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Abstract. We study the exact multiplicity and bifurcation curves of positive solutions of
generalized logistic problems





−[ϕ(u′)]′ = λup

(
1− u

N

)
in (−L,L),

u(−L) = u(L) = 0,

where p > 1, N > 0, λ > 0 is a bifurcation parameter, L > 0 is an evolution parameter,
and ϕ(u) is either ϕ(u) = u or ϕ(u) = u/

√
1− u2. We prove that the corresponding

bifurcation curve is ⊂-shape. Thus, the exact multiplicity of positive solutions can be
obtained.

Keywords: positive solution; bifurcation curve; Minkowski-curvature problem, logistic
problem
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1. Introduction

In this paper, we study the exact multiplicity and bifurcation curves of positive

solutions of generalized logistic problems

(1.1)





−[ϕ(u′)]′ = λup
(
1− u

N

)
in (−L,L),

u(−L) = u(L) = 0,

where p > 1, u is the population density, N > 0 is the carrying capacity of the

environment, λ > 0 is a bifurcation parameter and the intrinsic growth rate, L > 0

is an evolution parameter, and either ϕ(u) = u or ϕ(u) = u/
√
1− u2. Let

f(u) ≡ up
(
1− u

N

)
.
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Notice that g(u) = f(u)/u satisfies that g(0) = 0, g′(u) > 0 on (0, pN/(p+ 1)),

g′(u) < 0 on (pN/(p+ 1), N), g(N) = 0 and g(u) < 0 on (N,∞). Thus, we also say

that problem (1.1) has weak Allee effect type, cf. [9].

Assume that ϕ(u) = u. The solutions of (1.1) are the steady state solutions of

a reaction-diffusion population model in one space dimension. A typical form of

reaction-diffusion population model equation is

∂

∂t
u = d∆u + f(u),

where u(x, t) is the population density, d > 0 is the diffusion constant and f(u)/u is

the growth rate per capita. We refer to the work of McCabe, Leach and Needham

(see [14]), Shi and Shivaji (see [15]), Wang and Kot (see [18]), and Xin (see [19]) and

the references therein. For L > 0, we define the bifurcation curve SL of (1.1) on the

(λ, ‖u‖∞)-plane by

SL ≡ {(λ, ‖uλ‖∞) : λ > 0 and uλ is a positive solution of (1.1) with ϕ(u) = u}.

Assume that ϕ(u) = u/
√
1− u2. Problem (1.1) plays an important role in certain

fundamental issues in differential geometry and in the special theory of relativity, see

for example [3], [5]. We refer the readers, for motivations and results, to [1], [7], [8],

[9], [10] and the references cited therein. For any L > 0, we define the bifurcation

curve ŜL of (1.1) on the (λ, ‖u‖∞)-plane by

ŜL =
{
(λ, ‖uλ‖∞) : λ > 0 and uλ ∈ C2(−L,L) ∩ C[−L,L]

is a positive solution of (1.1) with ϕ(u) = u/
√
1− u2

}
.

Next, we give some terminologies related to the shapes of bifurcation curves SL

on the (λ, ‖u‖∞)-plane (while similar terminologies for ŜL also hold).

⊲ Monotone incresing (see Figure 1 (i)): We say that, on the (λ, ‖u‖∞)-plane, the

bifurcation curve SL is strictly increasing if SL consists of a continuous curve and

for each pair of points (λ1, ‖uλ1
‖∞) and (λ2, ‖uλ2

‖∞) of SL, ‖uλ1
‖∞ < ‖uλ2

‖∞
implies λ1 6 λ2.

⊲ ⊂-shaped (see Figure 1 (ii)): We say that, on the (λ, ‖u‖∞)-plane, the bifurcation

curve SL is ⊂-shaped if SL consists of a continuous curve with exactly one turning

point, say (λ∗, ‖uλ∗‖∞), and

(i) at (λ∗, ‖uλ∗‖∞) the bifurcation diagram SL turns to the right,

(ii) SL initially continues to the left and eventually continues to the right.

⊲ S-shaped (see Figure 1 (iii)): We say that, on the (λ, ‖u‖∞)-plane, the bifur-

cation curve SL is S-shaped if SL has exactly two turning points at some points

(λ∗, ‖uλ∗‖∞) and (λ∗, ‖uλ∗
‖∞), where λ∗ < λ∗ are two positive numbers such that
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(i) ‖uλ∗‖∞ < ‖uλ∗
‖∞,

(ii) at (λ∗, ‖uλ∗‖∞) the bifurcation curve SL turns to the left,

(iii) at (λ∗, ‖uλ∗
‖∞) the bifurcation curve SL turns to the right.

0 λ

‖u‖∞

(i) 0 λ

‖u‖∞

(ii) 0 λ

‖u‖∞

(iii)

Figure 1. (i) Monotone increasing, (ii) ⊂-shaped, (iii) S-shaped.

In 1838, Verhulst proposed in [17] to study the logistic equation

(1.2)
du

dt
= λu

(
1− u

N

)
,

where u is the population density, λ is the intrinsic growth rate, andN is the carrying

capacity of the environment. Obviously, every nontrivial solution of (1.2) converges

monotonically to N as t → ∞. Chafee and Infante in [2] studied the one-dimensional
diffusive generalized logistic problem

(1.3)

{
−u′′ = λu(1− uq) in (−1, 1),

u(−1) = u(1) = 0,

where q > 0, and they showed the global existence of positive solutions. Then

Guedda and Veron in [6] extended the results of (1.3) to the problem

(1.4)

{
−(‖ux‖p−1ux)x = λup(1− uq) in (−1, 1),

u(−1) = u(1) = 0,

where p, q > 0. Then Takeuchi and Yamada in Theorem 3.3 of [16] obtained complete

information on the global bifurcation structure of positive solutions of (1.4).

Hung and Wang in Theorem 2.1 of [12] studied the semilinear problem

(1.5)

{
−u′′ = λ(−au3 + bu2 + cu+ d) in (−L,L),

u(−L) = u(L) = 0,

where a, b, d > 0 and c > 0. They proved that there exists a0 > 0 such that the corre-

sponding bifurcation curve of (1.5) is S-shaped for 0 < a < a0 and monotone increas-
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ing for a > a0. Huang in Theorem 3.2 of [9] studied the Minkowski-curvature problem

(1.6)





−
( u′

√
1− u′2

)
′

= λ(−au3 + bu2 + cu+ d) in (−L,L),

u(−L) = u(L) = 0,

where a, b, d > 0 and c > 0. He proved that

(i) if a > a0, then the corresponding bifurcation curve of (1.6) is monotone increas-

ing for all L > 0, and

(ii) if 0 6 a < a0, then there exists L0 > 0 such that the corresponding bifurcation

curve of (1.6) is monotone increasing for 0 < L 6 L0 and S-like shape for L > L0.

In this paper, the nonlinearity of (1.1) is a certain polynomial with a higher degree

and without a constant term. As a comparison, the bifurcation curves of prob-

lems (1.5) and (1.6) are either monotone increasing or S-shaped but the bifurcation

curve of problem (1.1) is ⊂-shaped.
The paper is organized as follows. Section 2 contains statements of the main

results. Section 3 contains several lemmas needed to prove the main results. Section 4

contains the proofs of the main results.

2. Main results

In this section, we present the shapes of bifurcation curve SL of (1.1) with

ϕ(u) = u, see Theorem 2.1, and the shapes of bifurcation curve ŜL of (1.1) with

ϕ(u) = u/
√
1− u2, see Theorem 2.2.

Theorem 2.1 (see Figure 2 (i)). Consider (1.1) with ϕ(u) = u. Then the following

statements hold:

(i) The bifurcation curve SL is ⊂-shaped on the plane (λ, ‖u‖∞), starts from (∞, 0)

and goes to (∞, N) for L > 0.

(ii) For L > 0, there exists λ̄L > 0 such that (1.1) has no positive solutions for

0 < λ < λ̄L, exactly one positive solution ūL for λ = λ̄L and exactly two

positive solutions for λ > λ̄L. Furthermore,

(a) λ̄L is a continuous and strictly decreasing function with respect to L > 0.

(b) κ ≡ ‖ūL‖∞ is a constant for L > 0.

(c)
lim

L→0+
(λ̄L, ‖ūL‖∞) = (∞, κ) and lim

L→∞

(λ̄L, ‖ūL‖∞) = (0, κ).

Theorem 2.2 (see Figure 2 (ii)). Consider (1.1) with ϕ(u) = u/
√
1− u2. Then

the following statements hold:

(i) The bifurcation curve ŜL is ⊂-shaped on the plane (λ, ‖u‖∞), starts from (∞, 0)

and goes to (∞,min{N,L}) for L > 0.
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(ii) For L > 0, there exists λ̂L > 0 such that (1.1) has no positive solutions for

0 < λ < λ̂L, exactly one positive solution ûL for λ = λ̂L and exactly two

positive solutions for λ > λ̂L. Furthermore,

(a) λ̂L is a continuous and strictly decreasing function with respect to L > 0.

(b) ‖ûL‖∞ is a continuous function with respect to L > 0. In addition, when

1 < p 6 4, ‖ûL‖∞ is strictly increasing with respect to L > 0.

(c) Let κ be defined in Theorem 2.1. Then

lim
L→0+

(λ̂L, ‖ûL‖∞) = (∞, 0) and lim
L→∞

(λ̂L, ‖ûL‖∞) = (0, κ).

0 λ

‖u‖∞

λ̄L

‖ūL‖∞

N

SL

AsL

(i)
0 λ

‖u‖∞

λ̂L

‖ûL‖∞

‖ūL‖∞

min{L,N}

SLAsL

(ii)

Figure 2. (i) The graph of bifurcation curve SL of (1.1) with ϕ(u) = u and the grey
dashed line is the orbit of (λ̄L, ‖ūL‖∞) for L > 0. (ii) The graph of bifurcation

curve ŜL of (1.1) with ϕ(u) = u/
√
1− u2 and the grey dashed line is the orbit

of (λ̂L, ‖ûL‖∞) for L > 0.

Remark 2.1. In Theorem 2.2 (ii) (b), by numerical simulations, we conjecture

that ‖ûL‖∞ is strictly increasing with respect to L > 0 for all p > 4. Further

investigation is needed.

3. Lemmas

To prove Theorems 2.1 and 2.2, we first introduce the time-map method used

in [13] and [4], page 127. We define the time-map formula for (1.1) with ϕ(u) = u by

(3.1) TL(α) ≡
1

L

∫ α

0

1√
F (α) − F (u)

du for 0 < α < N,

and the time-map formula for (1.1) with ϕ(u) = u/
√
1− u2 by

(3.2) T̂λ(α) ≡
∫ α

0

λ[F (α) − F (u)] + 1√
{λ[F (α)− F (u)] + 1}2 − 1

du for 0 < α < N and λ > 0,
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where F (u) ≡
∫ u

0
f(t) dt. Observe that positive solutions uλ ∈ C2(−L,L)∩C[−L,L]

for (1.1) with ϕ(u) = u correspond to

(3.3) ‖uλ‖∞ = α and TL(α) =
√
λ,

and positive solutions uλ ∈ C2(−L,L) ∩ C[−L,L] for (1.1) with ϕ(u) = u/
√
1− u2

correspond to

‖uλ‖∞ = α and T̂λ(α) = L.

So by definitions of SL and ŜL, we have that

(3.4) SL = {(λ, α) : TL(α) =
√
λ for some α ∈ (0, N) and λ > 0}

and

ŜL = {(λ, α) : T̂λ(α) = L for some α ∈ (0, N) and λ > 0}.
Thus, it is important to understand fundamental properties of the time-maps TL(α)

and T̂λ(α) on (0, N) in order to study the shapes of the bifurcation curves SL and ŜL

of (1.1) for any fixed L > 0. Note that it can be proved that TL(α) and T̂λ(α) are

twice continuously differentiable functions of α ∈ (0, N) and λ > 0. The proofs are

easy but tedious and hence we omit them.

Lemma 3.1. Consider (1.1). Then the following statements hold:

(i) lim
α→0+

TL(α) = lim
α→N−

TL(α) = ∞ for L > 0.

(ii) For L > 0, there exists α ∈ (0, N), independent of L, such that

(3.5) T ′

L(α)





< 0 for 0 < α < α,

= 0 for α = α,

> 0 for α < α < N.

Furthermore, TL(α) is a continuous and strictly decreasing function with respect

to L > 0,

lim
L→0+

TL(α) = ∞ and lim
L→∞

TL(α) = 0.

P r o o f. (i) We let

(3.6) T (α) ≡ LTL(α) =

∫ α

0

1√
F (α)− F (u)

du for 0 < α < N.

Clearly, T (α) is independent of L. By [13], Theorems 2.6 and 2.9 we have

(3.7) lim
α→0+

T (α) = lim
α→N−

T (α) = ∞.

So statement (i) holds by (3.6).
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(ii) By (3.6), we compute

(3.8)

T ′(α) =
1

2
√
2α

∫ α

0

2B −A

B3/2
dt and T ′′(α) =

1

4
√
2α2

∫ α

0

3A2 − 4AB − 2BC

B5/2
du,

where

(3.9) A ≡ αf(α)− uf(u), B ≡ F (α)− F (u), C ≡ α2f ′(α)− u2f ′(u),

cf. [11], (14) and (16). Let X = αp+1 − up+1 and Y = αp+2 − up+2. Clearly, X > 0

and Y > 0 for 0 < u < α. Then it is easy to see that

(3.10) A = X − Y

N
, B =

X

p+ 1
− Y

(p+ 2)N
and C = pX − (p+ 1)Y

N
.

Since p > 1, we see that

(3.11) p(p+ 1) = (p+ 2)(p− 1) + 2 > (p+ 2)(p− 1).

Since p > 1, and by (3.10) and (3.11), we observe that for 0 < u < α,

(3.12) 3A2 − 4AB − 2BC

=
(p+ 2)(p− 1)N2X2 − 2(p+ 2)(p− 1)NXY + p(p+ 1)Y 2

(p+ 2)(p+ 1)N2

>
(p+ 2)(p− 1)N2X2 − 2(p+ 2)(p− 1)NXY + (p+ 2)(p− 1)Y 2

(p+ 2)(p+ 1)N2

=
(p− 1)(NX − Y )2

(p+ 1)N2
> 0.

So by (3.8), we see that T ′′(α) > 0 for 0 < α < N . Then by (3.7), there exists

α ∈ (0, N), independent of L, such that

T ′(α)





< 0 for 0 < α < α,

= 0 for α = α,

> 0 for α < α < N.

So by (3.6), (3.5) holds. Since T (α) is independent on L, we see that TL(α) = T (α)/L

is a continuous and strictly decreasing function with respect to L > 0,

lim
L→0+

TL(α) = lim
L→0+

T (α)

L
= ∞ and lim

L→∞

TL(α) = lim
L→∞

T (α)

L
= 0.

The proof is complete. �
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Lemma 3.2. Consider (1.1). Then the following statements hold:

(i) lim
α→0+

T̂λ(α) = lim
α→N−

T̂λ(α) = ∞.

(ii) For λ > 0, there exists αλ ∈ (0, N) such that

(3.13) T̂ ′

λ(α)





< 0 for 0 < α < αλ,

= 0 for α = αλ,

> 0 for αλ < α < N,

and T̂ ′′

λ (αλ) > 0.

P r o o f. (i) Since

(3.14) lim
u→0+

F (u)

u2
= lim

u→0+

f(u)

2u
= lim

u→0+

up−1

2

(
1− u

N

)
= 0,

and by [9], Lemmas 4.1 and 4.2 we see that lim
α→0+

T̂λ(α) = lim
α→N−

T̂λ(α) = ∞. Thus,
statement (i) holds.

(ii) We compute

(3.15) T̂ ′

λ(α) =
1

α

∫ α

0

λ3B3 + 3λ2B2 + λ[2B −A]

(λ2B2 + 2λB)3/2
du

and

(3.16) T̂ ′′

λ (α) =
1

α2

∫ α

0

λ3B(3A2 − 2AB −BC) + λ(3A2 − 4AB − 2BC)

(λ2B2 + 2λB)5/2
du,

where A, B and C are defined by (3.9). Since f(u) > 0 on (0, N), we see that

(3.17) B =

∫ α

u

f(t) dt > 0 for 0 < u < α and 0 < α < N.

Clearly,

(3.18) (2p+ 3)(p+ 1) = (p+ 2)(2p+ 1) + 1 > (p+ 2)(2p+ 1).

By (3.10) and (3.18), we observe that for 0 < u < α,

(3.19) 3A2 − 2AB −BC

=
(p+ 2)(2p+ 1)N2X2 − 2(p+ 2)(2p+ 1)NXY + (2p+ 3)(p+ 1)Y 2

(p+ 2)(p+ 1)N2

>
(p+ 2)(2p+ 1)N2X2 − 2(p+ 2)(2p+ 1)NXY + (p+ 2)(2p+ 1)Y 2

(p+ 2)(p+ 1)N2

=
(2p+ 1)(NX − Y )2

(p+ 1)N2
> 0.

By (3.12), (3.16), (3.17) and (3.19), we obtain that T̂ ′′

λ (α) > 0 for 0 < α < N

and λ > 0. Then by statement (i), there exists αλ ∈ (0, N) such that (3.13) holds.

The proof is complete. �
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Lemma 3.3. Consider (1.1). Let αλ be defined in Lemma 3.2. Then

(3.20) 0 < αλ <
(p+ 3)(p− 1)N

p(p+ 2)
for λ > 0.

P r o o f. We compute and find that

(3.21) [2B −A]u=0 = 2F (α)− αf(α) =
pαp+1

N(p+ 2)

[
α− (p− 1)(p+ 2)N

p(p+ 1)

]

and

(3.22)
∂

∂u
[2B −A] =

pup

N

[ (p− 1)N

p
− u

]





> 0 for 0 < u <
(p− 1)N

p
,

= 0 for u =
(p− 1)N

p
,

< 0 for u >
(p− 1)N

p
.

In addition, it is easy to observe that

(3.23)
(p− 1)N

p
<

(p+ 3)(p− 1)N

p(p+ 2)
<

(p− 1)(p+ 2)N

p(p+ 1)
.

Since [2B −A]u=α = 0, and by (3.21)–(3.23), we obtain that

2B −A > 0 for 0 < u < α and α >
(p− 1)(p+ 2)N

p(p+ 1)
.

So by (3.15) and (3.17),

(3.24) T̂ ′

λ(α) > 0 for α >
(p− 1)(p+ 2)N

p(p+ 1)
and λ > 0.

Next, we assume that

(3.25)
(p+ 3)(p− 1)N

p(p+ 2)
6 α <

(p− 1)(p+ 2)N

p(p+ 1)
.

Since [2B −A]u=α = 0, and by (3.21)–(3.23), there exists εα ∈ (0, α) such that

(3.26) 2B −A





< 0 for 0 < u < εα,

= 0 for u = εα,

> 0 for εα < u < α.

1089



For the sake of convenience, let B(α, u) = B. By (3.15), (3.17), (3.25) and (3.26),

we observe that

T̂ ′

λ(α) >
λ

α

∫ α

0

2B −A

(λ2B2 + 2λB)3/2
du

=
λ

α

[∫ εα

0

2B −A

(λ2B2 + 2λB)3/2
du+

∫ α

εα

2B −A

(λ2B2 + 2λB)3/2
du

]

>
λ

α

[∫ εα

0

2B −A

[λ2B2(α, εα) + 2λB(α, εα)]3/2
du

+

∫ α

εα

2B −A

[λ2B2(α, εα) + 2λB(α, εα)]3/2
du

]

=
λ

α[λ2B2(α, εα) + 2λB(α, εα)]3/2

∫ α

0

(2B −A) du

=
λ

α[λ2B2(α, εα) + 2λB(α, εα)]3/2
pαp+2

N(p+ 3)

[
α− (p+ 3)(p− 1)N

p(p+ 2)

]
> 0.

So by (3.24), we have

T̂ ′

λ(α) > 0 for α >
(p+ 3)(p− 1)N

p(p+ 2)
and λ > 0.

It follows that (3.20) holds because T̂ ′

λ(αλ) = 0 for λ > 0. The proof is complete. �

Lemma 3.4. Consider (1.1). Then

(3.27)
∂

∂λ

[√
λT̂ ′

λ(α)
]
=

√
λ
∂

∂λ
T̂ ′

λ(α) +
1

2
√
λ
T̂ ′

λ(α) > 0 for 0 < α 6
(p+ 3)N

p+ 4
and λ > 0.

Furthermore, αλ < (p+ 3)N/(p+ 4) for sufficiently large λ > 0.

P r o o f. We compute

(3.28)
∂

∂u
(A+ 2B) =

(p+ 4)up

N

[
u− (p+ 3)N

p+ 4

]
< 0 for 0 < u < α 6

(p+ 3)N

p+ 4
.

Since (A+ 2B)u=α = 0 and by (3.28), we see that

(3.29) A+ 2B > 0 for 0 < u < α 6
(p+ 3)N

p+ 4
.

By (3.17) and (3.29), we further see that

∂

∂λ

[√
λT̂ ′

λ(α)
]
=

√
λ
∂

∂λ
T̂ ′

λ(α) +
1

2
√
λ
T̂ ′

λ(α)

=
1

2α
√
λ

∫ α

0

λ3B2(B3λ2 + 5B2λ+ 3A+ 6B)

(λ2B2 + 2λB)5/2
du

> 0 for 0 < α 6
(p+ 3)N

p+ 4
.

1090



It implies that (3.27) holds. By (3.15), we compute

lim
λ→∞

T̂ ′

λ

( (p+ 3)N

p+ 4

)
= 1.

So by (3.27), there exists λ1 > 0 such that

T̂ ′

λ

((p+ 3)N

p+ 4

)
> 0 for λ > λ1.

It follows that

αλ <
(p+ 3)N

p+ 4
for λ > λ1

by Lemma 3.2 (ii). The proof is complete. �

Lemma 3.5. Consider (1.1). Let α and αλ be defined in Lemmas 3.1 and 3.2,

respectively. Then the following statements hold:

(i) αλ is a continuously differentiable function with respect to λ > 0.

(ii) T̂λ(αλ) is a continuous and strictly decreasing function with respect to λ > 0.

Moreover,

0 = lim
λ→∞

T̂λ(αλ) < lim
λ→0+

T̂λ(αλ) = ∞.

(iii) 0 = lim
λ→∞

αλ < lim
λ→0+

αλ = α.

(iv) If 1 < p 6 4, then αλ is strictly decreasing for λ > 0.

P r o o f. We divide this proof into the next five steps.

Step 1 : We prove statement (i). Statement (i) follows immediately from

Lemma 3.2 (ii) and the implicit function theorem.

Step 2 : We prove statement (ii). By statement (i), it is easy to see that T̂λ(αλ) is

a continuously differentiable function with respect to λ > 0. By (3.17), we compute

and find that

(3.30)
∂

∂λ
T̂λ(α) =

∫ α

0

−B

(λ2B2 + 2λB)3/2
du < 0 for 0 < α < N and λ > 0.

Since T̂ ′

λ(αλ) = 0 for λ > 0, and by (3.30), we see that

∂

∂λ
T̂λ(αλ) =

∂

∂λ
T̂λ(α)

∣∣∣
α=αλ

+ T̂ ′

λ(αλ)
∂αλ

∂λ
=

∂

∂λ
T̂λ(α)

∣∣∣
α=αλ

< 0 for λ > 0.

It implies that T̂λ(αλ) is strictly decreasing for λ > 0. By Lemma 3.2 (ii), we have

T̂λ(α) > T̂λ(αλ) for 0 < α < N and λ > 0. Then by (3.2), we observe that

0 6 lim
λ→∞

T̂λ(αλ) 6 lim
λ→∞

T̂λ(α) = α for 0 < α < N.
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Since α is arbitrary, we obtain lim
λ→∞

T̂λ(αλ) = 0. In addition, by Lemma 3.3, there

exists a convergent subsequence of {αλ}. We assume without loss of generality that

lim
λ→0+

αλ = η ∈
[
0,

(p+ 3)(p− 1)N

p(p+ 2)

]
.

If η > 0, then by (3.2),

lim
λ→0+

T̂λ(αλ) = lim
λ→0+

T̂λ(η) = lim
λ→0+

∫ η

0

λB + 1√
λ2B2 + 2λB

du = ∞.

Notice that by (3.2)

(3.31) lim
λ→0+

√
λT̂λ(α) = lim

λ→0+

∫ α

0

λB + 1√
λB2 + 2B

du =
1√
2
T (α).

If η = 0, then by (3.6), (3.7) and (3.31),

lim
λ→0+

√
λT̂λ(αλ) = lim

λ→0+

1√
2
T (αλ) = lim

α→0+

1√
2
T (α) = ∞,

which implies that lim
λ→0+

T̂λ(αλ) = ∞. Thus, statement (ii) holds.
Step 3 : We prove that αλ is strictly decreasing for sufficiently large λ > 0. Since

T̂ ′

λ(αλ) = 0 for λ > 0, and by Lemma 3.4, we observe that

(3.32) 0 <
√
λ
[ ∂

∂λ
T̂ ′

λ(α)
]
α=αλ

+
1

2
√
λ
T̂ ′

λ(αλ)

=
√
λ
[ ∂

∂λ
T̂ ′

λ(α)
]
α=αλ

for sufficiently large λ > 0.

Since T̂ ′

λ(αλ) = 0 for λ > 0, we see that

0 =
∂

∂λ
T̂ ′

λ(αλ) =
[ ∂

∂λ
T̂ ′

λ(α)
]
α=αλ

+ T̂ ′′

λ (αλ)
∂αλ

∂λ
.

So by (3.32), we obtain

∂αλ

∂λ
= − [(∂/∂λ)T̂ ′

λ(α)]α=αλ

T̂ ′′

λ (αλ)
< 0 for sufficiently large λ > 0.

Step 4 : We prove statement (iii). Let

η1 = lim
λ→∞

αλ, η̌2 = lim inf
λ→0+

αλ and η̂2 = lim sup
λ→0+

αλ.

Assume that η1 > 0. By Step 3, αλ > η1 for sufficiently large λ > 0. By

Lemma 3.2 (ii), we see that T̂ ′

λ(η1) < 0 for sufficiently large λ > 0. So by (3.15), we

compute and find that

0 > lim
λ→∞

T̂ ′

λ(η1) = 1,
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which is a contradiction. Thus, η1 = 0. Assume that η̌2 6= α. By (3.8) and (3.15),

we observe that

(3.33) lim
λ→0+

√
λT̂ ′

λ(α) = T ′(α).

Then we consider two cases.

Case 1 : Assume that α < η̌2. There exists {λ1,n} such that

lim
n→∞

λ1,n = 0 and α < η̌2 < αλ1,n
for n ∈ N.

So by (3.33), Lemmas 3.1 (ii) and 3.2 (ii), we see that

0 > lim
n→∞

√
λ1,nT̂

′

λ1,n
(η̌2) = T ′(η̌2) > 0,

which is a contradiction.

Case 2 : Assume that η̌2 < α. There exists {λ2,n} such that

lim
n→∞

λ2,n = 0 and αλ2,n
<

α+ η̌2
2

< α for n ∈ N.

So by (3.33), Lemmas 3.1 (ii) and 3.2 (ii), we see that

0 6 lim
n→∞

√
λ2,nT̂

′

λ2,n

(α+ η̌2
2

)
= T ′

(α+ η̌2
2

)
< 0,

which is a contradiction.

Thus, by Cases 1–2, we obtain η̌2 = α. Similarly, we obtain η̂2 = α. So lim
λ→0+

αλ = α.

Step 5 : We prove statement (iv). Assume that 1 < p 6 4. It is easy to see that

(3.34)
(p+ 3)(p− 1)N

p(p+ 2)
=

(p+ 3)N

p+ 4
+

N(p+ 3)(p− 4)

p(p+ 4)(p+ 2)
6

(p+ 3)N

p+ 4
.

Since T̂ ′

λ(αλ) = 0, and by Lemma 3.3, (3.27) and (3.34), we see that

(3.35) 0 <
√
λ
[ ∂

∂λ
T̂ ′

λ(α)
]
α=αλ

+
1

2
√
λ
T̂ ′

λ(αλ) =
√
λ
[ ∂

∂λ
T̂ ′

λ(α)
]
α=αλ

for λ > 0.

Since T̂ ′

λ(αλ) = 0, we further see that

0 =
∂

∂λ
T̂ ′

λ(αλ) =
∂

∂λ
T̂ ′

λ(α)
∣∣∣
α=αλ

+ T̂ ′′

λ (αλ)
∂αλ

∂λ
.

So by Lemma 3.2 and (3.35),

∂αλ

∂λ
= − (∂/∂λ)T̂ ′

λ(α)|α=αλ

T̂ ′′

λ (αλ)
< 0 for λ > 0.

The proof is complete. �
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The following Lemma 3.6 holds by (3.14) and Lemma 4.6 of [9].

Lemma 3.6. Consider (1.1) with fixed L > 0. Let mL,N ≡ min{L,N}. Then the
following statements hold:

(i) There exists a positive and continuously differentiable function λL(α) on

(0,mL,N) such that T̂λL(α)(α) = L. Moreover, the bifurcation curve ŜL =

{(λL(α), α) : α ∈ (0,mL,N)} is continuous on the (λ, ‖u‖∞)-plane.

(ii) sgn(λ′

L(α)) = sgn(T̂ ′

λL(α)(α)) for α ∈ (0,mL,N), where sgn(u) is the signum

function.

(iii) lim
α→0+

λL(α) = lim
α→m−

L,N

λL(α) = ∞. Moreover, the bifurcation curve ŜL starts

from the point (∞, 0) and goes to (∞,mL,N).

4. Proof of main theorems

P r o o f of Theorem 2.1. Theorem 2.1 (i) holds immediately by (3.4) and

Lemma 3.1. Let λ̄L = T 2
L(α) for L > 0, where α is defined in Lemma 3.1.

By (3.3) and Lemma 3.1, we see that for L > 0, (1.1) has no positive solutions for

0 < λ < λ̄L, exactly one positive solution ūL for λ = λ̄L and exactly two positive

solutions for λ > λ̄L.

By (3.3) and Lemma 3.1 (ii), κ = ‖ūL‖∞ = α is independent on L. So The-

orem 2.1 (ii) (b) holds. Since λ̄L = T 2
L(α), and by Lemma 3.1 (ii), we see that

lim
L→0+

λ̄L = ∞ and lim
L→∞

λ̄L = 0. Thus, Theorem 2.1 (ii) (a) (c) holds. The proof

is complete. �

P r o o f of Theorem 2.2. By Lemma 3.6 (iii), λL(α) has at least one critical point

on (0,mL,N). Assume that λL(α) has two distinct critical points at α1 and α2

on (0,mL,N). Let λ1 = λL(α1) and λ2 = λL(α2). By Lemma 3.6 (i) (ii), we obtain

T̂λ1
(α1) = T̂λ2

(α2) = L and T̂ ′

λ1
(α1) = T̂ ′

λ2
(α2) = 0.

So by Lemma 3.2 (ii), we have α1 = αλ1
and α2 = αλ2

. Then

T̂λ1
(αλ1

) = T̂λ2
(αλ2

) = L.

So by Lemma 3.5 (ii), we find that α1 = αλ1
= αλ2

= α2. It is a contradiction. Thus,

there exists α̂L ∈ (0,mL,N) such that

(4.1) λ′

L(α)





< 0 for 0 < α < α̂L,

= 0 for α = α̂L,

> 0 for α̂L < α < mL,N .
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By Lemma 3.6 and (4.1), we obtain Theorem 2.2 (i). Moreover, for L > 0, there exists

λ̂L > 0 such that (1.1) has no positive solutions for 0 < λ < λ̂L, exactly one positive

solution ûL for λ = λ̂L and exactly two positive solutions for λ > λ̂L. Notice that

(4.2) λ̂L = λL(α̂L) and ‖ûL‖∞ = α̂L.

In order to prove Theorem 2.2 (ii)(a)–(c), we divide the proof into the next four steps.

Step 1 : We prove that λ̂L is strictly decreasing for L > 0, and if 1 < p 6 4,

then ‖ûL‖∞ is strictly increasing for L > 0. Let L2 > L1 > 0. For the sake of conve-

nience, we let λ1 = λL1
(α̂L1

) and λ2 = λL2
(α̂L2

). Since λ′

L1
(α̂L1

) = λ′

L2
(α̂L2

) = 0,

and by Lemmas 3.2 (ii) and 3.6 (ii), we see that

αλ1
= α̂L1

and αλ2
= α̂L2

.

Then by Lemma 3.6 (i), we further see that

(4.3) T̂λ2
(αλ2

) = T̂λ2
(α̂L2

) = L2 > L1 = T̂λ1
(α̂L1

) = T̂λ1
(αλ1

).

By (4.2), (4.3) and Lemma 3.5 (ii), then

(4.4) λ̂L2
= λL2

(α̂L2
) = λ2 < λ1 = λL1

(α̂L1
) = λ̂L1

.

It implies that λ̂L is strictly decreasing for L > 0. Next, assume that 1 < p 6 4.

By (4.2), (4.4) and Lemma 3.5 (iv), we obtain

(4.5) ‖ûL2
‖∞ = α̂L2

= αλ2
> αλ1

= α̂L1
= ‖ûL1

‖∞.

It implies that ‖ûL‖∞ is strictly increasing for L > 0.

Step 2 : We prove that lim
L→0+

‖ûL‖∞ = 0 and lim
L→∞

‖ûL‖∞ = α. Let L1 > 0 be

given. Let λ1 = λL1
(α̂L1

). Since λ′

L1
(α̂L1

) = 0, and by Lemma 3.6 (i) (ii), we obtain

T̂λ1
(α̂L1

) = L1 and T̂ ′

λ1
(α̂L1

) = 0.

So by Lemma 3.2 (ii), we have α̂L1
= αλ1

. It implies that T̂λ1
(αλ1

) = L1. Then by

Lemma 3.5 (ii), we observe that

(a) L1 → 0+ if and only if λ1 → ∞; and
(b) L1 → ∞ if and only if λ1 → 0+.

Then by Lemma 3.5 (iii),

lim
L1→0+

α̂L1
= lim

λ1→∞

αλ1
= 0 and lim

L1→∞

α̂L1
= lim

λ1→0+
αλ1

= α.

Thus, by (4.2), we obtain lim
L→0+

‖ûL‖∞ = 0 and lim
L→∞

‖ûL‖∞ = α.
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Step 3 : We prove that ‖ûL‖∞ and λ̂L are continuous functions with respect to L

on (0,∞). Let L2, L3 > 0, λ2 = λL2
(α̂L2

) and λ3 = λL3
(α̂L3

). Since λ′

L2
(α̂L2

) =

λ′

L3
(α̂L3

) = 0, and by Lemma 3.6 (i) (ii), we obtain

T̂λ2
(α̂L2

) = L2, T̂ ′

λ2
(α̂L2

) = 0, T̂λ3
(α̂L3

) = L3 and T̂ ′

λ3
(α̂L3

) = 0.

So by Lemma 3.2 (ii), we have

(4.6) α̂L2
= αλ2

and α̂L3
= αλ3

.

It implies that

(4.7) T̂λ2
(αλ2

) = L2 and T̂λ3
(αλ3

) = L3.

By (4.7) and Lemma 3.5 (ii), we see that

(4.8) L3 → L2 if and only if λ3 → λ2.

By Lemma 3.5 (i), (4.2), (4.6) and (4.8), we further see that

lim
L3→L2

‖ûL3
‖∞ = lim

L3→L2

α̂L3
= lim

λ3→λ2

αλ3
= αλ2

= α̂L2
= ‖ûL2

‖∞.

Thus, ‖ûL‖∞ is a continuous function with respect to L on (0,∞).

Since T̂λL(α)(α) = L by Lemma 3.6 (i), and by (3.30) and the implicit function

theorem, we see that λL(α) is a continuous function with respect to L on (0,∞).

So λ̂L = λL(α̂L) is also continuous function with respect to L on (0,∞).

Step 4 : We prove that

0 = lim
L→∞

λ̂L < lim
L→0+

λ̂L = ∞.

Let λ∞ = lim
L→∞

λ̂L. Assume that λ∞ > 0. By Step 1 and (4.2), we find that

(4.9) λ∞ < λ̂L = λL(α̂L) for L > 0.

By Lemma 3.6 (i), (3.30), (4.9) and Step 2, we observe that

∞ = lim
L→∞

L = lim
L→∞

T̂λL(α̂L)(α̂L) 6 lim
L→∞

T̂λ∞
(α̂L) = T̂λ∞

(α) < ∞.

It is a contradiction. So λ∞ = 0. Let λ0 = lim
L→0+

λ̂L. Assume that λ0 < ∞. By
Step 1 and (4.2), we find that

λL(α̂L) = λ̂L < λ0 < ∞ for L > 0.
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So by Lemmas 3.2 (i), 3.6 (i), (3.30) and Step 2, we observe that

0 = lim
L→0+

L = lim
L→0+

T̂λ̂L
(α̂L) > lim

L→0+
T̂λ0

(α̂L) = lim
α→0+

T̂λ0
(α) = ∞.

It is a contradiction. So λ0 = ∞. Thus, Theorem 2.2 (ii) (a)–(c) hold by Steps 1–4.
The proof is complete. �
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