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Abstract. By properties of Cvetkovié¢-Kostié-Varga-type (or, for short, CKV-type)

B-matrices, a new class of nonsingular matrices called CKV-type B-matrices is given, and
a new inclusion interval of the real eigenvalues of real matrices is presented. It is shown
that the new inclusion interval is sharper than those provided by J. M. Penia (2003), and by
H.B.Liet al. (2007). We also propose a direct algorithm for computing the new inclusion
interval. Numerical examples are included to illustrate the effectiveness of the obtained
results.
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1. INTRODUCTION

A real square matrix is a P-matrix if all its principal minors are positive, see [6].
P-matrices are one class of the most important matrices from applications, such as er-
ror bound estimation for linear complementarity problems, Schur complement prob-
lems, structured tensors, and sub-direct sums, see for instance, [2], [5], [8], [10], [12].
In many applications, one is interested in locating the real eigenvalues of a real matrix
by the properties of some subclasses of P-matrices.

The localization of the eigenvalues of matrices plays a key role in matrix theory
and numerical analysis, see [9], [11],[13], [14], [15], [16], [18], [21]. Some well-known
eigenvalue inclusion regions such as Gersgorin disks (see [7]), Brauer’s ovals of Cassini
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(see [1]), and Brualdi’s inclusion set (see [18]) have received extensive attention and
application, see also [19]. Using B-matrices (see [13]), DB-matrices (see [14]), and
SB-matrices (see [11]) (see the following definitions, as subclasses of P-matrices),
alternatives to Gersgorin disks, Brauer’s ovals of Cassini, and Cvetkovié¢’s Gersgorin-
type inclusion set (see [4]) for the localization of the real eigenvalues of a real matrix
were presented in [11], [13], and [14], respectively. It is noted that the information
on the real eigenvalues provided by these alternatives supplements the information
given by the real intervals provided by the above well-known ones, and in some cases
these alternatives are sharper than the later ones.

Very recently, the authors in [17] introduced a new subclass of P-matrices, called
CKV-type B-matrices, which generalizes S-strictly dominant B-matrices (for short,
SB-matrices). In the present paper, by making use of this new class of matrices,
we aim to obtain a new inclusion interval for the real eigenvalues of real matrices.
In Section 2, we give a new class of nonsingular matrices, CKV-type B-matrices,
which can split into the product of a nonsingular diagonal matrix and a CKV-type
B-matrix. Based on CKV-type B-matrices, a new inclusion interval called CKV-
type B-interval for the real eigenvalues of real matrices is presented, and it is proved
that the new interval improves the existing ones in [11], [13], [14]. In Section 3,
a direct algorithm for computing CKV-type B-interval is put forward. Numerical
examples show that the new inclusion interval efficiently locate the real eigenvalue
of real matrices. Finally, Section 4 is a brief conclusion.

Throughout this paper, we will use the following notations and definitions. We
denote by R™ the n-dimensional real vector space, and by R™*" (C"*™) by the set
of all n-order real matrices (complex matrices).

Definition 1.1 ([3]). A matrix A = [a;;] € C"*" is a CKV-type matrix if S;(A)
is not empty for each i € N :={1,...,n}, where

SHA) == {S € it |aii| > ¥ (A) and (Jai| — 15 (A))(|Jaj;] — 1 (A))
> r?(A)er(A) for all j € S}

with ¥, = {SC N:ieStandr?(A) = Y lay|
jeS\{i}

Definition 1.2 ([13]). A matrix A = [a;;] € R"*™ is a B-matrix if for each i € N,

1
Za““>0 and —(Zaik)>aij for any j € N and j # i.
n

keEN kEN

Given a matrix A = [a;;] € R™*", letting
ri = max{0,a;;: j#4} and 7] :=min{0,a;;: j # i},
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we can write A as A= B* + C or A= B~ + E, where

+ + + +
ajlp — Ty Ain — T T e Ty
(L1) B = : L], o= e
1 — 715 . Qg — T rrooort
and
a1 —T;y ... Qp—Tp ryoo... Ty
(1.2) B = : : , FE= .
Apl — Ty  --- Qupn — T, T e Ty

Definition 1.3 ([14]). A matrix A = [a;;] € R™™ is a doubly B-matrix
(DB-matrix) if the matrix BT of the form (1.1) is a strictly doubly diagonally
dominant (DSDD) matrix with positive diagonal entries, i.e.,

a;; > rj for all i € N,
(ai; —r)(a;; — 7";') >r;(BT)rj(B*) forall j#iandi,je N,
where 7;(BT) = Y |aiy — 71|
j=lj#i

Definition 1.4 ([11]). A matrix A = [a;;] € R™*™ is an S-strictly dominant
B-matrix (SB-matrix) if the matrix B* of the form (1.1) is an S-SDD matrix with
positive diagonal entries, that is,

a;; > r;" for all i € N,
ai; —ri > 12 (BY) for all i € S,

(asi — 1 —r3(BY)(az; —r] —r¥(B)) > r¥(B*)r¥(B*) forallic$, je&.

Definition 1.5 ([17]). A matrix A = [a;;] € R™*" is a CKV-type B-matrix if
the matrix BT of the form (1.1) is a CKV-type matrix with positive diagonal entries.

Lemma 1.1 ([17]). If A is a CKV-type B-matrix, then A is a P-matrix.
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2. A NEW REAL EIGENVALUE INCLUSION INTERVAL FOR REAL MATRICES

In this section, using the CKV-type B-matrices, a new class of nonsingular matrices
called CKV-type B-matrices is presented, and then a new real eigenvalue inclusion
interval is obtained.

2.1. CKV-type B-matrices.

Definition 2.1. A matrix A € R™" is called a CKV-type B-matrix if A
can be decomposed into A = DB, where B is a CKV-type B-matrix and D =
diag(ds,...,dy) with d; € {1, —1} for each i € N.

By Lemma 1.1 and Definition 2.1, we easily get the following result.

Lemma 2.1. If A is a CKV-type B-matrix, then it is nonsingular.

The following results provide some equivalent characterization of CKV-type
B-matrices, which will be used later.

Lemma 2.2. A matrix A = [a;;] € R"™™" is a CKV-type B-matrix if and only if
there exists a diagonal matrix D € D such that DA is a CKV-type B-matrix, where

D := {D = diag(dy, ..., dn): d; € {1,—1}}.

Proof. If A is a CKV-type B-matrix, then from Definition 2.1 it holds that
A = DB, where D € D and B is a CKV-type B-matrix. Since D € D is invertible, it
follows that B = D' A is a CKV-type B-matrix. Therefore, the necessity is estab-
lished. We next prove that sufficiency is true. If there exists a diagonal matrix D € D
such that DA is a CKV-type B-matrix, then from A = D~'DA and Definition 2.1
it holds that A is a CKV-type B-matrix. This completes the proof. O

Theorem 2.1. A matrix A = [a;;] € R"™" is a CKV-type B-matrix if and only
if for each i € N, (i) |ai;| > |ri|, and (ii) there exists a set S € %; such that
lai; — ;| > r¥(B) and for all j € S,

(lai = ril =7 (B))(lag; —rj| =7 (B)) > rf (B)r} (B),
where ¥; is given by Definition 1.1,

(2.1) TiS(B) _ {’I‘{Z(B"‘)7 a;; > 0, r?(B) _ {7“148(3"")7 ai; > 0,

7 (B7), ay <0,

7

and

(2.2) r'—{r;r’ % > 0,
K3
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Proof. By Lemma 2.2, it follows that A is a CKV-type B-matrix if and only if
there is a diagonal matrix D € D such that DA is a CKV-type B-matrix, that is,
DA = B+C, where B defined as (1.1) is a CKV-type matrix with positive diagonal
entries. Thus, it suffices to prove that Bisa CKV-type matrix with positive diagonal
entries if and only if (i) and (ii) hold. Note that the ith row of DA is given by
(@i, -y ain) if a;; > 0 and by (—a;1,...,—ai) if a;; < 0. It follows that if a;; > 0,
then

r;r(DA) =max{0,a;;: j#1i} = r;r,

and if a;; < 0, then

r(DA) = max{0, —a;;: j #i} = —min{0,a;;: j #i} = —r;.

Since
(DA)y; —r{ (DA) ... (DA)y, —r(DA)
B= : :
(DA)p1 — 1t (DA) ... (DA)u, —rf(DA)
and
rH(DA) ... r[(DA)
rt(DA) ... rf(DA)
it follows that the ith row of B is given by (a;1 —r;,...,ai — ) if a;; > 0, and
by (—aiq — (=] )s...,—ain — (—7; ) if a;; < 0, and the ith row of C' is given by
(rif,...,rF) if a;; > 0, and by (—r; ,...,—r; ) if a; <O0.

Next, we prove that Bisa CKV-type matrix with positive diagonal entries if and
only if (i) and (ii) hold. Matrix B has positive diagonal entries implying that for
each i € N, ay;; > rj' if a;; > 0, and a;; < r; if a; < 0, which are equivalent
to |ai;| > |ri| for each ¢ € N. Matrix B is a CKV-type matrix meaning that for
eachi € N, S;(g) is not empty, that is,

(a) if a;; > 0, aj; > 0, then a; —r;" > r¥(B*), and for all j € S,

S (B ag; —rf =17 (BY) > 7 (BY)r (BY);

(ai; —7; ;

(b) if a;; > 0, aj; <0, then a;; — " > 7 (BT) and for all j € S,
(aii =7 =13 (B))(~aj; — (=r7) =15 (B7)) > r (BY)ri (B7);
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(c) if as3 <0, aj; > 0, then —a;; — (—7;)
(=aii = (=17 ) =i (B7)(az; — 1] =
i)

(d) if a;; <0, aj; <0, then —a;; — (—r

> 17 (B7), and for all j € S,
(BY) > 7 (B )5 (BY);

S
J T
S
i

>r¥(B7), and for all j € S,

(—ais = (=17 = ¥ (B))(—ays — (=) =5 (B7) > rS (B ().

Obviously, (a)-(d) are equivalent to condition (ii). This completes the proof. O

2.2. CKV-type B-interval. As is well-known, the nonsingularity of real
matrices can generate the equivalent eigenvalue inclusion set in the real axis,
see [11], [13], [14]. So, by the nonsingularity of CKV-type B-matrices, in this
section we give a new real eigenvalue inclusion interval called CKV-type B-interval
for real matrices.

Theorem 2.2. Let A = [a;;] € R™*™, X be any real eigenvalue of A, Bt and B~
be the matrices of (1.1) and (1.2), respectively. Then

o e (0 (0 ()

where ¥; is given by Definition 1.1, S := N\ S, C; = [a;; —r}

i — 1],
FP =[ay —rf —rJ(B"), a5 —r; +7r7(B7)),

and
HY UHLUHY  ifai; < agj,
Hij = >

HLUHLUHY ifay
with
Hilj = {\ € (—oo, min{a;;, a;;}):
(Jaii = = A =5 (B)(laj; — rf = Al = r§(BY) <rf(BY)r5 (B},
HZ = {\ € (aii,a;5):
(Jais — ;. =M =17 (B (lag; —r = N =3 (BY) <r¥(B7)rf (B},
HZ = {\ € (aj;,ai):
(Jasi —r§ = Al =S (BO)(|ag; —r; = Al =5 (B7)) <7}

~ t’)l
—
Sy
+
~—
u.ﬁ[,)
—
Sy
\_/‘
:v—‘

H} = {\ € (max{a;;,a;;},0): ~
(Jasi = 7" = Al = r¥(B))lag; = 757 = Al =5 (B)) < (B s (B}
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Proof. Suppose, on the contrary, that A ¢ O, that is

A¢UC and A¢ ﬂ(FS (Lengj»

iEN S€X;

Case I: \ ¢ U C;. By (2.2), it is obvious that |a;; — A| > |r;| for all i € N.

Case II: A §§ U N ( i (U Hij)), i.e., for all i € N, there exists S € ¥;

such that A ¢ F° and \ ¢ H;; for all j € S.
If A ¢ F7, it follows from (2.1) and (2.2) that |a“ —ri— A >7r¥(B) foralli € S.

If A\ ¢ Hy, then A\ ¢ HL A ¢ HZ, A ¢ H
A € (—oo, min{ai;, a;;}), then

(lazi — 7 = M = r$(B))(laz; —rf = A = r$(BT)) > r2(BY)r$ (B*);

and)\ ¢ H}

;j» that is, if

1j7

if A € (a“‘, ajj), then

(Jaii =7 = A =r¥(B7))(lag; =} = Al =75 (BY)) > 17 (B7)r; (BY);
if A € (ajj, aii), then

(Jaii =7 = A =3 (B)(lag; —rj = Al =77 (B7)) > 17 (B¥)rj (B7);
if A € (max{as;,a;j},o0), then

(Jaz — i = A = r3(B7))(lag; — 17 = Al =5 (B7)) > rf(B™)r¥(B7),

which together with (2.1) and (2.2) imply that

(laii — i = Al = 2 (B)(lag; — r; — Al — 1% (B)) > r¥(B)r (B).

We note that A and A — Al have the same off-diagonal elements. Then, from
Case I, Case II, and Theorem 2.1, it follows that A — A\ is a CKV-type B-matrix.
So, A — Al is nonsingular, thus |[A — AI| # 0, which contradicts the assumption
that X\ is a real eigenvalue of A. Therefore, A € ©. The proof is complete. O

2.3. Comparisons with some existing intervals. In this section, we will show
that the CKV-type B-interval is better than some existing ones. Before that, some
well-known results are listed.

Theorem 2.3 ([13], Theorem 3.5). Let A = [a;;] € R™*™, A be any real eigenvalue
of A, BT and B~ be the matrices of (1.1) and (1.2), respectively. Then

AreS = U[aii — 7“;_ — Ti(BJr),aii — ’I“i_ —|—’I“i(Bi)].

i=1
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Theorem 2.4 ([14], Theorem 3.3). Let A = [a;;] € R™*™, A be any real eigenvalue
of A, Bt and B~ be the matrices of (1.1) and (1.2), respectively. Then

AeB = (OCz) u (UBij>7

i=1 G

where C; is defined as in Theorem 2.2 and assuming, without loss of generality,
that (0271 g Qjj,
Bij == Bj; UB};UB};,

with

Bl = {z € (—00,as): |ai — r;r —zllaj; — r;-r —z| < ri(B+)rj(B+)},

B i=A{x € (ai,a5;): lai —r; —allag; —r] —z| <ri(B7)r;(BY)},

and

Bf’j = {z € (aj;,00): |ai —r; —zllaj; —r;

— x| <ri(B7)rj(B7)}

Theorem 2.5 ([11], Theorem 3.7). Let A = [a;;] € R™ ™ and \ be any real
eigenvalue of A. Given any nonempty subset S of N, S := N\ S. Then

veor = (e (Ur)o( U m)
i=1 i€S i€S,j€S

where C;, F°, and H;; are defined by Theorem 2.2.

3

As shown in [11], if S is a singleton, i.e., S = {i}, then

et cBCs.

i€EN

The following result shows that the CKV-type B-interval provided by Theorem 2.2
is better than that of Theorem 2.5, see [11], Theorem 3.7.

Theorem 2.6. Let A = [a;;] € R™*™ and X be any real eigenvalue of A. Then
AeOC e,

where © and ¢° are given by Theorems 2.2 and 2.5, respectively.
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Proof. Suppose that A € ©. It follows from Theorem 2.2 that

relJa o ey N (FSU(LengJ>)

€N 1EN SeX;

ieN iEN SeX;
there exists i9 € IV such that for any S € X;,, A € F{g or A € H;, ; for some j € S.
This implies that

If A e | C; then A € S holds directly. IfA € J () (Ff U (U Hij)), then
j€ES

ve(Ur)o( U m)

i€s i€s,jes
Hence, the conclusion follows. ([

Remark here from Theorem 2.6 that © C <p{i} for each ¢ € N. Therefore,

ec (et cBcs.

iEN

3. A DIRECT ALGORITHM FOR COMPUTING CKV-TYPE B-INTERVAL

In this section, a direct algorithm based on Theorem 2.2 for computing the
CKV-type B-interval is put forward. Using this algorithm, some numerical examples
are given to illustrate the effectiveness of the CKV-type B-interval.

Remark 3.1.

(i) Algorithm 1 is a direct method for computing the CKV-type B-interval, and
the calculations only depend on the elements of the involved matrix and the
subsets of N. Therefore, Algorithm 1 stops after finite steps.

(i) CKV-type B-interval © seems to be difficult to calculate, since it involves an
intersection over all possible nonempty proper subsets S of indices, and there-
fore requires lots of computations. But, sometimes it is worth investing in
more calculations to obtain a better inclusion interval. Theorem 2.6 shows
that CKV-type B-interval © improves the existing ones in [11], [13], [14], and
Algorithm 1 can effectively compute the CKV-type B-interval ©.

(iii) The MATLAB code for Algorithm 1 is freely available at [20], which facilitates
the implementation of the CKV-type B-interval.
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Algorithm 1: A direct method for computing CKV-type B-interval ©

Input: A matrix A = [a;;] € R™*",
fori=1:ndo C;=[a;—7r],ai—7], % ={SCN:ieS}
for each S € 3;
Ff =lay —r{ —r7(BY),au —r; +17(B7)),
for j € S do
if a;; < aj; then
H;; = Hilj U Hfj UHE’]-,

else
_ 77l 72 3
Hij = Hij @] Hij @] Hijv
end if
end for
Hf = |J Hy,
end for jes
N (FPUHY),
Sex;
end for
n
Output: 0 = <Ci U ( N (F? UHZS))>
=1 Sex;

In the following, we implement Algorithm 1 to show that the localization of CKV-
type B-interval © is made efficiently. To make a comparison, we consider the follow-
ing examples for numerical experiments with Gersgorin circles (see [7]), Cassini ovals

(see [1]), B interval S (see [13], Theorem 3.5), DB interval B (see [14], Theorem 3.3),
SB interval ¢ (see [11], Theorem 3.7). We implement all experiments in MATLAB
version R2016 by using a PC with 3.40-GHz processors and 64 GB of memory.

Example 3.1. Consider the following matrices:

r0.3112 0.2630 0.4505 0.15247 r0.8147 0.6324 0.9575
A = 0.5285 0.6541 0.0838 0.8258 Ay = 0.9058 0.0975 0.9649
0.1656 0.6892 0.2290 0.5383 0.1270 0.2785 0.1576
L0.6020 0.7482 0.9133 0.9961 ] 10.9134 0.5469 0.9706
r0.1829 0.4899 0.5005 0.04247 r0.8181 0.6596 0.8003
Ay = 0.2399 0.1679 0.4711 0.0714 Ay = 0.8175 0.5186 0.4538
0.8865 0.9787 0.0596 0.5216 0.7224 0.9730 0.4324
L0.0287 0.7127 0.6820 0.0967 ] 1 0.1499 0.6490 0.8253

988

0.95727
0.4854
0.8003
0.1419 ]
0.08357
0.1332
0.1734
0.3909 ]




and

r0.1125
0.5158
0.8378
0.9208
0.4982
0.2776
0.6525
0.9173
| 0.5098

0.9742
0.1973
0.1112
0.2974
0.3964
0.4208
0.3115
0.6938
0.0919

0.4021
0.2952
0.3065
0.1056
0.5938
0.2827
0.1552
0.0007
0.2836

0.5508
0.8709
0.0423
0.9047
0.1310
0.8337
0.8005
0.9179
0.1373

0.5047
0.4050
0.1736
0.5752
0.6062
0.2144
0.5199
0.9892
0.4899

0.6949
0.4114
0.0348
0.2928
0.8014
0.3465
0.0833
0.5111
0.3668

0.7395
0.5247
0.8045
0.8169
0.1895
0.1237
0.8210 0.3829
0.6379 0.0846
0.0161 0.7339

0.8960
0.5154
0.5445
0.6064
0.7604
0.8553

n

0.3320]
0.8397
0.3717
0.8282
0.1765
0.1295
0.8799
0.0441
0.6867 |

We list the numerical results in Table 1, where we compute () ot} for the SB
i=1

interval.

=

Inclusion sets

Ay

A

Gersgorin circles
Cassini ovals
B interval S

DB interval B
SB interval ¢°

CKV-type B interval ©
Real eigenvalue values

[—1.2674, 3.2596]
[—1.2041, 2.6374]
[~1.2110, 3.2596]
[~1.1655, 2.6374]
[~1.0690, 2.5051]
[~1.0109, 2.5051]
2.1811,0.1833

2.2890, 3.3618
2.2736,2.9893

1.5652, 2.9893

1.3627, 2.8197

1.3544,2.8197
-0.7158,-0.4400,-0.0346,2.4022

[- ]
[~ ]
[-1.8378,3.3618]
[- ]
[~ ]
[~ ]

As

Ay

As

[—2.3272,2.4464]
[—1.7651,1.9214]
[—1.4684, 2.4464]
[—1.4122,1.9214]
[—1.3401,1.7828]
[—1.3401, 1.6343]

-0.8081,-0.2556,0.0844,1.4864

[—1.4364,2.3615
[—1.3307,2.3345
[—1.5908,2.3615
[—1.4758,2.3345
[—1.4184,2.2401
[—1.3411,2.2282
0.3621,2.1819

—4.9817,5.3480]
—4.8008, 5.2827]
—4.3133,5.3480)
—4.2632,5.2827]
—4.1308,5.0737)

—3.7841,4.8689]
-0.6254,-0.3454,0.0404,0.3988,4.4280

Table 1. The real eigenvalue inclusion sets for matrices A;, i = 1,2, 3,4, 5.

From Table 1, we see that CKV-type B-interval © provided by Theorem 2.2 is
sharper than GerSgorin circles and Cassini ovals, and, especially, it is more accurate

than the B interval, DB interval, and SB interval. Therefore, Theorem 2.2 provides

a sharper interval to localize the real eigenvalues for real matrices.

Moreover, the following example shows that the CKV-type B-interval is smaller

than Gersgorin circles and Cassini ovals in most cases.
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Example 3.2. Using MATLAB function A = rand(n), we randomly generate
180 real matrices. By Algorithm 1, we list the numerical results in Table 2. In
this table, m specifies the number of randomly generated real matrices. In the “k;”
column, we show the number of matrices for which the CKV-type B-interval is smaller
than Gersgorin circles and Cassini ovals. In the “k3” column, we show the number
of matrices, where the CKV-type B-interval and Cassini ovals do not contain each
other. In the “k3” column, we give the number of matrices for which the Gersgorin
circles and Cassini ovals are smaller than the CKV-type B-interval.

n (order) m k1 ko k3
20 14 6 O

5 20 16 4 0

6 20 16 4 O

7 20 13 7 0

8 20 17 3 0

9 20 16 4 0

10 20 18 2 0

11 20 16 4 O

12 20 18 2 0

Table 2. The numerical results of Example 3.2.

The results reported in Table 2 show that in most cases the real eigenvalue loca-
tion given by the CKV-type B-interval is more accurate than Gersgorin circles and
Cassini ovals.

At the end of this section, an example is given to compare the CKV-type B-interval
with the latest CKV-type set proposed by Cvetkovié¢ et al. in [3] which is better than
the Gersgorin circles and the Cassini ovals. We recall the CKV-type set as follows.

Theorem 3.1 ([3], Theorem 16). Let A = [a;;] € C"*". Then for every eigen-
value X it holds that

rev=U N (Fwu(Uviw))
j€S

i€N Sex;
where ¥.; is given by Definition 1.1, S := N \ S,
PS(A) = {2 € C: |2 — aul < rS(A)},
and

VS(A) = {2 € C: (|2 — ai| — 15 (A) (|2 — aj;] — ¥ (A)) < rd(A)r (A)}.
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Example 3.3. Using MATLAB function A = rand(n), we randomly generate
180real matrices of different orders such that the elements of each matrix satisfy
a;j € (0,1). The numerical results are reported in Table 3.

n (order) m m; m2 m3
4 20 13 0 7
5 20 11 0 9
6 20 9 0 11
7 20 11 0 9
8 20 10 O 10
9 20 11 0 9
10 20 9 0 11
11 20 11 0 9
12 20 13 0 7

Table 3. The numerical results of Example 3.3.

In Table 3, the “m;” column gives the number of matrices for which the CKV-type
B-interval © is smaller than CKV-type set V of [3]. The “my” column gives the
number of matrices, where the CKV-type B-interval © and CKV-type set V do
not contain each other. The “mg3” column gives the number of matrices for which
the CKV-type set V is smaller than or equal to the CKV-type B-interval ©. The
results given in Table 3 show that the real eigenvalue location given by the CKV-type
B-interval is smaller than CKV-type set V of [3] in some cases. This means that the
information on the real eigenvalues provided by CKV-type B-interval © supplements
the information given by the real intervals provided by CKV-type set V of [3].

4. CONCLUSIONS

In this paper, we first present a new class of nonsingular matrices based on
CKV-type B-matrices. Then by giving some corresponding equivalent conditions
of the new class of matrices, we give a new inclusion interval called the CKV-type
B-interval for the real eigenvalues of real matrices, which improves some existing
ones in [11], [13], [14]. Also, we propose a direct algorithm to compute the CKV-type
B-interval. Numerical examples show that the proposed results are efficient in locat-

ing the real eigenvalues of real matrices.

Acknowledgements. The authors would like to thank the editor and the anony-
mous referees for their valuable suggestions and comments.
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