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Abstract. The problem of transient hysteresis cycles induced by the pre-sliding kinetic
friction is relevant for analyzing the system dynamics, e.g., of micro- and nano-positioning
instruments and devices and their controlled operation. The associated energy dissipation
and consequent convergence of the state trajectories occur due to the structural hysteresis
damping of contact surface asperities during reversals, and it is neither exponential (i.e.,
viscous type) nor finite-time (i.e., Coulomb type). In this paper, we discuss the energy
dissipation and convergence during the pre-sliding cycles and show how a piecewise smooth
force-displacement hysteresis map enters into the energy balance of an unforced system of
the second order. An existing friction modeling approach with a low number of the free
parameters, the Dahl model, is then exemplified alongside the developed analysis.
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1. INTRODUCTION

The kinetic friction force in a small displacement range just after the velocity re-
versals (that we call simply reversals in the following) is known to be dominated by
the pre-sliding/pre-rolling friction. During such pre-sliding transitions, the classical
Coulomb friction law can be extended by a rate-independent hysteresis function,
cf. e.g., [12]. On the one hand, it allows to circumvent the well-known and rather
spurious discontinuity of the Coulomb friction at zero velocity which, otherwise, com-
plicates the analysis of a system and may require solutions (e.g., in Filippov’s sense)
of the differential inclusions, instead of differential equations when describing the sys-
tem dynamics. On the other hand, the modeling of kinetic friction with pre-sliding
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hysteresis reproduces better the measurable tribological phenomena known from en-
gineering practice, see, e.g., in [12], [2], [15]. The pre-sliding frictional hysteresis
manifests itself in the nonlinear force-displacement characteristics with memory, cf.
Figure 1(b), where each change in the velocity sign gives rise to a new hysteresis
branch. This can be compared with a so-called “hysteretic spring”, cf. [1], in which
the restoring force is not direction-symmetrical and acts as a source of structural
damping. The associated hysteresis losses in rolling and sliding friction were recog-
nized already in the early studies, see, e.g., [11], and addressed both with various
theoretical approaches and experimentally. A remarkable tribological study [12] has
established several rolling friction force-displacement relationships, especially with
regard to the area of hysteresis loops and rolling distance, and the energy dissipated
at contact surfaces. Recall that an irregular rough surface which, at the same time,
can be characterized in terms of an average high, stiffness, density, and distribution
of asperities, appears as a structural source of kinetic friction f, cf. Figure 1 (a). The
latter is opposed to direction of the relative displacement, indicated by the veloc-
ity &, and is usually proportional to a normal load g (caused by a point-mass m as
in the picture). Although the hysteresis dissipation properties are well known and,
S0 to say, typical for structural mechanics, see, e.g., [14] and the references therein,
and were largely covered also in the mathematical studies of hysteresis systems, see,
e.g., [13], [7], the hysteresis in frictional systems was also strongly accented in the
system and control studies, see, e.g., [2], [6].
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Figure 1. Schematic representation of kinetic friction (a), pre-sliding friction transitions in
force-displacement plane (b).

Several empirical and phenomenological dynamic models of kinetic friction are
known, most of which capture the hysteresis during pre-sliding in often different ways.
Due to the use of nonlinear differential equations and often distributed parameters
and dynamic states with switching, a rigorous analysis of the damping properties
and state trajectories for such models has been and remains a nontrivial task. For
instance, the hysteresis damping of LuGre and Maxwell-slip friction models were
addressed in [16], while in [1] a generic approach of analyzing hysteretic friction was
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presented with use of the Masing rules, see, e.g., [7], [3], [4], [5] for details. In almost
all frictional studies, an importance of extending the classical Coulomb friction law
by the pre-sliding transitions was (at least on the edge) recognized. This comes,
however, at the cost of significantly more complex dynamics of the overall system,
for which even a simple one-parameter Coulomb friction law with discontinuity poses
a significant challenge in finding the analytical solution for trajectories, cf. e.g., [17].

The Dahl model [9] was originally proposed for describing the transient behavior
of the solid friction when it is piecewise elastic rather than viscous. It was probably
a first attempt to circumvent the discontinuity in the classical Coulomb law of dry
friction at the reversals. The Dahl model was widespread (also in industrial appli-
cations) for analyzing and simulating the solid friction occurring in the ball-bearing
systems. Having only two tunable parameters, one of which is the Coulomb fric-
tion coefficient, the Dahl model in its simplified form appears suitable for a detailed
analysis of hysteresis cycles and the associated energy dissipation.

This paper aims at investigating the dynamic behavior of a standard lumped-
mass motion system subject to the pre-sliding frictional damping. Being motivated
by the previous studies [6], [1], our goal is to provide a clear and straightforward
relationship between the energy balance of reversals and state trajectories during the
hysteresis cycles. The underlying motivation is to have a generic methodology that
can be used for different modeling approaches when describing the rate-independent
friction-force-displacement characteristics. Having said that, the following materials
present the main results organized in two sections. In Section 2, we discuss the
unforced pre-sliding hysteresis oscillator, while establishing the energy balance and
proving the convergence of hysteresis dissipation cycles. In Section 3, we apply the
developed analysis and exemplify the associated calculus by using the Dahl friction
model. The conclusions are given in Section 4.

2. UNFORCED PRE-SLIDING HYSTERESIS OSCILLATOR

The unforced motion dynamics within a pre-sliding frictional range, i.e., in some
neighborhood to the motion reversals characterized by sign[@(t1)] # sign[#(t)] and
—1 < f(t)/F. < 1, where %(t") denotes the (limit) value of = just after changing
stepwise the sign, i.e., when the time argument approaches ¢ from the right, can be
described in the generic form as

d?z dx

(2.1) mas + flz] =0, E(O) #0

Here the inertial motion of the point mass m is counteracted by the nonlinear restor-
ing force f[-] which includes the frictional damping. Note that the counteracting
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friction force f is written as function of the relative displacement x, since it is mod-
eling an irreversible process which depends on z(t) and its previous values, in par-
ticular after each motion reversal, i.e., when sign[z(t)] changes. Further, we stress
that an unforced system response owing to nonzero initial conditions, cf. (2.1), is
in focus of our discussion. The forced pre-sliding hysteresis oscillations, for which
the right-hand side of (2.1) should otherwise contain a known exogenous value u(t)
in the sense of an applied external force, could extend the analysis presented here.
However, it would go beyond the scope of this work.

In the following, for the sake of brevity, we will use the notation ¢ for describing
time derivative of o with respect to time t; correspondingly, the double dot above
a variable, i.e., 6, denotes the second-order derivative with respect to time, etc.
Rewriting (2.1) with & = #d4(dz)~! and integrating subsequently both sides of the
resulted equation yields

(2.2) m/j:d:bz —/f[:v] da.

Note that (2.2) is valid only in time intervals where x(¢) is monotone, that is as-
sumed to be the case between any two consecutive reversal points. This leads to the
energy balance of an unforced pre-sliding hysteresis oscillator, as the total kinetic
and potential plus dissipated energies are written as

(2.3) %mj;Q + / " ez = 0

i
for two successive reversal points x; # x;4+1 at times ¢; < t;41. Let us denote the
first kinetic energy term in the above equation by Ej, and the second energy term
associated with the restoring force by E;. Depending on the restoring force f, that
is generally nonlinear and history-dependent, the energy E; = E, + E4 includes
both, the potential energy F,(z) and the dissipation energy E4(C) along a path C.
Since for each reversion instant ¢;, where i € Z*, the %(¢;) = 0 is valid, one can
analyze the energy balance of the reversal cycles by using the Ey energies only, i.e.,
setting Fj to zero. Note that several constitutive friction models with hysteresis
(like the Dahl model assumed in the following) does not have the structure which
would allow considering a dissipation rate D > 0 and, thus, following the principles
of thermodynamics. Therefore, a meaningful energy balance can be evaluated only
at the reversal points. Following that, one can show that the total energy dissipated
during one closed cycle C' = (2;, z; 41, Tiy2), where the first and last reversion points
coincide with each other, i.e., z; = x;42, is given by

(24) Ed(C) = fcf[x] dx = Ef(i[,‘i, xi+1) - Ep(xi) - Ef(xlqu, (Ei+2) + Ep(xi+2).
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Given Ey,(x;42) = Ep(x;) for a closed path C of one reversion cycle, the total net
dissipated energy can be calculated as

Tit1 Ti
(2.5) E; = / flz] da + flz] da.
T Tit1
First, let us briefly sketch the situation, where the restoring force would map
a piecewise linear spring, i.e., f = f(x) = kxz(t) on the interval —1 < f(t)/F. < 1,
with a positive stiffness coefficient 0 < k£ < oco. Obviously, the energy due to the
restoring force will have only the potential term, according to the Hooke’s law, and
is then expressed by E, = 0.5kz%. In this case, substituting f(z) into (2.5) and

evaluating the definite integral yield

Tit1 1
2

_ Ti41 Zq 1
(2.6) E, :/ kxdx—i—/ kxdx = §kx2

i i+1

T

The obtained result is intuitively logical, since the linear restoring force is purely
conservative and does not dissipate (or generate) any energy on the closed displace-
ment cycles. This situation is illustrated in the (z, f) plane in Figure 2 by the grey
dot line. Note that once |f(t)/F.| > 1, the f-force saturates at +F, level and, after-
wards, behaves as a constant Coulomb friction term. Recall that such piecewise affine
behavior can be well described by the Prandtl-Ishlinskii stop-type operator [13], as
shown and discussed in [18] in the context of the Coulomb friction.

f

—F,

Figure 2. Energy balanced reversion points in (z, f) plane.

Now, assuming the restoring force is a nonlinear map with memory, i.e., f =
flz] V flz] on the interval —1 < f(t)/F. < 1, where f is an ascending branch for
sign[¢] > 0 and f is a descending branch for sign[4] < 0, one can equally use (2.5) for
calculating the net dissipated energy at one closed reversion cycle. More specifically,
we assume f[z] to be a clockwise rate-independent hysteresis, see, e.g., [7], [3]-[5]
for basics on the hysteresis operators. Under this assumption, one can show the
dissipated energy

(2.7) Ba= [ (- fleh e =2 £0,
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This follows from the fact that for a clockwise hysteresis map, an ascending branch
(in the time interval ¢ € [t;,t;41]) lies always above the descending branch (in the
time interval ¢ € [t;1+1,%;42]), given a pair of the input reversion points z; < ;1.
Such situation is shown in Figure 2 by the black solid line. The corresponding to (2.7)

fcf[x]dx SN

postulates the energy losses at one closed reversion cycle, i.e., Fq(C) = A, which

nonzero path integral

is equal to the area enclosed by a force-displacement loop, cf. Figure 1 (b). We will
denote it by hysteretic energy dissipation and recall that, in general, the amount of
energy dissipated during a cycle is proportional to the area of the enclosed hysteresis
loop [7]. Important to notice is that the corresponding damping of an oscillatory
system is rate-independent, similar to structural hysteresis damping that is common
in material science and structural mechanics. It is also worth emphasizing that A — 0
if (f[xa] —f[xb]) — 0 for all z, = zp on the intervals z; < x, < z;41 and z;41 < xp <
zi+2 of a closed cycle C'. That means, it is the clockwise branching and formation
of hysteresis loops that make the restoring term f|x] dissipative in (2.1). Otherwise,
a continuously increasing nonlinear but memory-free restoring force function f(x)
would lead to zero energy dissipation on the closed reversal cycles.

Now, we are in the position to address energy dissipation and decaying hysteresis
cycles from a viewpoint of the balance equation (2.3) obtained for system (2.1). Note
that in the following, for the sake of simplicity and without loss of generality, we will
consider the unity mass, meaning m = 1.

Changing the variables of integration for the restoring force energy, cf. (2.3), one

can rewrite it as

(2.8) Ef:/:wlf[x] dxz/twlf[x]j:dt.

t;

i

We consider an arbitrary pair of reversion points x; and x;41 as shown in Figure 2.
Here the initial condition for system (2.1) is #(0) < 0; this is without loss of generality.
One can recognize that on the interval [z;, z(), where x¢ is the point of f(zg) = 0,
the integrand f[-]& < 0, since sign(f) # sign(#). On the opposite, the integrand
f[-] > 0 on the interval (zg,x;+1], owing to the relative velocity and the restoring
force having the same sign. That is, after an initial reversal and until zero-crossing
of the restoring force, the restoring power is first negative, which implies the energy
of restoring force is converted into the kinetic one, cf. with (2.3). As a consequence,
system (2.1) accelerates and reaches the peak relative velocity &, (tg) at time ¢y of
the force zero-crossing. The peak relative velocity |&,,| = max |#(¢)| is maximal or
minimal (depending on the direction of the last reversal) on the interval ¢; < ¢ < t;41.
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Subsequently, after force zero-crossing, the restoring power becomes positive during
t € (to,ti+1], meaning the kinetic energy Ej, is continuously converted into E; until
reaching the next reversal with #(¢;11) = 0. Since both reversion points x; and
x;41 are energetically balanced, cf. (2.3), one can see that the corresponding integral
values have the same amount, i.e.,

to tit1
(2.9) flali dt +/ flalidt =0,
ti to
also meaning the equal areas A; = Ao, cf. Figure 2.

Now, let us demonstrate the convergence of such reversion cycles for system (2.1),
provided f[-] is a clockwise hysteresis map. Important to emphasize is that the first
integral in (2.9) constitutes the potential energy which is transferred into the kinetic
one until ¢ = tg. In contrast, the second integral in (2.9) is the superposition of
the potential and dissipation energies, which are transferred from the kinetic energy
until the next reversal at ¢ = ;1. The potential energy part is the recoverable
one when a new reversal occurs. Since the potential energy has its maximum value
at the point of reversion, and the dissipation energy occurs on a way between two

consecutive reversion points, one can state
(2.10) E,(i) = Eq(i) + Ep(i + 1).

Here we are using the argument ¢ € Z* for labeling the reversion points. Realizing
E,4(i) # 0 for all possible hysteresis branches leads to a recursion expansion

Ey(i) = Eq(t) + (Eq(i + 1)+ Ep(i +2)) = Eq(i) + (EqGG+ 1)+ (... (-..) )
N~
Ep(i+1) Ep(i+n)

with n — oco. It means that after each reversal, the amount of potential energy (cf.
A-areas in Figure 2), which can be then converted into kinetic one and thus drives
the oscillator trajectories, becomes smaller and smaller. At the same time, the total
amount of the dissipated energy increases. This leads to the series expansion

(2.11) Ey(i) = Y Euln),

which converges to the potential energy of the initial reversion point, i.e., E,(4).
Note that the initial potential energy is bounded from above by

1
2kmin

(2.12) E,(i) < FZ,
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where ki, is the minimal possible equivalent stiffness of the restoring force f[], cf.
with the case exemplified by (2.6). This implies that the damped hysteresis oscil-
lations of system (2.1) are always amplitude bounded in the (z, %) coordinates. At
the same time, the damping rate and hence the state convergence, i.e., ||(z, )| — 0,
depend strongly on the analytic form of the hysteresis map f[].

In the following, we apply the above developments to discuss in details the
pre-sliding oscillations based on one possible modeling approach of capturing the
Coulomb friction with continuous pre-sliding transitions, namely the Dahl model [10].

3. APPLICATION WITH DAHL MODEL

The original Dahl model in the differential form is given by, cf. [10],

dF(z) —ol1 = Esgn(i)‘vsgn(l - gSgn(i))v

.1
(3.1) dz F, 8

where sgn (i) captures the direction of relative displacement, i.e., the sign of velocity.
The rest stiffness 0 < 0 ~ dF/dx when |F| < F, cf. [6], is a characteristic property
of asperities of the contact surface. The shaping factor v > 0 permits modulation of
the form of displacement-force curves upon the reversion points. Worth mentioning
is that for v = 0, expression (3.1) becomes equivalent to the Prandtl-Ishlinskii stop-
type operator with piecewise linear displacement-force transitions, cf. with [18] and
the example given around (2.6). Also, if allowing for o — oo with v = 0, the Dahl
model (3.1) will reduce to the classical Coulomb one, which has discontinuity at
motion reversals, i.e., F' = F,sgn(&). Since |F(t)] < Fe for all times 0 < ¢t < oo, it
was proven in [6] that (3.1) can be written in a simpler form

(3.2) dFdff) =o(1- %sgn(i))v.

Also recall that for ductile type materials v > 1, cf. [10]. In the sequel, we will
assume vy = 1 to keep our analysis with the associated integral calculus simpler and
well tractable. It is also noteworthy that (3.2) with v = 1 is the most commonly
used realization of the Dahl model, widely used for systems and control studies.
With the assumptions made above, we can rewrite (3.2) and obtain
dF
(3.3) Fca_lﬂ + F(z)sgn(s) = Fe.
dx

The above expression reveals several interesting observations about the Dahl model
behavior. Namely, (i) the frictional force F(z) monotonically approaches the
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Coulomb friction level since |F'| — F.. after reversals, i.e., once the sign of & changes;
(ii) this transient behavior does not depend on the time ¢ but on z and, thus,
represents a rate-independent F'(z) map; (iii) the transition mapping F'(x) does not
explicitly depend on the coordinate of  and is invariant to the location or translation
of the reversion points x;, cf. Section 2; (iv) the convergence shape of |F(z)| — Ft
depends on the ratio o/F, between both frictional parameters of the system.

Solving (3.3) with the initial condition F;(x;) which corresponds to the last rever-
sion point x;, one obtains the restoring force f[-| = F(x, F;(z;)), cf. Section 2, which
represents locally the Dahl model written in the algebraic form

(34)  flz] = sgn(@)(F. — (Fe — sgn(d) F;) exp(—sgn(@)oFy ' (z — ;))).

Since (3.4) captures bidirectional progress of the force-displacement curves, depend-
ing on sgn(), hereinafter we will consider the positive sign of velocity, analogous to
the situation shown in Figure 2 and without loss of generality. Hence, obtaining

(3.5) filal = F. — (F. — F) exp(—%(m — xi))

c

and first solving f[z] = 0 with respect to z, one can determine

Fe Fe
3.6 T -:a:-——ln( ),
( ) 0,1 T o Fc _ F’L
which is the zero-crossing point of the restoring force, provided F; < 0, cf. with
Section 2 and Figure 2.
Now, in order to analyze the energy produced by the restoring force we evaluate
the antiderivative of (3.5) with respect to the initial conditions, and obtain

2 2
(3.7) Ery(z) = /f+[x] dz = F.x + % exp(—%x) - FU—C.
Worth noting is that the above result is consistent with the analysis of the energy
stored by the hysteresis loops of the Dahl model provided in [6]. Recalling that
E;y(z) is defined only on the interval between two consecutive reversion points,
ie., x € [z;,x;41], and using the fact of the balanced energy due to restoring force,
cf. (2.9) and Figure 2, one needs to consider (3.7) before and after zero-crossing point
zo. In addition, for the correct sign of the integrands in the energy balance (2.9)
and, thus, for taking into account the initial conditions of integration (3.7), one has
to assign x; in relation to o, = 0. Out from (3.6), one obtains

(3.8) xi:%ln(FcF_CE) <0
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which satisfies —F, < F; < 0. When evaluating the definite integral of (3.5) with the
set lower limit xy and upper limit x;, one obtains the potential energy as a function
of the restoring force at the reversion point:

(3.9) B, (F;) = F;(ln(FFj) - %)

Note that (3.9) is also equal to the maximal kinetic energy over the interval [t;, ;11],
i.e., during the motion between the reversal points z; and x;;;. Further, we note
that the potential energy is bounded from above, cf. with (2.12), by

F2
max £, = 0.3069-,

since F; € [—F,, F.;]. The potential energy (3.9) is visualized (on the logarithmic
scale) in Figure 3 as a function of the normalized restoring force |F;|/F,. The curves
are shown for the unitless ratio between the rest stiffness and Coulomb friction bound
of the Dahl model, i.e., o/F, € {1,10, 100, 1000}.

10 0
Ep

10~4

108

0 0.2 0.4 0.6 0.8 1.0
|Fz|/Fc

Figure 3. Potential energy Fj (on logarithmic scale) as a function of the normalized restor-
ing force |F;|/Fe at the reversion point ;.

One can recognize a considerable drop in the potential energy; closer to zero is
the reversal state in terms of the restoring force. This serves also as an indication of
how the potential energy and the corresponding hysteresis oscillations will decrease
over the course of reversal cycles.

Once the potential energy (3.9) is known with respect to the last reversal in z;,
we are interested to evaluate the restoring force energy which is balanced by the
kinetic energy Ej(t) = 0.5m?. Recall that the kinetic energy is first continuously
increasing until reaching its maximum value, i.e., with max |Z| at to, cf. Section 2, and

then continuously decreasing until zero velocity, which gives rise to the next reversal
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in x;41. This is reflected in the energy balance of the restoring force, implying
E¢(zit1) = Ex(to) = Ep(F;). One can recognize that in order to determine x;1;
from (3.7), one needs to solve

F? F? . o
(3.10) —Q(z) + Fox — —= = Ey i (x;) with Q(z) = exp(——x)

o o F.
with respect to . The above equation has the unknown variable z both outside and
inside the exponential function {2 and, thus, cannot be solved explicitly. Recall that
a nonexplicit solution of (3.10) would require the multivalued Lambert W-function,
see, e.g., [8] for details. Due to multivaluedness with complex numbers, the Lambert
W-function can hardly serve us to find the unique z;1; € RT. Instead, we are
deriving a suitable linear approximation (2* which is sufficiently close to €2 on the
interval « € [0, z;41]. This should also take into account the parametric ratio o/F
and the last reversal state, which is mapped through F; and affects the energy E,,
cf. (3.9). Requiring 2(0) = Q*(0) = 1 and Q(z;11) = Q*(x4+1), then linearizing the
exponential function in terms of d)/dz, and afterwards analyzing the relationship
to the last reversion point (3.8), we suggest

(3.11) Of(z)=1— I;i exp (0.61n(F01i”Fi))x =1-K(o,F,, F))z.

The exponential term 2 and its linear approximation 2* are shown in Figure 4, for
different parameter ratios U/Fc(a’b’c) = {1,2,8}. Note that the different 2*-slopes,
each one touching the same exponential curve Q(*¢) correspond to different initial
states F; = —F,. x {0.2,0.4,...,1}. Since the Q(z) term is reproduced sufficiently
accurately by Q*(z), and for each following inversion state x;1, we substitute (3.11)
into (3.10) instead of €2, this is explicitly solvable. Following that and solving

F? F?
(3.12) 7"(1 — K(o, F., F;)x) + Fox — 7‘: = Eri(x;) = Ep(Fy)

with respect to the unknown x, one can calculate

313 () = S (- ()

where E,(F;) is determined by (3.9). With this intermediate result, one can directly
evaluate the recovered potential energy in the next reversion point, i.e., E,(i+1), that
is using (3.7) with integration limits z¢ and (3.13). For visualizing the development
of the next reversal, in terms of the corresponding (z;41,Fit1) state, the force-
displacement curves between two reversion points ¢ and ¢+ 1 are depicted in Figure 5,
for the various Coulomb friction coefficients Fr = {1,1.5,2}.
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0.7
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0.4
0 0.2 0.4 0.6 0.8 1.0

Figure 4. Exponential term € (black dash lines) and its linear approximation Q" (colored

solid lines) for different parameter ratios o/ Fc(a’b’c) = {1,2,8} and initial states
Fy = —F.x{02,04,...,1}.

1.5

I+
1.0 —

0.5
0.0
05 -
—10 b -
Ty

—2.0 | | | |
-0.8 —-0.4 0.0 0.4 0.8

Figure 5. Force-displacement curves between two reversion points ¢ and i 4+ 1 for various
Coulomb friction coefficients F. = {1, 1.5,2}.

One can recognize that even though |z;41| > |z;| here, which however depends on
the o/F, parametric ratio, the |F;11/F;| < 1 is always decreasing, thus resulting in
an always valid relationship E,(i + 1) < E, (7).

Now, evaluating the potential energy at the following (i + 1)th reversal, i.e., com-
puting E,(F;+1) for the next recursive step, cf. (2.10), we obtain

(3.14) Ey(i+1) = %Q(m(Fc _F}m) B Fgl)
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One can recognize that (3.14) allows for an explicit recursive form, so that it is always
possible to compute E,(i +n) for all i < n < oo and the given initial state (z;, F;).
Recall that E,(i) — E,(i + 1) = E4(i), which is the dissipated energy between two
consecutive reversals, i.e., on one half of the hysteresis cycle. A decrease of potential
energy E,(i) (on the logarithmic scale) between two consecutive reversals is shown
in Figure 6 for different parametric ratios o/F, € {10,100,1000}.

i i+ 1
reversal

Figure 6. Potential energy Ep(i + n) between two consecutive reversals for different para-
metric ratios o/F. € {10, 100, 1000}.

One can recognize an exponential drop of E, (i) and, thus, an exponential rate of
E4(i +1). Recall that the exponential rate of F4(i + 1) and hence the convergence
of the x state is not in the time series but in the series of consecutive reversals of
a decreasing hysteresis cycle. For a further growing number of reversals n, the energy
dissipation and the corresponding convergence rate will result in a convergence slower
than the exponential, as can be seen from Figure 7.

| | | |
-~ 0/F.=10 —— ¢/F.=100 —— o/F,=1000

(AR “‘ | ‘
HHMrMHwHrwmwmwH\UrNMMHWmelnwwrlnwunmuwmmmmurmmmmm

0 20 40 60 80 100

Figure 7. Time series of the energy magnitude from the numerical simulation of (2.1) with
(3.4) for different parametric ratios o/Fe.
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Here, the total energy of restoring force Ey is evaluated by the integrated power,
cf. (2.8), when numerically simulating the time series of (2.1) with (3.4). The in-
creasing frequency of the hysteresis cycles is visible for an increasing parametric ratio
o/F.. One can also recognize that the envelope of the energy peak points, which are
corresponding to the periodic reversals, has the same principal shape for all o/F,
ratios. Higher o/F, ratios have an inverse biasing effect on the supposedly hyperex-
ponential shape of convergence and provide a faster energy dissipation during some
initial reversal cycles.

4. CONCLUSIONS

We considered the appearance of hysteresis cycles and the associated energy bal-
ance during the pre-sliding transients of kinetic friction. When an unforced second-
order motion system has nonzero initial velocity, the structural hysteresis damping
of contact surface asperities gives rise to largely decreasing nonlinear oscillations
around zero equilibrium. Such behavior occurs alongside the so-called reversal cy-
cles, where some restoring force energy is stored as potential energy but decreases
with each successive reversal state. Supposedly, the associated energy dissipation
and convergence of the state trajectories are neither purely exponential, i.e., viscous
type, nor finite-time, i.e., Coulomb type.

We have analyzed such pre-sliding hysteresis cycles, being inspired by the pervious
related works [6], [1]. We established an energy balance between the potential en-
ergy associated with each pair of two consecutive reversion states and the dissipated
hysteretic energy during the half-cycle. In particular, we demonstrated a recursive
series expansion of dissipated energies for an infinite sequence of reversion points and
showed that this series converges to the upper bounded potential energy of the first
(initial) reversal point. The analysis developed led to expressions for energies and
force-displacement curves that allow application to various hysteresis models. The
class of the suitable force-displacement mapping is limited to the rate-independent
clockwise hysteresis functions.

As an illustrative example, we considered the Dahl model [9] of the solid Coulomb
friction without discontinuities at the velocity zero-crossing. We developed an ex-
plicit approximation for the energies and states of the consecutive reversals, that
allows analyzing the energy dissipation and state trajectories depending on the sys-
tem parameters—the Coulomb friction coefficient and the so-called rest stiffness.
This is also helpful for further convergence analysis and investigation of the motion
stop in presence of Coulomb friction without discontinuity. Our analysis is in line
with the original results demonstrated in [10], while providing an accurate estimation
of the restoring force energy per half-cycle after each force zero-crossing, cf. Fig. 7
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from [10]. The discussed energy dissipation by the Dahl model discloses further its
main features and properties. Only asymptotic convergence of the motion state tra-
jectories is possible with use of the Dahl model, cf. Figure 7. Thus, the corresponding
kinetic energy tends towards zero with time towards infinity. This reveals some of the
model’s weaknesses in relation to a more realistic and physically reasoned behavior
of the pre-sliding kinetic friction.

The results of this study are applicable to other types of kinetic friction modeling
with hysteresis and should contribute to a better understanding and prediction of
the pre-sliding force-displacement properties, and the associated energy dissipation
on the rubbing and slipping contact interfaces.

Open Access. This article is licensed under a Creative Commons Attribu-
tion 4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party ma-
terial in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain per-
mission directly from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/.
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