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On extensions of families of operators

Oleg Lihvoinen

Abstract. The strong closure of feasible states of families of operators is studied.
The results are obtained for self-adjoint operators in reflexive Banach spaces and
for more concrete case - families of elliptic systems encountered in the optimal
layout of r materials. The results show when it is possible to parametrize the
strong closure by the same type of operators. The results for systems of elliptic
operators for the case when number of unknown functions m is less than the
dimension n of the reference domain are well-known, but we present several
different approaches in this paper to prove that parametrization of the strong
closure of feasible states can be done by convexification. Also, a new approach
is offered to prove result for the strong closure of cogradients. There are given
counterexamples for the case m ≥ n when the parametrization by convexification
is not possible. This extends the known result for the case m = n = 2.
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Classification: 49J45, 49J20

1. Introduction

This paper is devoted to a problem which has its primary origin in the theory of

optimal control problems for elliptic equations and systems. To clarify what the

problem is and how it has arisen, let us give some insight on the theory developed

in the last decades.

As is known, a very large part of optimal control problems does not possess

optimal solutions in the classical sense. The first investigation of such problems

was carried out by K.A. Lurie in [11] in the end of 1960s. Other counterexamples

on the existence of solutions for optimal control problems governed by elliptic

equations were constructed by F. Murat in [12].

The two features played the crucial role in the nonexistence of optimal solu-

tions in the mentioned examples, namely, the non-convexity of sets of admissible

controls and the dependence of the main part of partial differential equation on

the controls.

After that, starting from the works by K.A. Lurie [11] and L. Tartar [21],

it became apparent that the theory of G-convergence must be involved in the
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investigations of optimal control problems with distributed parameters. So the

theory of G-convergence was rapidly developed and became a universal tool in

the theory of optimal control problems. Such a universality is due to the fact that

it allows to construct extensions (the so-called G-closures) of optimal control

problems in such a way that extended problems possess optimal solutions which

may be used for construction of minimizing sequences of the original problems.

The theory of G-convergence is mainly applicable to problems with weakly con-

tinuous cost functionals. Although it may be applied to problems with non-weakly

continuous cost functionals, unfortunately it gives only the formal extensions of

the original problems. There is also a disadvantage of the G-closure approach,

namely, there are only few types of families of operators encountered in applica-

tions for which an analytic description of the G-closure exists, see V.V. Zhikov,

S.M. Kozlov and O.A. Olejnik [29]. For this reason, there was proposed the so-

called method of convexification for treating problems governed by elliptic equa-

tions whose main part depends on controls, see U. Raitums [16]. This method has

its source and is very fruitful in the theory of optimal control problems governed

by ordinary differential equations, see R.V. Gamkrelidze [7], J. Warga [25]. This

approach leads to sets of admissible controls with a simple structure convenient

for numerical evaluations. Also, it may be applied to problems with non-weakly

continuous cost functionals (see the example optimal control problem (1)–(3) be-

low).

There are two disadvantages of this approach. One of them is that it does not

lead, in general, to problems with the existence of optimal solutions. The second

disadvantage is connected to the fact that it is impossible to apply this approach to

problems governed by systems of elliptic equations where the number of equations

is greater or equal to the dimension of the reference domain Ω. In this case the

convexification does not preserve the cost of the problem, see U. Raitums [17].

In L. Tartar [23], there is studied an optimal control problem of the form

(1) I(u) :=

∫

Ω

(grad(u− v))2 dx → min,

where v ∈ H1
0 (Ω) is fixed, u is a solution of a differential equation in a bounded

open subset Ω of R
n

(2) −div(a gradu) = f in Ω, u ∈ H1
0 (Ω),

with f ∈ H−1(Ω) and a ∈ L∞(Ω) satisfying

(3)











0 < λ1 ≤ a(x) ≤ λ2 for a.e. x ∈ Ω,

a(x) ∈ {µ1, . . . , µr} for a.e. x ∈ Ω,

meas {x ∈ Ω: a(x) = µq} ≤ kq,
∑r

q=1 kq ≥ measΩ,
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where λ1, λ2, µ1, . . . , µr, k1, . . . , kr are positive constants. The functional I = I(u)

is being minimized with respect to u that is a unique solution of elliptic equa-

tion (2) with a control that is the elliptic equation coefficient a(x) having values

only in a finite set as it is given by (3). The optimal control problem (1)–(3) is

called a problem of optimal layout of r materials, r ≥ 2.

As noted in [23], the just described problems involving gradu nonlinearly are

more realistic than those which contain only u. We refer to R.V. Kohn and

G. Strangin [8], [9], [10], for other problems involving gradu nonlinearly.

Let S denote the set of all functions satisfying (3). In [23] the equality

(4)
cls{u ∈ H1

0 (Ω): − div(a gradu) = f in Ω, a ∈ S}

= {u ∈ H1
0 (Ω): − div(b gradu) = f in Ω, b ∈ coS}

for all f ∈ H−1(Ω) is proved, where cls denotes the operation of the strong closure

in H1
0 (Ω) and coS stands for the symbol of the closed convex hull in L2(Ω).

Here we would like to refer to U. Raitums [19] for more general results, see also

J. Dvořák, J. Haslinger and M. Miettinen [5], U. Raitums [18].

The equality (4) gives a good basis for further analysis. For instance, one can

consider the extended problem







I(u) :=
∫

Ω(grad(u− v))2 dx → min,

−div(b gradu) = f inΩ, u ∈ H1
0 (Ω),

b ∈ coS,

with coS instead of S and, by using the convexity of coS, one can derive the

necessary conditions of optimality as it was done in [23]. In addition, the convex

set coS is more preferable from the point of view of further numerical evaluation.

It is important to know whether the equality of the type (4) holds for other

families and, especially, for families of linear systems of elliptic operators in which

the number m of unknown functions is greater than or equal to the number n of

independent variables. More precisely, let U be a family of all elliptic operators

of the type

(5) A = divA∇,

where A is a positive definite (mn×mn)-matrix with entries from L∞(Ω) taking

its values in a finite set {A1, . . . ,Ar} of positive definite constant (mn × mn)-

matrices A1, . . . ,Ar. Here the matrices represent the properties of r different

materials.
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For f̃ ∈ [H−1(Ω)]m and ũ ∈ [H1
0 (Ω)]

m, define

(6)
F
(

U, f̃
)

= {u ∈ [H1
0 (Ω)]

m : Au = f̃ , A ∈ U} (set of feasible states),

E(U, ũ) = {Aũ ∈ [H−1(Ω)]m : A ∈ U}.

Now the question we are interested in can be formulated as follows: does there

exist a family B of operators of the type (5) such that

(7) clsF (U, f) = F (B, f) for all f ∈ [H−1(Ω)]m ?

Since the operators in U are uniformly continuous and coercive, the previous

question is equivalent to the following: does there exist a family B of operators

of the type (5) such that

(8) clsE(U, u) = E(B, u) for all u ∈ [H1
0 (Ω)]

m ?

As we already mentioned before there are papers dealing with the question (7),

namely, [5], [19], [23]. In these papers, it is shown that for the case where m < n

the answer gives the convexification of the family U. This result is similar to that

which is known from the optimal control theory of ODEs.

In Section 3, we consider the general case of self-adjoint operators and obtain

the new result on the description of the strong closure of feasible states using

G-convergence theory. Section 4 reformulates the obtained description using the

notion of Γ-convergence.

In the following sections, we consider systems of elliptic equations and study

both cases m < n and m ≥ n. For the case m < n, in Section 5 we shall give dif-

ferent proofs of known results, see [5], [19], [23], for the sake of completeness. We

present here our proofs in order to show that there are possible various approaches

to the problem. In Section 6, there is given an application of N -condition known

from the theory of G-convergence to the problem. Section 7 presents an analysis

for the periodic case. In Section 8, for the sake of completeness, we present the

result concerning strong closure of cogradients which was considered in [20] (we

use different approach in our reasoning). For the case m ≥ n ≥ 2, we extend the

result given in [27] where the counterexample was constructed for m = n = 2.

We would like to mention that these questions are connected to the theory of

existence of continuous selections of multivalued mappings. Let us briefly outline

this connection here.

A multivalued mapping F from a Banach space X into a Banach space Y is

called parametrized if there exists a family U = {Aχ}χ∈Λ of continuous mappings

Aχ : X → Y , χ ∈ Λ, such that F(x) = {Aχx : Aχ ∈ U} for all x ∈ X , see

J.-P. Aubin and I. Ekeland [1, page 4], where Λ is a given set of parameters

(controls). We shall say that the family U is a parametrization of F .



On extensions of families of operators 231

Assume that the family U = {Aχ}χ∈Λ is a subset of some set K of continuous

mappings whose role is to select from all continuous mappings those which de-

scribe a given physical process (for instance, heat conduct). Denote by graphF

the graph of F . Since graphF is a subset of X×Y , one can consider various clo-

sures of graphF in the space X×Y when X,Y are endowed with weak or strong

topologies. Let G be a multivalued mapping such that graphG = cl graphF

where cl denotes the closure in some of these topologies. A question is to find

a parametrization of G by the mappings from K. Now it is easy to see that the

questions (7), (8) are simply a part of this general problem. Such general setting

was investigated in [26].

2. Basic notation

n - the dimension of the reference space R
n of spatial variables

R
n - n-dimensional Euclidean space

x = (x1, . . . , xn) - the element of R
n

〈·, ·〉 - scalar product in Euclidean space

|·| - the euclidean norm in R
n, i.e. |x|

def
=

√

〈x, x〉 for x ∈ R
n

m - the number of equations in elliptic systems

Ω - bounded domain in R
n

measM or |M | - the Lebesgue measure of a measurable set M ⊂ R
n

supph - the support of a function h : Ω → R

C∞
0 (Ω) - the set of functions with compact support in Ω having all derivatives of

arbitrary order continuous in Ω

Lp(Ω), p = 1, 2 - the space of classes of measurable functions f on Ω such that

x → |f |p(x) is integrable on Ω

L∞(Ω) - the space of classes of measurable functions f on Ω such that x → |f |(x)

is essentially bounded on Ω

Hs(Ω) - the Sobolev space of functions f ∈ L2(Ω) such that ∂f |a|

∂x
α1
1

...∂xαn
n

∈ L2(Ω),

|α| ≤ s, s ≥ 1, where α = (α1, . . . , αn) is a multi-index, |α| = α1 + . . .+ αn and

α1, . . . , αn are nonnegative integers

H1
0 (Ω) - the closure of C∞

0 (Ω) in H1(Ω), this space is equipped with the norm

‖v‖H1
0
(Ω) =

(∫

Ω

|∇v|2 dx

)1/2

H−1(Ω) - the dual space of H1
0 (Ω)

L2(Ω)
def
= [L2(Ω)]m×n

V
def
= [H1

0 (Ω)]
m

V ∗ def
= [H−1(Ω)]m
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grad f or ∇f - the gradient of f : Ω → R, ∇f =
(

∂f
∂x1

, . . . , ∂f
∂xn

)

div f - the divergence of f : Ω → R
n, div f = ∂f1

∂x1
+ . . .+ ∂fn

∂xn

rot f - the curl of f : Ω → R
n, rot f =

(

∂fi
∂xj

−
∂fj
∂xi

)

i,j=1,...,n

In what follows, A ξ is a matrix with the components (A ξ)ij = aijklξkl (summa-

tion over repeated indices is assumed), (A ξ, η) (in short ξA η) is a bilinear form

such that (A ξ, η) = aijklξklηij , ξ, η ∈ R
m×n.

Let ν1, ν2 > 0, E(ν1, ν2) be the set of all (mn×mn)-matrices A = {aijkl}1 ≤ i, k ≤ m
1 ≤ j, l ≤ n

satisfying the conditions

(9)























ν1ξijξij ≤ aijkl(x)ξijξkl ≤ ν2ξijξij for a.e. x ∈ Ω and all ξ ∈ R
m×n,

aijkl(x) = ailkj(x) = akjil(x) for a.e.x ∈ Ω,

aijkl ∈ L∞(Ω),

1 ≤ i, k ≤ m; 1 ≤ j, l ≤ n,

and A acting on ξ ∈ R
m×n as it is defined above, i.e. (Aξ)ij = aijklξkl, 1 ≤ i ≤ m,

1 ≤ j ≤ n. It can be written as follows:

A =













b11 b12 · · · b1m
b21 b22 · · · b2m
...

...
. . .

...

bm1 bm2 · · · bmm













,

where bik, 1 ≤ i, k ≤ m are (m×m)-matrices.

We relate to A the elliptic operator A : V → V ∗ as

Au = divA∇u for all u ∈ V.

In this expression, the operators div and ∇ act in the usual manner.

Let E(ν1, ν2) be the set of all operators of the form A = divA∇ with A ∈

E(ν1, ν2).

We shall say that a family {Aε} ⊂ E(ν1, ν2) H-converges to a matrix A0 (we

write Aε
H
−→ A0) if and only if for every f ∈ V ∗ the solutions of the equations

divAε∇uε = f,

divA0u0 = f

satisfy

uε ⇀ u0 in V,(10)

Aε∇uε ⇀ A0∇u0 in L2(Ω).(11)
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We shall call a matrix A0 homogenized for the family {Aε} if (10) and (11)

hold for any bounded domain Ω ⊂ R
n, see [29, page 20 and page 154].

In what follows, we shall consider homogenized matrices for the families defined

as Aε = A(ε−1x) and call the matrix A0 homogenized for A. Denote by C the

periodicity cell, i.e. the parallelepiped in R
n with sides l1, l2, . . . , ln parallel to

axes. Let L2(C) be the Lebesgue space of periodic measurable square integrable

functions on C and H1
per(C) the closure of the set of infinitely differentiable pe-

riodic functions in the Sobolev space H1(C). Detote by H−1(C) the dual space

of H1
per(C). Put 〈h〉

def
= (1/|C|)

∫

C h dx. The letters X,Y will always denote real

normed spaces. The symbol “→” (“⇀” and “
∗
−⇀ ”) means to be strongly con-

vergent to (weakly convergent to and weakly ∗-convergent to, respectively). For

M ⊂ X , clsM stands for the strong closure of M in X . Denote by L(X,Y ) the

set of all continuous linear operators from X into Y . Let “
w
−→” be the sequential

convergence of a sequence of operators in the weak topology of L(X,Y ) and “
s
−→”

the sequential convergence of a sequence of operators in the strong topology of

L(X,Y ) (weak and strong topologies in L(X,Y ) are meant in the sense of [4]).

Denote by (·, ·) the duality pairing between a normed space X and its dual space

X∗ and ‖·‖X the norm in a normed space X and M(ν1, ν2) the class of mappings

A : X → X∗ satisfying the conditions

(12)
(Ax−Ay, x− y) ≥ ν1‖x− y‖2X ,

‖Ax−Ay‖X∗ ≤ ν2‖x− y‖X .

We shall say that a family {Aε} ⊂ M(ν1, ν2) G-converges to an operator A0 (we

write Aε
G
−→ A0) if and only if for every f ∈ X∗

A−1
ε f ⇀ A−1

0 f in X.

In [22], [29, page 167], it is proved that for elliptic operators the notion of H-

convergence of their matrices is equivalent to the G-convergence of the corre-

sponding operators provided that matrices belong to the class E(ν1, ν2).

3. General case: description of strong closure of feasible states using

G-convergence

Let us describe the strong closure of sets of feasible states in the following

situation. Let X be a separable reflexive Banach space. Let U ⊂ M(λ1, λ2) for

some λ1, λ2 > 0. Throughout this section we will assume that U consists of

self-adjoint linear operators A : X → X∗, i.e.

(Au, v) = (Av, u) for all u, v ∈ X.



234 O. Lihvoinen

Proposition 3.1. We have

(13) clsF (U, f) =

{

u ∈ X : ∃A+, A0, {Ak} ⊂ U :
Ak

G
−→ A0, Ak

w
−→ A+,

A+u = A0u = f

}

for all f ∈ X∗.

Proof: Denote by K the right-hand side of (13).

(i) Let u ∈ clsF (U, f). Then there exist {Ak} ⊂ U, {uk} ⊂ X such that

Akuk = f and uk → u in X . It is clear (since X is separable reflexive Banach

space, therefore we can use diagonal process) that for some subsequence of {Ak}

(still denoted by {Ak}) we have Ak
G
−→ A0, Ak

w
−→ A+ for some linear continuous

operators A0, A+. Let us prove that A+u = A0u = f .

Since uk = A−1
k f , then u = A−1

0 f due to Ak
G
−→ A0 and uk → u in X . Hence

A0u = f . We can write ( |·| denotes absolute value)

|(A+u− f, v)| ≤ |(A+u−Aku, v)|+ |(Aku−Akuk, v)|

≤ |(A+u−Aku, v)|+ ‖Aku−Akuk‖X∗‖v‖X → 0 as k → ∞.

Therefore A+u = f . In other words, u ∈ K.

(ii) Let u ∈ K. Then there exists {Ak} ⊂ U such that Ak
G
−→ A0, Ak

w
−→ A+,

A+u = A0u = f for some linear continuous operators A+, A0. Let {uk} be the

sequence defined as Akuk = f . Since the sequence is bounded in X there is

a subsequence {uk} (still denoted in the same way) which weakly converges to

v = A−1
0 f in X . From the formula A0u = f we see that v = u.

Since

λ1‖uk − u‖2X ≤ (Ak(uk − u), uk − u)

it is needed to prove that the right-hand side of this inequality tends to 0. Indeed,

we have

(14) (Ak(uk − u), uk − u) = (Akuk, uk)− (Akuk, u)− (Aku, uk) + (Aku, u).

Since the operators from U are self-adjoint, we obtain that

(Aku, uk) = (Akuk, u).

Using the facts that Aku ⇀ A+u and uk ⇀ u, we see that the right-hand side

of (14) converges to (f, u) − (f, u) − (f, u) + (A+u, u) = 0 as k → ∞. Hence,

u ∈ clsF (U, f). �
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4. General case: description of strong closure of feasible states using

Γ-convergence

In this section, we will reformulate results of the previous section using theory

of Γ-convergence, see [29, pages 404–420] for the discussion on Γ-convergence.

Let X be a separable reflexive Banach space.

A functional I : X → R is called a Γ-limit of a sequence of functionals {Ik} and

the sequence {Ik} Γ-converges to I
(

we will write Ik
Γ
−→ I

)

if

(i) for every sequence {xk} ⊂ X weakly converging to x the condition

lim Ik(xk) ≥ I(x)

holds;

(ii) for every x ∈ X there exists a sequence {xk} ⊂ X such that xk ⇀ x and

lim Ik(xk) = I(x).

Let us relate to every operator A ∈ M(λ1, λ2) the functional IA as follows:

IA(u) = (Au, u), u ∈ X.

As is known, the equation Au = f is the Euler equation for the variational

problem

E = inf
v∈X

J(v),

J(v) =
1

2
(Av, v)− (f, v).

It is also known that for {Ak} ⊂ M(λ1, λ2), Ak
G
−→ A0 if and only if IAk

Γ
−→ IA0

.

Using this fact, Proposition 3.1 can be rewritten in the following way:

Proposition 4.1. We have

clsF (U, f) = {u ∈ X : ∃A+, A0, {Ak} ⊂ U : Ik
Γ
−→ I0, Ik → I+ point-wisely

on X ; u is a solution to the problems infv∈X [I+(v)− 2(f, v)],

infv∈X [I0(v)− 2(f, v)]}

for all f ∈ X∗, where we denoted Ik = IAk
, I+ = IA+

, I0 = IA0
.

Denoting by I∗ the dual functional of I (we refer, for instance, to [6], [29,

page 357] for the definition of the dual functional) and using the fact that Ik → I

point-wisely on X if and only if I∗k
Γ
−→ I∗ (provided that some conditions of

regularity and coercivity are satisfied; see, for instance, [29, page 406]), one can
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obtain that

clsF (U, f) = {u ∈ X : ∃A+, A0, {Ak} ⊂ U : Ik
Γ
−→ I0, I∗k

Γ
−→ I∗+; u is a solution

to the problems infv∈X [I+(v)− 2(f, v)], infv∈X [I0(v)− 2(f, v)]}

for all f ∈ X∗.

5. Elliptic operators, case m < n

In this section, the closures of the sets of feasible states for systems of elliptic

equations in the strong topology of the Cartesian product [H1
0 (Ω)]

m of Sobolev

spaces is considered for the case m < n.

Let us recall the compensated compactness principle, see [13], [29, page 12].

Proposition 5.1. Let D be a bounded open set in R
n. Let {hε}, {gε} ⊂ L2(D)

be such that

hε ⇀ h0, gε ⇀ g0 in L2(D).

If the families {rothε} and {div gε } are compact in the corresponding Cartesian

products of the Sobolev spaces H−1(D), then

hε · gε → h · g in D in the sense of distributions.

Further we shall use the following proposition where proof is obvious.

Proposition 5.2. Let M be a subset of some normed space X . If for every

z1, z2 ∈ M it follows that αz1 + (1− α)z2 ∈ clsM for all α ∈ [0, 1], then clsM is

convex.

As is known the space L2(Ω) admits orthogonal decomposition, see [29, page 370],

L2(Ω) = L2
sol(Ω)⊕ V2

pot(Ω),

L2
sol(Ω)

def
= {p ∈ L2(Ω): div p = 0 in Ω},

V2
pot(Ω)

def
= {∇u : u ∈ [H1

0 (Ω)]
m}.

Denote by P the orthogonal projector from L2(Ω) on V2
pot(Ω). Let {h

ε} ⊂ L2(Ω).

Proposition 5.3. Then Phε → 0 in L2(Ω) if and only if div hε → 0 in V ∗.

Proof: Vectors {hε} ⊂ L2(Ω) admit decomposition

hε = uε + Phε

where {uε} ⊂ L2
sol(Ω). Taking the div of both sides gives

div hε = divPhε.
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So, if Phε → 0 in L2(Ω), then div hε → 0 in V ∗.

The inverse conclusion follows from the equalities

Phε = ∇φε for some φε ∈ [H1
0 (Ω)]

m,

div hε = div∇φε.

So, if div hε → 0 in V ∗, then φε → 0 in [H1
0 (Ω)]

m due to the fact that the inverse

of Laplacian is continuous. Hence, Phε → 0 in L2(Ω). �

We have

Proposition 5.4. If m < n, n ≥ 2, then for every α ∈ [0, 1] and every h ∈ L2(Ω)

there exists a family {χε} of characteristic functions of measurable subsets of Ω

such that

div(χε − α)h → 0 in V ∗.

Proof: Let α ∈ [0, 1]. Put

Tα = {h ∈ L2(Ω): ∃ {χε} : div(χε − α)h → 0 in V ∗}.

This set has the following properties:

(i) If h = cχD where c ∈ R
m×n, D is an open subset of Ω, χD is a character-

istic function of D, then h ∈ Tα.

(ii) If h1, h2 ∈ Tα and meas (supph1 ∩ supph2) = 0, then ah1 + bh2 ∈ Tα for

all a, b ∈ R.

(iii) If {hε} ⊂ Tα and hε → h in L2(Ω), then h ∈ Tα.

Let us prove these properties.

(i) Let h = cχD where c ∈ R
m×n. Then there exists c⊥ ∈ R

n such that

〈c⊥, ci〉 = 0 for all i = 1, . . . ,m, and |c⊥| = 1 where ci, i = 1, . . . ,m, are the rows

of c.

Let χ be the 1-periodic function on R

(15) χ(t) =

{

1, t ∈ [0, α),

0, t ∈ (α, 1].

By setting χε = χ(ε−1〈c⊥, x〉) (we use so-called laminate, see, for instance, [3])

and hε = (χε − α)h, we obtain

(16) (Phε, Phε)L2(Ω) = (Phε, hε)L2(Ω) = (Phε, hε)L2(D).
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Since

div hε =







〈c⊥, c1〉
...

〈c⊥, cm〉







dχ

dt
(ε−1〈c⊥, x〉) = 0, rotPhε = 0

in D in the sense of distributions and hε ⇀ 0, Phε ⇀ 0 in L2(D). Hence, using

(16) and Proposition 5.1, we have Phε → 0 in L2(Ω). Then, from Proposition 5.3

we obtain

div(χε − α)h → 0 in V ∗.

(ii) Let h1, h2 ∈ Tα and meas (supph1 ∩ supph2) = 0. Then there exist

families {χε
1}, {χ

ε
2} which satisfy

(17)
div(χε

1 − α)h1 → 0

div(χε
2 − α)h2 → 0

}

in V ∗.

The {χε} defined as χε = χε
1χsupph1

+ χε
2χΩ\supph1

is required.

(iii) If {hε} ⊂ Tα and hε → h in L2(Ω), then using the diagonal process one

can obtain the family {χε} such that div(χε − α)h → 0.

From (i)–(iii) it follows that Tα = L2(Ω). �

In exactly the same way one can prove this proposition for h ∈ L2(Ω) such

that rankh(x) ≤ n− 1 for a.e. x ∈ Ω without imposing the condition m ≤ n− 1.

Let

(18) U =

{

div

r
∑

p=1

χpAp∇

}

χ∈Λ

where

Λ =

{

(χ1, . . . , χr) ∈ [L∞(Ω)]r :

r
∑

p=1

χp = 1, χp(x) ∈ {0, 1} for a.e. x ∈ Ω

}

and Ap, p = 1, . . . , r, are matrices which belong to E(λ1, λ2). Let Θ = coΛ where

co is the symbol of the closed convex hull in [L2(Ω)]r, i.e.

(19) Θ =

{

(θ1, . . . , θr) ∈ [L∞(Ω)]r :

r
∑

p=1

θp = 1, 0 ≤ θp(x) ≤ 1

}

.

Define

(20) B =

{

div

r
∑

p=1

θpAp∇

}

θ∈Θ

.



On extensions of families of operators 239

Now we are able to formulate the following

Theorem 5.5. Let m ≤ n− 1. Then

(21) clsF(U, f) = F(B, f) for all f ∈ V ∗.

Proof: The proof immediately follows from Propositions 5.2 and 5.4 because

they show that the set

clsF(U, f)

is convex in V for all f ∈ V ∗. �

We can generalize this result using rank of matrices.

Theorem 5.6. Let g ∈ L2(Ω). Suppose that

rank (Ap(x) −Aq(x))g(x) ≤ n− 1 for a.e. x ∈ Ω and all p 6= q.

Then the set

cls
⋃

χ∈Λ

{

div

r
∑

p=1

χpApg

}

is convex in V ∗.

5.1 Application of H-convergence. Let U,B be families defined by (18),

(20), respectively. Using the similar reasoning as in Proposition 3.1, one can

describe the strong closure of feasible states using the notion of H-convergence.

For instance, for the case of two materials r = 2, we see that for every f ∈ V ∗

the equality

clsF(U, f) =



















u ∈ V : ∃ θ, {χε} :

χε ∗
−⇀ θ in L∞(Ω),

Aχε
H
−→ A0,

Aθ∇u = A0∇u,

divAθ∇u = f



















holds, where A1,A2 ∈ E(λ1, λ2) and Aθ = θA1 + (1− θ)A2.

In this section, we shall prove the analog of Theorem 5.5 using the theory of

H-convergence of matrices for the case r = 2, m ≤ n− 1, and when the matrices

A1,A2 are isotropic constant matrices.

Proposition 5.7. For every h ∈ L2(Ω) and for every θ ∈ Θ there exists a family

{χε} ⊂ L∞(Ω) of characteristic functions such that

χε ∗
−⇀ θ in L∞(Ω), Aχε

H
−→ A0, Aθh = A0h.

Proof: It is clear that we can confine ourselves to the case where θ and h are

constant since one can use approximation arguments to prove the result in general.
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For the sake of brevity, we also assume that m = 1 as the case n− 1 ≥ m > 1 is

considered in the similar manner.

Let θ ∈ R, 0 ≤ θ ≤ 1. Let ξ ∈ R
m×n. From the below reasoning it will be seen

that if

rank (A1 −A2)ξ < n,

then there exists a family {χε} ⊂ L∞(Ω) of characteristic functions such that

χε ∗
−⇀ θ in L∞(Ω), Aχε

H
−→ A0, Aθξ = A0ξ.

For a vector e ∈ R
n let us define

χε = χ(ε−1〈e, x〉),

where χ is the 1-periodic function (15) with α = θ.

The homogenized matrix A0 can be calculated explicitly. From [28, page 71]

it follows that

(22) (A0 −A1)
−1 = (1− θ)−1(A2 −A1)

−1 + θ(1 − θ)−1S(e),

where S(e) = (e ⊗ e)/(eA1e) and “⊗” stands for the symbol of the tensor product.

It can be readily seen that if

(A0 −A1)
−1(Aθ −A1)ξ = ξ,

then Aθξ = A0ξ. Indeed, by (22), we see that

(A0 −A1)
−1(Aθ −A1)ξ = ξ + θS(e)(A2 −A1)ξ.

Hence, if S(e)(A2 − A1)ξ = 0, then the equality Aθξ = A0ξ follows. But,

using the form of the matrix S(e) and the assumption that 1 = m < n, one

can show that such a vector e exists. It can be chosen as perpendicular to the

vector (A2 − A1)ξ. It is clear that this reasoning can be extended to the case

1 < m ≤ n−1, n ≥ 2, and to the case when rank (A1−A2)ξ < n. We thus obtain

the results stated by Theorems 5.5 and 5.6. �

5.2 Application of Beran–Zhikov method. In this section, we shall apply

a method introduced in [2] and developed in details in [28] for proving estimates

for homogenized matrices.

LetAχ = χA1+(1−χ)A2, where χ is a periodic characteristic function defined

in the same way as in the previous section (it depends on the vector e).

Since the homogenized matrix A0 for Aχ may be expressed as, see [29,

page 22],

A0ξ = 〈Aχ(ξ +∇u)〉,
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where u ∈ [H1
per(C)]m is a solution of the equation

divAχ(ξ +∇u) = 0 in [H−1(C)]m,

then

(A0 −A1)ξ = 〈(Aχ −A1)(ξ +∇u)〉 = 〈(1 − χ)(A2 −A1)(ξ +∇u)〉.

The equation

divAχ(ξ +∇u) = 0

can be rewritten as

div(Aχ −A1)(ξ +∇u) + divA1∇u = 0.

Hence,

divA1∇u = − div(1− χ)(A2 −A1)(ξ +∇u).

Define the operator L : [L2(C)]m×n → [L2(C)]m×n as follows:

Lh = ∇A−1
1 div(1− χ)(A2 −A1)h, h ∈ [L2(C)]m×n,

where A1 = divA1∇. Then

∇u = −L(ξ +∇u),

ξ = (ξ +∇u)−∇u = (ξ +∇u) + L(ξ +∇u) = (E + L)(ξ +∇u).

Therefore

(A0 −A1)ξ = 〈(1− χ)(A2 −A1)(E + L)−1ξ〉,

where E : [L2(C)]m×n → [L2(C)]m×n is the identity operator.

Now, by choosing e to be perpendicular to all rows of matrix (A2 −A1)ξ, we

obtain that

div(1− χ)(A2 −A1)ξ = 0 in [H−1(C)]m.

Hence Lξ = 0. This gives that

(A0 −A1)ξ = (1− θ)(A2 −A1)ξ.

Therefore Aθξ = A0ξ.

This gives another proof of Theorems 5.5 and 5.6.
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6. Application of N-condition

Let Ã = div Ã∇, Aε = divAε∇ where Aε ∈ E(λ1, λ2), ε ∈ (0, 1). We can

rewrite Ã, Aε as follows:

(23)

Aε =
∂

∂xi

(

aijε
∂

∂xj

)

,

Ã =
∂

∂xi

(

ãij
∂

∂xj

)

,

where ãij , aijε , i, j = 1, . . . , n, are (m ×m)-matrices which correspond to Ã,Aε.

Let

(24)
Aεuε = f, uε ∈ V,

Ãu0 = f, u0 ∈ V.

We shall say that for the family {Aε} an N -condition is fulfilled, see [15, page 79]

and [30, page 80], if there exist (m×m)-matrices Ns
ε ∈ [H1(Ω)]m×m, s = 1, . . . , n,

such that

(i) Ns
ε ⇀ 0 in [H1(Ω)]m×m, i, s = 1, . . . , n;

(ii) ãijε
def
= ailε

∂Nj
ε

∂xl
+ aijε ⇀ ãij in [L2(Ω)]m×m, i, j = 1, . . . , n;

(iii) ∂
∂xi

(ãijε − ãij) → 0 in [H−1(Ω)]m×m, j = 1, . . . , n.

In [15] it is proved that Aε H
−→ Ã if and only if the N -condition holds with

some Ns
ε ∈ [H1(Ω)]m×m, s = 1, . . . , n, where Ã,Aε correspond to ãij , aijε ,

i, j = 1, . . . , n. In [15] it is also proved that Ã ∈ E(λ1, λ2).

Let us set

αε = max
s

‖Ns
ε‖[L2(Ω]m×m ,

βε = max
i,j

‖ãijε − ãij‖[H−1(Ω)]m×m ,

γε = max
j

∥

∥

∥

∂

∂xi
(ãijε − ãij)

∥

∥

∥

[H−1(Ω)]m×m
.

Assuming that u0 ∈ [C∞
0 (Ω)]m the following estimate holds:

(25)
∥

∥

∥Aε
(

uε − u0 −Ns
ε

∂u0

∂xs

)∥

∥

∥

V
≤ C1rε,

where rε = (αε + βε + γε)‖u
0‖[H2(Ω)]m and C1 does not depend on u0. Indeed,

we can calculate
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Aε
(

uε − u0 −Ns
ε

∂u0

∂xs

)

= Ãu0 − Ãεu0 + Ãεu0 −Aεu0 −AεNs
ε

∂u0

∂xs

= Ãu0 − Ãεu0 −
∂

∂xi

(

ailN j
ε

∂2u0

∂xi∂xj

)

=
∂

∂xi
(ãij − ãijε )

∂u0

∂xj
+ (ãij − ãijε )

∂2u0

∂xi∂xj

−
∂

∂xi

(

ailN j
ε

∂2u0

∂xl∂xj

)

,

where Ãε : V → V ∗ is the operator corresponding to ãijε . From this we infer (25).

Proposition 6.1. Let u0, {uε} be defined by (23). Suppose that N -condition is

fulfilled and u0 ∈ [C∞
0 (Ω)]m. Then uε → u0 in V if and only if

Eε(u
0) =

∥

∥

∥Ns
ε

∂u0

∂xs

∥

∥

∥

V
→ 0,

where {Ns
ε } ⊂ [H1(Ω)]m×m, s = 1, . . . , n, are families of matrices from N -

condition for the family {Aε}.

Proof: The proof follows from the following inequality that is derived from (25):

∣

∣

∣ ‖Aε(uε − u0)‖V ∗ −
∥

∥

∥AεNs
ε

∂u0

∂xs

∥

∥

∥

V ∗

∣

∣

∣ ≤
∥

∥

∥Aε
(

uε − u0 −Ns
ε

∂u0

∂xs

)∥

∥

∥

V ∗
≤ C1rε

and also from rε → 0 because N -condition is fulfilled. �

Corollary 6.1.1. If ∂
∂xi

(aijε − aij0 ) → 0 in [H−1(Ω)]m×m, j = 1, . . . , n, and

aijε ⇀ aij0 in [L2(Ω)]m×m, i, j = 1, . . . , n, then A−1
ε

s
−→ A−1

0 .

Proof: Let Aεu
ε = f and A0u

0 = f . One can see that N -condition is satisfied

with Ns
ε = 0, s = 1, . . . , n, and ãij = aij0 , i, j = 1, . . . , n. Using Proposition (6.1),

we obtain uε → u0 in V provided that u0 ∈ [C∞
0 (Ω)]m. Since the set of such

functions is dense in [H1
0 (Ω)]

m, we receive the result. �

Corollary 6.1.2. If A−1
ε

s
−→ A−1

0 and aijε ⇀ aij0 in [L2(Ω)]m×m, i, j = 1, . . . , n,

and assume that the solutions u0 of the equation A0u
0 = f belong to [C∞

0 (Ω)]m

for f ∈ [C∞(Ω)]m, then ∂
∂xi

(aijε − aij0 ) → 0 in [H−1(Ω)]m×m, j = 1, . . . , n.

Proof: Let u0 ∈ [C∞
0 (Ω)]m and Aεu

ε = f , A0u
0 = f , uε → u0 in [H1

0 (Ω)]
m.

From the strong convergence of the inverse operators it follows that A0 is

the H-limit of {Aε}. Hence, N -condition is fulfilled for some matrices Ns
ε ∈

[H1(Ω)]m×m, s = 1, . . . , n.
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Taking into account the equality

Aε

(

uε− u0−Ns
ε

∂u0

∂xs

)

= Aε(u
ε− u0)−

∂

∂xi

(

aijε
∂Ns

ε

∂xj

∂u0

∂xs

)

−
∂

∂xi

(

aijε N
s
ε

∂2u0

∂xj∂xs

)

we obtain that
∂

∂xi

(

aijε
∂Ns

ε

∂xj

)

→ 0 in [H−1(Ω)]m×m

for all s = 1, . . . , n. Hence, from the points (ii), (iii) of the definition of N -

condition it follows that ∂
∂xi

(aijε −aij0 ) → 0 in [H−1(Ω)]m×m for all j = 1, . . . , n.

�

7. Periodic case

In this section, we shall asume that m = 1 since the general case can be

considered in the similar manner.

Let aε(x) = a(ε−1x), ε > 0, where a is a positive definite periodic (n × n)-

matrix. Define Nk ∈ H1
per(C), k = 1, . . . , n, by the equations

(26) div a(ek +∇Nk) = 0, k = 1, . . . , n in H−1(C),

where ek is the standard kth basis vector. Let ∇N = (∇N1, . . . ,∇Nn) (we

stacked the columns).

Let uε, u0 ∈ H1
0 (Ω) be the solutions of the equations

div aε∇uε = f,

div ã∇u0 = f,

with f ∈ H−1(Ω) and ã is the homogenized matrix for a. The formula for ã is

known, see, for instance, [29, page 26]:

(27) ã = 〈a(I +∇N)〉,

where I is an identity matrix.

In [15], it is proved that the following matrices satisfy N -condition in this case:

Ns
ε (x) = εNs

(x

ε

)

, s = 1, . . . , n,

ã = 〈a(I +∇N)〉

for the family {aε}.
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Proposition 7.1. If div a = 0 and u0 ∈ C∞
0 (Ω), then uε → u0 and 〈a〉 = ã.

Proof: Since div a = 0, the solutions of (26) are Ns = 0, s = 1, . . . , n. Hence

from the estimate (25) it follows that uε → u0 in H1
0 (Ω).

The homogenized matrix ã is defined by (27). Therefore ã = 〈a〉. �

Proposition 7.2. If 〈a〉 = ã and u0 ∈ C∞
0 (Ω), then uε → u0 in H1

0 (Ω) and

div a = 0.

Proof: From N -condition points (ii), (iii) and that 〈a〉 = ã it follows that

div aε ⇀ 0 in [H−1(Ω)]n. It means that div a = 0. By Proposition 7.1, we

see that uε → u0 in H1
0 (Ω). �

Proposition 7.3. We have A−1
ε

s
−→ B−1, where B = div b∇ if and only if

b = 〈a〉 = ã.

Proof: (i) Let us assume that A−1
ε

s
−→ B−1. Hence, for every u0 ∈ H1

0 (Ω) we

obtain

b∇u0 = 〈a〉∇u0 = ã∇u0.

This means that the matrices are equal b = 〈a〉 = ã.

(ii) Let b = 〈a〉 = ã and {uε}, u0 be defined by the equations

div aε∇uε = f,

div b∇u0 = f,

with f ∈ H−1(Ω). Using Proposition 7.2, we obtain that uε → u0 in H1
0 (Ω) for

u0 ∈ C∞
0 (Ω). Since C∞

0 (Ω) is dense in H1
0 (Ω) we complete the proof. �

8. Strong closure of sets of cogradients

In this section, we shall study the strong closure of sets of cogradients (fluxes).

This was considered in [5], [20]. We use a different approach to obtain the same

result.

Let U be the family defined by (18). Let us assume that m = 1, r = 2 and

A1,A2 ∈ E(λ1, λ2) are constant matrices.

Let us prove that

cls{Aχ∇u : Aχu = f, Aχ ∈ U} =
{

A−∇u : ∃A0, A−, {Aχε
} : Aχε

H
−→ A0,

(Aχε
)−1 ∗

−⇀ (A−)
−1 in [L∞(Ω)]mn×mn,(28)

A−∇u = A0∇u, divA−∇u = f
}
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for all f ∈ V ∗. Indeed, let divAε∇uε = f , divA0∇u = f , where we set

Aε = Aχε
. Since

λ−1
2 ‖Aε∇uε −A−∇u‖L2(Ω) ≤ ((Aε)

−1(Aε∇uε −A−∇u),Aε∇uε −A−∇u)L2(Ω)

≤ λ−1
1 ‖Aε∇uε −A−∇u‖L2(Ω)

and

(

(Aε)
−1(Aε∇uε −A−∇u),Aε∇uε −A−∇u

)

L2(Ω)

= (∇uε,Aε∇uε)L2(Ω) − (∇uε,A−∇u)L2(Ω)

−
(

(Aε)
−1A−∇u,Aε∇uε

)

L2(Ω)
+
(

(Aε)
−1A−∇u,A−∇u

)

L2(Ω)

→ (A0∇u,∇u)L2(Ω) − (A−∇u,∇u)L2(Ω) ≥ 0

we conclude that Aε∇uε → A−∇u in L2(Ω) if and only if (A0 − A−)∇u = 0

because A0 − A− is nonnegative definite due to the well known Reuss–Voigt

estimate, see [29],

(29)
(

lim
ε→0

(Aε)
−1

)−1
≤ A0 ≤ lim

ε→0
Aε,

where the limit is understood in the weak sense of [L2(Ω)]mn×mn (we generalized

the estimate for the systems of elliptic equations). Hence, we just proved the

equality (28).

Now let us proceed as in Section 5.

Let ξ ∈ R
n. Let us investigate when the equality

(30) A0ξ = A−ξ

holds.

For η ∈ R
n, we have, see [29, page 43],

(31) (A0)−1η = 〈A−1
χ p〉,

where A0 is the homogenized matrix for Aχ, 〈p〉 = η, p ∈ [L2(C)]n, A−1
χ p is

potential and p is solenoidal.

Let us show that for every ξ ∈ R
n such that there exists a vector e which is

parallel to the vector (A−1
1 −A−1

2 )A−ξ the equality (30) holds, where A0 is the

homogenized matrix for

Aχ = χ(〈e, x〉)A1 + (1− χ(〈e, x〉))A2,

where χ is defined by (15) with α = θ, and

A− = (θA−1
1 + (1− θ)A−1

2 )−1.
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To do this, let us change the variable as ξ = A−1
− η. Then we should verify

that (A0)−1η = (A−)
−1η. It can be readily seen that for p = η the vector

(χ(〈e, x〉)A−1
1 +(1−χ(〈e, x〉))A−1

2 )p is potential and p is solenoidal. Using (31),

we obtain (30). It is clear that for m = 1 such a vector e can be always found.

Hence, using the approximation argument, we get that (28) becomes

cls{Aχ∇u : Aχu = f, Aχ ∈ U} =
{

A−∇u : ∃ θ ∈ L∞(Ω), A− : divA−∇u = f,

A− = (θA−1
1 + (1− θ)A−1

2 )−1,

0 ≤ θ(x) ≤ 1 a.e. in Ω
}

for all f ∈ V ∗.

9. Elliptic operators, case m ≥ n

In this section, we shall consider two examples for the cases m = n = 1 and

2 ≤ n ≤ m. We shall show that the strong closure of the feasible states cannot

be, in general, parametrized by the convexification of the original operators in

this case.

Example 9.1. Let us first consider the case m = n = 1.

Let Ω = (0, 1) and

aε(x) = a(ε−1x),

where a is an 1-periodic function of the form a(x) = χ(x)a1 + (1 − χ(x))a2
with χ being 1-periodic so that 〈χ〉 = θ, 0 < θ < 1, is a constant and a1, a2
different positive constants.

The H-limit (the homogenization coefficient) is known in this case, it is a0 =

〈a−1〉−1, see [29, page 21]. The formula for a0 is as follows:

(32) a0 =
1

θa−1
1 + (1− θ)a−1

2

.

Assume that there exists u ∈ H1
0 (0, 1) such that

d

dx

(

aθ
d

dx
u
)

= f, aθ = θa1 + (1− θ)a2,

with 0 < θ < 1 and it belongs to the strong closure of the feasible states clsF(U, f)

with f ∈ L2(0, 1), f 6= 0. Hence, there exist families {uε}, {aχε} such that

d

dx

(

aχε

d

dx
uε
)

= f,

uε → u in H1
0 (0, 1),
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where aχε(x) = χε(x) a1 + (1 − χε(x)) a2, and χε are characteristic functions.

The family {χε} contains a subsequence that weakly-* converges to some θ1(x)

in L∞(0, 1) (we still denote it the same). It can be readily seen that θ1(x) = θ

for all x such that du(x)/dx 6= 0.

Since H-limit a0 of the family {aε} is the homogenized matrix of a, there

exists a family {vε} such that

d

dx

(

aε
d

dx
vε
)

= f, vε ∈ H1
0 (0, 1),

vε ⇀ v in H1
0 (0, 1),

aε
dvε

dx
⇀ a0

dv

dx
in L2(0, 1),

d

dx

(

a0
d

dx
v
)

= f, v ∈ H1
0 (0, 1),

a0 =
1

θa−1
1 + (1− θ)a−1

2

.

Hence, we have

d(v − u)

dx
=

( 1

a0
−

1

aθ

)

∫ x

0

f dx,

d(vε − uε)

dx
=

( 1

aε
−

1

aχε

)

∫ x

0

f dx.

Taking the weak limit in the last equality when ε → 0 (the limit is 0 for a.e. x

where θ1(x) = θ) and comparing the limit to the first equality, we obtain

1

θa−1
1 + (1− θ)a−1

2

= θa1 + (1 − θ)a2.

Simplifying this equality yields

2 =
a2
a1

+
a1
a2

,

which is possible only if a1 = a2. This gives a contradiction with the assumption

that u belongs to the strong closure of feasible states. The function u ∈ H1
0 (0, 1)

is the solution of the equation

d

dx

(

aθ
d

dx
u
)

= f

and is nonzero if f 6= 0. Hence, we found the nonzero element u ∈ H1
0 (0, 1) that

belongs to the closed convex hull of the feasible states, but it does not belong to

the corresponding strong closure.
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Example 9.2. Now let us present the second counter-example for the case m ≥

n > 1.

In what follows, we will need the following results:

Theorem 9.1 (G. Vainikko and K. Kunisch [24]). Suppose that n ≥ 2. Let a func-

tion σ ∈ L∞(Ω) and a function v ∈ C∞
0 (Ω) satisfy the equation div σ∇v = 0 in

H−1(Ω). Then σ = 0 on {x ∈ Ω: ∇v(x) 6= 0}.

Theorem 9.2 (J. Nečas [14]). Let D be a bounded open set in R
n with Lipschitz

boundary. Then there exists c = c(D) > 0 such that for every g ∈ L2(D)

‖g‖L2(D)/R ≤ c‖∇g‖[H−1(D)]n ,

where L2(D)/R is the factor space.

Let U be a family of elliptic operators with matrices A of the form A = a(x)I,

where I is an identity matrix, a(x) = χ(x)a1 + (1 − χ(x))a2, and a1, a2 are

different positive constants.

Assume that there exists u ∈ V such that

div aθ∇u = f, aθ = θa1 + (1− θ)a2, θ ∈ R, 0 < θ < 1,

and it belongs to the strong closure of feasible states clsF(U, f) with

f = div aθI∇
(

x1ϕ . . . xnϕ . . . xnϕ
)T

,

where ϕ is a bump function that equals to 1 in some ball B (we stacked func-

tions x1ϕ, . . . , xnϕ n times and the rest with xnϕ). Hence, there exist families

{uε}, {aχε} such that

div aχε∇uε = f,

uε → u in V,

where aχε(x) = χε(x)a1 + (1 − χε(x))a2, χε are characteristic functions. The

family {χε} contains a subsequence (we still denote it the same) that weakly-*

converges to some θ1(x) in L∞(Ω) .

Using the explicit form of the function f , we get that

u =
(

x1ϕ . . . xnϕ . . . xnϕ
)T

.

From Theorem 9.1 we obtain that θ1(x) = θ for all x such that ∇u(x) 6= 0

because u ∈ [C∞
0 (Ω)]m (according to our choice of f ∈ V ), i.e. θ1(x) = θ on a.e.

x ∈ B.

Let us denote Aε = aχεI. Let A0 be the H-limit matrix of some subsequence

of {Aε} (still denoted the same). The matrix A0 consists of m equal matrices a0
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corresponding to m equations. Those matrices are situated on the diagonal, and

each a0 is the H-limit of aχεI, where I is an n× n identity matrix.

Since A0∇u = aθ∇u and m ≥ n, we obtain that tr a0(x) = n aθ in B. On the

other hand, for the trace of a0 the following inequality holds, see [29, page 199]:

lim
ε→0

aε −
1

ν1
lim
ε→0

(

aε − lim
ε→0

aε
)2

≤
tr a0

n
≤ lim

ε→0
aε −

1

ν2
lim
ε→0

(

aε − lim
ε→0

aε
)2

,

where aε = aχε and the constants ν1, ν2 are such that 0 < ν1 ≤ aε ≤ ν2, the

limits are understood in the weak sense of L2(Ω).

Hence, we obtain that the family {χε} converges strongly to the constant θ

in L2(B). Now we can write this as the following expression:

∫

B

(χε − θ)2 dx → 0.

Simplifying this expression and letting ε → 0, we obtain the formula θ(1−θ) = 0.

This means that θ is either 0 or 1. On the other hand, we chose θ to be

0 < θ < 1. This is a contradiction with our assumption on u.

Hence, there exists a nonzero u ∈ [H1
0 (Ω)]

m that is the solution of equation

divAθ∇u = f , Aθ = aθI, which does not belong to the strong closure of the

feasible states clsF(U, f).
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