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Abstract. We study the exact multiplicity and bifurcation curves of positive solutions of
generalized logistic problems

@) = )\u”(l - %) in (—L, L),
u(—L) =u(L) =0,

where p > 1, N > 0, A > 0 is a bifurcation parameter, L > 0 is an evolution parameter,
and ¢(u) is either p(u) = u or p(u) = u/v1—u2. We prove that the corresponding
bifurcation curve is C-shape. Thus, the exact multiplicity of positive solutions can be
obtained.

Keywords: positive solution; bifurcation curve; Minkowski-curvature problem, logistic
problem
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1. INTRODUCTION

In this paper, we study the exact multiplicity and bifurcation curves of positive
solutions of generalized logistic problems

—~lp@)) = xr(1- ) i (=L, L),

u(—L) =u(L) =0,

(1.1)

where p > 1, u is the population density, N > 0 is the carrying capacity of the
environment, A > 0 is a bifurcation parameter and the intrinsic growth rate, L > 0
is an evolution parameter, and either p(u) = u or p(u) = u/v/1 — u?. Let

f(u)Eup<1— %)

DOI: 10.21136/CMJ.2023.0359-22 1081

© Institute of Mathematics, Czech Academy of Sciences 2023.


http://dx.doi.org/10.21136/CMJ.2023.0359-22

Notice that g(u) = f(u)/u satisfies that g(0) = 0, ¢’(u) > 0 on (0,pN/(p+ 1)),
g'(u) <0on (pN/(p+1),N), g(N) =0 and g(u) < 0 on (N,o0). Thus, we also say
that problem (1.1) has weak Allee effect type, cf. [9].

Assume that ¢(u) = u. The solutions of (1.1) are the steady state solutions of
a reaction-diffusion population model in one space dimension. A typical form of
reaction-diffusion population model equation is

0
Frie dAu + f(u),

where u(z,t) is the population density, d > 0 is the diffusion constant and f(u)/u is
the growth rate per capita. We refer to the work of McCabe, Leach and Needham
(see [14]), Shi and Shivaji (see [15]), Wang and Kot (see [18]), and Xin (see [19]) and
the references therein. For L > 0, we define the bifurcation curve Sy, of (1.1) on the
(A, [[uf}oc)-plane by

St ={(\ |lurlleo): A >0 and uy is a positive solution of (1.1) with p(u) = u}.

Assume that ¢(u) = u/+/1 — u2. Problem (1.1) plays an important role in certain
fundamental issues in differential geometry and in the special theory of relativity, see
for example [3], [5]. We refer the readers, for motivations and results, to [1], [7], [8],
[9], [10] and the references cited therein. For any L > 0, we define the bifurcation
curve S, of (1.1) on the (A, [|ul|o )-plane by

S ={(\Jluallo): A>0and uy € C*(~L, L) N C[-L, L]
is a positive solution of (1.1) with ¢(u) = u/v/1 — u?}.

Next, we give some terminologies related to the shapes of bifurcation curves S
on the (), ||u]|s0)-plane (while similar terminologies for Sy, also hold).

> Monotone incresing (see Figure 1 (i)): We say that, on the (A, ||u||«)-plane, the
bifurcation curve Sy, is strictly increasing if S, consists of a continuous curve and
for each pair of points (A1, ||ux, [|oo) and (A2, [[un,lleo) of Sry [t oo < [[txs oo
implies A\ < Ao

> C-shaped (see Figure 1 (ii)): We say that, on the (A, ||u||o)-plane, the bifurcation
curve S7, is C-shaped if S, consists of a continuous curve with exactly one turning

point, say (A*, |Jux]|eo), and
(i) at (A, ||ur+||ls) the bifurcation diagram Sy, turns to the right,
(ii) S initially continues to the left and eventually continues to the right.
> S-shaped (see Figure 1(iii)): We say that, on the (A, ||u|lo)-plane, the bifur-
cation curve Sy, is S-shaped if Sy has exactly two turning points at some points
(N5 [Juxs

oo) and (Ax, ||ua, ||so), where A, < A* are two positive numbers such that
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) sl < fon 1 )
(ii) at (A*,||ur=]|oo) the bifurcation curve S turns to the left,
(iii) at (s, ||ux,

o) the bifurcation curve S, turns to the right.

[elloo [elloo [elloo

0 (i) A 0 (i) A 0 (i) A
Figure 1. (i) Monotone increasing, (ii) C-shaped, (iii) S-shaped.

In 1838, Verhulst proposed in [17] to study the logistic equation

(1.2) % =u(1- ),

where u is the population density, A is the intrinsic growth rate, and N is the carrying
capacity of the environment. Obviously, every nontrivial solution of (1.2) converges
monotonically to N as ¢t — co. Chafee and Infante in [2] studied the one-dimensional

diffusive generalized logistic problem

{ —u” =Xl —wu?) in (-1,1),

(13) u(—1) = u(1) = 0,

where ¢ > 0, and they showed the global existence of positive solutions. Then
Guedda and Veron in [6] extended the results of (1.3) to the problem

(1.4)

{ —([uallP~ ua)e = AuP(1 —uf) in (=1,1),
u(—1) =u(l) =0,

where p, ¢ > 0. Then Takeuchi and Yamada in Theorem 3.3 of [16] obtained complete
information on the global bifurcation structure of positive solutions of (1.4).
Hung and Wang in Theorem 2.1 of [12] studied the semilinear problem

(1.5)

—’U,N = )\(—au3 —|—bu2—|—cu+d) in (_LaL)a
u(~L) = u(L) =0,

where a,b,d > 0 and ¢ > 0. They proved that there exists ag > 0 such that the corre-
sponding bifurcation curve of (1.5) is S-shaped for 0 < a < a¢ and monotone increas-
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ing for a > ag. Huang in Theorem 3.2 of [9] studied the Minkowski-curvature problem
! 1
_(ui) =AN-au®+bu?+cu+d) in(-L,L),
V1—w?

u(—L) =u(L) =0,
where a,b,d > 0 and ¢ > 0. He proved that

(i) if a > ag, then the corresponding bifurcation curve of (1.6) is monotone increas-

ing for all L > 0, and
(ii) if 0 < a < ao, then there exists Lo > 0 such that the corresponding bifurcation

(1.6)

curve of (1.6) is monotone increasing for 0 < L < Lo and S-like shape for L > Ly.
In this paper, the nonlinearity of (1.1) is a certain polynomial with a higher degree
and without a constant term. As a comparison, the bifurcation curves of prob-
lems (1.5) and (1.6) are either monotone increasing or S-shaped but the bifurcation
curve of problem (1.1) is C-shaped.
The paper is organized as follows. Section 2 contains statements of the main
results. Section 3 contains several lemmas needed to prove the main results. Section 4
contains the proofs of the main results.

2. MAIN RESULTS

In this section, we present the shapes of bifurcation curve S; of (1.1) with
¢(u) = u, see Theorem 2.1, and the shapes of bifurcation curve Sy, of (1.1) with
o(u) = u/v/1—u?, see Theorem 2.2.

Theorem 2.1 (see Figure 2 (i)). Consider (1.1) with ¢(u) = u. Then the following
statements hold:

(i) The bifurcation curve Sy, is C-shaped on the plane (), ||u||« ), starts from (oo, 0)
and goes to (0o, N) for L > 0.

(ii) For L > 0, there exists A\;, > 0 such that (1.1) has no positive solutions for
0< X< A, exactly one positive solution uy for A = Az, and exactly two
positive solutions for A > \;,. Furthermore,

(a) Ar is a continuous and strictly decreasing function with respect to L > 0.
(b) k= ||url|,, is a constant for L > 0.

) tim Gzl = (om) and i (3 izlo) = (0,5).
Theorem 2.2 (see Figure 2 (ii)). Consider (1.1) with p(u) = u/v/1 —u2. Then
the following statements hold:
(i) The bifurcation curve Sy, is C-shaped on the plane (), lu]loo), starts from (oo, 0)
and goes to (co, min{N, L}) for L > 0.
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(ii) For L > 0, there exists A;, > 0 such that (1.1) has no positive solutions for
0 <A< 5\L, exactly one positive solution uy for A\ = A and exactly two
positive solutions for A > . Furthermore,

(a) AL is a continuous and strictly decreasing function with respect to L > 0.

(b) |lLllo is a continuous function with respect to L > 0. In addition, when
1 <p<4,||urlleo is strictly increasing with respect to L > 0.

(c) Let  be defined in Theorem 2.1. Then

lim (Ar, [|z]leo) = (00,0) and  lim (A, ||z lle) = (0, ).
L—0+ L—oo
HUHOO ”u”oo
min{L, N'}

[2L]loo

[L]loo

(i)

Figure 2. (i) The graph of bifurcation curve Sy, of (1.1) with ¢(u) = u and the grey
dashed line is the orbit of (Ar, ||@r||eo) for L > 0. (ii) The graph of bifurcation
curve Sy, of (1.1) with o(u) = u/v1 — u2 and the grey dashed line is the orbit
of (AL, ||url|lec) for L > 0.

Remark 2.1. In Theorem 2.2 (ii) (b), by numerical simulations, we conjecture
that ||up]|eo is strictly increasing with respect to L > 0 for all p > 4. Further
investigation is needed.

3. LEMMAS

To prove Theorems 2.1 and 2.2, we first introduce the time-map method used
in [13] and [4], page 127. We define the time-map formula for (1.1) with ¢(u) = u by

(3.1) du for 0 <a <N,

_ 1 [« 1

Tila)=— | —————
vl =g /0 V(@) - Fa)

and the time-map formula for (1.1) with p(u) = u/v1 — u? by

R G A[F(a) = F(u)] +1
32) Ti(o) = /0 VIAF(a) = Fu)] +132 -1

du for0<a< N and A >0,
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where F(u) = [ f(t)dt. Observe that positive solutions uy € C*(—L, L)NC[-L, L]
for (1.1) Wlth o(u ) = u correspond to

(3.3) lualloo =@ and Tp(a)= VA,

and positive solutions uy € C?*(—L, L) N C[—L, L] for (1.1) with ¢(u) = u/v1 — u?
correspond to
luallso =@ and Th(a) = L.

So by definitions of S and S 1, we have that
(3.4) S;={(\a): Tr(a)= VA for some a € (0, N) and A > 0}

and
Sp ={(\a): T\(e) = L for some a € (0, N) and A > 0}.

Thus, it is important to understand fundamental properties of the time-maps T L( )
and T () on (0, N) in order to study the shapes of the bifurcation curves 5y, and S,
of (1.1) for any fixed L > 0. Note that it can be proved that Tz (a) and T (c) are
twice continuously differentiable functions of o € (0, N) and A > 0. The proofs are
easy but tedious and hence we omit them.

Lemma 3.1. Consider (1.1). Then the following statements hold:
(i) lim Tr(a) = lim Tp(a) = oo for L > 0.
a—0t a—N-—
(ii) For L > 0, there exists @ € (0, N), independent of L, such that
<0 for0<a<a,
(3.5) Ti () =0 fora=a,
>0 fora<a<N.
Furthermore, T, (@) is a continuous and strictly decreasing function with respect

to L >0,
lim Tp(@) =00 and lim Tp(a)=0.

L—0+ L—o0

Proof. (i) We let

(3.6) T(a)= LT (a du for 0 < a < N.

Clearly, T'(«) is independent of L. By [13], Theorems 2.6 and 2.9 we have
3.7 lim T(a) = lim T(a)= oc.
(37) i, T(e) = i Tla) =

So statement (i) holds by (3.6).
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(ii) By (3.6), we compute

(3.8)
1 *2B—A 1 “3A% —4AB - 2B
T'(a) = dt and T"(a)= / 3 ¢ u,
2V2a Jo  B3/? 1202 Jo B5/2
where

(3.9) A=af(a) —uf(u), B=F(a)—F(u), C=df'(a)—u’f'(u),

cf. [11], (14) and (16). Let X = aP™ —uPT! and Y = a2 — uPT2. Clearly, X > 0
and Y > 0 for 0 < u < a. Then it is easy to see that

Y X Y (p+1)Y
(3.10) N 1l pioN and C=p N
Since p > 1, we see that
(3.11) pp+)=@+2)p-1)+2>@p+2)p-1).

Since p > 1, and by (3.10) and (3.11), we observe that for 0 < u < «,

(3.12) 3A? —4AB —2BC
(p+2)(p—1)N2X2-2(p+2)(p— 1)NXY +p(p+1)Y?
(p+2)(p+1)N?
(p+2)(p—1N?X%—2(p+2)(p— HNXY + (p+2)(p— 1)Y?
(p+2)(p+1)N?

>

_(p- DIVX —Y)?

> 0.
(p+1)N2

So by (3.8), we see that 7"(a)) > 0 for 0 < o < N. Then by (3.7), there exists
a € (0, N), independent of L, such that

<0 forO0<a<a,
T'(a){ =0 for a=a,
>0 fora<a<N.

So by (3.6), (3.5) holds. Since T'(@) is independent on L, we see that T’ (@) = T'(@)/L
is a continuous and strictly decreasing function with respect to L > 0,

o T@) o= T@)
g @ = g, Tp = oo end i Tu(® = Jim Ty =0
The proof is complete. O



Lemma 3.2. Consider (1.1). Then the following statements hold:
(i) lim Th(e) = lim Ti(a) = .
a—0t a—N~—
(ii) For A > 0, there exists ay € (0, N) such that
<0 for0<a<ay,
(3.13) Ti(@){ =0 fora=ay, and Ty (cy) > 0.

>0 foray<a<N,

Proof. (i) Since

. F(u) . flw) . ouPTl u
3.14 im 2 =y D% (1——):0,
( ) ui}I(I)IJr u2 uif{)l* 2u uif{)l* 2 N

and by [9], Lemmas 4.1 and 4.2 we see that li%1+f>\(a) = Ii%iﬁ\(a) = o0o. Thus,
statement (i) holds. o o

ii) We compute
(i)

du

~ 1 /“ N3B? +3X2B?% + \[2B — A]
0

! — —
(3.15) ) =3 (\2B2 + 2)B)3/2

and

(3.16) TY(a) = du,

a2

1 /a A3 B(3A% — 2AB — BC) + A(3A% — 4AB — 2BC)
o (A\2B2 + 2\B)5/2

where A, B and C are defined by (3.9). Since f(u) > 0 on (0, N), we see that

(3.17) B:/ ft)dt>0 for0<u<aand0<a<N.
Clearly,
(3.18) Cp+3)p+1)=(@+2)2p+1)+1>(p+2)(2p+1).

By (3.10) and (3.18), we observe that for 0 < u < «,

(3.19) 3A%-2AB - BC
(p+2)(2p + )N?X? —2(p +2
(p+2
p+2)(2p+1)N?X2 - 2(p+2
(p+2

—~

2p+ 1)NXY + (2p+3)(p+1)Y?
p+1)N?
20+ 1)NXY + (p+2)(2p+ 1)Y?
p+ 1)N?2

—_—

2!

= — =
—

_ @+ HINX V)2 0

B (p+1)N? -
By (3.12), (3.16), (3.17) and (3.19), we obtain that fj\’(a) >0for0 <o < N
and A > 0. Then by statement (i), there exists ay € (0, N) such that (3.13) holds.

The proof is complete. O

1088



Lemma 3.3. Consider (1.1). Let ax be defined in Lemma 3.2. Then

(p+3)(p—-1)N

3.20 0<ay< for A > 0.
(3.20) * p(p+2)
Proof. We compute and find that
part! (r—Dp+2)N
3.21 2B — Aly—o =2F - = —
(321) 2B~ Alumo = 2F(0) ~ af(a) = o[ - F S
and
>0 f0r0<u<w,
9 pu (p—1)N (p— 1N
.22 —2B—-Al=—|—F— — =0 f =X 7
(322)  goleB A= T [ or = L
<0 foru>w.

In addition, it is easy to observe that

(p-UN _(p+3)p-DN _(p-1p+2N

(3.23) P p(p+2) p(p+1)

Since [2B — A],—o = 0, and by (3.21)—(3.23), we obtain that

(p—-1p+2)N

2B—A>0 forO<u<caand a>
plp+1)

So by (3.15) and (3.17),

(p—1(p+2)N

3.24 T/ (a) >0 fora>

and \ > 0.

Next, we assume that

—1)N -1 2)N
(3.25) P43 -HN (=D +2)
p(p+2) pp+1)
Since [2B — A],—o = 0, and by (3.21)—(3.23), there exists &, € (0, ) such that

<0 for0<u<egq,
(3.26) 2B—-A{ =0 foru=c¢,,
>0 fore, <u<a.
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For the sake of convenience, let B(a,u) = B. By (3.15), (3.17), (3.25) and (3.26),
we observe that

~ A [ 2B— A

T/I\(O‘) =2 E/O ()\232 4 2/\3)3/2 du
_3/5(’ 2B — A du+/a 2B-A
T ally (A2BZ+2MB)3/? .. (\2B2 +2)\B)3/2

>/\ /Eo 2B — A d
_ u
ally N2B%(a,ca) + 20B(o,eq)]3/2

+ /a 26— 4 du
. [N2B2%(a,e0) 4+ 2AB(, £4)]3/2
A «
aD2B(a,20) + 2\B(a, 2 )2 /0 ( ) du
_ A palt? [ (3 p-1N
o a[A2B2%(a,e4) + 2AB(a,4)]3/2 N(p + 3) p(p+2)
So by (3.24), we have

(p+3)(p—-1N
p(p+2)

It follows that (3.20) holds because f)’\(a)\) = 0 for A > 0. The proof is complete. [

Ti(a) >0 for o > and A > 0.

Lemma 3.4. Consider (1.1). Then
(3.27)

0 = 0 ~, 1 (p+3)N
— < - 7
S [\/XT)\(@)] =V /\T)\(a) + 2\/XT)\(0¢) >0 for0<a< 1

Furthermore, ay < (p+ 3)N/(p + 4) for sufficiently large A > 0.

and A > 0.

Proof. We compute

9 (p+4urr  (P+3IN (p+3)N
2 —(A+2B) = — f < —.
(3.28) 8u( +2B) I [u P }<0 or0<u<a P
Since (A +2B),_,, = 0 and by (3.28), we see that
N
(3.29) A+2B>0 for0<u<asg 2EIN
p+4
By (3.17) and (3.29), we further see that
0 ~ 0 ~ 1 -
. T/ — _T/ _TI
N [VAT}(a)] \/X((M Ae) + o) )
1 /“ NB2(B3\? + 5B%\ + 34 + 6B) q
= u
2av/\ Jo (A2B2% + 2)\B)5/2
>0 for0<ac< M
p+4
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It implies that (3.27) holds. By (3.15), we compute

lim T;(M) ~ 1.

A—00

So by (3.27), there exists A; > 0 such that

S ((p+3)N
- > .
T)\( " )>0 for A > A

It follows that
(p+3)N
p+4

by Lemma 3.2 (ii). The proof is complete. O

ay < for A > )\

Lemma 3.5. Consider (1.1). Let @ and «y be defined in Lemmas 3.1 and 3.2,
respectively. Then the following statements hold:
(i) ay is a continuously differentiable function with respect to A > 0.
(ii) T(ay) is a continuous and strictly decreasing function with respect to A > 0.
Moreover,

0= lim j:')\(a)\) < lim j:')\(a)\) = 0.
A—00 A—07F

(iii) 0= lim ay < lim a) =a.
A—00 A—=0+
(iv) If 1 < p <4, then «ay is strictly decreasing for A > 0.

Proof. We divide this proof into the next five steps.

Step 1: We prove statement (i). Statement (i) follows immediately from
Lemma 3.2 (ii) and the implicit function theorem.

Step 2: We prove statement (ii). By statement (i), it is easy to see that ﬁ\(oo\) is
a continuously differentiable function with respect to A > 0. By (3.17), we compute
and find that

J ~ @ -B
(3.30) ﬁT)\(a) = /0 (2B% 1 27B)2 du<0 forO0<a< N and\>0.

Since fj\(oo\) =0 for A > 0, and by (3.30), we see that

9~ 0~ L, ay 04
ETA(OQ) = ﬁT)\(Oz) oo —l—T)\(Oz)\)W = a)\T)\(Oz) s <0 for A>0.

It implies that f)\(a ) is strictly decreasing for A > 0. By Lemma 3.2 (ii), we have
Th(a) = Ta(ay) for 0 < a < N and A > 0. Then by (3.2), we observe that

0 < lim f,\(oz,\) < lim ﬁ\(a) =a for0<a<N.
A— 00 A—00

1091



Since « is arbitrary, we obtain Alim f)\(a ») = 0. In addition, by Lemma 3.3, there
— 00
exists a convergent subsequence of {a}. We assume without loss of generality that
3)(p—1)N
lim oy =7 e o, L@ DA
A—0+ p(p+2)
If » > 0, then by (3.2),
~ ~ K AB+1
lim Th(ay) = lim Th(n) = lim bt du = oo
A—0+ A—0t A=0+ Jo VA2B2 +2)\B
Notice that by (3.2)
~ * AB+1 1
3.31 lim VAT\(a) = Ii e S
a1 i D) =l | s T
If n = 0, then by (3.6), (3.7) and (3.31),

T ().

~ 1 1
li AT = lim —=T = lim —=T(a)=
i, VATM @) = lim, 5T (o) = Jim, T(0) = oo,
which implies that /\lim+ ﬁ\(a ») = 0o. Thus, statement (ii) holds.
—0
Step 3: We prove that « is strictly decreasing for sufficiently large A > 0. Since
Ty () = 0 for A > 0, and by Lemma 3.4, we observe that

0 ~ 1 4
.32 M| =T} —T
(3.32) 0< V|5 A(Q)LZM + 5T
= \/X[%f/’\ (a)} for sufficiently large A > 0.
A=)\
Since fj\(oo\) =0 for A > 0, we see that
_ 9 = _ 9 = Sl dax
0= g = [T, +Tengs

So by (3.32), we obtain

dan _ [(8/8)\A)T>\ (@azax < 0 for sufficiently large A > 0.
B3 T ()

Step 4: We prove statement (iii). Let

m = lim ay, 7 =Iliminfa), and 7 =limsupay.
A—00 A—0t A—0+
Assume that 71 > 0. By Step 3, ayx > n; for sufficiently large A > 0. By
Lemma 3.2 (ii), we see that T)’\ (m) < 0 for sufficiently large A > 0. So by (3.15), we
compute and find that
0> lim f)/\(nl) =1,

A—00
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which is a contradiction. Thus, 71 = 0. Assume that 772 # @. By (3.8) and (3.15),
we observe that

(3.33) lim VAT (a) = T'(a).

A—01
Then we consider two cases.

Case 1: Assume that @ < 2. There exists {\1,,} such that

lim A\;, =0 and @< <ay,, forneN.

n—oo

So by (3.33), Lemmas 3.1 (ii) and 3.2 (ii), we see that

0> lim \/AlnTMn i2) = T'(72) > 0,

n—oo

which is a contradiction.
Case 2: Assume that 7, < @. There exists {A2 ,} such that

<a forneN.

lim Ay, =0 and ay,, <
n— oo

So by (3.33), Lemmas 3.1 (ii) and 3.2 (ii), we see that

0 < Tim \/ETM”(a-;W) :T'(#) <0,

n—oo

a+ 1
2

which is a contradiction.

Thus, by Cases 1-2, we obtain 7 = @. Similarly, we obtain 7, = @. So hrn+ ay = Qa.
A—0

Step 5: We prove statement (iv). Assume that 1 < p < 4. It is easy to see that

(3.34) P+3)p-YN _(@+3)N Np+3)p—-4) _ (@+3)N
' p(p +2) p+4  pp+4+2) T p+d

Since f)'\(oo\) =0, and by Lemma 3.3, (3.27) and (3.34), we see that

(3.35) 0< \/X[%ff\(a)} + L oy = \/_[88)\@( )L:m for A > 0.

a=ay 2\/X
Since T)’\(oo\) = 0, we further see that
0 ~ 0 ~ ~ Oacy
—T / T// =
0=>% I(an) = @]+ TN(ea) 55

So by Lemma 3.2 and (3.35),

% - _ (8/8Alf)’\(a)|a=m <0 for A>0.
oA TV (ay)

The proof is complete. O
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The following Lemma 3.6 holds by (3.14) and Lemma 4.6 of [9].

Lemma 3.6. Consider (1.1) with fixed L > 0. Let my, y = min{L, N}. Then the
following statements hold:
(i) There exists a positive and continuously differentiable function Ap(«) on
(0,mr, n) such that f,\L(a) (o) = L. Moreover, the bifurcation curve S, =
{(Ar(a),a): a € (0,mg,N)} is continuous on the (A, ||u||~)-plane.

~

(if) sgn(Np(a)) = sgn(T/’\L(a) () for o € (0,mp, n), where sgn(u) is the signum

function.
(iii) lm Ar(a) = lim Ar(a) = co. Moreover, the bifurcation curve Sy, starts
a—0+ aHmZ,N

from the point (0, 0) and goes to (oo, mr, N).

4. PROOF OF MAIN THEOREMS

Proof of Theorem 2.1. Theorem 2.1(i) holds immediately by (3.4) and
Lemma 3.1. Let A\ = T2%(@) for L > 0, where @ is defined in Lemma 3.1.
By (3.3) and Lemma 3.1, we see that for L > 0, (1.1) has no positive solutions for
0< X< Az, exactly one positive solution @y, for A = Az, and exactly two positive
solutions for A > Az,.

By (3.3) and Lemma 3.1(ii), x = ||dr|lcc = @ is independent on L. So The-
orem 2.1(ii) (b) holds. Since A\, = T2%(@), and by Lemma 3.1(ii), we see that

lim A\, = oo and lim A = 0. Thus, Theorem 2.1 (ii) (a) (c) holds. The proof
L—0+t L—oo
is complete. ([

Proof of Theorem 2.2. By Lemma 3.6 (iii), Ay («) has at least one critical point
on (0,mp n). Assume that Ar(«) has two distinct critical points at a; and as
on (0,mr n). Let Ay = Ap(aq) and Ay = Ar(a2). By Lemma 3.6 (i) (ii), we obtain

Ty (1) =Thy(a2) =L and Ty (o) = Th, (az) = 0.
So by Lemma 3.2 (ii), we have a3 = a), and as = a,. Then
f)\1 (a)\l) = f)\z (a)\z) = L.

So by Lemma 3.5 (ii), we find that a3 = ay, = ay, = az. It is a contradiction. Thus,
there exists ar € (0,mr, ) such that

<0 for0<a<ay,
(4.1) AN (@) =0 for a=ay,

>0 forap <a<mpn.
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By Lemma 3.6 and (4.1), we obtain Theorem 2.2 (i). Moreover, for L > 0, there exists
AL > 0 such that (1.1) has no positive solutions for 0 < A < S\L, exactly one positive
solution uy, for A = A 1, and exactly two positive solutions for A > A 1. Notice that

(4.2) A =M(@r) and |iL)eo = 5.

In order to prove Theorem 2.2 (ii)(a)—(c), we divide the proof into the next four steps.

Step 1: We prove that AL is strictly decreasing for L > 0, and if 1 < p < 4,
then ||Ur || is strictly increasing for L > 0. Let Ly > Ly > 0. For the sake of conve-
nience, we let A\; = Ar, (az,) and Xy = Ag,(@r,). Since A} (ar,) = A, (aL,) =0,
and by Lemmas 3.2 (ii) and 3.6 (ii), we see that

Then by Lemma 3.6 (i), we further see that

(4.3) Tay(n,) = Ta, (@1,) = Ly > Ly = T, (@1,) = Th, (o, )
By (4.2), (4.3) and Lemma 3.5 (ii), then

(4.4) Ay = A, (@n,) = Xo < A1 = A, (G1,) = AL,

It implies that AL is strictly decreasing for L > 0. Next, assume that 1 < p < 4.
By (4.2), (4.4) and Lemma 3.5 (iv), we obtain

(45) ||aL2||OO = aLz =y, > ay = aLl = ||aL1||OO

It implies that ||ur ||~ is strictly increasing for L > 0.
Step 2: We prove that lim ||@r||ec = 0 and lim ||ur|lec = @. Let L1 > 0 be
L—0+ L—o0

given. Let \y = Ar, (4,). Since A} (@z,) = 0, and by Lemma 3.6 (i) (ii), we obtain
T\, (@r,) = L and T, (az,) = 0.

So by Lemma 3.2 (i), we have @y, = ay,. It implies that Ty, (a,) = L;. Then by
Lemma 3.5 (ii), we observe that

(a) L1 — 07 if and only if \; — oo; and

(b) Ly — oo if and only if Ay — 0F.

Then by Lemma 3.5 (iii),

lim ap, = lim ay, =0 and lim ap, = lim ay, =a.
Ly —07t A1—00 Li—o0 A1 —0F

Thus, by (4.2), we obtain lim ||ULljcc =0 and lim ||UL]le = @.
L—0+t L—oo
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Step 3: We prove that |3z || and Az are continuous functions with respect to L
on (0,00) Let LQ,Lg > 0, Ay = )\Lz(aLz) and A3 = )\L3(aL3). Since )\/Lz(aLz) =
AL, (@L;) =0, and by Lemma 3.6 (i) (ii), we obtain

Tn,(@r,) = Lo, T5,(G1,) =0, Tx(Gr,) =Ly and T4, (ar,) = 0.
So by Lemma 3.2 (ii), we have
(4.6) ar, = ay, and ar, = ay,.
It implies that
(4.7) Ty, (ax,) = Ly and Th,(ayn,) = Ls.
By (4.7) and Lemma 3.5 (ii), we see that
(4.8) L3 — Lo if and only if A3 — As.
By Lemma 3.5 (i), (4.2), (4.6) and (4.8), we further see that

L:}lirle HU'LJHOO = Liian ALy = /\il_rf}\Q Qxg = Q) = QLy, = H'U'LGoo-

Thus, ||@L|/ is & continuous function with respect to L on (0, 00).

Since f,\L(a) () = L by Lemma 3.6 (i), and by (3.30) and the implicit function
theorem, we see that Az («) is a continuous function with respect to L on (0, o).
So Az = Az (@) is also continuous function with respect to L on (0, 00).

Step 4: We prove that

0= lim 5\L< lim ;\Lzoo.
L—00 L—0+

Let Ao = Llim AL. Assume that Ao > 0. By Step 1 and (4.2), we find that
—00

(4.9) Aoo < AL = Ap(ar) for L >0.

By Lemma 3.6 (i), (3.30), (4.9) and Step 2, we observe that

0o = lim L= lim Ty, @a,(@r) < lim Th_ (@) = Th..(a) < oo.
L—oo L—oo L—oo

It is a contradiction. So Ao = 0. Let A\g = lim S\L. Assume that \g < co. By
L—0+t
Step 1 and (4.2), we find that

)\L(aL):S\L < A <oo forL>0.
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So by Lemmas 3.2 (i), 3.6 (i), (3.30) and Step 2, we observe that

0= lim L= lim T

L0+ L0+ s (ap) = lim Ty, (ap) = lim Ty, (o) = oc.

L—0+ a—0t

It is a contradiction. So A9 = co. Thus, Theorem 2.2 (ii) (a)—(c) hold by Steps 1-4.
The proof is complete. O
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