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Abstract. We provide some characterizations of rings R for which every (finitely gener-
ated) module belonging to a class C of R-modules is a direct sum of cyclic submodules. We
focus on the cases, where the class C is one of the following classes of modules: semiar-
tinian modules, semi-V-modules, V-modules, coperfect modules and locally supplemented
modules.
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1. Introduction

Throughout, all rings will be commutative with identities, all modules will be

unitary modules, and R will always denote a ring. We will use the symbol Mod-R

to denote the category of all R-modules. The set of all maximal ideals of R will be

denoted by Max(R). Let M be an R-module. We set AnnR(M) = {r ∈ R : rx = 0

for all x ∈ M} (the annihilator ofM) and for any element x ∈ M , we set AnnR(x) =

{r ∈ R : rx = 0} (the annihilator of x). We will use the notation N ⊆ M to denote

that N is a subset of M . The notation N 6 M means that N is a submodule of

the module M . By Rad(M) we denote the Jacobson radical of M . Let Z denote the

ring of integer numbers. For all undefined notions in this paper, we refer the reader

to [2], [4], [27] and [38].

Many mathematicians have been attracted by the study of decomposition of mod-

ules into direct sums of cyclic submodules. A number of research papers which have

been devoted to this subject can be found in the literature. Some of these papers

focus on the following two questions:
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(i) Which rings R have the property that every R-module is a direct sum of cyclic

modules?

(ii) Which rings R have the property that every finitely generated R-module is a di-

rect sum of cyclic modules?

The aim of this paper is to provide some characterizations of rings R for which

every (finitely generated) module belonging to a class C of R-modules is a direct sum

of cyclic submodules. The investigations focus on the classes C of R-modules studied

in the papers [22], [23], [24], [25], that is, semiartinian modules, semi-V-modules,

V-modules, coperfect modules and locally supplemented modules.

2. Some generalizations of FGC-rings

A ring R is called an FGC-ring if every finitely generated R-module is a direct sum

of cyclic submodules. It is well known that principal ideal domains are FGC-rings,

see for example [33], Theorem 6.16, Corollary. In 1952 in [20] Kaplansky proved that

almost maximal valuation domains are FGC-rings. A number of research papers have

been devoted to the study of the converse of the last result for local rings. Among

others, first in 1966 in [29] Matlis proved the converse for the domain case. Then

in 1971 Gill in [16] and Lafon in [26] independently proved the general case. Other

mathematicians including for example W.Brandal, T. Shores, A. I. Uzkov, P.Vámos,

R.Wiegand and S.Wiegand have continued the study of FGC-rings. A combination

of some of their results has lead to a full characterization of FGC-rings, see [4], Main

Theorem 9.1.

In this section, we focus on the question of which commutative rings R have the

property that every finitely generated R-module satisfying a property (P ) is a direct

sum of cyclic submodules. The next proposition will be useful in this study.

A nonempty class C of R-modules which is closed under submodules, homomorphic

images and direct sums is called a hereditary pretorsion class. A module M is said

to be a DSC-module if M is a direct sum of cyclic submodules.

Proposition 2.1. Let R be a ring and let C be a hereditary pretorsion class in

Mod-R. Then the following are equivalent:

(i) Any finitely generated R-module in C is a DSC-module.

(ii) R/I is an FGC-ring for any proper ideal I of R with (R/I)R ∈ C.

P r o o f. (i) ⇒ (ii) Let I be a proper ideal of R such that the R-module R/I be-

longs to C. LetM be a finitely generatedR/I-module. ThenM can be regarded as an

R-module with respect to the scalar multiplication: ax = āx for all a ∈ R and x ∈ M ,

where ā = a + I ∈ R/I. Let 0 6= x ∈ M . It is clear that I ⊆ AnnR(x). Moreover,

we have Rx ∼= R/AnnR(x) ∼= (R/I)/(AnnR(x)/I) (as R-modules). Since R/I ∈ C
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and C is closed under factor modules, it follows that Rx ∈ C. Using the fact that C

is a hereditary pretorsion class, we get M =
∑

x∈M

Rx ∈ C. Note that M is a finitely

generated R-module. ThenM is a direct sum of cyclic sub-R-modules by (i). Hence,

M is also a direct sum of cyclic sub-R/I-modules. Therefore, R/I is an FGC-ring.

(ii) ⇒ (i) Let M = Rx1 + . . . + Rxn be a finitely generated nonzero R-module

belonging to C. Then R/AnnR(M) is isomorphic to a submodule of Rx1⊕ . . .⊕Rxn.

But C is a hereditary pretorsion class. So R/AnnR(M) ∈ C. By hypothesis,

R/AnnR(M) is an FGC-ring. This implies that M is a direct sum of cyclic sub-

R/AnnR(M)-modules. Therefore, M is also a direct sum of cyclic sub-R-modules.

�

The next lemma is taken from [35], see also [37], page 171.

Lemma 2.2. Let R be a commutative noetherian ring. Then the following are

equivalent:

(i) R is an FGC-ring.

(ii) R is a principal ideal ring.

An R-module M is called locally noetherian (locally artinian) if every finitely

generated submodule of M is noetherian (artinian). It is not difficult to see that

both the class of locally noetherian modules and the class of locally artinian modules

are hereditary pretorsion classes.

Proposition 2.3. The following statements are equivalent for a ring R:

(i) Every noetherian R-module is a DSC-module.

(ii) R/I is a principal ideal ring for every proper ideal I of R with R/I noetherian.

P r o o f. Note that a finitely generated R-module M is locally noetherian if and

only if M is noetherian.

(i) ⇒ (ii) By Proposition 2.1, R/I is an FGC-ring for any proper ideal I of R

with R/I noetherian. Hence, R/I is a principal ideal ring by Lemma 2.2.

(ii) ⇒ (i) This follows by using again Proposition 2.1 and Lemma 2.2. �

Recall that a ring R is called a Bézout ring if any finitely generated ideal of R is

principal. The following corollary is an immediate consequence of Proposition 2.3.

Corollary 2.4. Let R be a Bézout ring. Then any noetherianR-module is a direct

sum of cyclic submodules.

A module M is called coperfect if the set of cyclic submodules of M satisfies the

descending chain condition.
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Proposition 2.5. The following statements are equivalent for a ring R:

(i) Every finitely generated artinian R-module is a DSC-module.

(ii) Every finitely generated coperfect R-module is a DSC-module.

(iii) R/I is a principal ideal ring for every proper ideal I of R with R/I artinian.

(iv) dimR/m(m/m2) 6 1 for every m ∈ Max(R).

P r o o f. (i) ⇔ (ii) ⇔ (iv) These follow from [24], Corollary 4.10.

(i) ⇔ (iii) Consider the following assertion:

(i′) Every finitely generated locally artinian R-module is a direct sum of cyclic

submodules.

It is clear that the assertions (i) and (i′) are equivalent. Note that the class of

locally artinian R-modules is a hereditary pretorsion class and any artinian ring is

noetherian. Using Proposition 2.1 and Lemma 2.2, it follows that the assertions (i′)

and (iii) are equivalent. This completes the proof. �

Recall that a moduleM is called semiartinian if each nonzero factor module ofM

has a simple submodule. The next lemma is needed to determine the class of rings R

for which every finitely generated semiartinian R-module is a DSC-module.

Lemma 2.6. The following are equivalent for a ring R:

(i) R is a perfect ring such that dimR/m(m/m2) 6 1 for every m ∈ Max(R).

(ii) R is an artinian principal ideal ring.

P r o o f. (i) ⇒ (ii) First suppose R is a local ring with maximal ideal m. Then

Rad(R) = m. By hypothesis, we have m = m
2 + aR for some a ∈ R. Since R is

perfect, it follows that m2 = Rad(R)m ≪ m by [2], Remark 28.5 (3). Therefore,

m = aR. But m is the only prime ideal of R since m is T -nilpotent. So R is an

artinian principal ideal ring by Theorem 2.1 of [17]. Now suppose that R is not

a local ring. Then R is a finite direct product of local rings each one of which

satisfies the conditions stated in (i). Hence, R is a finite direct product of artinian

principal ideal rings. Therefore, R itself is an artinian principal ideal ring.

(ii) ⇒ (i) This is immediate. �

Given a simple module S, a module M is called S-primary if each nonzero factor

module ofM has a simple submodule isomorphic to S. Dickson in [11] called a ring R

a T -ring if each semiartinian R-module decomposes into a direct sum of its primary

components. It is shown in [11], Corollary 2.7 that noetherian rings and semilocal

rings are T -rings. In [24], Theorem 3.4, we proved that a commutative ring R is

a T -ring if and only if any semiartinian R-module is coperfect. As in [22], we call

a module M Π-semiartinian if the direct product M I is a semiartinian module for

every nonempty set I.
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Proposition 2.7. The following statements are equivalent for a ring R:

(i) Every finitely generated semiartinian R-module is a DSC-module.

(ii) Every Π-semiartinian R-module is a DSC-module.

(iii) R/I is a principal ideal ring for every proper ideal I of R with R/I semiartinian.

(iv) R satisfies the following two conditions:

(a) R is a T -ring;

(b) dimR/m(m/m2) 6 1 for all m ∈ Max(R).

P r o o f. (i) ⇔ (iv) This follows from [34], Theorem 2.

(iv) ⇒ (iii) Let I be a proper ideal of R such that R/I is a semiartinian

ring. Since R is a T -ring, any semiartinian R-module is coperfect, see [24], Theo-

rem 3.4. Therefore, R/I is a coperfect R-module and hence R/I is a perfect ring

by [24], Proposition 2.5. Notice that condition (b) is closed under factor rings. By

Lemma 2.6, we see that R/I is an artinian principal ideal ring.

(iii) ⇒ (ii) Let M be a Π-semiartinian R-module. By [22], Proposition 3.2,

R/AnnR(M) is a semiartinian ring. By hypothesis, R/AnnR(M) is an artinian

principal ideal ring. By [33], Theorem 6.7, it follows that M , viewed as an

R/AnnR(M)-module, is a direct sum of cyclic submodules. This clearly implies

that the R-module M is also a direct sum of cyclic submodules.

(ii) ⇒ (i) This follows from the fact that any finitely generated semiartinian

R-module is Π-semiartinian, see [22], Corollary 3.3. �

Following Hirano (see [19]) an R-moduleM is called a V-module (or cosemisimple

as in [15]) if every proper submodule of M is an intersection of maximal submodules

of M . Equivalently, Rad(N) = 0 for every factor module N of M . The ring R

is called a V-ring (or cosemisimple) if the R-module R is a V-module. A well-

known result of Kaplansky shows that the commutative V-rings are exactly the von

Neumann regular rings.

The next result is taken from [31], Corollary 21.7.

Lemma 2.8. Let R be a commutative von Neumann regular ring. Then the

following are equivalent:

(i) R is an FGC-ring.

(ii) R is a semisimple ring.

In [25], we called a ring R a VSA-ring if any V-module in Mod-R is semiartinian.

Clearly, any semiartinian ring is a VSA-ring. The class of VSA-rings also includes

semilocal rings and noetherian rings, see [25], Example 3.15.

Proposition 2.9. The following statements are equivalent for a ring R:

(i) Every finitely generated V-module in Mod-R is a DSC-module.
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(ii) Every V-module in Mod-R is a DSC-module.

(iii) R/I is a semisimple ring for any proper ideal I of R with R/I von Neumann

regular.

(iv) Every V-module in Mod-R is semisimple.

(v) R satisfies the following two conditions:

(a) R is a T -ring;

(b) R is a VSA-ring.

P r o o f. Note that the class of V-modules is a hereditary pretorsion class by [19],

Proposition 3.3.

(i) ⇔ (iii) This follows from Proposition 2.1 and Lemma 2.8.

(iii) ⇒ (iv) Let M be a V-module in Mod-R and let 0 6= x ∈ M . Then Rx is also

a V-module and so R/AnnR(x) is a von Neumann regular ring. Hence, R/AnnR(x)

is a semisimple ring by (iii). This implies that Rx is a semisimple R-module. There-

fore, M is a semisimple R-module.

(iv) ⇒ (ii) ⇒ (i) are obvious.

(iv) ⇔ (v) This follows from [6], Theorem 4. �

Example 2.10. Assume that the ring R is noetherian or semilocal. Then R is

a T -ring and a VSA-ring. From Proposition 2.9 it follows that every V-module in

Mod-R is a direct sum of cyclic submodules.

Let M be an R-module. An R-module N is said to be subgenerated by M if N is

isomorphic to a submodule of an M -generated module. We denote by σ[M ] the full

subcategory ofMod-R whose objects are all R-modules subgenerated byM , see [38],

page 118. Following [7], 2.19, anR-moduleM is called a Bass module if every nonzero

module in σ[M ] has a maximal submodule. It is clear that the R-module R is Bass if

and only if every nonzero R-module has a maximal submodule; such a ring is called

a Bass ring, see [7], page 18. Following [5], an R-moduleM is called a semi-V-module

in Mod-R if every nonzero homomorphic image of M has a nonzero V-submodule.

Any Bass module is a semi-V-module by [25], Corollary 3.5. In [25], we called

an R-module M a Π-Bass module (Π-semi-V-module) if the direct product MΛ is

a Bass module (semi-V-module) for every nonempty set Λ. By [25], Proposition 4.2,

a module M is Π-Bass if and only if it is a Π-semi-V-module.

Proposition 2.11. The following statements are equivalent for a ring R:

(i) Every finitely generated semi-V-module in Mod-R is a DSC-module.

(ii) Every finitely generated Bass module in Mod-R is a DSC-module.

(iii) Every Π-semi-V-module in Mod-R is a DSC-module.

(iv) Every Π-Bass module in Mod-R is a DSC-module.
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(v) R/I is an artinian principal ideal ring for any proper ideal I of R with R/I

a Bass ring.

(vi) R satisfies the following three conditions:

(a) R is a T -ring;

(b) R is a VSA-ring;

(c) dimR/m(m/m2) 6 1 for all m ∈ Max(R).

P r o o f. (i) ⇒ (vi) Note that any V-module is a semi-V-module. Hence, any

finitely generated V-module in Mod-R is a direct sum of cyclic submodules. By

Proposition 2.9, R is a T -ring and a VSA-ring. Moreover, any coperfect module is

a semi-V-module by [25], Proposition 3.1. Using Proposition 2.5, it follows that R

satisfies condition (c).

(vi) ⇒ (v) Let I be a proper ideal of R such that R/I is a Bass ring. Since R

is a T -ring and a VSA-ring, R/I is a coperfect R-module by [25], Proposition 3.17.

Hence, R/I is a perfect ring by [24], Corollary 2.12. Moreover, it is not difficult to

see that the ring R/I also satisfies condition (c). So by Lemma 2.6, it follows that

R/I is an artinian principal ideal ring.

(v) ⇒ (iv) Let M be a Π-Bass R-module. By [25], Proposition 4.2, R/AnnR(M)

is a Bass ring. Therefore, R/AnnR(M) is an artinian principal ideal ring by (v).

Using [33], Theorem 6.7, we conclude that M , viewed as an R/AnnR(M)-module or

as an R-module, is a direct sum of cyclic submodules.

(iv) ⇒ (ii) This follows from the fact that any finitely generated Bass module is

Π-Bass, see [25], Corollary 4.3.

(ii) ⇒ (i) This follows from the fact that a finitely generated R-module is a Bass

module if and only if it is a semi-V-module, see [25], Corollary 3.8.

(iii) ⇔ (iv) This follows from [25], Proposition 4.2. �

A family of sets is said to have the finite intersection property if the intersection of

every finite subfamily is nonempty. An R-moduleM is linearly compact if whenever

{mi +Mi}i∈I is a family of cosets of submodules of M (mi ∈ M and Mi 6 M for

each i ∈ I) with the finite intersection property, then
⋂

i∈I

(mi + Mi) is nonempty.

A commutative ring R is a maximal ring if R is a linearly compact R-module and R

is an almost maximal ring if R/I is a linearly compact R-module for all nonzero

ideals I of R.

Let N be a submodule of a module M . Then N is called small in M (denoted by

N ≪ M) if M 6= N +X for any proper submodule X of M . A submodule K of M

is called a supplement of N in M if K is minimal with respect to the property M =

N+K. Equivalently,M = N+K and N∩K ≪ K. A moduleM is said to be supple-

mented if every submodule ofM has a supplement inM . A moduleM is called locally

supplemented if every finitely generated submodule of M is supplemented, see [23].
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We need the following lemma to characterize the class of rings R having the prop-

erty that finitely generated locally supplemented R-modules are DSC.

Lemma 2.12 ([4], Theorem 4.5). Let R be a local ring. Then the following are

equivalent:

(i) R is an FGC-ring.

(ii) R is an almost maximal valuation ring.

Proposition 2.13. The following statements are equivalent for a ring R:

(i) Every finitely generated supplemented R-module is DSC.

(ii) Every finitely generated locally supplemented R-module is DSC.

(iii) R/I is an almost maximal valuation ring for any proper ideal I of R with R/I

a local ring.

P r o o f. (i) ⇒ (ii) This is clear.

(ii) ⇒ (iii) Let I be a proper ideal of R such that R/I is a local ring. Then

clearly R/I is a semiperfect ring. Thus, R/I is a locally supplemented R-module

by [23], Lemma 2.5. Since the class of locally supplemented modules is a hered-

itary pretorsion class (see [23], Remark 2.8), it follows that R/I is an FGC-ring

by Proposition 2.1. Using Lemma 2.12, we deduce that R/I is an almost maximal

valuation ring.

(iii) ⇒ (i) Let M be a finitely generated supplemented R-module with I =

AnnR(M). By Lemma 2.5 of [23], R/I is a semiperfect ring. Thus, R/I ∼=

R/I1 × . . . × R/In, where each Ii (1 6 i 6 n) is an ideal of R such that R/Ii

is a local ring, see [28], Theorem 23.11. By hypothesis and using Lemma 2.12, we

obtain that R/Ii is an FGC-ring for all i = 1, . . . , n. Hence, R/I is an FGC-ring

by [4], Lemma 4.1 (1). Therefore, M is a DSC-module. �

3. Generalized Köthe rings

The following question was raised by Köthe: Which rings R (not necessarily com-

mutative) have the property that every right R-module is a direct sum of cyclic sub-

modules?

Köthe proved that every R-module over a left artinian principal ideal ring is

a DSC-module, see [21]. The converse for the case of commutative rings was proved

by Cohen and Kaplansky, see [9].

A ring R is called a Köthe ring if any R-module is a direct sum of cyclic submod-

ules. So we have the following result which can be also found in Theorem 6.7 of [33].
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Theorem 3.1. A commutative ring R is a Köthe ring if and only if R is an

artinian principal ideal ring.

In this section, we show some characterizations of rings R by some of their classes

of R-modules which are DSC. We begin with the class of rings R for which every

semiartinian R-module is a DSC-module. To do this, we need some lemmas. We

first recall the following notions.

Following [18], the Krull dimension (denoted K-dim) of a module M is defined

as follows: K-dim(M) = −1 when M = 0. Given an ordinal α, and assuming that

the concept K-dim(M) < α is already defined, K-dim(M) is defined to be α if

K-dim(M) ≮ α and there exists no descending sequence M = M0 > M1 > . . . of

submodules of M with K-dim(Mn−1/Mn) ≮ α for all n > 1. It is easy to check that

K-dim(M) = 0 if and only if M is a nonzero artinian module. Also, note that every

noetherian module has Krull dimension by Proposition 1.3 of [18].

Recall that a module M is called tall if it contains a submodule N such that

bothM/N and N are non-noetherian. A ring R is called tall if every non-noetherian

R-module is tall. For example, every Bass ring R (i.e., every nonzero R-module has

a maximal submodule) is tall by Corollary 1.2 of [30].

Let R be a ring, m a maximal ideal in R and F a finitely generated free R-module.

Following Facchini (see [13], Definition 2.2), a descending m-chain in F is a chain

F1 ⊇ F2 ⊇ F3 ⊇ . . . of submodules of F such that:

(i) Fn = m
nF + Fm for all n 6 m, and

(ii) F/Fn is a noetherian R-module for all n > 1.

The following characterization of tall rings will be of interest.

Lemma 3.2. The following are equivalent for a ring R:

(i) R is a tall ring.

(ii) R/
⋂

k>1

m
k is tall for every maximal ideal m of R.

(iii) Every R-module with Krull dimension is noetherian.

(iv) Every artinian R-module is noetherian.

(v) An R-module M is artinian if and only if M is noetherian.

(vi) For every maximal ideal m in R, every descending m-chain in R is stationary.

P r o o f. (i) ⇔ (ii) By [30], Corollary 2.7.

(i) ⇔ (iii) This follows from [32], Theorem 2.7.

(i) ⇔ (iv) By [30], Theorem 2.12.

(iv) ⇔ (vi) This follows from [13], Proposition 4.4.

(iv) ⇔ (v) By [13], Proposition 4.1. �

1107



Lemma 3.3. Let R be a ring such that dimR/m(m/m2) < ∞ for every maximal

ideal m of R. Then the following are equivalent:

(i) R is a tall ring.

(ii) For every maximal ideal m in R, there exists a positive integer n such that

m
n = m

n+1.

P r o o f. (i)⇒ (ii) Letm be a maximal ideal ofR. We claim thatR/mn is a noethe-

rian ring for every integer n > 2. Since dimR/m(m/m2) < ∞, there exists a finitely

generated ideal I = a1R+a2R+. . .+akR of R such that m = m
2+I. By induction on

n, let us show that m = m
n+ I for every integer n > 2. Clearly, this property is true

for n = 2. Now suppose that m = m
n + I for some integer n > 2. Multiplying both

sides of this equality by m, we get m2 = m
n+1 +mI. As m = m

2 + I, we obtain m =

m
n+1 +mI + I. Hence, m = m

n+1 + I. Therefore, m = m
n + I for any integer n > 2.

It follows that for any integer n > 2, m/mn (which is the only prime ideal of R/mn)

is finitely generated. By a theorem of Cohen (see [8], Theorem 2), we conclude that

each R/mn (n > 2) is a noetherian ring. This implies that m ⊇ m
2 ⊇ m

3 ⊇ . . . is

a descending m-chain in R. Since R is tall, this chain has to stabilize by Lemma 3.2.

(ii)⇒ (i) Let n be a positive integer such thatmn = m
n+1. ThenR/

⋂

k>1

m
k=R/mn

is a Bass ring by [14], Theorem A. This implies that R/
⋂

k>1

m
k is a tall ring, see [30],

Corollary 1.2. Now using Lemma 3.2, it follows that R is a tall ring. �

Lemma 3.4. Let R be a ring. Assume that any artinian R-module is DSC.

Then R satisfies the following two conditions:

(a) dimR/m(m/m2) 6 1 for all m ∈ Max(R), and

(b) for each m ∈ Max(R), there exists a positive integer n such that mn = m
n+1.

P r o o f. First, note that condition (a) holds by Proposition 2.5. To show that R

satisfies condition (b), take an artinian R-module M . By hypothesis, M is a fi-

nite direct sum of cyclic submodules. So M is finitely generated. Therefore, M is

a noetherian module. By Lemma 3.2, it follows that R is a tall ring. Now application

of Lemma 3.3 enables us to deduce that condition (b) holds. �

This brings us to the first main result of this section.

Theorem 3.5. Let R be a ring with Ω = Max(R). Then the following statements

are equivalent:

(i) Any semiartinian R-module is a DSC-module.

(ii) For any semiartinianR-moduleM , we haveM ∼=
⊕

m∈Ω

Mm and eachMm (m ∈ Ω)

is isomorphic to a direct sum of cyclic modules of the type R/mk.
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(iii) R satisfies the following three conditions:

(a) R is a T -ring;

(b) dimR/m(m/m2) 6 1 for all m ∈ Ω;

(c) for each m ∈ Ω, there exists a positive integer n such that mn = m
n+1.

P r o o f. (i) ⇒ (iii) Since any finitely generated semiartinian R-module is DSC,

the conditions (a) and (b) hold by Proposition 2.7. Moreover, since any artinian

module is semiartinian, it follows from Lemma 3.4 that condition (c) holds.

(iii) ⇒ (ii) By Proposition 2.7, every finitely generated semiartinian R-module

is DSC. Hence, (ii) follows directly from [12], Theorem, page 17.

(ii) ⇒ (i) This is obvious. �

Next, we present three examples to show that none of conditions (a), (b) and (c)

in Theorem 3.5 can be omitted.

Example 3.6.

(i) Consider the ring R = Z. Then R is a T -ring as R is a noetherian ring, see [11],

Corollary 2.7. Moreover, it is clear that for allm ∈ Max(R), dimR/m(m/m2) 6 1.

On the other hand, mn 6= m
n+1 for every positive integer n.

(ii) Let K be a field and let V be an infinite dimensional vector space over K. Let

R = KαV be the trivial extension of K by V . Then R is a local ring with

maximal ideal m = (0, V ). Thus, R is a T -ring by [11], Corollary 2.7. Moreover,

we have m2 = 0. Hence, m2 = m
3 = 0. However, it is clear that m/m2 ∼= m is

not finitely generated. So dimR/m(m/m2) > 2.

(iii) Let K be a field, set Kn = K for all n = 1, 2, . . ., and let S be the K-subalgebra

of
∏

n>1

Kn generated by 1 and
⊕

n>1

Kn. By [1], Remarks 3.14 (3), R is a von

Neumann regular ring which is not a T -ring. Moreover, since R is von Neumann

regular, we have m2 = m for all m ∈ Max(R).

Next, we will be concerned with the class of rings R for which every artinian

R-module is DSC. We need the following lemma.

Lemma 3.7. Let R be a ring and let m ∈ Max(R). Then the following hold:

(i) dimR/m(m/m2) 6 1 if and only if R/m2 is an artinian principal ideal ring.

(ii) For every positive integer n, R/mn and Rm/m
nRm are isomorphic as rings and

as R-modules as well.

(iii) If Rm is an artinian ring, then Rm is a principal ideal ring if and only if

dimR/m(m/m2) 6 1.
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P r o o f. (i) Assume that dimR/m(m/m2) 6 1. So m/m2 is a principal ideal

of R/m2. Moreover, m/m2 is the only prime ideal of R/m2. Now using [17], The-

orem 2.1, we conclude that R/m2 is a principal ideal ring. Since any prime ideal

of R/m2 is maximal, it follows that R/m2 is an artinian ring. The converse is

clear.

(ii) A trivial verification shows that the map f : R/mn → Rm/m
nRm defined by

f(a+m
n) = a/1 +m

nRm is an isomorphism of rings (and also of R-modules).

(iii) This follows by combining (i), (ii) and Lemma 2.6. �

Let M be an R-module and let m be a maximal ideal of R. As in [24],

page 536, Cop
m
(M) = {x ∈ M : x = 0 or R/AnnR(x) is a perfect local ring with

AnnR(x) ⊆ m}. It is easily seen that Cop
m
(M) can be regarded as an Rm-module

by the following operation: (r/s)x := rx′ with x = sx′ (r ∈ R, s ∈ R\m). Moreover,

the submodules of Cop
m
(M) over R and over Rm are identical.

Lemma 3.8. Let R be a ring with Ω = Max(R). Assume that the following

conditions are satisfied:

(a) dimR/m(m/m2) 6 1 for all m ∈ Ω, and

(b) for each m ∈ Ω, there exists a positive integer n such that mn = m
n+1.

If M is a coperfect R-module, then M ∼=
⊕

m∈Ω

Mm and each Mm (m ∈ Ω) is

isomorphic to a direct sum of cyclic modules of the type R/mk.

P r o o f. Let M be a coperfect R-module. By [24], Theorem 2.15 we have

M =
⊕

m∈Ω

Cop
m
(M) and Cop

m
(M) is a coperfect Rm-module for all m ∈ Ω. Since R

satisfies conditions (a) and (b), so is each Rm by Lemma 3.7. Moreover, since

each Rm is a local ring, it follows that Rm is a T -ring by [11], Corollary 2.7. Note

that any coperfect module is semiartinian, see [24], Theorem 2.9. Using Theorem 3.5,

we deduce that each Cop
m
(M) is isomorphic to a direct sum of cyclic Rm-modules

of the type Rm/m
kRm. Again by Lemma 3.7, it follows that each Cop

m
(M) is

isomorphic to a direct sum of cyclic R-modules of the type R/mk. Also, note that

Cop
m
(M) ∼= Mm for all m ∈ Ω, see [24], Theorem 2.15. This completes the proof. �

Theorem 3.9. Let R be a ring with Ω = Max(R). Then the following are

equivalent:

(i) Any artinian R-module is a DSC-module.

(ii) Any R-module with Krull dimension is a DSC-module.

(iii) Any locally artinian R-module is a DSC-module.

(iv) Any locally noetherian R-module is a DSC-module.

(v) Any coperfect R-module is a DSC-module.
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(vi) R satisfies the following two conditions:

(a) dimR/m(m/m2) 6 1 for all m ∈ Ω, and

(b) for each m ∈ Ω, there exists a positive integer n such that mn = m
n+1.

Moreover, if a ring R satisfies the above conditions, then any R-module M of

type (i)–(v) has the following form:

(α) M ∼=
⊕

m∈Ω

Mm and each Mm (m ∈ Ω) is isomorphic to a direct sum of cyclic

modules of the type R/mk.

P r o o f. (i) ⇒ (vi) This follows from Lemma 3.4.

(vi) ⇒ (v) This follows from Lemma 3.8.

(v) ⇒ (iii) ⇒ (i) This is clear since any locally artinian module is coperfect and

any artinian module is locally artinian.

So we have the equivalences (i) ⇔ (iii) ⇔ (v) ⇔ (vi).

(iii) ⇒ (iv) First, note that R is a tall ring by the equivalence (iii) ⇔ (vi) and

using Lemma 3.3. Therefore, any noetherian R-module is artinian by Lemma 3.2.

This implies that any locally noetherian R-module is locally artinian. So any locally

noetherian R-module is DSC.

(iv) ⇒ (i) It is well known that any artinian ring is noetherian. So any artinian

R-module is locally noetherian.

(i) ⇒ (ii) Let M be an R-module with Krull dimension. From the equivalence

(i) ⇔ (vi) and Lemma 3.3, we conclude that R is a tall ring. Using Lemma 3.2 twice,

we obtain that M is an artinian module. Therefore, M is DSC.

(ii)⇒ (i) This follows from the fact that any artinian module has Krull dimension.

Now assume that R satisfies conditions (i)–(vi). We proved above that any

R-module M which is artinian or locally artinian or locally noetherian or M has

Krull dimension, is coperfect and hence M has the form (α) by Lemma 3.8. �

In the following remark, we provide a ring R which satisfies the statements of

Theorems 3.5 and 3.9, but R is not a Köthe ring.

Remark 3.10. Let K be a field and let R =
∏

i>1

Ki, where Ki = K for all i > 1.

Then R is a von Neumann regular ring. So m
2 = m for all m ∈ Max(R). More-

over, R is a T -ring, see [6], page 320. By [6], Theorem 5, any semiartinian R-module

is semisimple. On the other hand, R is neither an artinian ring nor a principal ideal

ring.

In the next result, we show that to obtain a characterization of the class of rings R

having the property that every semi-V-module in Mod-R is a DSC-module, we need

to add a necessary condition to conditions (a), (b) and (c) in Proposition 2.11.
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Theorem 3.11. Let R be a ring with Ω = Max(R). Then the following are

equivalent:

(i) Any semi-V-module in Mod-R is a DSC-module.

(ii) For any semi-V-module M in Mod-R, we have M ∼=
⊕

m∈Ω

Mm and each Mm

(m ∈ Ω) is isomorphic to a direct sum of cyclic modules of the type R/mk.

(iii) R satisfies the following four conditions:

(a) R is a T -ring;

(b) dimR/m(m/m2) 6 1 for all m ∈ Ω;

(c) For each m in Ω, there exists a positive integer n such that mn = m
n+1;

(d) R is a VSA-ring.

P r o o f. (i) ⇒ (iii) Since any V-module is a semi-V-module, it follows that any

V-module in Mod-R is DSC. By Proposition 2.9, conditions (a) and (d) hold. More-

over, note that any semiartinian module is a semi-V-module by [25], Proposition 3.1.

Hence, any semiartinian R-module is DSC. By Theorem 3.5, conditions (b) and (c)

also hold.

(iii) ⇒ (ii) Let M be a semi-V-module in Mod-R. Since R is a VSA-ring, M is

semiartinian by [25], Proposition 3.16. Using Theorem 3.5, we get the desired de-

composition of M .

(ii) ⇒ (i) This is immediate. �

Next, we present four examples which show that none of the conditions (a), (b), (c)

and (d) in Theorem 3.11 can be dropped.

Example 3.12.

(i) Consider the ring R = Z. By Example 3.6, R satisfies (a) and (b) but not (c).

Moreover, since R is noetherian, R is a VSA-ring by [25], Example 3.15 (iii).

(ii) Let K be a field and let V be an infinite vector space over K. Let R = KαV be

the trivial extension of K by V . By Example 3.6, R satisfies (a) and (c) but R

does not satisfy (b). Moreover, since R is a local ring, R is a VSA-ring by [25],

Example 3.15 (ii).

(iii) Consider the ring R given in Example 3.6 (iii). Then R satisfies (b) and (c)

but R does not satisfy (a). Also, by [1], Remark 3.14 (3), R is a semiartinian

ring and so R is a VSA-ring.

(iv) Let K be a field and let R =
∏

i>1

Ki, where Ki = K for all i > 1. Then

clearly R is a von Neumann regular ring. Hence, R satisfies (b) and (c). More-

over, R is a T -ring, see [6], page 320. However, R is not semiartinian by [3],

Proposition 4.5. It follows that the R-module R is a V-module which is not

semiartinian. Therefore, R is not a VSA-ring.
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Remark 3.13. It is easily seen that

{Rings in Theorem 3.5} ⊆ {Rings in Proposition 2.7},

{Rings in Theorem 3.9} ⊆ {Rings in Proposition 2.5},

{Rings in Theorem 3.11} ⊆ {Rings in Proposition 2.11}.

Using Example 3.12 (i), we see that all these inclusions are strict.

Recall that a module M is called finitely embedded if there exist finitely many

simple submodules Si (1 6 i 6 n) of M such that E(M) = E(S1) ⊕ . . . ⊕ E(Sn).

It is well known that every artinian module is finitely embedded, see [36], Propo-

sition 2∗. A nonzero module M is said to have finite uniform (or Goldie) di-

mension if M contains no infinite direct sum of nonzero submodules. Equiva-

lently, E(M) is a finite direct sum of indecomposable injective submodules, see [27],

Proposition 6.12. Hence, any finitely embedded module has finite uniform dimen-

sion.

Theorem 3.14. Let R be a ring with Ω = Max(R). Then the following are

equivalent:

(i) Any finitely embedded R-module is a DSC-module.

(ii) For any finitely embedded R-module M we haveM ∼=
⊕

m∈Ω

Mm and each Mm is

isomorphic to a direct sum of cyclic submodules of the type R/mk.

(iii) Any R-module having finite uniform dimension is a DSC-module.

(iv) For any R-module having finite uniform dimension M we have M ∼=
⊕

m∈Ω

Mm

and each Mm is isomorphic to a direct sum of cyclic submodules of the

type R/mk.

(v) Rm is an artinian principal ideal ring for all m ∈ Ω.

P r o o f. The implications (iv) ⇒ (ii) ⇒ (i) are clear.

(i) ⇒ (v) Let M be a finitely embedded R-module. By hypothesis, M is a finite

direct sum of cyclic submodules since M has finite uniform dimension. So M is

finitely generated. By [36], Theorem 3, it follows that Rm is an artinian ring for

every m ∈ Ω. Since artinian modules are finitely embedded, using Theorem 3.9, we

conclude that dimR/m(m/m2) 6 1 for all m ∈ Ω. Therefore, Rm is a principal ideal

ring for every m ∈ Ω by Lemma 3.7 (iii).

(v) ⇒ (iv) By Lemma 6.6 of [33], Rm is an artinian valuation ring for all m ∈ Ω.

So any indecomposable R-module is artinian by [10], Theorem III.4. Let M be an

R-module of finite uniform dimension. So E(M) is a finite direct sum of artinian

modules by [27], Proposition 6.12. Therefore, M itself is an artinian R-module.
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Moreover, R satisfies condition (vi) (b) of Theorem 3.9 by (v). Also, R satisfies

condition (a) of Theorem 3.9 by Lemma 3.7 (iii). From Theorem 3.9, it follows that

M ∼=
⊕

m∈Ω

Mm and each Mm is isomorphic to a direct sum of cyclic submodules of

the type R/mk.

The implications (iv) ⇒ (iii) ⇒ (i) are clear. �

We conclude this paper by characterizing the class of ringsR for which every locally

supplemented R-module is a DSC-module. The following lemma will be useful.

Lemma 3.15. LetR be a ring and let C be a hereditary pretorsion class inMod-R.

Consider the following two conditions:

(i) Any R-module in C is a DSC-module.

(ii) R/I is an artinian principal ideal ring for any proper ideal I of R with

(R/I)R ∈ C.

Then (i) ⇒ (ii).

P r o o f. Let I be a proper ideal of R such that R/I ∈ C and let M be an

R/I-module. By the same method as in the proof of Proposition 2.1((i) ⇒ (ii)),

it follows that M is a DSC R/I-module. Hence, R/I is an artinian principal ideal

ring by Theorem 3.1. �

The implication (ii) ⇒ (i) in Lemma 3.15 it not true, in general, as shown in the

following example.

Example 3.16. Let R = Z and consider the class C of locally artinian

Z-modules. It is clear that R satisfies condition (ii) in Lemma 3.15. However, R does

not satisfy condition (vi) (b) of Theorem 3.9. So R does not satisfy condition (i) in

Lemma 3.15.

Proposition 3.17. Let R be a ring with Ω = Max(R). Then the following

statements are equivalent:

(i) Every locally supplemented R-module is DSC.

(ii) R satisfies the following two conditions:

(a) R/I is an artinian principal ideal ring for any proper ideal I of R with R/I

a local ring;

(b) for each m in Ω, there exists a positive integer n such that mn = m
n+1.

(iii) R satisfies the following two conditions:

(c) R/I is a perfect ring for any proper ideal I of R with R/I a local ring;

(d) for each m in Ω, we have dimR/m(m/m2) 6 1 and there exists a positive

integer n such that mn = m
n+1.

1114



P r o o f. (i) ⇒ (ii) To prove (a), let I be a proper ideal of R such that R/I is

a local ring. Then R/I is a supplemented R-module. Therefore, R/I is a locally

supplemented R-module by [23], Lemma 2.5. But the class of locally supplemented

modules is a hereditary pretorsion class, see [23], Remark 2.8. Using Lemma 3.15, it

follows that R/I is an artinian principal ideal ring.

To show (b), note that any locally artinian R-module is locally supplemented.

Hence, any locally artinian R-module is a DSC-module by (i). Now use Theorem 3.9.

(ii) ⇒ (iii) (c) is clear.

(d) Let m be a maximal ideal of R. Since R/m2 is a local ring, R/m2 is an artinian

principal ideal ring. By Lemma 3.7 (i), we have dimR/m(m/m2) 6 1.

(iii) ⇒ (i) Let M be a locally supplemented R-module and let 0 6= x ∈ M .

Then R/AnnR(x) is a semiperfect ring by [23], Lemma 2.5. Hence, R/AnnR(x) ∼=

R/I1 × . . . × R/In, where each Ii (1 6 i 6 n) is an ideal of R such that R/Ii is

a local ring, see [28], Theorem 23.11. By (c), each R/Ii (1 6 i 6 n) is a perfect

ring. So R/AnnR(x) is a perfect ring by [28], Theorem 23.24. Using Proposition 2.5

of [24], it follows that M is a coperfect R-module. Combining (d) and Theorem 3.9,

we deduce that M is a DSC-module. �

Remark 3.18. To compare Propositions 2.13 and 3.17, it is clear that

{Rings in Proposition 3.17} ⊆ {Rings in Proposition 2.13}.

But this inclusion is strict. Indeed, it is well known that every finitely generated

Z-module is a DSC-module. On the other hand, the ring Z does not satisfy condi-

tion (b) in Proposition 3.17.
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