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Abstract. By properties of Cvetković-Kostić-Varga-type (or, for short, CKV-type)
B-matrices, a new class of nonsingular matrices called CKV-type B-matrices is given, and
a new inclusion interval of the real eigenvalues of real matrices is presented. It is shown
that the new inclusion interval is sharper than those provided by J.M.Peña (2003), and by
H.B. Li et al. (2007). We also propose a direct algorithm for computing the new inclusion
interval. Numerical examples are included to illustrate the effectiveness of the obtained
results.
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1. Introduction

A real square matrix is a P-matrix if all its principal minors are positive, see [6].

P-matrices are one class of the most important matrices from applications, such as er-

ror bound estimation for linear complementarity problems, Schur complement prob-

lems, structured tensors, and sub-direct sums, see for instance, [2], [5], [8], [10], [12].

In many applications, one is interested in locating the real eigenvalues of a real matrix

by the properties of some subclasses of P-matrices.

The localization of the eigenvalues of matrices plays a key role in matrix theory

and numerical analysis, see [9], [11],[13], [14], [15], [16], [18], [21]. Some well-known

eigenvalue inclusion regions such as Geršgorin disks (see [7]), Brauer’s ovals of Cassini
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(see [1]), and Brualdi’s inclusion set (see [18]) have received extensive attention and

application, see also [19]. Using B-matrices (see [13]), DB-matrices (see [14]), and

SB-matrices (see [11]) (see the following definitions, as subclasses of P-matrices),

alternatives to Geršgorin disks, Brauer’s ovals of Cassini, and Cvetković’s Geršgorin-

type inclusion set (see [4]) for the localization of the real eigenvalues of a real matrix

were presented in [11], [13], and [14], respectively. It is noted that the information

on the real eigenvalues provided by these alternatives supplements the information

given by the real intervals provided by the above well-known ones, and in some cases

these alternatives are sharper than the later ones.

Very recently, the authors in [17] introduced a new subclass of P-matrices, called

CKV-type B-matrices, which generalizes S-strictly dominant B-matrices (for short,

SB-matrices). In the present paper, by making use of this new class of matrices,

we aim to obtain a new inclusion interval for the real eigenvalues of real matrices.

In Section 2, we give a new class of nonsingular matrices, CKV-type B-matrices,

which can split into the product of a nonsingular diagonal matrix and a CKV-type

B-matrix. Based on CKV-type B-matrices, a new inclusion interval called CKV-

type B-interval for the real eigenvalues of real matrices is presented, and it is proved

that the new interval improves the existing ones in [11], [13], [14]. In Section 3,

a direct algorithm for computing CKV-type B-interval is put forward. Numerical

examples show that the new inclusion interval efficiently locate the real eigenvalue

of real matrices. Finally, Section 4 is a brief conclusion.

Throughout this paper, we will use the following notations and definitions. We

denote by Rn the n-dimensional real vector space, and by Rn×n (Cn×n) by the set

of all n-order real matrices (complex matrices).

Definition 1.1 ([3]). A matrix A = [aij ] ∈ Cn×n is a CKV-type matrix if S⋆
i (A)

is not empty for each i ∈ N := {1, . . . , n}, where

S⋆
i (A) := {S ∈ Σi : |aii| > rSi (A) and (|aii| − rSi (A))(|ajj | − rSj (A))

> rSi (A)r
S
j (A) for all j ∈ S}

with Σi = {S ( N : i ∈ S} and rSi (A) =
∑

j∈S\{i}

|aij |.

Definition 1.2 ([13]). A matrix A = [aij ] ∈ Rn×n is a B-matrix if for each i ∈ N ,

∑

k∈N

aik > 0 and
1

n

(∑

k∈N

aik

)
> aij for any j ∈ N and j 6= i.

Given a matrix A = [aij ] ∈ Rn×n, letting

r+i := max{0, aij : j 6= i} and r−i := min{0, aij : j 6= i},
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we can write A as A = B+ + C or A = B− + E, where

(1.1) B+ =




a11 − r+1 . . . a1n − r+1
...

...

an1 − r+n . . . ann − r+n


 , C =




r+1 . . . r+1
...

...

r+n . . . r+n


 ,

and

(1.2) B− =




a11 − r−1 . . . a1n − r−1
...

...

an1 − r−n . . . ann − r−n


 , E =




r−1 . . . r−1
...

...

r−n . . . r−n


 .

Definition 1.3 ([14]). A matrix A = [aij ] ∈ Rn×n is a doubly B-matrix

(DB-matrix) if the matrix B+ of the form (1.1) is a strictly doubly diagonally

dominant (DSDD) matrix with positive diagonal entries, i.e.,

{
aii > r+i for all i ∈ N,

(aii − r+i )(ajj − r+j ) > ri(B
+)rj(B

+) for all j 6= i and i, j ∈ N,

where ri(B
+) =

n∑
j=1,j 6=i

|aij − r+i |.

Definition 1.4 ([11]). A matrix A = [aij ] ∈ Rn×n is an S-strictly dominant

B-matrix (SB-matrix) if the matrix B+ of the form (1.1) is an S-SDD matrix with

positive diagonal entries, that is,





aii > r+i for all i ∈ N,

aii − r+i > rSi (B
+) for all i ∈ S,

(aii − r+i − rSi (B
+))(ajj − r+j − rSj (B

+)) > rSi (B
+)rSj (B

+) for all i ∈ S, j ∈ S.

Definition 1.5 ([17]). A matrix A = [aij ] ∈ Rn×n is a CKV-type B-matrix if

the matrix B+ of the form (1.1) is a CKV-type matrix with positive diagonal entries.

Lemma 1.1 ([17]). If A is a CKV-type B-matrix, then A is a P-matrix.
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2. A new real eigenvalue inclusion interval for real matrices

In this section, using the CKV-type B-matrices, a new class of nonsingular matrices

called CKV-type B-matrices is presented, and then a new real eigenvalue inclusion

interval is obtained.

2.1. CKV-type B-matrices.

Definition 2.1. A matrix A ∈ Rn×n is called a CKV-type B-matrix if A

can be decomposed into A = DB, where B is a CKV-type B-matrix and D =

diag(d1, . . . , dn) with di ∈ {1,−1} for each i ∈ N .

By Lemma 1.1 and Definition 2.1, we easily get the following result.

Lemma 2.1. If A is a CKV-type B-matrix, then it is nonsingular.

The following results provide some equivalent characterization of CKV-type

B-matrices, which will be used later.

Lemma 2.2. A matrix A = [aij ] ∈ Rn×n is a CKV-type B-matrix if and only if

there exists a diagonal matrix D ∈ D such that DA is a CKV-type B-matrix, where

D := {D = diag(d1, . . . , dn) : di ∈ {1,−1}}.

P r o o f. If A is a CKV-type B-matrix, then from Definition 2.1 it holds that

A = DB, where D ∈ D and B is a CKV-type B-matrix. Since D ∈ D is invertible, it

follows that B = D−1A is a CKV-type B-matrix. Therefore, the necessity is estab-

lished. We next prove that sufficiency is true. If there exists a diagonal matrix D ∈ D

such that DA is a CKV-type B-matrix, then from A = D−1DA and Definition 2.1

it holds that A is a CKV-type B-matrix. This completes the proof. �

Theorem 2.1. A matrix A = [aij ] ∈ Rn×n is a CKV-type B-matrix if and only

if for each i ∈ N , (i) |aii| > |ri|, and (ii) there exists a set S ∈ Σi such that

|aii − ri| > rSi (B) and for all j ∈ S,

(|aii − ri| − rSi (B))(|ajj − rj | − rSj (B)) > rSi (B)rSj (B),

where Σi is given by Definition 1.1,

(2.1) rSi (B) =

{
rSi (B

+), aii > 0,

rSi (B
−), aii < 0,

rSi (B) =

{
rSi (B

+), aii > 0,

rSi (B
−), aii < 0,

and

(2.2) ri =

{
r+i , aii > 0,

r−i , aii < 0.
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P r o o f. By Lemma 2.2, it follows that A is a CKV-type B-matrix if and only if

there is a diagonal matrix D ∈ D such that DA is a CKV-type B-matrix, that is,

DA = B̂+ Ĉ, where B̂ defined as (1.1) is a CKV-type matrix with positive diagonal

entries. Thus, it suffices to prove that B̂ is a CKV-type matrix with positive diagonal

entries if and only if (i) and (ii) hold. Note that the ith row of DA is given by

(ai1, . . . , ain) if aii > 0 and by (−ai1, . . . ,−ain) if aii < 0. It follows that if aii > 0,

then

r+i (DA) = max{0, aij : j 6= i} = r+i ,

and if aii < 0, then

r+i (DA) = max{0,−aij : j 6= i} = −min{0, aij : j 6= i} = −r−i .

Since

B̂ =




(DA)11 − r+1 (DA) . . . (DA)1n − r+1 (DA)
...

...

(DA)n1 − r+n (DA) . . . (DA)nn − r+n (DA)




and

Ĉ =




r+1 (DA) . . . r+1 (DA)
...

...

r+n (DA) . . . r+n (DA)


 ,

it follows that the ith row of B̂ is given by (ai1 − r+i , . . . , ain − r+i ) if aii > 0, and

by (−ai1 − (−r−i ), . . . ,−ain − (−r−i )) if aii < 0, and the ith row of Ĉ is given by

(r+i , . . . , r
+
i ) if aii > 0, and by (−r−i , . . . ,−r−i ) if aii < 0.

Next, we prove that B̂ is a CKV-type matrix with positive diagonal entries if and

only if (i) and (ii) hold. Matrix B̂ has positive diagonal entries implying that for

each i ∈ N , aii > r+i if aii > 0, and aii < r−i if aii < 0, which are equivalent

to |aii| > |ri| for each i ∈ N . Matrix B̂ is a CKV-type matrix meaning that for

each i ∈ N , S⋆
i (B̂) is not empty, that is,

(a) if aii > 0, ajj > 0, then aii − r+i > rSi (B
+), and for all j ∈ S,

(aii − r+i − rSi (B
+))(ajj − r+j − rSj (B

+)) > rSi (B
+)rSj (B

+);

(b) if aii > 0, ajj < 0, then aii − r+i > rSi (B
+) and for all j ∈ S,

(aii − r+i − rSi (B
+))(−ajj − (−r−j )− rSj (B

−)) > rSi (B
+)rSj (B

−);
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(c) if aii < 0, ajj > 0, then −aii − (−r−i ) > rSi (B
−), and for all j ∈ S,

(−aii − (−r−i )− rSi (B
−))(ajj − r+j − rSj (B

+)) > rSi (B
−)rSj (B

+);

(d) if aii < 0, ajj < 0, then −aii − (−r−i ) > rSi (B
−), and for all j ∈ S,

(−aii − (−r−i )− rSi (B
−))(−ajj − (−r−j )− rSj (B

−)) > rSi (B
−)rSj (B

−).

Obviously, (a)–(d) are equivalent to condition (ii). This completes the proof. �

2.2. CKV-type B-interval. As is well-known, the nonsingularity of real

matrices can generate the equivalent eigenvalue inclusion set in the real axis,

see [11], [13], [14]. So, by the nonsingularity of CKV-type B-matrices, in this

section we give a new real eigenvalue inclusion interval called CKV-type B-interval

for real matrices.

Theorem 2.2. Let A = [aij ] ∈ Rn×n, λ be any real eigenvalue of A, B+ and B−

be the matrices of (1.1) and (1.2), respectively. Then

λ ∈ Θ :=

n⋃

i=1

(
Ci ∪

( ⋂

S∈Σi

(
FS
i ∪

(⋃

j∈S

Hij

))))
,

where Σi is given by Definition 1.1, S := N \ S, Ci = [aii − r+i , aii − r−i ],

FS
i = [aii − r+i − rSi (B

+), aii − r−i + rSi (B
−)],

and

Hij =

{
H1

ij ∪H2
ij ∪H3

ij if aii 6 ajj ,

H1
ij ∪ H̃2

ij ∪H3
ij if aii > ajj

with

H1
ij = {λ ∈ (−∞,min{aii, ajj}) :

(|aii − r+i − λ| − rSi (B
+))(|ajj − r+j − λ| − rSj (B

+)) 6 rSi (B
+)rSj (B

+)},

H2
ij = {λ ∈ (aii, ajj) :

(|aii − r−i − λ| − rSi (B
−))(|ajj − r+j − λ| − rSj (B

+)) 6 rSi (B
−)rSj (B

+)},

H̃2
ij = {λ ∈ (ajj , aii) :

(|aii − r+i − λ| − rSi (B
+))(|ajj − r−j − λ| − rSj (B

−)) 6 rSi (B
+)rSj (B

−)},

and

H3
ij = {λ ∈ (max{aii, ajj},∞) :

(|aii − r−i − λ| − rSi (B
−))(|ajj − r−j − λ| − rSj (B

−)) 6 rSi (B
−)rSj (B

−)}.
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P r o o f. Suppose, on the contrary, that λ /∈ Θ, that is

λ /∈

n⋃

i=1

Ci and λ /∈
⋃

i∈N

⋂

S∈Σi

(
FS
i ∪

(⋃

j∈S

Hij

))
.

Case I : λ /∈
n⋃

i=1

Ci. By (2.2), it is obvious that |aii − λ| > |ri| for all i ∈ N .

Case II : λ /∈
⋃
i∈N

⋂
S∈Σi

(
FS
i ∪

( ⋃
j∈S

Hij

))
, i.e., for all i ∈ N , there exists S ∈ Σi

such that λ /∈ FS
i and λ /∈ Hij for all j ∈ S.

If λ /∈ FS
i , it follows from (2.1) and (2.2) that |aii − ri − λ| > rSi (B) for all i ∈ S.

If λ /∈ Hij , then λ /∈ H1
ij , λ /∈ H2

ij , λ /∈ H̃2
ij , and λ /∈ H3

ij , that is, if

λ ∈ (−∞,min{aii, ajj}), then

(|aii − r+i − λ| − rSi (B
+))(|ajj − r+j − λ| − rSj (B

+)) > rSi (B
+)rSj (B

+);

if λ ∈ (aii, ajj), then

(|aii − r−i − λ| − rSi (B
−))(|ajj − r+j − λ| − rSj (B

+)) > rSi (B
−)rSj (B

+);

if λ ∈ (ajj , aii), then

(|aii − r+i − λ| − rSi (B
+))(|ajj − r−j − λ| − rSj (B

−)) > rSi (B
+)rSj (B

−);

if λ ∈ (max{aii, ajj},∞), then

(|aii − r−i − λ| − rSi (B
−))(|ajj − r−j − λ| − rSj (B

−)) > rSi (B
−)rSj (B

−),

which together with (2.1) and (2.2) imply that

(|aii − ri − λ| − rSi (B))(|ajj − rj − λ| − rSj (B)) > rSi (B)rSj (B).

We note that A and A − λI have the same off-diagonal elements. Then, from

Case I, Case II, and Theorem 2.1, it follows that A − λI is a CKV-type B-matrix.

So, A − λI is nonsingular, thus |A − λI| 6= 0, which contradicts the assumption

that λ is a real eigenvalue of A. Therefore, λ ∈ Θ. The proof is complete. �

2.3. Comparisons with some existing intervals. In this section, we will show

that the CKV-type B-interval is better than some existing ones. Before that, some

well-known results are listed.

Theorem 2.3 ([13], Theorem 3.5). Let A = [aij ] ∈ Rn×n, λ be any real eigenvalue

of A, B+ and B− be the matrices of (1.1) and (1.2), respectively. Then

λ ∈ S :=

n⋃

i=1

[aii − r+i − ri(B
+), aii − r−i + ri(B

−)].
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Theorem 2.4 ([14], Theorem 3.3). Let A = [aij ] ∈ Rn×n, λ be any real eigenvalue

of A, B+ and B− be the matrices of (1.1) and (1.2), respectively. Then

λ ∈ B :=

( n⋃

i=1

Ci

)
∪

(⋃

j 6=i

Bij

)
,

where Ci is defined as in Theorem 2.2 and assuming, without loss of generality,

that aii 6 ajj ,

Bij := B1
ij ∪B2

ij ∪B3
ij ,

with

B1
ij := {x ∈ (−∞, aii) : |aii − r+i − x||ajj − r+j − x| 6 ri(B

+)rj(B
+)},

B2
ij := {x ∈ (aii, ajj) : |aii − r−i − x||ajj − r+j − x| 6 ri(B

−)rj(B
+)},

and

B3
ij := {x ∈ (ajj ,∞) : |aii − r−i − x||ajj − r−j − x| 6 ri(B

−)rj(B
−)}.

Theorem 2.5 ([11], Theorem 3.7). Let A = [aij ] ∈ Rn×n and λ be any real

eigenvalue of A. Given any nonempty subset S of N , S := N \ S. Then

λ ∈ ϕS :=

( n⋃

i=1

Ci

)
∪

(⋃

i∈S

FS
i

)
∪

( ⋃

i∈S,j∈S

Hij

)
,

where Ci, F
S
i , and Hij are defined by Theorem 2.2.

As shown in [11], if S is a singleton, i.e., S = {i}, then

⋂

i∈N

ϕ{i} ⊆ B ⊆ S.

The following result shows that the CKV-type B-interval provided by Theorem 2.2

is better than that of Theorem 2.5, see [11], Theorem 3.7.

Theorem 2.6. Let A = [aij ] ∈ Rn×n and λ be any real eigenvalue of A. Then

λ ∈ Θ ⊆ ϕS ,

where Θ and ϕS are given by Theorems 2.2 and 2.5, respectively.
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P r o o f. Suppose that λ ∈ Θ. It follows from Theorem 2.2 that

λ ∈
⋃

i∈N

Ci or λ ∈
⋃

i∈N

⋂

S∈Σi

(
FS
i ∪

(⋃

j∈S

Hij

))
.

If λ ∈
⋃
i∈N

Ci, then λ ∈ ϕS holds directly. If λ ∈
⋃
i∈N

⋂
S∈Σi

(
FS
i ∪

( ⋃
j∈S

Hij

))
, then

there exists i0 ∈ N such that for any S ∈ Σi0 , λ ∈ FS
i0
or λ ∈ Hi0,j for some j ∈ S.

This implies that

λ ∈

(⋃

i∈S

FS
i

)
∪

( ⋃

i∈S,j∈S

Hij

)
.

Hence, the conclusion follows. �

Remark here from Theorem 2.6 that Θ ⊆ ϕ{i} for each i ∈ N . Therefore,

Θ ⊆
⋂

i∈N

ϕ{i} ⊆ B ⊆ S.

3. A direct algorithm for computing CKV-type B-interval

In this section, a direct algorithm based on Theorem 2.2 for computing the

CKV-type B-interval is put forward. Using this algorithm, some numerical examples

are given to illustrate the effectiveness of the CKV-type B-interval.

Remark 3.1.

(i) Algorithm 1 is a direct method for computing the CKV-type B-interval, and

the calculations only depend on the elements of the involved matrix and the

subsets of N . Therefore, Algorithm 1 stops after finite steps.

(ii) CKV-type B-interval Θ seems to be difficult to calculate, since it involves an

intersection over all possible nonempty proper subsets S of indices, and there-

fore requires lots of computations. But, sometimes it is worth investing in

more calculations to obtain a better inclusion interval. Theorem 2.6 shows

that CKV-type B-interval Θ improves the existing ones in [11], [13], [14], and

Algorithm 1 can effectively compute the CKV-type B-interval Θ.

(iii) The MATLAB code for Algorithm 1 is freely available at [20], which facilitates

the implementation of the CKV-type B-interval.
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Algorithm 1: A direct method for computing CKV-type B-interval Θ

Input: A matrix A = [aij ] ∈ Rn×n,

for i = 1 : n do Ci = [aii − r+i , aii − r−i ], Σi = {S ( N : i ∈ S},

for each S ∈ Σi

FS
i = [aii − r+i − rSi (B

+), aii − r−i + rSi (B
−)],

for j ∈ S do

if aii 6 ajj then

Hij = H1
ij ∪H2

ij

⋃
H3

ij ,

else

Hij = H1
ij ∪ H̃2

ij ∪H3
ij ,

end if

end for

HS
i =

⋃
j∈S

Hij ,

end for
⋂

S∈Σi

(FS
i

⋃
HS

i ),

end for

Output: Θ =
n⋃

i=1

(
Ci ∪

( ⋂
S∈Σi

(FS
i ∪HS

i )

))
.

In the following, we implement Algorithm 1 to show that the localization of CKV-

type B-interval Θ is made efficiently. To make a comparison, we consider the follow-

ing examples for numerical experiments with Geršgorin circles (see [7]), Cassini ovals

(see [1]), B interval S (see [13], Theorem 3.5), DB interval B (see [14], Theorem 3.3),

SB interval ϕS (see [11], Theorem 3.7). We implement all experiments in MATLAB

version R2016 by using a PC with 3.40-GHz processors and 64GB of memory.

Example 3.1. Consider the following matrices:

A1 =




0.3112 0.2630 0.4505 0.1524

0.5285 0.6541 0.0838 0.8258

0.1656 0.6892 0.2290 0.5383

0.6020 0.7482 0.9133 0.9961


 , A2 =




0.8147 0.6324 0.9575 0.9572

0.9058 0.0975 0.9649 0.4854

0.1270 0.2785 0.1576 0.8003

0.9134 0.5469 0.9706 0.1419


 ,

A3 =




0.1829 0.4899 0.5005 0.0424

0.2399 0.1679 0.4711 0.0714

0.8865 0.9787 0.0596 0.5216

0.0287 0.7127 0.6820 0.0967


 , A4 =




0.8181 0.6596 0.8003 0.0835

0.8175 0.5186 0.4538 0.1332

0.7224 0.9730 0.4324 0.1734

0.1499 0.6490 0.8253 0.3909


 ,
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and

A5 =




0.1125 0.9742 0.4021 0.5508 0.5047 0.6949 0.7395 0.8960 0.3320

0.5158 0.1973 0.2952 0.8709 0.4050 0.4114 0.5247 0.5154 0.8397

0.8378 0.1112 0.3065 0.0423 0.1736 0.0348 0.8045 0.5445 0.3717

0.9208 0.2974 0.1056 0.9047 0.5752 0.2928 0.8169 0.6064 0.8282

0.4982 0.3964 0.5938 0.1310 0.6062 0.8014 0.1895 0.7604 0.1765

0.2776 0.4208 0.2827 0.8337 0.2144 0.3465 0.1237 0.8553 0.1295

0.6525 0.3115 0.1552 0.8005 0.5199 0.0833 0.8210 0.3829 0.8799

0.9173 0.6938 0.0007 0.9179 0.9892 0.5111 0.6379 0.0846 0.0441

0.5098 0.0919 0.2836 0.1373 0.4899 0.3668 0.0161 0.7339 0.6867




.

We list the numerical results in Table 1, where we compute
n⋂

i=1

ϕ{i} for the SB

interval.

Inclusion sets A1 A2

Geršgorin circles [−1.2674, 3.2596] [−2.2890, 3.3618]

Cassini ovals [−1.2041, 2.6374] [−2.2736, 2.9893]

B interval S [−1.2110, 3.2596] [−1.8378, 3.3618]

DB interval B [−1.1655, 2.6374] [−1.5652, 2.9893]

SB interval ϕS [−1.0690, 2.5051] [−1.3627, 2.8197]

CKV-type B interval Θ [−1.0109, 2.5051] [−1.3544, 2.8197]

Real eigenvalue values 2.1811,0.1833 -0.7158,-0.4400,-0.0346,2.4022

A3 A4 A5

[−2.3272, 2.4464] [−1.4364, 2.3615] [−4.9817, 5.3480]

[−1.7651, 1.9214] [−1.3307, 2.3345] [−4.8008, 5.2827]

[−1.4684, 2.4464] [−1.5908, 2.3615] [−4.3133, 5.3480]

[−1.4122, 1.9214] [−1.4758, 2.3345] [−4.2632, 5.2827]

[−1.3401, 1.7828] [−1.4184, 2.2401] [−4.1308, 5.0737]

[−1.3401, 1.6343] [−1.3411, 2.2282] [−3.7841, 4.8689]

-0.8081,-0.2556,0.0844,1.4864 0.3621,2.1819 -0.6254,-0.3454,0.0404,0.3988,4.4280

Table 1. The real eigenvalue inclusion sets for matrices Ai, i = 1, 2, 3, 4, 5.

From Table 1, we see that CKV-type B-interval Θ provided by Theorem 2.2 is

sharper than Geršgorin circles and Cassini ovals, and, especially, it is more accurate

than the B interval, DB interval, and SB interval. Therefore, Theorem 2.2 provides

a sharper interval to localize the real eigenvalues for real matrices.

Moreover, the following example shows that the CKV-type B-interval is smaller

than Geršgorin circles and Cassini ovals in most cases.
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Example 3.2. Using MATLAB function A = rand(n), we randomly generate

180 real matrices. By Algorithm 1, we list the numerical results in Table 2. In

this table, m specifies the number of randomly generated real matrices. In the “k1”

column, we show the number of matrices for which the CKV-type B-interval is smaller

than Geršgorin circles and Cassini ovals. In the “k2” column, we show the number

of matrices, where the CKV-type B-interval and Cassini ovals do not contain each

other. In the “k3” column, we give the number of matrices for which the Geršgorin

circles and Cassini ovals are smaller than the CKV-type B-interval.

n (order) m k1 k2 k3

4 20 14 6 0

5 20 16 4 0

6 20 16 4 0

7 20 13 7 0

8 20 17 3 0

9 20 16 4 0

10 20 18 2 0

11 20 16 4 0

12 20 18 2 0

Table 2. The numerical results of Example 3.2.

The results reported in Table 2 show that in most cases the real eigenvalue loca-

tion given by the CKV-type B-interval is more accurate than Geršgorin circles and

Cassini ovals.

At the end of this section, an example is given to compare the CKV-type B-interval

with the latest CKV-type set proposed by Cvetković et al. in [3] which is better than

the Geršgorin circles and the Cassini ovals. We recall the CKV-type set as follows.

Theorem 3.1 ([3], Theorem 16). Let A = [aij ] ∈ Cn×n. Then for every eigen-

value λ it holds that

λ ∈ V :=
⋃

i∈N

⋂

S∈Σi

(
ΓS
i (A) ∪

(⋃

j∈S

V S
ij (A)

))
,

where Σi is given by Definition 1.1, S := N \ S,

ΓS
i (A) = {z ∈ C : |z − aii| 6 rSi (A)},

and

V S
ij (A) = {z ∈ C : (|z − aii| − rSi (A))(|z − ajj | − rSj (A)) 6 rSi (A)r

S
j (A)}.
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Example 3.3. Using MATLAB function A = rand(n), we randomly generate

180 real matrices of different orders such that the elements of each matrix satisfy

aij ∈ (0, 1). The numerical results are reported in Table 3.

n (order) m m1 m2 m3

4 20 13 0 7

5 20 11 0 9

6 20 9 0 11

7 20 11 0 9

8 20 10 0 10

9 20 11 0 9

10 20 9 0 11

11 20 11 0 9

12 20 13 0 7

Table 3. The numerical results of Example 3.3.

In Table 3, the “m1” column gives the number of matrices for which the CKV-type

B-interval Θ is smaller than CKV-type set V of [3]. The “m2” column gives the

number of matrices, where the CKV-type B-interval Θ and CKV-type set V do

not contain each other. The “m3” column gives the number of matrices for which

the CKV-type set V is smaller than or equal to the CKV-type B-interval Θ. The

results given in Table 3 show that the real eigenvalue location given by the CKV-type

B-interval is smaller than CKV-type set V of [3] in some cases. This means that the

information on the real eigenvalues provided by CKV-type B-interval Θ supplements

the information given by the real intervals provided by CKV-type set V of [3].

4. Conclusions

In this paper, we first present a new class of nonsingular matrices based on

CKV-type B-matrices. Then by giving some corresponding equivalent conditions

of the new class of matrices, we give a new inclusion interval called the CKV-type

B-interval for the real eigenvalues of real matrices, which improves some existing

ones in [11], [13], [14]. Also, we propose a direct algorithm to compute the CKV-type

B-interval. Numerical examples show that the proposed results are efficient in locat-

ing the real eigenvalues of real matrices.
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