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Abstract. Constitutive equations of continuum mechanics of the solid phase of anisotropic
material is focused in the paper. First, a synoptic one-dimensional Maxwell model is ex-
plored, subjected to arbitrary deformation load. The explicit form is derived for stress on
strain dependence. Further, the analogous explicit constitutive equation is taken in three
spatial dimensions and treated mathematically. Later on, a simply supported straight
concrete beam reinforced by the steel fibres is taken as an investigated domain. The rein-
forcement is considered and dealt as scattered within the beam. Material characteristics
are determined in line with the theory of the reinforcement. Sinusoidal load is taken as the
action, stress reaction function is observed. By exploitation of the Fourier transform within
the stress-strain relation analysis, both time and frequency interpretation of the constitutive
relation can be performed.

Keywords: linear viscoleasticity theory; constitutive equation; Duhamel hereditary in-
tegral; convolution; complex relaxation modulus of structural element; Fourier integral
transform
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1. Introduction

As it is apparent directly from the sound of the word itself, viscoelasticity is a prop-

erty of a material that preforms both viscous and elastic behaviour when undergoing

mechanical load. Viscous materials exhibit a time-depended strain, viscosity be-

ing the result of the diffusion of atoms or molecules inside an amorphous material.

Newton’s viscous liquid, see (N)-Newtonian matter in Fig. 1, subjected to the load

of non-hydrostatic pressure, is unable to accumulate mechanical energy due to its
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dissipation. On the other hand, elasticity is usually the result of bond stretching

along crystallographic planes in a crystalline solid, [3], [13]. The elastic material,

see (H)-Hookean matter in Fig. 1 are capable of accumulating mechanical energy

without its dissipation.
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Figure 1. Hookean (H) and Newtonian (N) matters. Pictogram and stress-strain diagrams.

Physical equations. In one-dimensional case the physical equations, i.e., stress

σ(t)—strain ε(t) relationship have the form

(H): σ = Eε,(1.1)

(N): σ = η
d

dt
ε(1.2)

with E[Pa] being the Young elastic modulus and η[Pa.s] the Newtonian viscosity

coefficient. The physical equation can be graphically interpreted as in Fig. 1. In

a one-dimensional case stress and strain are scalar functions of time, in two di-

mensions the stress and strain are tensor functions of time of the second order and

material characteristics are 4th order tensors, etc.

R em a r k 1.1. Alongside the text of Chapter 2, the deformation and stress vari-

ables, the time-dependent functions, will be shortened and written without the in-

dependent variable t when possible; e.g. σ, ε, εH instead of σ(t), ε(t), εH(t), etc.

Geometrical equations. Having the base matters (H) and (N) at hand, by

using parallel or serial connections, we can create various less or more configurations

of viscoelastic components resulting in complex models, see the models creation in

Fig. 2. If the parallel connection of two components is realised, both (or more)

parallel legs move together, perpendicularly to their longitude axis, hence the defor-

mations on each leg of the connection are the same, equal to the global deformation,

as well; and the global stress is equal to the sum of both stress values on both legs

of the parallel connection. In the case of serial connection the sum of both (or more)

submodels connected serially yields the global deformation and the stress is equal in

each element, being equal to the global stress value as well.
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Figure 2. Basic matters, parallel and serial connections, simple and more complex viscoelas-
tic models creation, [8], [9], [11].

Strictly speaking, any matter is neither purely elastic nor purely viscous. Even

though a material is labelled as elastic, it still exhibits, be it a negligibly small,

viscous behaviour. Accordingly, a part of externally added energy (even though
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a negligibly small amount) is dissipated. And, vice versa, each viscous material in

practice exhibits also elastic behaviour-even though almost invisible; i.e., not all en-

ergy is ever dissipated. We can say that the ideal elastic body and the ideal viscous

fluid are just some marginal theoretical stages in the theory of modelling. The real

properties of each material are always somewhere between these margins. And, the

received mechanical energy by a viscoelastic body is always partially accumulated,

partially dissipated. Moreover, there are other influencing factors, for example ther-

mal radiation, humidity effects, the effect of chemical or electrical fields quantified

by their physical characteristics that affect the mechanical behaviour of materials,

as well as the structure (homogeneity or inhomogeneity, isotropy or anisotropy, etc.)

of the modelled material, see [22].

Recently, the importance of the viscoelasticity theory increases due to the cur-

rent rising significance and rapid progress of the material science. Polymer-based

materials, composite materials based on silicate reinforced with high-strength fibres,

biocompatible materials and others used in industrial practice, medicine, immunol-

ogy, sport, e.g., [10]—these and other newly invented materials are investigated.

The study and the prediction of their mechanical response to various kind of load is

focused in many research groups worldwide.

The motivation of our investigation is first of all in the application of the phe-

nomenological theory of modelling of constitutive equations for the dynamic re-

sponse to a stationary pulsed continuous load of the structural element made from

an anisotropic viscoelastic material.

In this paper the response of a viscoelastic anisotropic material under a sinusoidal

load with constant frequency is studied. The dynamic behaviour is of our interest

since viscoelastic materials are used in situations in which the damping of vibra-

tion or the absorption of sound of a material is important. The frequency of the

sinusoidal load of the object is sufficiently slow as no inertial terms appear. Anal-

ysed material is made of concrete of high strength, reinforced by the steel fibres and

main steel reinforcement, i.e., anisotropy is considered, see Fig. 3. Indeed, prior to

this investigation and for the sake of better understanding, Chapter 2 is included

as a preliminary for customizing the notation and derivation of Duhamel hereditary

integral in one-dimension.

Within the research we apply the phenomenological theory of modelling of consti-

tutive equations.

Assumptions of the solution:

⊲ Material of analysed body is homogeneous and anisotropic. It is deformed

continuously under external oscillatory load.

⊲ The isothermal state of the infinitesimal theory of liner dynamic viscoelasticity

is supposed.
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Figure 3. Scheme of analysed structural element, [20].
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⊲ Boltzmann principle of superposition is considered.

⊲ Influence of cracks propagation is not taken into account.

⊲ No mutual penetration of materials occurs.

⊲ The hypothesis of fading material memory is taken into account.

2. Constitutive relation and Duhamel hereditary integral

in a one-dimensional case

In general, the hereditary integral is an integro-differential relation explicitly ex-

pressing the reaction dependence on the action. Herein, either stress is action and

strain is reaction or vice versa. Hereditary integral involves all load (action) history

which affects the resulting response (reaction).

η
E

σ, ε
(M) = (H)−(N)

Figure 4. Maxwell model-serial connection of Hookean and Newtonian matter, [20].

For the sake of better clarity, we start with the Maxwell model, Fig. 4. We derive

the general explicit constitutive equation (Duhamel integral) from its fundamental

physical and geometrical equations. As pointed out above, in the case of a serial

connection the summation of both Hookean and Newtonian partial deformations εH

and εN are summed up to the entire deformation and equality of entire stress magni-

tude to partial stress magnitudes of both involved elements is ensured. Accordingly,

the geometrical equations of Maxwell model are

(2.1) ε = εH + εN ,

σ = σH = σN .

And, the physical equations corresponding to this model are then taken from (1.1)

and (1.2), the affiliation to the particular matter being given by sub-indexesH andN .

(2.2) σH = EεH ,

σN = η
d

dt
εN .

Next, for the sake of deriving the relation between the stress and the strain by

means of physical characteristics only, we have to eliminate εH , εN , σH , σN from

the system of equations (2.1) and (2.2). Prior to substituting to the first equation

of (2.1) we differentiate it. Then we substitute for dεH/dt and dεN/dt expressed
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from (2.2). Finally, due to the second equation of (2.1) we can omit the indexes in

stress variables obtaining the global physical relation of the Maxwell model

(2.3) (M):
1

E

d

dt
σ +

σ

η
=

d

dt
ε.

The linear differential equation (2.3) stands as an implicit relation between vari-

ables ε and σ; up to now it is not specified which of them is the action and which the

reaction. It is called the constitutive equation of the Maxwell model. Taking ε as the

action, we are supposed to express the reaction σ explicitly, by using the hereditary

integral. We rearrange (2.3) by using the integrating factor method, e.g., [5]; with

integrating factor eEt/η we get

eEt/η d

dt
σ + eEt/ηE

η
σ = eEt/ηE

d

dt
ε ⇔ d

dt
(eEt/ησ(t)) = eEt/ηE

d

dt
ε.

Then

[eEτ/ησ(τ)]t
−∞

=

∫ t

−∞

eEτ/ηE
dε

dτ
dτ ⇒ σ(ε(t)) =

∫ t

−∞

e−E(t−τ)/ηE
dε

dτ
dτ.

Finally, considering zero initial stress, we get the desired explicit expression of the

reaction depending on the action in the integro-differential form

(2.4) σ(t) =

∫ t

−∞

H(t− τ)
dε(τ)

dτ
dτ

of (M), where we have used the relaxation modulus

(2.5) H(t) = Ee−Et/η.

R em a r k 2.1. The relaxation modulus H(t) is a scalar function and it is unique

for each particular one-dimensional model. It reflects both the configuration of the

viscoelastic model and the material characteristics of the participating materials’

physical characteristics. It involves all geometrical and physical relations within

the configuration, while expression (2.4) in such a form stands as general explicit

constitutive equation for all one-dimensional viscoelastic models.

As far as the fluidity of a material is concerned, it is worth mentioning the so-called

relaxation time herein. Fluidity can be quantified by its length. From proportional-

ity trlx = η/E it directly follows: The longer relaxation time, the more “liquid like”

behaviour of a material, the shorter relaxation time, the more “solid like” behaviour

of a material. Relaxation time can be measured in a lab; and mathematically it is
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yielded from the characteristic equation corresponding to the constitutive equation

with the load imposed and maintained on a constant level, ε∗ = ε(t) in (2.3). Relax-

ation time is then equal to a negative reciprocal root of that characteristic equation.

3. Anisotropic structural material under the pulsating load.

Three dimensional study

Up to now, in accordance with the linear viscoelasticity theory, engineers obviously

consider a simplified isotropic homogeneous material. In such a case, the relaxation

tensor can be expressed, [18] as

(3.1) Hijkl(t) =
1

3
[H2(t)−H1(t)]δijδkl +

1

2
[H2(t)](δikδjl + δilδjk),

which is the most general form of an isotropic 4th order tensor. Here, H1(t) and

H2(t) are independent relaxation functions and δij is the Kronecker operator

δij =

{
0 if i 6= j,

1 if i = j.

Hence, the explicit constitutive relation σ-ε for isotropic homogeneous material ac-

quires the form

(3.2)

σij(t) =

∫ t

−∞

1

3
[H2(t− τ)−H1(t− τ)]δijδkl+

1

2
[H2(t− τ)](δikδjl+ δilδjk) d

εkl(τ)

dτ
dτ.

However, for more complex engineering problems, it is often inevitable to deal with

a physically more precise approach involving anisotropy.

Likewise expression (2.4) for one-dimension, the three dimensional explicit con-

stitutive equation (Duhamel hereditary integral) can be derived as well, where an

anisotropic material is considered in general. Written component-wisely, it acquires

the form, [1]

(3.3) σij(t) =

∫ t

−∞

Hijkl(t− τ) d
εkl(τ)

dτ
dτ

with σij(t) and εkl(t) being the stress and strain tensors of the 2
nd and Hijkl(t) the

4th order relaxation tensor acquiring zero value on the time interval (−∞, 0〉. The
relation (3.3) can be regarded as convolution σij(t) = Hijkl(t − τ) ⋆ εkl(t) as well.

Having an assumption of the periodic sinusoidal strain load as an external action, we
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observe the reaction, the stress tensor function. The strain is a harmonic function of

time. It can be expressed as

(3.4) εij(t) =
◦

εije
iωt

with the imaginary unit i =
√
−1,

◦

εij the amplitude of deformation, and ω[rad/s]

the angular frequency. Whenever needed, the angular frequency ω can be expressed

by means of ordinary frequency ν[Hz] : ω = 2πν, too.

Each component of the relaxation modulus tensorHijkl(t) has a bounded variation

on an arbitrary closed subinterval of (−∞,∞), see, e.g., [2]. From the symmetry of

both stress and strain tensors, also the symmetry of relaxation modulus follows in

all directions, [19]

(3.5) Hijkl(t) = Hjikl(t) = Hijlk(t).

Relaxation modulus is a function of time and it can be expressed as a sum of the non-

negative tensor of constant values
∞

Hijkl-equilibrium modulus and the time dependent

residual modulus Ĥijkl(t):

(3.6) Hijkl(t) =
∞

Hijkl + Ĥijkl(t).

Each component of the equilibrium modulus tensor is always positive for solid bodies

and equals zero for liquids, e.g., [12]. Let us recall that under a stationary load each

process of the system tends towards the equilibrium stage. It means

(3.7) Ĥijkl(t) → 0 for t → ∞.

When substituting (3.4) and (3.6) to (3.3), we have the explicit constitutive equation

for the pulsating load in the form

σij(t) =

∫ t

−∞

(
∞

Hijkl + Ĥijkl(t− τ)) d

◦

εkle
iωτ

dτ
dτ

and this yields

(3.8) σij(t) =
∞

Hijkl
◦

εije
iωt + iω

◦

εij

∫ t

−∞

Ĥijkl(t− τ)eiωτ dτ.

Let us next proceed with (3.8) by using the substitution χ = t− τ . We obtain

σij(t) =
◦

εije
iωt

[
∞

Hijkl − iω

∫
∞

0

Ĥijkl(χ)e
iωχ dχ

]
.
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Figure 5. Stress and stain in time t with the phase shift; T being the period of action and
reaction, ω[rad/s] angular frequency, δ[rad] phase angle between the stress and
strain sinusoid, [15].

Now, when employing the Euler form e−iωτ = cos(ωτ) − i sin(ωτ) we get

(3.9)

σij(t) =
◦

εije
iωt

[
∞

Hijkl + ω

∫
∞

0

Ĥijkl(χ) sin(ωχ) dχ+ iω

∫
∞

0

Ĥijkl(χ) cos(ωχ) dχ

]
.

Physically speaking, if we do not consider the damping in the model, then the stress

response corresponding to a certain stationary pulsating deformation load acquires

the same periodical character as the strain action. Hence, also the amplitude stays

at the same value in time, [14]. Indeed, the response delay after the load, expressed

as the time shift is

∆t = T
α

2π

with T = 2π/ω being the period and α the phase angle, see Fig. 5 and 6. It means

that for this special kind of load the general stress-strain relation (3.3) takes the form

(3.10) σij(t) = H∗

ijkl(ω)
◦

εije
iωt.

Herein, the expression in square brackets H∗

ijkl(ω) in (3.9), is known in the vis-

coelasticity theory as the dynamical modulus. Since σij is a complex function of

frequency ω, it is natural to split it to the real and imaginary parts

(3.11) H∗

ijkl(ω) = H̄ijkl(ω) + i ¯̄Hijkl(ω).
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Moreover, the real and the imaginary parts of a dynamical modulus are called storage

modulus and loss modulus, respectively, which are reasoned physically, too [6], [7].

Accordingly, we see from (3.9) that in our special load type, the pulsating load, the

storage and loss moduli are

H̄ijkl(ω) =
∞

Hijkl + ω

∫
∞

0

Ĥijkl(χ) sin(ωχ) dχ,(3.12)

¯̄Hijkl(ω) = ω

∫
∞

0

Ĥijkl(χ) cos(ωχ) dχ.(3.13)

Moreover, the ratio

(3.14)
¯̄H(ω)

H̄(ω)
= tanα(ω)

represents the so-called loss tangent, [16].

ReH∗

ImH
∗

0 H̄(ω)

¯̄
H(ω)

H
∗(iω)

α(ω)

Figure 6. Loss tangent.

R em a r k 3.1. The author of publication [2] points out some misunderstandings

in terminology as far as the term dynamical modulus H∗

ijkl(ω) is concerned. Namely,

the term “dynamical” does not indicate explicitly whether the inertial members are

retained or not in the momentum equations. Maybe the name “undamped pulsation

modulus” would be more appropriate in this case as suggested by [4].

For the sake of physical accomplishment we are supposed to examine the impact

of the possible limiting values of the action frequency to the resulting dynamical

modulus. For this purpose we temporarily rearrange the integrals in (3.12) and (3.13)

by integrating by parts, getting

H̄ijkl(ω) =
∞

Hijkl + Ĥijkl(0) +

∫
∞

0

dĤijkl(χ)

dχ
cos(ωχ) dχ,(3.15)

¯̄Hijkl(ω) = −
∫

∞

0

dĤijkl(χ)

dχ
sin(ωχ) dχ.(3.16)

After such a rearrangement, we can conveniently follow the limiting frequency values

impact:

839



⊲ For ω → 0 we have the static load

H̄ijkl(0) =
∞

Hijkl = Hijkl(t)|t→∞,(3.17)

¯̄Hijkl(0) = 0.(3.18)

⊲ For a very high frequency ω → ∞ we get an impact load. After substitution

ωχ = τ we get

lim
b→∞

H̄ijkl(b) =
∞

Hijkl + Ĥijkl(0) = Hijkl(t)|t→0,(3.19)

lim
b→∞

¯̄Hijkl(b) = 0.(3.20)

Formulas (3.17) and (3.20) represent the limit values of the real and imaginary

part of the complex relaxation modulus. Since zero frequency corresponds to a static

load, it is apparent that the imaginary part (3.17) has to be zero. Relations (3.19)

and (3.20) document the fact that in the case of a very high frequency of excitation,

the imaginary part of the complex module converges to zero. By its mechanical

response, the system behaves like an elastic anisotropic body.

It is worth emphasising that forms (3.12) and (3.13) physically perform the depen-

dence between the frequency and the mechanical properties of the body expressed

in the form of relaxation moduli. Therein, tensor H̄ijkl(ω) is a component of the

stress-strain ratio in the direction of the deformation phase, see [17], whereas the

tensor ¯̄Hijkl(ω) is declined from that direction by the angle of 90
◦.

0 t

0 t

ε
ε

◦

ε

ϕ

σ
σ

Figure 7. Periodical course of stress σ and strain ε of a viscoelastic material, [17].

Sometimes there is a need to express the constitutive equation (3.10) with phase

shift ϕ directly involved, [6]: σij(t) = H∗

ijkl(ω)
◦

εkle
i(ωt+ϕ). In such a case, it is
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explicitly given that compared to the periodical deformation load, the stress response

is delayed by ϕ, see Fig. 7, the delay can be computed, measured and recorded.

Nevertheless, we are mostly focused on the mechanical behaviour of a device with

regard to the danger of its damage. Thus, there is no need of tracing the time shift

between action and reaction. Relations (3.17)–(3.20) document the fact that in both

zero and infinity limiting cases of frequency, behaviour of the anisotropic body is

almost purely elastic.

3.1. Pulsating load imposed on a viscoelastic body and the mechanical

response of a viscoelastic body. The Fourier transform.

Integral transform. Integral transforms are used for solving a wide range of science

and technology tasks. The Fourier integral transform is commonly used in linear

tasks of continuum mechanics.

The direct Fourier transform, [6]:

(3.21) F(f(t)) = f̃(ω) =

∫
∞

−∞

f(t)e−iωt dt

and its inverse form

(3.22) F−1(f̃(ω)) = f(t) =
1

2π

∫
∞

−∞

f̃(ω)eiωt dω

can be used in its cosine and sine split as well:

Fc(f(t)) = f̃(ω) =

∫
∞

0

f(t) cos (ωt) dt,(3.23)

F−1
c (f̃(ω)) = f(t) =

2

π

∫
∞

−∞

f̃(ω) cos (ωt) dω,(3.24)

Fs(f(t)) = f̃(ω) =

∫
∞

0

f(t) sin (ωt) dt,(3.25)

F−1
s (f̃(ω)) = f(t) =

2

π

∫
∞

−∞

f̃(ω) sin (ωt) dω.(3.26)

In our investigation we use the sine and cosine Fourier transform for switching

between the constitutive relations written in the sense of time and those written in the

sense of frequency. It is a known fact that both sine and cosine Fourier transforms and

its inverse is yielded by splitting (3.21), as well as (3.22) when the Euler form is used.
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The storage and loss moduli (3.12) and (3.13) can be regarded as Fourier images,

hence the originals can be derived as

Ĥijkl(t) =
2

π

∫
∞

0

H̄ijkl(ω)−
∞

Hijkl

ω
sin(ωt) dω,(3.27)

Ĥijkl(t) =
2

π

∫
∞

0

¯̄Hijkl(ω)

ω
cos(ωt) dω(3.28)

and for t > 0, we can rearrange (3.27) as

Ĥijkl(t) =
2

π

∫
∞

0

H̄ijkl(ω)

ω
sin(ωt) dω − 2

π

∞

Hijkl

∫
∞

0

sin(ωt)

ω
dω

=
2

π

∫
∞

0

H̄ijkl(ω)

ω
sin(ωt) dω −

∞

Hijkl ,

where we have taken ∫
∞

0

sin(ωt)

ω
dω =

π

2

into account. So, we have

(3.29) Ĥijkl(t) +
∞

Hijkl = Hijkl(t) =
2

π

∫
∞

0

H̄ijkl(ω)

ω
sin(ωt) dω.

And, ready-to-use relaxation coefficient (3.29) substituted in (3.3) yields the resulting

explicit constitutive equation for an anisotropic material subjected to a periodic

pulsating strain load

(3.30) σij(t) =
2

π

∫ t

−∞

∫
∞

0

H̄ijkl(ω)

ω
sin(ω(t− τ)) d

εkl(τ)

dτ
dω dτ.

Consequently, by using the Fourier transform we get the Fourier image for stress

tensor function

(3.31) σ̃ij(ω) =

∫
∞

−∞

[∫ t

−∞

Hijkl(t− τ)
dεkl(τ)

dτ
dτ

]
e−iωt dt.

Moreover, whenever having σ̃ijkl(t), by using the inverse Fourier transform we get

the Fourier original σij(ω). When we couple transforms (3.22) with (3.11)–(3.13),

then the constitutive equation (3.31) can be expressed in the shortened form

(3.32) σ̃ij(ω) = H∗

ijkl(ω)ε̃kl(ω).

With regard to the type of solved problems, we can now use constitutive relations in

the sence of time t, see (3.10), or frequency ω, see (3.32).
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There are two independent relaxation times in the case of an orthotropic material,

see Fig. 3. The corresponding values can be measured in a lab, each one separately,

by imposing the load in the corresponding direction. The resulting more “solid like”

behaviour is performed alongside the main reinforcement (x axis in figure) and more

“liquid like” behaviour in all perpendicular directions.

4. Conclusions

The paper deals with deriving of an explicit constitutive equation describing the

viscoelastic response of an anisotropic body to a specified periodic load. The investi-

gation is carried out for boundary tasks of linear viscoelasticity, with the relaxation

coefficient emphasised. The mechanical response of the viscoelastic model represent-

ing a simple reinforced concrete beam to a pulsating periodical external strain load is

studied. Both the main and the steel fibre dispersed reinforcement are considered in

the structural element. For this reason the anisotropic case is studied. As the math-

ematical tool the Fourier transform is used for dealing with constitutive relations,

i.e., the stress dependence on the deformation load. This paper is a continuation and

extension of the works [8], [21], [23] of the authors.
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