

Shao-Yuan Huang; Ping-Han Hsieh

Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems

Czechoslovak Mathematical Journal, Vol. 73 (2023), No. 4, 1081–1098

Persistent URL: <http://dml.cz/dmlcz/151948>

Terms of use:

© Institute of Mathematics AS CR, 2023

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* <http://dml.cz>

EXACT MULTIPLICITY AND BIFURCATION CURVES OF
POSITIVE SOLUTIONS OF GENERALIZED LOGISTIC PROBLEMS

SHAO-YUAN HUANG, PING-HAN HSIEH, Taipei

Received August 22, 2022. Published online September 5, 2023.

Abstract. We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems

$$\begin{cases} -[\varphi(u')]' = \lambda u^p \left(1 - \frac{u}{N}\right) & \text{in } (-L, L), \\ u(-L) = u(L) = 0, \end{cases}$$

where $p > 1$, $N > 0$, $\lambda > 0$ is a bifurcation parameter, $L > 0$ is an evolution parameter, and $\varphi(u)$ is either $\varphi(u) = u$ or $\varphi(u) = u/\sqrt{1-u^2}$. We prove that the corresponding bifurcation curve is \subset -shape. Thus, the exact multiplicity of positive solutions can be obtained.

Keywords: positive solution; bifurcation curve; Minkowski-curvature problem, logistic problem

MSC 2020: 34B15, 34B18, 34C23, 74G35

1. INTRODUCTION

In this paper, we study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems

$$(1.1) \quad \begin{cases} -[\varphi(u')]' = \lambda u^p \left(1 - \frac{u}{N}\right) & \text{in } (-L, L), \\ u(-L) = u(L) = 0, \end{cases}$$

where $p > 1$, u is the population density, $N > 0$ is the carrying capacity of the environment, $\lambda > 0$ is a bifurcation parameter and the intrinsic growth rate, $L > 0$ is an evolution parameter, and either $\varphi(u) = u$ or $\varphi(u) = u/\sqrt{1-u^2}$. Let

$$f(u) \equiv u^p \left(1 - \frac{u}{N}\right).$$

Notice that $g(u) = f(u)/u$ satisfies that $g(0) = 0$, $g'(u) > 0$ on $(0, pN/(p+1))$, $g'(u) < 0$ on $(pN/(p+1), N)$, $g(N) = 0$ and $g(u) < 0$ on (N, ∞) . Thus, we also say that problem (1.1) has *weak Allee effect type*, cf. [9].

Assume that $\varphi(u) = u$. The solutions of (1.1) are the steady state solutions of a reaction-diffusion population model in one space dimension. A typical form of reaction-diffusion population model equation is

$$\frac{\partial}{\partial t}u = d\Delta u + f(u),$$

where $u(x, t)$ is the population density, $d > 0$ is the diffusion constant and $f(u)/u$ is the growth rate per capita. We refer to the work of McCabe, Leach and Needham (see [14]), Shi and Shivaji (see [15]), Wang and Kot (see [18]), and Xin (see [19]) and the references therein. For $L > 0$, we define the bifurcation curve \bar{S}_L of (1.1) on the $(\lambda, \|u\|_\infty)$ -plane by

$$\bar{S}_L \equiv \{(\lambda, \|u_\lambda\|_\infty) : \lambda > 0 \text{ and } u_\lambda \text{ is a positive solution of (1.1) with } \varphi(u) = u\}.$$

Assume that $\varphi(u) = u/\sqrt{1-u^2}$. Problem (1.1) plays an important role in certain fundamental issues in differential geometry and in the special theory of relativity, see for example [3], [5]. We refer the readers, for motivations and results, to [1], [7], [8], [9], [10] and the references cited therein. For any $L > 0$, we define the bifurcation curve \hat{S}_L of (1.1) on the $(\lambda, \|u\|_\infty)$ -plane by

$$\begin{aligned} \hat{S}_L = \{(\lambda, \|u_\lambda\|_\infty) : \lambda > 0 \text{ and } u_\lambda \in C^2(-L, L) \cap C[-L, L] \\ \text{is a positive solution of (1.1) with } \varphi(u) = u/\sqrt{1-u^2}\}. \end{aligned}$$

Next, we give some terminologies related to the shapes of bifurcation curves \bar{S}_L on the $(\lambda, \|u\|_\infty)$ -plane (while similar terminologies for \hat{S}_L also hold).

- ▷ Monotone increasing (see Figure 1 (i)): We say that, on the $(\lambda, \|u\|_\infty)$ -plane, the bifurcation curve \bar{S}_L is strictly increasing if \bar{S}_L consists of a continuous curve and for each pair of points $(\lambda_1, \|u_{\lambda_1}\|_\infty)$ and $(\lambda_2, \|u_{\lambda_2}\|_\infty)$ of \bar{S}_L , $\|u_{\lambda_1}\|_\infty < \|u_{\lambda_2}\|_\infty$ implies $\lambda_1 \leq \lambda_2$.
- ▷ \subset -shaped (see Figure 1 (ii)): We say that, on the $(\lambda, \|u\|_\infty)$ -plane, the bifurcation curve \bar{S}_L is \subset -shaped if \bar{S}_L consists of a continuous curve with exactly one turning point, say $(\lambda^*, \|u_{\lambda^*}\|_\infty)$, and
 - (i) at $(\lambda^*, \|u_{\lambda^*}\|_\infty)$ the bifurcation diagram \bar{S}_L turns to the right,
 - (ii) \bar{S}_L initially continues to the left and eventually continues to the right.
- ▷ S-shaped (see Figure 1 (iii)): We say that, on the $(\lambda, \|u\|_\infty)$ -plane, the bifurcation curve \bar{S}_L is S-shaped if \bar{S}_L has *exactly two turning* points at some points $(\lambda^*, \|u_{\lambda^*}\|_\infty)$ and $(\lambda_*, \|u_{\lambda_*}\|_\infty)$, where $\lambda_* < \lambda^*$ are two positive numbers such that

- (i) $\|u_{\lambda^*}\|_\infty < \|u_{\lambda_*}\|_\infty$,
- (ii) at $(\lambda^*, \|u_{\lambda^*}\|_\infty)$ the bifurcation curve \bar{S}_L turns to the left,
- (iii) at $(\lambda_*, \|u_{\lambda_*}\|_\infty)$ the bifurcation curve \bar{S}_L turns to the right.

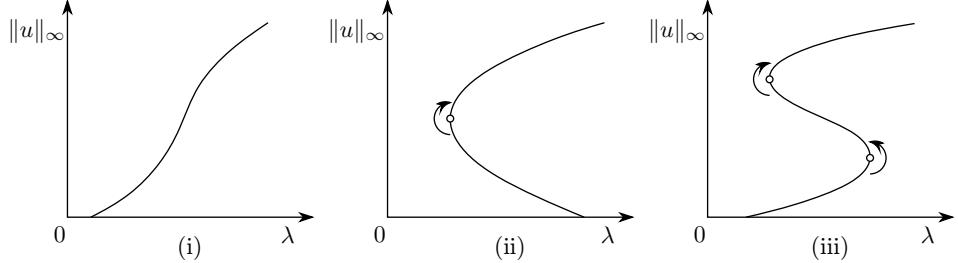


Figure 1. (i) Monotone increasing, (ii) \subset -shaped, (iii) S-shaped.

In 1838, Verhulst proposed in [17] to study the logistic equation

$$(1.2) \quad \frac{du}{dt} = \lambda u \left(1 - \frac{u}{N}\right),$$

where u is the population density, λ is the intrinsic growth rate, and N is the carrying capacity of the environment. Obviously, every nontrivial solution of (1.2) converges monotonically to N as $t \rightarrow \infty$. Chafee and Infante in [2] studied the one-dimensional diffusive generalized logistic problem

$$(1.3) \quad \begin{cases} -u'' = \lambda u(1 - u^q) & \text{in } (-1, 1), \\ u(-1) = u(1) = 0, \end{cases}$$

where $q > 0$, and they showed the global existence of positive solutions. Then Guedda and Veron in [6] extended the results of (1.3) to the problem

$$(1.4) \quad \begin{cases} -(\|u_x\|^{p-1}u_x)_x = \lambda u^p(1 - u^q) & \text{in } (-1, 1), \\ u(-1) = u(1) = 0, \end{cases}$$

where $p, q > 0$. Then Takeuchi and Yamada in Theorem 3.3 of [16] obtained complete information on the global bifurcation structure of positive solutions of (1.4).

Hung and Wang in Theorem 2.1 of [12] studied the semilinear problem

$$(1.5) \quad \begin{cases} -u'' = \lambda(-au^3 + bu^2 + cu + d) & \text{in } (-L, L), \\ u(-L) = u(L) = 0, \end{cases}$$

where $a, b, d > 0$ and $c \geq 0$. They proved that there exists $a_0 > 0$ such that the corresponding bifurcation curve of (1.5) is S-shaped for $0 < a < a_0$ and monotone increas-

ing for $a \geq a_0$. Huang in Theorem 3.2 of [9] studied the Minkowski-curvature problem

$$(1.6) \quad \begin{cases} -\left(\frac{u'}{\sqrt{1-u'^2}}\right)' = \lambda(-au^3 + bu^2 + cu + d) & \text{in } (-L, L), \\ u(-L) = u(L) = 0, \end{cases}$$

where $a, b, d > 0$ and $c \geq 0$. He proved that

- (i) if $a \geq a_0$, then the corresponding bifurcation curve of (1.6) is monotone increasing for all $L > 0$, and
- (ii) if $0 \leq a < a_0$, then there exists $L_0 > 0$ such that the corresponding bifurcation curve of (1.6) is monotone increasing for $0 < L \leq L_0$ and S-like shape for $L > L_0$.

In this paper, the nonlinearity of (1.1) is a certain polynomial with a higher degree and without a constant term. As a comparison, the bifurcation curves of problems (1.5) and (1.6) are either monotone increasing or S-shaped but the bifurcation curve of problem (1.1) is \subset -shaped.

The paper is organized as follows. Section 2 contains statements of the main results. Section 3 contains several lemmas needed to prove the main results. Section 4 contains the proofs of the main results.

2. MAIN RESULTS

In this section, we present the shapes of bifurcation curve \bar{S}_L of (1.1) with $\varphi(u) = u$, see Theorem 2.1, and the shapes of bifurcation curve \hat{S}_L of (1.1) with $\varphi(u) = u/\sqrt{1-u^2}$, see Theorem 2.2.

Theorem 2.1 (see Figure 2 (i)). *Consider (1.1) with $\varphi(u) = u$. Then the following statements hold:*

- (i) *The bifurcation curve \bar{S}_L is \subset -shaped on the plane $(\lambda, \|u\|_\infty)$, starts from $(\infty, 0)$ and goes to (∞, N) for $L > 0$.*
- (ii) *For $L > 0$, there exists $\bar{\lambda}_L > 0$ such that (1.1) has no positive solutions for $0 < \lambda < \bar{\lambda}_L$, exactly one positive solution \bar{u}_L for $\lambda = \bar{\lambda}_L$ and exactly two positive solutions for $\lambda > \bar{\lambda}_L$. Furthermore,*
 - (a) *$\bar{\lambda}_L$ is a continuous and strictly decreasing function with respect to $L > 0$.*
 - (b) *$\kappa \equiv \|\bar{u}_L\|_\infty$ is a constant for $L > 0$.*
 - (c)
$$\lim_{L \rightarrow 0^+} (\bar{\lambda}_L, \|\bar{u}_L\|_\infty) = (\infty, \kappa) \quad \text{and} \quad \lim_{L \rightarrow \infty} (\bar{\lambda}_L, \|\bar{u}_L\|_\infty) = (0, \kappa).$$

Theorem 2.2 (see Figure 2 (ii)). *Consider (1.1) with $\varphi(u) = u/\sqrt{1-u^2}$. Then the following statements hold:*

- (i) *The bifurcation curve \hat{S}_L is \subset -shaped on the plane $(\lambda, \|u\|_\infty)$, starts from $(\infty, 0)$ and goes to $(\infty, \min\{N, L\})$ for $L > 0$.*

(ii) For $L > 0$, there exists $\hat{\lambda}_L > 0$ such that (1.1) has no positive solutions for $0 < \lambda < \hat{\lambda}_L$, exactly one positive solution \hat{u}_L for $\lambda = \hat{\lambda}_L$ and exactly two positive solutions for $\lambda > \hat{\lambda}_L$. Furthermore,

- $\hat{\lambda}_L$ is a continuous and strictly decreasing function with respect to $L > 0$.
- $\|\hat{u}_L\|_\infty$ is a continuous function with respect to $L > 0$. In addition, when $1 < p \leq 4$, $\|\hat{u}_L\|_\infty$ is strictly increasing with respect to $L > 0$.
- Let κ be defined in Theorem 2.1. Then

$$\lim_{L \rightarrow 0^+} (\hat{\lambda}_L, \|\hat{u}_L\|_\infty) = (\infty, 0) \quad \text{and} \quad \lim_{L \rightarrow \infty} (\hat{\lambda}_L, \|\hat{u}_L\|_\infty) = (0, \kappa).$$

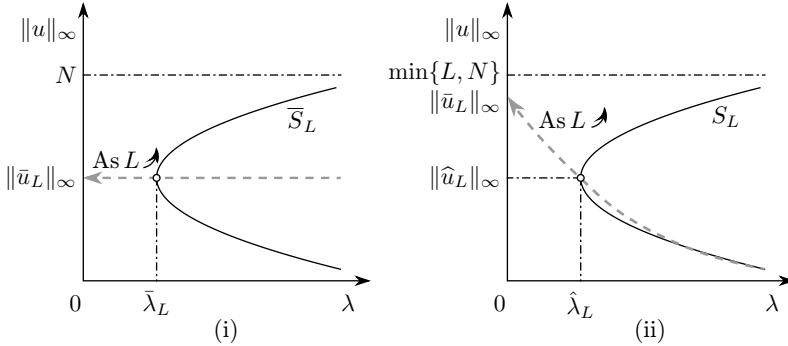


Figure 2. (i) The graph of bifurcation curve \bar{S}_L of (1.1) with $\varphi(u) = u$ and the grey dashed line is the orbit of $(\bar{\lambda}_L, \|\bar{u}_L\|_\infty)$ for $L > 0$. (ii) The graph of bifurcation curve \hat{S}_L of (1.1) with $\varphi(u) = u/\sqrt{1-u^2}$ and the grey dashed line is the orbit of $(\hat{\lambda}_L, \|\hat{u}_L\|_\infty)$ for $L > 0$.

Remark 2.1. In Theorem 2.2(ii)(b), by numerical simulations, we conjecture that $\|\hat{u}_L\|_\infty$ is strictly increasing with respect to $L > 0$ for all $p > 4$. Further investigation is needed.

3. LEMMAS

To prove Theorems 2.1 and 2.2, we first introduce the time-map method used in [13] and [4], page 127. We define the time-map formula for (1.1) with $\varphi(u) = u$ by

$$(3.1) \quad \bar{T}_L(\alpha) \equiv \frac{1}{L} \int_0^\alpha \frac{1}{\sqrt{F(\alpha) - F(u)}} du \quad \text{for } 0 < \alpha < N,$$

and the time-map formula for (1.1) with $\varphi(u) = u/\sqrt{1-u^2}$ by

$$(3.2) \quad \hat{T}_\lambda(\alpha) \equiv \int_0^\alpha \frac{\lambda[F(\alpha) - F(u)] + 1}{\sqrt{\{\lambda[F(\alpha) - F(u)] + 1\}^2 - 1}} du \quad \text{for } 0 < \alpha < N \text{ and } \lambda > 0,$$

where $F(u) \equiv \int_0^u f(t) dt$. Observe that positive solutions $u_\lambda \in C^2(-L, L) \cap C[-L, L]$ for (1.1) with $\varphi(u) = u$ correspond to

$$(3.3) \quad \|u_\lambda\|_\infty = \alpha \quad \text{and} \quad \bar{T}_L(\alpha) = \sqrt{\lambda},$$

and positive solutions $u_\lambda \in C^2(-L, L) \cap C[-L, L]$ for (1.1) with $\varphi(u) = u/\sqrt{1-u^2}$ correspond to

$$\|u_\lambda\|_\infty = \alpha \quad \text{and} \quad \hat{T}_\lambda(\alpha) = L.$$

So by definitions of \bar{S}_L and \hat{S}_L , we have that

$$(3.4) \quad \bar{S}_L = \{(\lambda, \alpha) : \bar{T}_L(\alpha) = \sqrt{\lambda} \text{ for some } \alpha \in (0, N) \text{ and } \lambda > 0\}$$

and

$$\hat{S}_L = \{(\lambda, \alpha) : \hat{T}_\lambda(\alpha) = L \text{ for some } \alpha \in (0, N) \text{ and } \lambda > 0\}.$$

Thus, it is important to understand fundamental properties of the time-maps $\bar{T}_L(\alpha)$ and $\hat{T}_\lambda(\alpha)$ on $(0, N)$ in order to study the shapes of the bifurcation curves \bar{S}_L and \hat{S}_L of (1.1) for any fixed $L > 0$. Note that it can be proved that $\bar{T}_L(\alpha)$ and $\hat{T}_\lambda(\alpha)$ are twice continuously differentiable functions of $\alpha \in (0, N)$ and $\lambda > 0$. The proofs are easy but tedious and hence we omit them.

Lemma 3.1. Consider (1.1). Then the following statements hold:

- (i) $\lim_{\alpha \rightarrow 0^+} \bar{T}_L(\alpha) = \lim_{\alpha \rightarrow N^-} \bar{T}_L(\alpha) = \infty$ for $L > 0$.
- (ii) For $L > 0$, there exists $\bar{\alpha} \in (0, N)$, independent of L , such that

$$(3.5) \quad \bar{T}'_L(\alpha) \begin{cases} < 0 & \text{for } 0 < \alpha < \bar{\alpha}, \\ = 0 & \text{for } \alpha = \bar{\alpha}, \\ > 0 & \text{for } \bar{\alpha} < \alpha < N. \end{cases}$$

Furthermore, $\bar{T}_L(\bar{\alpha})$ is a continuous and strictly decreasing function with respect to $L > 0$,

$$\lim_{L \rightarrow 0^+} \bar{T}_L(\bar{\alpha}) = \infty \quad \text{and} \quad \lim_{L \rightarrow \infty} \bar{T}_L(\bar{\alpha}) = 0.$$

P r o o f. (i) We let

$$(3.6) \quad T(\alpha) \equiv L \bar{T}_L(\alpha) = \int_0^\alpha \frac{1}{\sqrt{F(\alpha) - F(u)}} du \quad \text{for } 0 < \alpha < N.$$

Clearly, $T(\alpha)$ is independent of L . By [13], Theorems 2.6 and 2.9 we have

$$(3.7) \quad \lim_{\alpha \rightarrow 0^+} T(\alpha) = \lim_{\alpha \rightarrow N^-} T(\alpha) = \infty.$$

So statement (i) holds by (3.6).

(ii) By (3.6), we compute

$$(3.8) \quad T'(\alpha) = \frac{1}{2\sqrt{2}\alpha} \int_0^\alpha \frac{2B - A}{B^{3/2}} dt \quad \text{and} \quad T''(\alpha) = \frac{1}{4\sqrt{2}\alpha^2} \int_0^\alpha \frac{3A^2 - 4AB - 2BC}{B^{5/2}} du,$$

where

$$(3.9) \quad A \equiv \alpha f(\alpha) - u f(u), \quad B \equiv F(\alpha) - F(u), \quad C \equiv \alpha^2 f'(\alpha) - u^2 f'(u),$$

cf. [11], (14) and (16). Let $X = \alpha^{p+1} - u^{p+1}$ and $Y = \alpha^{p+2} - u^{p+2}$. Clearly, $X > 0$ and $Y > 0$ for $0 < u < \alpha$. Then it is easy to see that

$$(3.10) \quad A = X - \frac{Y}{N}, \quad B = \frac{X}{p+1} - \frac{Y}{(p+2)N} \quad \text{and} \quad C = pX - \frac{(p+1)Y}{N}.$$

Since $p > 1$, we see that

$$(3.11) \quad p(p+1) = (p+2)(p-1) + 2 > (p+2)(p-1).$$

Since $p > 1$, and by (3.10) and (3.11), we observe that for $0 < u < \alpha$,

$$(3.12) \quad \begin{aligned} 3A^2 - 4AB - 2BC &= \frac{(p+2)(p-1)N^2X^2 - 2(p+2)(p-1)NXY + p(p+1)Y^2}{(p+2)(p+1)N^2} \\ &> \frac{(p+2)(p-1)N^2X^2 - 2(p+2)(p-1)NXY + (p+2)(p-1)Y^2}{(p+2)(p+1)N^2} \\ &= \frac{(p-1)(NX - Y)^2}{(p+1)N^2} \geq 0. \end{aligned}$$

So by (3.8), we see that $T''(\alpha) > 0$ for $0 < \alpha < N$. Then by (3.7), there exists $\bar{\alpha} \in (0, N)$, independent of L , such that

$$T'(\alpha) \begin{cases} < 0 & \text{for } 0 < \alpha < \bar{\alpha}, \\ = 0 & \text{for } \alpha = \bar{\alpha}, \\ > 0 & \text{for } \bar{\alpha} < \alpha < N. \end{cases}$$

So by (3.6), (3.5) holds. Since $T(\bar{\alpha})$ is independent on L , we see that $\bar{T}_L(\bar{\alpha}) = T(\bar{\alpha})/L$ is a continuous and strictly decreasing function with respect to $L > 0$,

$$\lim_{L \rightarrow 0^+} \bar{T}_L(\bar{\alpha}) = \lim_{L \rightarrow 0^+} \frac{T(\bar{\alpha})}{L} = \infty \quad \text{and} \quad \lim_{L \rightarrow \infty} \bar{T}_L(\bar{\alpha}) = \lim_{L \rightarrow \infty} \frac{T(\bar{\alpha})}{L} = 0.$$

The proof is complete. \square

Lemma 3.2. Consider (1.1). Then the following statements hold:

- (i) $\lim_{\alpha \rightarrow 0^+} \widehat{T}_\lambda(\alpha) = \lim_{\alpha \rightarrow N^-} \widehat{T}_\lambda(\alpha) = \infty$.
- (ii) For $\lambda > 0$, there exists $\alpha_\lambda \in (0, N)$ such that

$$(3.13) \quad \widehat{T}'_\lambda(\alpha) \begin{cases} < 0 & \text{for } 0 < \alpha < \alpha_\lambda, \\ = 0 & \text{for } \alpha = \alpha_\lambda, \\ > 0 & \text{for } \alpha_\lambda < \alpha < N, \end{cases} \quad \text{and} \quad \widehat{T}''_\lambda(\alpha_\lambda) > 0.$$

Proof. (i) Since

$$(3.14) \quad \lim_{u \rightarrow 0^+} \frac{F(u)}{u^2} = \lim_{u \rightarrow 0^+} \frac{f(u)}{2u} = \lim_{u \rightarrow 0^+} \frac{u^{p-1}}{2} \left(1 - \frac{u}{N}\right) = 0,$$

and by [9], Lemmas 4.1 and 4.2 we see that $\lim_{\alpha \rightarrow 0^+} \widehat{T}_\lambda(\alpha) = \lim_{\alpha \rightarrow N^-} \widehat{T}_\lambda(\alpha) = \infty$. Thus, statement (i) holds.

(ii) We compute

$$(3.15) \quad \widehat{T}'_\lambda(\alpha) = \frac{1}{\alpha} \int_0^\alpha \frac{\lambda^3 B^3 + 3\lambda^2 B^2 + \lambda[2B - A]}{(\lambda^2 B^2 + 2\lambda B)^{3/2}} \, du$$

and

$$(3.16) \quad \widehat{T}''_\lambda(\alpha) = \frac{1}{\alpha^2} \int_0^\alpha \frac{\lambda^3 B(3A^2 - 2AB - BC) + \lambda(3A^2 - 4AB - 2BC)}{(\lambda^2 B^2 + 2\lambda B)^{5/2}} \, du,$$

where A , B and C are defined by (3.9). Since $f(u) > 0$ on $(0, N)$, we see that

$$(3.17) \quad B = \int_u^\alpha f(t) \, dt > 0 \quad \text{for } 0 < u < \alpha \text{ and } 0 < \alpha < N.$$

Clearly,

$$(3.18) \quad (2p+3)(p+1) = (p+2)(2p+1) + 1 > (p+2)(2p+1).$$

By (3.10) and (3.18), we observe that for $0 < u < \alpha$,

$$\begin{aligned} (3.19) \quad & 3A^2 - 2AB - BC \\ &= \frac{(p+2)(2p+1)N^2 X^2 - 2(p+2)(2p+1)NXY + (2p+3)(p+1)Y^2}{(p+2)(p+1)N^2} \\ &> \frac{(p+2)(2p+1)N^2 X^2 - 2(p+2)(2p+1)NXY + (p+2)(2p+1)Y^2}{(p+2)(p+1)N^2} \\ &= \frac{(2p+1)(NX - Y)^2}{(p+1)N^2} \geq 0. \end{aligned}$$

By (3.12), (3.16), (3.17) and (3.19), we obtain that $\widehat{T}''_\lambda(\alpha) > 0$ for $0 < \alpha < N$ and $\lambda > 0$. Then by statement (i), there exists $\alpha_\lambda \in (0, N)$ such that (3.13) holds. The proof is complete. \square

Lemma 3.3. Consider (1.1). Let α_λ be defined in Lemma 3.2. Then

$$(3.20) \quad 0 < \alpha_\lambda < \frac{(p+3)(p-1)N}{p(p+2)} \quad \text{for } \lambda > 0.$$

Proof. We compute and find that

$$(3.21) \quad [2B - A]_{u=0} = 2F(\alpha) - \alpha f(\alpha) = \frac{p\alpha^{p+1}}{N(p+2)} \left[\alpha - \frac{(p-1)(p+2)N}{p(p+1)} \right]$$

and

$$(3.22) \quad \frac{\partial}{\partial u} [2B - A] = \frac{pu^p}{N} \left[\frac{(p-1)N}{p} - u \right] \begin{cases} > 0 & \text{for } 0 < u < \frac{(p-1)N}{p}, \\ = 0 & \text{for } u = \frac{(p-1)N}{p}, \\ < 0 & \text{for } u > \frac{(p-1)N}{p}. \end{cases}$$

In addition, it is easy to observe that

$$(3.23) \quad \frac{(p-1)N}{p} < \frac{(p+3)(p-1)N}{p(p+2)} < \frac{(p-1)(p+2)N}{p(p+1)}.$$

Since $[2B - A]_{u=\alpha} = 0$, and by (3.21)–(3.23), we obtain that

$$2B - A > 0 \quad \text{for } 0 < u < \alpha \text{ and } \alpha \geq \frac{(p-1)(p+2)N}{p(p+1)}.$$

So by (3.15) and (3.17),

$$(3.24) \quad \widehat{T}'_\lambda(\alpha) > 0 \quad \text{for } \alpha \geq \frac{(p-1)(p+2)N}{p(p+1)} \text{ and } \lambda > 0.$$

Next, we assume that

$$(3.25) \quad \frac{(p+3)(p-1)N}{p(p+2)} \leq \alpha < \frac{(p-1)(p+2)N}{p(p+1)}.$$

Since $[2B - A]_{u=\alpha} = 0$, and by (3.21)–(3.23), there exists $\varepsilon_\alpha \in (0, \alpha)$ such that

$$(3.26) \quad 2B - A \begin{cases} < 0 & \text{for } 0 < u < \varepsilon_\alpha, \\ = 0 & \text{for } u = \varepsilon_\alpha, \\ > 0 & \text{for } \varepsilon_\alpha < u < \alpha. \end{cases}$$

For the sake of convenience, let $B(\alpha, u) = B$. By (3.15), (3.17), (3.25) and (3.26), we observe that

$$\begin{aligned}
\widehat{T}'_\lambda(\alpha) &\geq \frac{\lambda}{\alpha} \int_0^\alpha \frac{2B - A}{(\lambda^2 B^2 + 2\lambda B)^{3/2}} du \\
&= \frac{\lambda}{\alpha} \left[\int_0^{\varepsilon_\alpha} \frac{2B - A}{(\lambda^2 B^2 + 2\lambda B)^{3/2}} du + \int_{\varepsilon_\alpha}^\alpha \frac{2B - A}{(\lambda^2 B^2 + 2\lambda B)^{3/2}} du \right] \\
&> \frac{\lambda}{\alpha} \left[\int_0^{\varepsilon_\alpha} \frac{2B - A}{[\lambda^2 B^2(\alpha, \varepsilon_\alpha) + 2\lambda B(\alpha, \varepsilon_\alpha)]^{3/2}} du \right. \\
&\quad \left. + \int_{\varepsilon_\alpha}^\alpha \frac{2B - A}{[\lambda^2 B^2(\alpha, \varepsilon_\alpha) + 2\lambda B(\alpha, \varepsilon_\alpha)]^{3/2}} du \right] \\
&= \frac{\lambda}{\alpha[\lambda^2 B^2(\alpha, \varepsilon_\alpha) + 2\lambda B(\alpha, \varepsilon_\alpha)]^{3/2}} \int_0^\alpha (2B - A) du \\
&= \frac{\lambda}{\alpha[\lambda^2 B^2(\alpha, \varepsilon_\alpha) + 2\lambda B(\alpha, \varepsilon_\alpha)]^{3/2}} \frac{p\alpha^{p+2}}{N(p+3)} \left[\alpha - \frac{(p+3)(p-1)N}{p(p+2)} \right] \geq 0.
\end{aligned}$$

So by (3.24), we have

$$\widehat{T}'_\lambda(\alpha) > 0 \quad \text{for } \alpha \geq \frac{(p+3)(p-1)N}{p(p+2)} \text{ and } \lambda > 0.$$

It follows that (3.20) holds because $\widehat{T}'_\lambda(\alpha_\lambda) = 0$ for $\lambda > 0$. The proof is complete. \square

Lemma 3.4. Consider (1.1). Then

$$(3.27) \quad \frac{\partial}{\partial \lambda} [\sqrt{\lambda} \widehat{T}'_\lambda(\alpha)] = \sqrt{\lambda} \frac{\partial}{\partial \lambda} \widehat{T}'_\lambda(\alpha) + \frac{1}{2\sqrt{\lambda}} \widehat{T}'_\lambda(\alpha) > 0 \quad \text{for } 0 < \alpha \leq \frac{(p+3)N}{p+4} \text{ and } \lambda > 0.$$

Furthermore, $\alpha_\lambda < (p+3)N/(p+4)$ for sufficiently large $\lambda > 0$.

P r o o f. We compute

$$(3.28) \quad \frac{\partial}{\partial u} (A + 2B) = \frac{(p+4)u^p}{N} \left[u - \frac{(p+3)N}{p+4} \right] < 0 \quad \text{for } 0 < u < \alpha \leq \frac{(p+3)N}{p+4}.$$

Since $(A + 2B)_{u=\alpha} = 0$ and by (3.28), we see that

$$(3.29) \quad A + 2B > 0 \quad \text{for } 0 < u < \alpha \leq \frac{(p+3)N}{p+4}.$$

By (3.17) and (3.29), we further see that

$$\begin{aligned}
\frac{\partial}{\partial \lambda} [\sqrt{\lambda} \widehat{T}'_\lambda(\alpha)] &= \sqrt{\lambda} \frac{\partial}{\partial \lambda} \widehat{T}'_\lambda(\alpha) + \frac{1}{2\sqrt{\lambda}} \widehat{T}'_\lambda(\alpha) \\
&= \frac{1}{2\alpha\sqrt{\lambda}} \int_0^\alpha \frac{\lambda^3 B^2 (B^3 \lambda^2 + 5B^2 \lambda + 3A + 6B)}{(\lambda^2 B^2 + 2\lambda B)^{5/2}} du \\
&> 0 \quad \text{for } 0 < \alpha \leq \frac{(p+3)N}{p+4}.
\end{aligned}$$

It implies that (3.27) holds. By (3.15), we compute

$$\lim_{\lambda \rightarrow \infty} \widehat{T}'_\lambda \left(\frac{(p+3)N}{p+4} \right) = 1.$$

So by (3.27), there exists $\lambda_1 > 0$ such that

$$\widehat{T}'_\lambda \left(\frac{(p+3)N}{p+4} \right) > 0 \quad \text{for } \lambda \geq \lambda_1.$$

It follows that

$$\alpha_\lambda < \frac{(p+3)N}{p+4} \quad \text{for } \lambda \geq \lambda_1$$

by Lemma 3.2 (ii). The proof is complete. \square

Lemma 3.5. Consider (1.1). Let $\bar{\alpha}$ and α_λ be defined in Lemmas 3.1 and 3.2, respectively. Then the following statements hold:

- (i) α_λ is a continuously differentiable function with respect to $\lambda > 0$.
- (ii) $\widehat{T}_\lambda(\alpha_\lambda)$ is a continuous and strictly decreasing function with respect to $\lambda > 0$.

Moreover,

$$0 = \lim_{\lambda \rightarrow \infty} \widehat{T}_\lambda(\alpha_\lambda) < \lim_{\lambda \rightarrow 0^+} \widehat{T}_\lambda(\alpha_\lambda) = \infty.$$

$$(iii) \quad 0 = \lim_{\lambda \rightarrow \infty} \alpha_\lambda < \lim_{\lambda \rightarrow 0^+} \alpha_\lambda = \bar{\alpha}.$$

$$(iv) \quad \text{If } 1 < p \leq 4, \text{ then } \alpha_\lambda \text{ is strictly decreasing for } \lambda > 0.$$

Proof. We divide this proof into the next five steps.

Step 1: We prove statement (i). Statement (i) follows immediately from Lemma 3.2 (ii) and the implicit function theorem.

Step 2: We prove statement (ii). By statement (i), it is easy to see that $\widehat{T}_\lambda(\alpha_\lambda)$ is a continuously differentiable function with respect to $\lambda > 0$. By (3.17), we compute and find that

$$(3.30) \quad \frac{\partial}{\partial \lambda} \widehat{T}_\lambda(\alpha) = \int_0^\alpha \frac{-B}{(\lambda^2 B^2 + 2\lambda B)^{3/2}} \, du < 0 \quad \text{for } 0 < \alpha < N \text{ and } \lambda > 0.$$

Since $\widehat{T}'_\lambda(\alpha_\lambda) = 0$ for $\lambda > 0$, and by (3.30), we see that

$$\frac{\partial}{\partial \lambda} \widehat{T}_\lambda(\alpha_\lambda) = \frac{\partial}{\partial \lambda} \widehat{T}_\lambda(\alpha) \Big|_{\alpha=\alpha_\lambda} + \widehat{T}'_\lambda(\alpha_\lambda) \frac{\partial \alpha_\lambda}{\partial \lambda} = \frac{\partial}{\partial \lambda} \widehat{T}_\lambda(\alpha) \Big|_{\alpha=\alpha_\lambda} < 0 \quad \text{for } \lambda > 0.$$

It implies that $\widehat{T}_\lambda(\alpha_\lambda)$ is strictly decreasing for $\lambda > 0$. By Lemma 3.2 (ii), we have $\widehat{T}_\lambda(\alpha) \geq \widehat{T}_\lambda(\alpha_\lambda)$ for $0 < \alpha < N$ and $\lambda > 0$. Then by (3.2), we observe that

$$0 \leq \lim_{\lambda \rightarrow \infty} \widehat{T}_\lambda(\alpha_\lambda) \leq \lim_{\lambda \rightarrow \infty} \widehat{T}_\lambda(\alpha) = \alpha \quad \text{for } 0 < \alpha < N.$$

Since α is arbitrary, we obtain $\lim_{\lambda \rightarrow \infty} \widehat{T}_\lambda(\alpha_\lambda) = 0$. In addition, by Lemma 3.3, there exists a convergent subsequence of $\{\alpha_\lambda\}$. We assume without loss of generality that

$$\lim_{\lambda \rightarrow 0^+} \alpha_\lambda = \eta \in \left[0, \frac{(p+3)(p-1)N}{p(p+2)} \right].$$

If $\eta > 0$, then by (3.2),

$$\lim_{\lambda \rightarrow 0^+} \widehat{T}_\lambda(\alpha_\lambda) = \lim_{\lambda \rightarrow 0^+} \widehat{T}_\lambda(\eta) = \lim_{\lambda \rightarrow 0^+} \int_0^\eta \frac{\lambda B + 1}{\sqrt{\lambda^2 B^2 + 2\lambda B}} du = \infty.$$

Notice that by (3.2)

$$(3.31) \quad \lim_{\lambda \rightarrow 0^+} \sqrt{\lambda} \widehat{T}_\lambda(\alpha) = \lim_{\lambda \rightarrow 0^+} \int_0^\alpha \frac{\lambda B + 1}{\sqrt{\lambda B^2 + 2B}} du = \frac{1}{\sqrt{2}} T(\alpha).$$

If $\eta = 0$, then by (3.6), (3.7) and (3.31),

$$\lim_{\lambda \rightarrow 0^+} \sqrt{\lambda} \widehat{T}_\lambda(\alpha_\lambda) = \lim_{\lambda \rightarrow 0^+} \frac{1}{\sqrt{2}} T(\alpha_\lambda) = \lim_{\alpha \rightarrow 0^+} \frac{1}{\sqrt{2}} T(\alpha) = \infty,$$

which implies that $\lim_{\lambda \rightarrow 0^+} \widehat{T}_\lambda(\alpha_\lambda) = \infty$. Thus, statement (ii) holds.

Step 3: We prove that α_λ is strictly decreasing for sufficiently large $\lambda > 0$. Since $\widehat{T}'_\lambda(\alpha_\lambda) = 0$ for $\lambda > 0$, and by Lemma 3.4, we observe that

$$(3.32) \quad \begin{aligned} 0 &< \sqrt{\lambda} \left[\frac{\partial}{\partial \lambda} \widehat{T}'_\lambda(\alpha) \right]_{\alpha=\alpha_\lambda} + \frac{1}{2\sqrt{\lambda}} \widehat{T}'_\lambda(\alpha_\lambda) \\ &= \sqrt{\lambda} \left[\frac{\partial}{\partial \lambda} \widehat{T}'_\lambda(\alpha) \right]_{\alpha=\alpha_\lambda} \quad \text{for sufficiently large } \lambda > 0. \end{aligned}$$

Since $\widehat{T}'_\lambda(\alpha_\lambda) = 0$ for $\lambda > 0$, we see that

$$0 = \frac{\partial}{\partial \lambda} \widehat{T}'_\lambda(\alpha_\lambda) = \left[\frac{\partial}{\partial \lambda} \widehat{T}'_\lambda(\alpha) \right]_{\alpha=\alpha_\lambda} + \widehat{T}''_\lambda(\alpha_\lambda) \frac{\partial \alpha_\lambda}{\partial \lambda}.$$

So by (3.32), we obtain

$$\frac{\partial \alpha_\lambda}{\partial \lambda} = - \frac{[(\partial/\partial \lambda) \widehat{T}'_\lambda(\alpha)]_{\alpha=\alpha_\lambda}}{\widehat{T}''_\lambda(\alpha_\lambda)} < 0 \quad \text{for sufficiently large } \lambda > 0.$$

Step 4: We prove statement (iii). Let

$$\eta_1 = \lim_{\lambda \rightarrow \infty} \alpha_\lambda, \quad \check{\eta}_2 = \liminf_{\lambda \rightarrow 0^+} \alpha_\lambda \quad \text{and} \quad \hat{\eta}_2 = \limsup_{\lambda \rightarrow 0^+} \alpha_\lambda.$$

Assume that $\eta_1 > 0$. By Step 3, $\alpha_\lambda > \eta_1$ for sufficiently large $\lambda > 0$. By Lemma 3.2(ii), we see that $\widehat{T}'_\lambda(\eta_1) < 0$ for sufficiently large $\lambda > 0$. So by (3.15), we compute and find that

$$0 \geq \lim_{\lambda \rightarrow \infty} \widehat{T}'_\lambda(\eta_1) = 1,$$

which is a contradiction. Thus, $\eta_1 = 0$. Assume that $\check{\eta}_2 \neq \bar{\alpha}$. By (3.8) and (3.15), we observe that

$$(3.33) \quad \lim_{\lambda \rightarrow 0^+} \sqrt{\lambda} \hat{T}'_\lambda(\alpha) = T'(\alpha).$$

Then we consider two cases.

Case 1: Assume that $\bar{\alpha} < \check{\eta}_2$. There exists $\{\lambda_{1,n}\}$ such that

$$\lim_{n \rightarrow \infty} \lambda_{1,n} = 0 \quad \text{and} \quad \bar{\alpha} < \check{\eta}_2 < \alpha_{\lambda_{1,n}} \quad \text{for } n \in \mathbb{N}.$$

So by (3.33), Lemmas 3.1 (ii) and 3.2 (ii), we see that

$$0 \geq \lim_{n \rightarrow \infty} \sqrt{\lambda_{1,n}} \hat{T}'_{\lambda_{1,n}}(\check{\eta}_2) = T'(\check{\eta}_2) > 0,$$

which is a contradiction.

Case 2: Assume that $\check{\eta}_2 < \bar{\alpha}$. There exists $\{\lambda_{2,n}\}$ such that

$$\lim_{n \rightarrow \infty} \lambda_{2,n} = 0 \quad \text{and} \quad \alpha_{\lambda_{2,n}} < \frac{\bar{\alpha} + \check{\eta}_2}{2} < \bar{\alpha} \quad \text{for } n \in \mathbb{N}.$$

So by (3.33), Lemmas 3.1 (ii) and 3.2 (ii), we see that

$$0 \leq \lim_{n \rightarrow \infty} \sqrt{\lambda_{2,n}} \hat{T}'_{\lambda_{2,n}}\left(\frac{\bar{\alpha} + \check{\eta}_2}{2}\right) = T'\left(\frac{\bar{\alpha} + \check{\eta}_2}{2}\right) < 0,$$

which is a contradiction.

Thus, by Cases 1–2, we obtain $\check{\eta}_2 = \bar{\alpha}$. Similarly, we obtain $\hat{\eta}_2 = \bar{\alpha}$. So $\lim_{\lambda \rightarrow 0^+} \alpha_\lambda = \bar{\alpha}$.

Step 5: We prove statement (iv). Assume that $1 < p \leq 4$. It is easy to see that

$$(3.34) \quad \frac{(p+3)(p-1)N}{p(p+2)} = \frac{(p+3)N}{p+4} + \frac{N(p+3)(p-4)}{p(p+4)(p+2)} \leq \frac{(p+3)N}{p+4}.$$

Since $\hat{T}'_\lambda(\alpha_\lambda) = 0$, and by Lemma 3.3, (3.27) and (3.34), we see that

$$(3.35) \quad 0 < \sqrt{\lambda} \left[\frac{\partial}{\partial \lambda} \hat{T}'_\lambda(\alpha) \right]_{\alpha=\alpha_\lambda} + \frac{1}{2\sqrt{\lambda}} \hat{T}'_\lambda(\alpha_\lambda) = \sqrt{\lambda} \left[\frac{\partial}{\partial \lambda} \hat{T}'_\lambda(\alpha) \right]_{\alpha=\alpha_\lambda} \quad \text{for } \lambda > 0.$$

Since $\hat{T}'_\lambda(\alpha_\lambda) = 0$, we further see that

$$0 = \frac{\partial}{\partial \lambda} \hat{T}'_\lambda(\alpha_\lambda) = \frac{\partial}{\partial \lambda} \hat{T}'_\lambda(\alpha) \Big|_{\alpha=\alpha_\lambda} + \hat{T}''_\lambda(\alpha_\lambda) \frac{\partial \alpha_\lambda}{\partial \lambda}.$$

So by Lemma 3.2 and (3.35),

$$\frac{\partial \alpha_\lambda}{\partial \lambda} = - \frac{(\partial/\partial \lambda) \hat{T}'_\lambda(\alpha)|_{\alpha=\alpha_\lambda}}{\hat{T}''_\lambda(\alpha_\lambda)} < 0 \quad \text{for } \lambda > 0.$$

The proof is complete. \square

The following Lemma 3.6 holds by (3.14) and Lemma 4.6 of [9].

Lemma 3.6. *Consider (1.1) with fixed $L > 0$. Let $m_{L,N} \equiv \min\{L, N\}$. Then the following statements hold:*

- (i) *There exists a positive and continuously differentiable function $\lambda_L(\alpha)$ on $(0, m_{L,N})$ such that $\widehat{T}_{\lambda_L(\alpha)}(\alpha) = L$. Moreover, the bifurcation curve $\widehat{S}_L = \{(\lambda_L(\alpha), \alpha) : \alpha \in (0, m_{L,N})\}$ is continuous on the $(\lambda, \|u\|_\infty)$ -plane.*
- (ii) *$\operatorname{sgn}(\lambda'_L(\alpha)) = \operatorname{sgn}(\widehat{T}'_{\lambda_L(\alpha)}(\alpha))$ for $\alpha \in (0, m_{L,N})$, where $\operatorname{sgn}(u)$ is the signum function.*
- (iii) *$\lim_{\alpha \rightarrow 0^+} \lambda_L(\alpha) = \lim_{\alpha \rightarrow m_{L,N}^-} \lambda_L(\alpha) = \infty$. Moreover, the bifurcation curve \widehat{S}_L starts from the point $(\infty, 0)$ and goes to $(\infty, m_{L,N})$.*

4. PROOF OF MAIN THEOREMS

Proof of Theorem 2.1. Theorem 2.1(i) holds immediately by (3.4) and Lemma 3.1. Let $\bar{\lambda}_L = \overline{T}_L^2(\bar{\alpha})$ for $L > 0$, where $\bar{\alpha}$ is defined in Lemma 3.1. By (3.3) and Lemma 3.1, we see that for $L > 0$, (1.1) has no positive solutions for $0 < \lambda < \bar{\lambda}_L$, exactly one positive solution \bar{u}_L for $\lambda = \bar{\lambda}_L$ and exactly two positive solutions for $\lambda > \bar{\lambda}_L$.

By (3.3) and Lemma 3.1(ii), $\kappa = \|\bar{u}_L\|_\infty = \bar{\alpha}$ is independent on L . So Theorem 2.1(ii)(b) holds. Since $\bar{\lambda}_L = \overline{T}_L^2(\bar{\alpha})$, and by Lemma 3.1(ii), we see that $\lim_{L \rightarrow 0^+} \bar{\lambda}_L = \infty$ and $\lim_{L \rightarrow \infty} \bar{\lambda}_L = 0$. Thus, Theorem 2.1(ii)(a)(c) holds. The proof is complete. \square

Proof of Theorem 2.2. By Lemma 3.6(iii), $\lambda_L(\alpha)$ has at least one critical point on $(0, m_{L,N})$. Assume that $\lambda_L(\alpha)$ has two distinct critical points at α_1 and α_2 on $(0, m_{L,N})$. Let $\lambda_1 = \lambda_L(\alpha_1)$ and $\lambda_2 = \lambda_L(\alpha_2)$. By Lemma 3.6(i)(ii), we obtain

$$\widehat{T}_{\lambda_1}(\alpha_1) = \widehat{T}_{\lambda_2}(\alpha_2) = L \quad \text{and} \quad \widehat{T}'_{\lambda_1}(\alpha_1) = \widehat{T}'_{\lambda_2}(\alpha_2) = 0.$$

So by Lemma 3.2(ii), we have $\alpha_1 = \alpha_{\lambda_1}$ and $\alpha_2 = \alpha_{\lambda_2}$. Then

$$\widehat{T}_{\lambda_1}(\alpha_{\lambda_1}) = \widehat{T}_{\lambda_2}(\alpha_{\lambda_2}) = L.$$

So by Lemma 3.5(ii), we find that $\alpha_1 = \alpha_{\lambda_1} = \alpha_{\lambda_2} = \alpha_2$. It is a contradiction. Thus, there exists $\widehat{\alpha}_L \in (0, m_{L,N})$ such that

$$(4.1) \quad \lambda'_L(\alpha) \begin{cases} < 0 & \text{for } 0 < \alpha < \widehat{\alpha}_L, \\ = 0 & \text{for } \alpha = \widehat{\alpha}_L, \\ > 0 & \text{for } \widehat{\alpha}_L < \alpha < m_{L,N}. \end{cases}$$

By Lemma 3.6 and (4.1), we obtain Theorem 2.2 (i). Moreover, for $L > 0$, there exists $\hat{\lambda}_L > 0$ such that (1.1) has no positive solutions for $0 < \lambda < \hat{\lambda}_L$, exactly one positive solution \hat{u}_L for $\lambda = \hat{\lambda}_L$ and exactly two positive solutions for $\lambda > \hat{\lambda}_L$. Notice that

$$(4.2) \quad \hat{\lambda}_L = \lambda_L(\hat{\alpha}_L) \quad \text{and} \quad \|\hat{u}_L\|_\infty = \hat{\alpha}_L.$$

In order to prove Theorem 2.2 (ii)(a)–(c), we divide the proof into the next four steps.

Step 1: We prove that $\hat{\lambda}_L$ is strictly decreasing for $L > 0$, and if $1 < p \leq 4$, then $\|\hat{u}_L\|_\infty$ is strictly increasing for $L > 0$. Let $L_2 > L_1 > 0$. For the sake of convenience, we let $\lambda_1 = \lambda_{L_1}(\hat{\alpha}_{L_1})$ and $\lambda_2 = \lambda_{L_2}(\hat{\alpha}_{L_2})$. Since $\lambda'_{L_1}(\hat{\alpha}_{L_1}) = \lambda'_{L_2}(\hat{\alpha}_{L_2}) = 0$, and by Lemmas 3.2(ii) and 3.6(ii), we see that

$$\alpha_{\lambda_1} = \hat{\alpha}_{L_1} \quad \text{and} \quad \alpha_{\lambda_2} = \hat{\alpha}_{L_2}.$$

Then by Lemma 3.6 (i), we further see that

$$(4.3) \quad \hat{T}_{\lambda_2}(\alpha_{\lambda_2}) = \hat{T}_{\lambda_2}(\hat{\alpha}_{L_2}) = L_2 > L_1 = \hat{T}_{\lambda_1}(\hat{\alpha}_{L_1}) = \hat{T}_{\lambda_1}(\alpha_{\lambda_1}).$$

By (4.2), (4.3) and Lemma 3.5(ii), then

$$(4.4) \quad \hat{\lambda}_{L_2} = \lambda_{L_2}(\hat{\alpha}_{L_2}) = \lambda_2 < \lambda_1 = \lambda_{L_1}(\hat{\alpha}_{L_1}) = \hat{\lambda}_{L_1}.$$

It implies that $\hat{\lambda}_L$ is strictly decreasing for $L > 0$. Next, assume that $1 < p \leq 4$. By (4.2), (4.4) and Lemma 3.5(iv), we obtain

$$(4.5) \quad \|\hat{u}_{L_2}\|_\infty = \hat{\alpha}_{L_2} = \alpha_{\lambda_2} > \alpha_{\lambda_1} = \hat{\alpha}_{L_1} = \|\hat{u}_{L_1}\|_\infty.$$

It implies that $\|\hat{u}_L\|_\infty$ is strictly increasing for $L > 0$.

Step 2: We prove that $\lim_{L \rightarrow 0^+} \|\hat{u}_L\|_\infty = 0$ and $\lim_{L \rightarrow \infty} \|\hat{u}_L\|_\infty = \bar{\alpha}$. Let $L_1 > 0$ be given. Let $\lambda_1 = \lambda_{L_1}(\hat{\alpha}_{L_1})$. Since $\lambda'_{L_1}(\hat{\alpha}_{L_1}) = 0$, and by Lemma 3.6(i)(ii), we obtain

$$\hat{T}_{\lambda_1}(\hat{\alpha}_{L_1}) = L_1 \quad \text{and} \quad \hat{T}'_{\lambda_1}(\hat{\alpha}_{L_1}) = 0.$$

So by Lemma 3.2(ii), we have $\hat{\alpha}_{L_1} = \alpha_{\lambda_1}$. It implies that $\hat{T}_{\lambda_1}(\alpha_{\lambda_1}) = L_1$. Then by Lemma 3.5(ii), we observe that

- (a) $L_1 \rightarrow 0^+$ if and only if $\lambda_1 \rightarrow \infty$; and
- (b) $L_1 \rightarrow \infty$ if and only if $\lambda_1 \rightarrow 0^+$.

Then by Lemma 3.5(iii),

$$\lim_{L_1 \rightarrow 0^+} \hat{\alpha}_{L_1} = \lim_{\lambda_1 \rightarrow \infty} \alpha_{\lambda_1} = 0 \quad \text{and} \quad \lim_{L_1 \rightarrow \infty} \hat{\alpha}_{L_1} = \lim_{\lambda_1 \rightarrow 0^+} \alpha_{\lambda_1} = \bar{\alpha}.$$

Thus, by (4.2), we obtain $\lim_{L \rightarrow 0^+} \|\hat{u}_L\|_\infty = 0$ and $\lim_{L \rightarrow \infty} \|\hat{u}_L\|_\infty = \bar{\alpha}$.

Step 3: We prove that $\|\widehat{u}_L\|_\infty$ and $\widehat{\lambda}_L$ are continuous functions with respect to L on $(0, \infty)$. Let $L_2, L_3 > 0$, $\lambda_2 = \lambda_{L_2}(\widehat{\alpha}_{L_2})$ and $\lambda_3 = \lambda_{L_3}(\widehat{\alpha}_{L_3})$. Since $\lambda'_{L_2}(\widehat{\alpha}_{L_2}) = \lambda'_{L_3}(\widehat{\alpha}_{L_3}) = 0$, and by Lemma 3.6 (i) (ii), we obtain

$$\widehat{T}_{\lambda_2}(\widehat{\alpha}_{L_2}) = L_2, \quad \widehat{T}'_{\lambda_2}(\widehat{\alpha}_{L_2}) = 0, \quad \widehat{T}_{\lambda_3}(\widehat{\alpha}_{L_3}) = L_3 \quad \text{and} \quad \widehat{T}'_{\lambda_3}(\widehat{\alpha}_{L_3}) = 0.$$

So by Lemma 3.2 (ii), we have

$$(4.6) \quad \widehat{\alpha}_{L_2} = \alpha_{\lambda_2} \quad \text{and} \quad \widehat{\alpha}_{L_3} = \alpha_{\lambda_3}.$$

It implies that

$$(4.7) \quad \widehat{T}_{\lambda_2}(\alpha_{\lambda_2}) = L_2 \quad \text{and} \quad \widehat{T}_{\lambda_3}(\alpha_{\lambda_3}) = L_3.$$

By (4.7) and Lemma 3.5 (ii), we see that

$$(4.8) \quad L_3 \rightarrow L_2 \text{ if and only if } \lambda_3 \rightarrow \lambda_2.$$

By Lemma 3.5 (i), (4.2), (4.6) and (4.8), we further see that

$$\lim_{L_3 \rightarrow L_2} \|\widehat{u}_{L_3}\|_\infty = \lim_{L_3 \rightarrow L_2} \widehat{\alpha}_{L_3} = \lim_{\lambda_3 \rightarrow \lambda_2} \alpha_{\lambda_3} = \alpha_{\lambda_2} = \widehat{\alpha}_{L_2} = \|\widehat{u}_{L_2}\|_\infty.$$

Thus, $\|\widehat{u}_L\|_\infty$ is a continuous function with respect to L on $(0, \infty)$.

Since $\widehat{T}_{\lambda_L(\alpha)}(\alpha) = L$ by Lemma 3.6 (i), and by (3.30) and the implicit function theorem, we see that $\lambda_L(\alpha)$ is a continuous function with respect to L on $(0, \infty)$. So $\widehat{\lambda}_L = \lambda_L(\widehat{\alpha}_L)$ is also continuous function with respect to L on $(0, \infty)$.

Step 4: We prove that

$$0 = \lim_{L \rightarrow \infty} \widehat{\lambda}_L < \lim_{L \rightarrow 0^+} \widehat{\lambda}_L = \infty.$$

Let $\lambda_\infty = \lim_{L \rightarrow \infty} \widehat{\lambda}_L$. Assume that $\lambda_\infty > 0$. By Step 1 and (4.2), we find that

$$(4.9) \quad \lambda_\infty < \widehat{\lambda}_L = \lambda_L(\widehat{\alpha}_L) \quad \text{for } L > 0.$$

By Lemma 3.6 (i), (3.30), (4.9) and Step 2, we observe that

$$\infty = \lim_{L \rightarrow \infty} L = \lim_{L \rightarrow \infty} \widehat{T}_{\lambda_L(\widehat{\alpha}_L)}(\widehat{\alpha}_L) \leq \lim_{L \rightarrow \infty} \widehat{T}_{\lambda_\infty}(\widehat{\alpha}_L) = \widehat{T}_{\lambda_\infty}(\overline{\alpha}) < \infty.$$

It is a contradiction. So $\lambda_\infty = 0$. Let $\lambda_0 = \lim_{L \rightarrow 0^+} \widehat{\lambda}_L$. Assume that $\lambda_0 < \infty$. By Step 1 and (4.2), we find that

$$\lambda_L(\widehat{\alpha}_L) = \widehat{\lambda}_L < \lambda_0 < \infty \quad \text{for } L > 0.$$

So by Lemmas 3.2 (i), 3.6 (i), (3.30) and Step 2, we observe that

$$0 = \lim_{L \rightarrow 0^+} L = \lim_{L \rightarrow 0^+} \widehat{T}_{\hat{\lambda}_L}(\hat{\alpha}_L) \geq \lim_{L \rightarrow 0^+} \widehat{T}_{\lambda_0}(\hat{\alpha}_L) = \lim_{\alpha \rightarrow 0^+} \widehat{T}_{\lambda_0}(\alpha) = \infty.$$

It is a contradiction. So $\lambda_0 = \infty$. Thus, Theorem 2.2 (ii) (a)–(c) hold by Steps 1–4. The proof is complete. \square

References

- [1] *R. Bartnik, L. Simon*: Spacelike hypersurfaces with prescribed boundary values and mean curvature. *Commun. Math. Phys.* **87** (1982), 131–152. [zbMATH](#) [MR](#) [doi](#)
- [2] *N. Chafee, E. F. Infante*: A bifurcation problem for a nonlinear partial differential equation of parabolic type. *Appl. Anal.* **4** (1974), 17–37. [zbMATH](#) [MR](#) [doi](#)
- [3] *I. Coelho, C. Corsato, F. Obersnel, P. Omari*: Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation. *Adv. Nonlinear Stud.* **12** (2012), 621–638. [zbMATH](#) [MR](#) [doi](#)
- [4] *C. Corsato*: Mathematical Analysis of Some Differential Models Involving the Euclidean or the Minkowski Mean Curvature Operator: Ph.D. Thesis. University of Trieste, Trieste, 2015; Available at <http://hdl.handle.net/10077/11127>. [zbMATH](#) [MR](#) [doi](#)
- [5] *R. P. Feynman, R. B. Leighton, M. Sands*: The Feynman Lectures on Physics. II. Mainly Electromagnetism and Matter. Addison-Wesley, Reading, 1964. [zbMATH](#) [MR](#)
- [6] *M. Guedda, L. Véron*: Bifurcation phenomena associated to the p -Laplace operator. *Trans. Am. Math. Soc.* **310** (1988), 419–431. [zbMATH](#) [MR](#) [doi](#)
- [7] *S.-Y. Huang*: Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications. *J. Differ. Equations* **264** (2018), 5977–6011. [zbMATH](#) [MR](#) [doi](#)
- [8] *S.-Y. Huang*: Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application. *Commun. Pure Appl. Anal.* **17** (2018), 1271–1294. [zbMATH](#) [MR](#) [doi](#)
- [9] *S.-Y. Huang*: Bifurcation diagrams of positive solutions for one-dimensional Minkowski-curvature problem and its applications. *Discrete Contin. Dyn. Syst.* **39** (2019), 3443–3462. [zbMATH](#) [MR](#) [doi](#)
- [10] *S.-Y. Huang*: Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity. *Commun. Pure Appl. Anal.* **18** (2019), 3267–3284. [zbMATH](#) [MR](#) [doi](#)
- [11] *K.-C. Hung, S.-Y. Huang, S.-H. Wang*: A global bifurcation theorem for a positone multiparameter problem and its application. *Discrete Contin. Dyn. Syst.* **37** (2017), 5127–5149. [zbMATH](#) [MR](#) [doi](#)
- [12] *K.-C. Hung, S.-H. Wang*: Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity and their applications. *Trans. Am. Math. Soc.* **365** (2013), 1933–1956. [zbMATH](#) [MR](#) [doi](#)
- [13] *T. Laetsch*: The number of solutions of a nonlinear two point boundary value problem. *Indiana Univ. Math. J.* **20** (1970), 1–13. [zbMATH](#) [MR](#) [doi](#)
- [14] *P. M. McCabe, J. A. Leach, D. J. Needham*: The evolution of travelling waves in fractional order autocatalysis with decay. I. Permanent from travelling waves. *SIAM J. Appl. Math.* **59** (1999), 870–899. [zbMATH](#) [MR](#) [doi](#)
- [15] *J. Shi, R. Shivaji*: Persistence in reaction diffusion models with weak Allee effect. *J. Math. Biol.* **52** (2006), 807–829. [zbMATH](#) [MR](#) [doi](#)

- [16] *S. Takeuchi, Y. Yamada*: Asymptotic properties of a reaction-diffusion equation with degenerate p -Laplacian. *Nonlinear Anal., Theory Methods Appl., Ser. A* **42** (2000), 41–61. [zbl](#) [MR](#) [doi](#)
- [17] *P. F. Verhulst*: Notice sur la loi que la population poursuit dans son accroissement. *Corresp. Math. Phys.* **10** (1838), 113–121. (In French.)
- [18] *M.-H. Wang, M. Kot*: Speeds of invasion in a model with strong or weak Allee effects. *Math. Biosci.* **171** (2001), 83–97.
- [19] *J. Xin*: Front propagation in heterogeneous media. *SIAM Rev.* **42** (2000), 161–230. [zbl](#) [MR](#) [doi](#)

Authors' address: Shao-Yuan Huang (corresponding author), Ping-Han Hsieh, Department of Mathematics and Information Education, College of Science, National Taipei University of Education, No. 134, Sec. 2, Heping E. Rd., Da-an District, Taipei City 106, Taiwan, e-mail: syhuang@mail.ntue.edu.tw, g110827008@grad.ntue.edu.tw.