p)

and hence

δ ≡ (−2)(p−1)/(2m) ≡
(−2

p

)

2m
(mod p).

Therefore δ = (−2
p )2m and hence (1.4) holds.
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Taking conjugates of both sides of (1.4), we get

∏

k∈Rm(p)

(−i− e−2πiak/p) =
(−2

p

)

2m
(−i)(p−1)/(2m)

and hence

(−1)(p−1)/m
∏

k∈Rm(p)

(i + e2πia(p−k)/p) =
(−2

p

)

2m

(−1

p

)

2m
i(p−1)/(2m).

This is equivalent to (1.5) since {p− k : k ∈ Rm(p)} = Rm(p).

In view of the above, we have completed the proof of Theorem 1.2. �

P r o o f of Theorem 1.1. For any k ∈ Z we have

1 + tan π

k

p
= 1 +

sin(πk/p)

cos(πk/p)
= 1 +

(eiπk/p − e−iπk/p)/(2i)

(eiπk/p + e−iπk/p)/2
= 1− i

e2πik/p + 1− 2

e2πik/p + 1

= 1− i +
2i

e2πik/p + 1
= (1 − i)

(

1 +
i− 1

e2πik/p + 1

)

= (1 − i)
e2πik/p + i

e2πik/p − i2

=
i− 1

i− e2πik/p
× e2πi(2k)/p − i2

e2πik/p − i2
.

Therefore

(2.1)
∏

k∈Rm(p)

(

1 + tan π

ak

p

)

=
(i− 1)|Rm(p)|

∏

k∈Rm(p)(i− e2πiak/p)
.

Recall (1.4) and note that

(i− 1)|Rm(p)| = ((i− 1)2)(p−1)/(2m) = (−2i)(p−1)/(2m).

So (2.1) yields that

∏

k∈Rm(p)

(

1 + tan π

ak

p

)

=
(−2i)(p−1)/(2m)

(−2
p )2mi(p−1)/(2m)

=
(−2

p

)

2m
(−2)(p−1)/(2m)

=
(2

p

)

2m
2(p−1)/(2m).

This concludes our proof of Theorem 1.1. �
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3. Proofs of Corollaries 1.1 and 1.2

Lemma 3.1. For any prime p = x2 + 27y2 with x, y ∈ Z+, we have

(3.1)
(−2

p

)

= (−1)xy/2.

P r o o f. Clearly p ≡ 1 (mod 6) and x 6≡ y (mod 2) since p = x2 + 27y2. Note

that (3.1) has the equivalent form:

(3.2) 4 | xy ⇔ p ≡ 1, 3 (mod 8).

Case 1 : x is odd and y is even. In this case,

p = x2 + 27y2 ≡ 1 + 3y2 = 1 + 12
(y

2

)2

≡ 1 + 4
(y

2

)2

(mod 8)

and hence

p ≡ 1, 3 (mod 8) ⇔ p ≡ 1 (mod 8) ⇔ 2 | y
2
⇔ 4 | y ⇔ 4 | xy.

Case 2 : x is even and y is odd. In this case,

p = x2 + 27y2 ≡ x2 + 3y2 = 4
(x

2

)2

+ 3 (mod 8)

and hence

p ≡ 1, 3 (mod 8) ⇔ p ≡ 3 (mod 8) ⇔ 2 | x
2
⇔ 4 | x ⇔ 4 | xy.

In view of the above, we have completed the proof of Lemma 3.1. �

P r o o f of Corollary 1.1. As p = x2 + 27y2, we see that p ≡ 1 (mod 6) and 2 is

a cubic residue modulo p. By Lemma 3.1 and (1.2) with m = 3, we have

(−2

p

)

6
=

(−2

p

)

= (−1)xy/2.

Combining this with Theorem 1.1 in the case m = 3, we immediately obtain the

desired (1.6). �

P r o o f of Corollary 1.2. As p = x2 + 64y2, we see that p ≡ 1 (mod 8) and 2 is

a quartic residue modulo p. By Theorem 7.5.7 or Corollary 7.5.8 of [1], pages 227–228,

we have
(−2

p

)

8
= (−1)y.

Combining this with Theorem 1.1 in the case m = 4, we immediately obtain the

desired (1.7). �
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