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A countably cellular topological group all of whose

countable subsets are closed need not be R-factorizable

Mikhail Tkachenko

Abstract. We construct a Hausdorff topological group G such that ℵ1 is a pre-
calibre of G (hence, G has countable cellularity), all countable subsets of G are
closed and C-embedded in G, but G is not R-factorizable. This solves Prob-
lem 8.6.3 from the book “Topological Groups and Related Structures” (2008) in
the negative.
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1. Introduction

If all Gδ-sets in a space are open, it is called a P -space. Similarly, if all Gδ-sets

in a topological group H are open, H is called a P -group. It is known that a P -

group is R-factorizable if and only if the group is pseudo-ℵ1-compact, that is, every

locally finite family of open sets in the group is countable, see [1, Theorem 8.6.12].

Notably, pseudo-ℵ1-compactness is precisely what ensures that each continuous

real-valued function on a product of spaces depends on no more than countably

many coordinates, see [3]. Countable cellularity is a far more strong property

than pseudo-ℵ1-compactness, therefore one could hope that the former implies

R-factorizability in topological groups, see [1, Problem 8.1.1]. This hypothesis is,

however, disproved in [4].

A.V. Arhangel’skii asked in 2001 if the P -property of a topological group could

be weakened to the property that all countable subsets of the group are closed, in

order to generalize the aforementioned theorem on R-factorizability of P -groups.

Afterwards, the question appeared as Problem 8.6.3 in [1]. We answer this ques-

tion in the negative in Theorem 2.3 by constructing a topological group G of

countable cellularity such that all countable subgroups of G are discrete (equiv-

alently, all countable subsets of G are closed), but G is not R-factorizable. Our
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construction of the group G is based on the use of a separable topological Boolean

group that is not R-factorizable, as described by E. Reznichenko and O. Sipacheva

in [4].

In Theorem 2.6 we strengthen the topology of G and obtain a Hausdorff topo-

logical group G∗ of countable cellularity such that all countable subsets of G∗

are closed and C-embedded, all subgroups of G∗ are closed, but G∗ fails to be

R-factorizable. We do not know, however, whether ℵ1 is a precalibre of G∗.

1.1 Notation and terminology. A group G with identity e is Boolean if

x2 = e for each x ∈ G. All Boolean groups are Abelian, so we will use additive

notation for Boolean (and Abelian) groups. For a subset A of a group G, the

smallest subgroup of G containing A is denoted by 〈A〉. Also, if n ≥ 1 is an

integer, we put nG = {nx : x ∈ G}. If the group G is Abelian, nG is a subgroup

of G.

Let X be a Tychonoff space and A(X) the free Abelian topological group

over X , see [1, Section 7.1]. The free Boolean topological group on X , denoted

by B(X), can be identified with the quotient group A(X)/2A(X), see [5]. The

group B(X) is Hausdorff because the subgroup 2A(X) is closed in A(X), which

can be easily verified.

A topological group G is R-factorizable if for every continuous real-valued

function f on G, one can find a continuous homomorphism p : G → H onto

a second-countable topological group H and a continuous real-valued function h

on H such that f = h ◦ p. The class of R-factorizable groups is quite wide,

it includes all precompact groups, Lindelöf groups, dense subgroups of arbitrary

products of Lindelöf Σ-groups, etc. see [1, Chapter 7].

According to [4, Corollary 10 (3)], the free Boolean topological group B(S) on

the Sorgenfrey line S is not R-factorizable. This is a first example of separable

topological group that fails to be R-factorizable. We denote this group by H and

use it in the proof of Theorem 2.3.

2. Two examples

First we present two simple lemmas that will be applied in our recursive con-

struction of the group G in Theorem 2.3.

Lemma 2.1. Let Ba(X) be the abstract free Boolean group on a set X , let S

be a countable subgroup of Ba(X) and h : S → K a homomorphism to a Boolean

group K. Then there exist a countable set Y ⊂ X and a mapping f : Y → K such

that S ⊂ 〈Y 〉 and the (unique) extension of f to a homomorphism f̃ : 〈Y 〉 → K

satisfies f̃↾S = h.
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Proof: Since S is countable, there exists a countable set Y ⊂ X such that

S ⊂ 〈Y 〉. Let P = 〈Y 〉. Notice that every Boolean group can be considered

as a linear space over the two-element field F2 = {0, 1}. Therefore, h extends

to a homomorphism h̃ : P → K. Then the restriction f = h̃↾Y is the required

mapping. �

Lemma 2.2. Let N be the set of nonnegative integers considered as a subspace

of the Sorgenfrey line S. Then the subgroup 〈N〉 of the group H = B(S) alge-

braically generated by N is discrete.

Proof: Let r : S → N be a continuous retraction. Denote by r̃ an extension

of r to a continuous homomorphism of B(S) to B(N). Clearly, the free Boolean

topological group B(N) on the discrete space N is also discrete. Since the re-

striction of r̃ to 〈N〉 is one-to-one, we conclude that the subgroup 〈N〉 of B(S) is

discrete. �

Let us recall that a space X is Moscow if the closure of every open set in X is

the union of a family of Gδ-sets in X , see [1, Section 6.1].

Theorem 2.3. There exists a topological group G such that ℵ1 is a precalibre

of G (hence, G has countable cellularity and is a Moscow group), all countable

subsets of G are closed and C-embedded in G, but G is not R-factorizable.

Proof: We construct G as a dense subgroup of Hc, where c = 2ω. Since the

groups H and Hc are separable, the cardinal ℵ1 is a precalibre for every dense

subgroup of Hc.

For every nonempty set A ⊂ c, let pA : Hc → HA be the projection. The

group G will be constructed to satisfy pA(G) = HA for every countable set

A ⊂ c. This property of G guarantees that the restriction of pA to G is an

open continuous homomorphism for each countable set A ⊂ c. In particular, H is

a continuous open homomorphic image of G. Due to [1, Theorem 8.4.2], if G

was R-factorizable,H would likewise be R-factorizable. Since H is not, we deduce

that neither is G.

In addition, we have to guarantee that all countable subsets of G are closed

or, equivalently, that all countable subgroups of G are discrete. We will see that

each of the two equivalent properties implies that the countable subsets of G are

C-embedded in G.

Our construction of the group G requires some preliminary work of introducing

and enumerating all the necessary objects. Let

B =
⋃

{

HA : A ⊂ c, |A| = ω
}

.
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Then |B| = c, so we enumerate B in length c, say, B = {bα : ω ≤ α < c}. We

consider each bα as a function of Aα = dom bα to H . Clearly, the enumeration

of B can be chosen to satisfy Aα ⊂ α for each infinite ordinal α < c.

Let also X be a set of cardinality c and Ba(X) the abstract free Boolean

group on X . Our aim is to define a family H = {hα : α < c} of homomorphisms

of Ba(X) to H and take G = h(Ba(X)) ⊂ Hc, where h is the diagonal of the

family H. To ensure the required properties of G considered as a topological

subgroup of the product group Hc, we define homomorphisms hα in a special

way, by recursion of length c.

For every nonempty countable subset Y of X , denote by EY the family of all

mappings of Y to H . Clearly, |EY | = |HY | = c. Therefore, the family

E =
⋃

{EY : Y ⊂ X, 1 ≤ |Y | ≤ ω}

satisfies |E| = c, so we enumerate it as E = {fα : α < c}.

We will define an increasing family {Xν : ν < c} of subsets of X satisfying

X =
⋃

ν<c
Xν and at each step α < c of our recursive construction, a family

Gα = {gβ,ν : β ≤ ν < α}, where each gβ,ν is a mapping of Xν to H , satisfying

the following conditions whenever β ≤ ν < α:

(i) |Xν | ≤ |ν + 1| · ω and Xµ ⊂ Xν if µ < ν;

(ii) domfβ ⊂ dom gβ,β and gβ,β extends fβ;

(iii) gβ,ν extends gβ,µ if µ < ν;

(iv) for every infinite ordinal β < α, there exists x ∈ Xβ such that bβ(γ) =

gγ,β(x) for each γ ∈ Aβ = dom bβ.

At the step 1, we put X0 = domf0, g0,0 = f0 and G1 = {g0,0}. Our choice

of X0 and g0,0 agrees with (i) and (ii), while (iii)–(iv) are void at this step.

Assume that 0 < α < c and that we have defined families {Xγ : γ < α} and

Gβ = {gγ,ν : γ ≤ ν < β} for each β < α satisfying (i)–(iv). If the ordinal α is

limit, we put Xα =
⋃

β<α Xβ and Gα = {gβ,ν : β ≤ ν < α}. This definition agrees

with (i)–(iv) at the step α.

Finally, assume that α is a successor ordinal, α = β + 1, and that we have

defined families {Xγ : γ < β} and Gβ = {gγ,ν : γ ≤ ν < β} satisfying (i)–(iv).

First we put Yβ = Aβ ∪ dom fβ ∪
⋃

γ<β Xγ and choose a point xβ ∈ X \ Yβ

(if β < ω, we can put Aβ = ∅ in the above definition of Yβ). Then the set

Xβ = Yβ ∪ {xβ} satisfies |Xβ| ≤ |β + 1| · ω. Since dom fβ ⊂ Xβ, we take as gβ,β
any function in HXβ extending fβ. This guarantees (ii).

Let γ be an arbitrary ordinal with γ < β. For (iv), assuming that ω ≤ β,

we define gγ,β(xβ) = bβ(γ) if γ ∈ Aβ , and gγ,β(xβ) = eH , zero element of H ,

if γ ∈ Xβ \ Aβ . Notice that Aβ ⊂ β, so the latter definition does not interfere

with our choice of gβ,β. According to (iii), there exists a function gγ,β : Xβ → H
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extending gγ,ν for each ν < β. The value of gγ,β at xβ has just been defined. It

is easy to see that the families {Xγ : γ ≤ β} and Gα = {gγ,ν : γ ≤ ν ≤ β} satisfy

conditions (i)–(iv) at the step α. This completes our recursive construction.

We claim that X =
⋃

α<c
Xα. Indeed, take an arbitrary point x ∈ X and

choose α < c such that x ∈ dom fα. Then (ii) implies that x ∈ dom gα,α ⊂

dom gα = Xα ⊂ X . This proves our claim.

For every α < c, let gα =
⋃

ν<c
gα,ν. By (iii), gα is a function. Because

dom gα,ν = Xν for each ν with α ≤ ν < c, we deduce that X is the domain of

every function gα.

Every function gα extends to a homomorphism hα : Ba(X) → H , so we ob-

tain the family H = {hα : α < c}. Let h be the diagonal of the family H,

h : Ba(X) → Hc. We claim that the homomorphism h is one-to-one. Indeed,

take an arbitrary element g ∈ Ba(X) distinct from zero. Then g = x1 + · · ·+ xn

for some pairwise distinct elements x1, . . . , xn ∈ X . Let f be a function on X

such that domf = {x1, . . . , xn}, f(x1) 6= eH and f(xk) = eH for each k > 1.

Then f = fα for some α < c. It follows from our definition of hα that hα(g) =

fα(x1) = f(x1) 6= eH . Hence h(g) is distinct from the identity element of Hc

and the kernel of h is trivial. This proves our claim.

Since h is a monomorphism, we can identify Ba(X) with its image G =

h(Ba(X)) considered as a topological subgroup of the group Hc. For every α < c,

let pα be the projection of Hc to the αth factor H(α). If follows from the defi-

nition of h that pα ◦ h = hα for each α < c. Therefore, under our identification

of Ba(X) and G, the restriction of pα to G is the homomorphism hα.

Let us show that pA(X) = HA for each countable set A ⊂ c. Take an arbitrary

element b ∈ HA. Then b = bα for some infinite ordinal α < c. According

to (iv), there exists x ∈ X such that bα(γ) = gγ,α(x) = gγ(x) = hγ(x) for

each γ ∈ A = dom bα. Since h is the diagonal of the family H, we deduce that

pA(x) = bα = b. This proves the equality pA(X) = HA. As X ⊂ Ba(X) = G, we

see that pA(G) = HA.

The aforementioned property of the projections pA for a countable set A ⊂ c

implies that the restriction of pA to G is an open homomorphism of G onto the

topological group HA. Hence, H is a continuous open homomorphic image of

the group G. As explained above, the latter implies that the group G is not R-

factorizable. The same property of the projections pA guarantees that G is dense

in the separable group Hc. Therefore, ℵ1 is a precalibre of G and the space G has

countable cellularity. Every topological group of countable cellularity is a Moscow

space, see item 5, of Corollary 6.4.11 in [1]. Hence, the space G is Moscow.

It remains to show that every countable subset of G is closed and C-embedded

in G. This requires the following two facts.
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Claim 1. For every countable subgroup C of G and every homomorphism ϕ :

C → H , there exists α < c such that the projection pα extends ϕ.

Consider an arbitrary homomorphism ϕ : C → H , where C is a countable sub-

group of G. By Lemma 2.1, one can find a countable set Y ⊂ X and a mapping

f : Y → H such that the extension of f to a homomorphism f̃ : 〈Y 〉 → H satisfies

f̃↾C = ϕ. Take α < c such that f = fα. The mapping gα extends fα, while the

homomorphism hα extends gα. We see, therefore, that ϕ = f̃↾C = hα↾C . This

implies Claim 1 since hα and pα coincide on the group G.

It follows from Claim 1 that every homomorphism ϕ : C → H defined on

a countable subgroup C of G is continuous and admits an extension to a contin-

uous homomorphism of G to H .

Claim 2. Every countable subgroup of G is discrete.

Let C be a countable subgroup of G. There exists a countable subset Y of X

such that C ⊂ 〈Y 〉. Let Y = {yn : n ∈ ω} be a faithful enumeration of Y . Denote

by f the mapping of Y onto the subspace N of the Sorgenfrey line S defined by

f(yn) = n for each n ∈ ω. Let f̃ be an extension of f to a homomorphism of 〈Y 〉

to the subgroup 〈N〉 of H = B(S). Then f̃ is one-to-one, while the group 〈N〉 is

discrete in virtue of Lemma 2.2. By Claim 1, the homomorphism f̃ is continuous.

Hence, the group 〈Y 〉 and its subgroup C are discrete. This proves Claim 2.

Every discrete subgroup of a Hausdorff topological group is closed. Since every

countable subset of G is contained in a countable subgroup of G, Claim 2 implies

that all countable subsets of G are closed. Finally, let D be a countable subset

of G. Let C be a countable subgroup of G that contains D. Since C is discrete,

there exists an open symmetric neighborhood U of zero element eG in G such

that C ∩ (U +U +U +U) = {eG}. A simple verification, similar to the one used

in the proof of [1, Theorem 1.4.23], shows that the disjoint family of open sets

{U + x : x ∈ C} is discrete in G. It follows that every real-valued function on C

and, hence, on D extends to a continuous real-valued function on G. This proves

that D is C-embedded in G. �

Remark 2.4. The Dieudonné completion and Hewitt–Nachbin completion of

the topological group G constructed in Theorem 2.3 coincide and are naturally

homeomorphic to Hc, where H = B(S).

Indeed, let f : S → R be the identity mapping of the Sorgenfrey line to the

real line. Then f extends to a continuous homomorphism f̃ : B(S) → B(R).

Clearly, the homomorphism f̃ is one-to-one. The group B(R) has a countable

network and, according to [1, Corollary 3.4.27], admits a continuous one-to-one

homomorphism onto a second-countable Hausdorff topological group. The latter

implies that the space B(S) is Dieudonné complete, see [2, 8.5.13 (g)]. Further,
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for spaces of countable cellularity, Dieudonné completeness and Hewitt–Nachbin

completeness coincide, see [2, 8.5.13, (h)]. So the spaces H and Hc are Hewitt–

Nachbin complete.

By our construction in the proof of Theorem 2.3, G fills all countable faces

in Hc. Therefore, G meets every nonempty Gδ-set in Hc. Since the groups H

and Hc are separable, it follows from [1, Corollary 6.4.11] that Hc is a Moscow

group. Applying [1, Theorem 6.1.7] we conclude that G is C-embedded in Hc.

Since the latter space is Hewitt–Nachbin complete, we deduce that it is the

Hewitt–Nachbin completion of G.

Remark 2.5. All countable subsets of the group G in Theorem 2.3 are closed.

This property of G cannot be strengthened by extending it to all subsets of size at

most ℵ1, without losing countable cellularity of G. Indeed, if all subsets of size less

than or equal to ℵ1 of a topological group K are closed, these subsets are discrete.

Take a subgroup S of K with |S| = ℵ1 and choose a symmetric open neighbor-

hood U of the identity element eK in K such that S ∩ (U + U + U + U) = {eK}.

Then the disjoint family {U + x : x ∈ S} of open sets in K is discrete, so K fails

to be pseudo-ℵ1-compact and, therefore, has uncountable cellularity.

Even though Remark 2.5 indicates some limitations for further strengthening

of Theorem 2.3, there is still room for adding certain properties to the group G.

We recall that a continuous mapping f : X → Y is called d-open if for every

open set U in X , there exists an open set V in Y such that f(U) is a dense subset

of V . This is equivalent to saying that the inclusion f(U) ⊂ Int f(U) holds for

each open set U ⊂ X , see [6].

Theorem 2.6. There exists a Hausdorff topological group G∗ of countable cel-

lularity such that all countable subsets of G∗ are closed and C-embedded, all

subgroups of G∗ are closed, but G∗ is not R-factorizable.

Proof: To produce the group G∗, the topology of the group G constructed in

Theorem 2.3 is refined by declaring all homomorphisms of G to the torus T to

be continuous. In other words, the topology of G∗ is the upper bound of the

topology of the group G and the Bohr topology of the abstract group G, see [1,

Section 9.9].

Denote by G# the group G equipped with Bohr topology, i.e., the coarsest

topological group topology on G that renders every homomorphism of G to T

continuous. Then the group G∗ can be identified with the diagonal subgroup

∆ = {(x, x) : x ∈ G} ⊂ G×G#,

where the first factor G is exactly the topological group in Theorem 2.3. Let us

show that the group ∆ is as required.
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First, the projection of ∆ to the second factor is a continuous one-to-one

homomorphism onto G#. By [1, Proposition 9.9.9 a)], all subgroups of G# are

closed. Hence, G∗ has the same property. Similarly, the projection of ∆ to the

first factor is a continuous one-to-one homomorphism onto G. Given that every

countable subgroup of G is discrete, the same conclusion holds for countable

subgroups of ∆. Hence, all countable subsets of ∆ are closed and C-embedded.

The group G# is precompact, so the Weil completion of G#, denoted by bG,

is a compact Hausdorff topological group [1, Corollary 9.9.6]. Let K be the

closure of ∆ in G × bG and p be the projection of G × bG to G. Clearly p is

a continuous open homomorphism. Also, since the second factor bG is compact,

the homomorphism p is a perfect mapping. Hence, the restriction of p to the

closed subgroup K of the product G× bG, say, π is also a perfect homomorphism

of K onto G. It follows that π is open. Therefore, the restriction of π to

the dense subgroup ∆ of K is a d-open homomorphism of ∆ ∼= G∗ onto G.

Since G fails to be R-factorizable and every d-open homomorphic image of an R-

factorizable topological group is also R-factorizable (see [8, Theorem 2.1], where

the required result is proved for the wider class of paratopological groups), we

conclude that G∗ cannot be R-factorizable.

Finally, we show that ∆ has countable cellularity. We know that π is a perfect

(hence, open) homomorphism of K onto G. Let N be the kernel of π. Clearly,

N is a compact subgroup of K. Then G ∼= K/N , so we can apply [7, Theorem 2.6]

stating that c(G) = c(K). Since the cellularity of G is countable, the group K

has the same property. The density of ∆ in K implies that the cellularity of ∆

is also countable. This completes the proof of the theorem. �
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