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Abstract. A Coburn theorem says that a nonzero Toeplitz operator on the Hardy space
is one-to-one or its adjoint operator is one-to-one. We study the corresponding problem for
certain Toeplitz operators on the Bergman space.
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1. INTRODUCTION

Let D denote the unit disk of the complex plane C and T be the boundary
of D. The Bergman space L2 is the closed subspace of the usual Lebesgue space
L? := L*(D, A) consisting of all analytic functions on D, where the measure A is
the normalized area measure on D. Let P be the Hilbert space orthogonal projec-
tion from L2 onto L2. For a bounded measurable function u on D, the Toeplitz
operator T, with the symbol u is defined by

for functions f € L2. Clearly, T, is a bounded linear operator on L%. See [10] for
details and more information on Toeplitz operators.

For Toeplitz operators acting on the Hardy space of unit disk, a celebrated theo-
rem of Coburn asserts that a nonzero Toeplitz operator is one-to-one or its adjoint
operator is one-to-one; see Theorem 4.1 of [3]. Coburns result can be rephrased as
a nonzero Hardy space Toeplitz operator has either trivial kernel or dense range.

This research was supported by the Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2019R111A3A01041943).

DOI: 10.21136/CMJ.2023.0402-22 1119

© Institute of Mathematics, Czech Academy of Sciences 2023.


http://dx.doi.org/10.21136/CMJ.2023.0402-22

Later, Vukoti¢ in [9] reproved the theorem by showing that if a nonzero Hardy space
Toeplitz operator is not injective then its range contains all polynomials, which is
due to the simple fact that the commutator of the shift and any Hardy space Toeplitz
operator have rank at most one. Also, the corresponding problem has been studied
on the Hardy space of polydisk or Dirichlet space as in [1] and [5].

In this paper we consider the corresponding natural problem for Toeplitz operators
acting on the Bergman space of the unit disk. First of all, we should mention that
the Coburn type theorem fails generally on the Bergman space. Indeed, using (2.1)
in Section 2, one can see that

Tizpzn—1/(nrn)(1) =0

and moreover

kerﬂz‘2n,1/(n+1) =C-1

for all n = 0,1,... Here, ker S denotes the kernel of operator S as usual. Since
T, = Ty for any bounded function ¢, the above shows that the Coburn type theorem
fails for Toeplitz operators with symbol |z|*® — 1/(n + 1) for every n.

In this paper, given a bounded analytic function f on D, we study the problem of
when the Coburn type theorem holds for the Toeplitz operator with symbol f + Z.
More explicitly, we consider analytic functions f on D continuous up to T with a cer-
tain boundary condition and then give a characterization in terms of integrability and
the number of zeros of a certain function induced by f; see Theorem 2.1 of Section 2.

In Section 3, we specially take f to be cz?V, where N > 0 is an integer and ¢ € C
is a constant. We then give complete descriptions for kernels of T,.,~ > and T 3
respectively. Our result shows that the characterizations depend on the absolute
value of the constant ¢; see Theorems 3.1 and 3.2. As an immediate consequence, we
show that the Coburn type theorem holds for the Toeplitz operator T~ for all N
and ¢; see Corollary 3.1. But, we were not able to characterize a general symbol for
which the Coburn type theorem holds for the corresponding Toeplitz operator.

2. THE KERNEL OF T4z

As is well known, the projection P is the Bergman projection whose explicit for-
mula can be given by

Py(z) = /Dw(w)Kz(w) dA(w), z€ D,

for functions v € L2. Here, function K, is the Bergman kernel given by
1
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Using this formula for P, one can see that for integers n,m > 0
n—m-+1
(2.1) P(z"zm) = n+1
0 if n<m.

nmmeoif n>m,

Also, given a function h € L2 with h(0) = 0, we have
(2.2) P(wh)(z) = 1h(z) 1 /Z hd¢
' Tz 22 Jo

for all z € D; see Lemma 2 of [2] or Lemma 2.1 of [8] for details.

We start with an equivalent condition for the kernel of the Toeplitz operator Tz,
where f € H>. Here, the notation H>° stands for the space of all bounded analytic
functions on D.

Lemma 2.1. Let f € H*® and h € L2. Write

= i anz™, h(z) = i bpz"
n=0 n=0

for power series expansions of f and h, respectively. Then all the following statements
are equivalent.

(a) h ekerTyys.

(b) (zf + DR + (zf'+2f)h =

(©) bup1 = —(n+2)/(n+1) i apbn_y. for alln = 0,1,2, ...

Proof. By (2.1), we note P(w) = 0. It follows from (2.2) that

Ty ywh(2)

FE(E) + PR)(Z) = F()R() + P(h ~ hO))(z) + HO)P(@)(2)
FE(E) + Pl — hO)(2)
)+ 1) —hO) - 5 [ Q) = hO)dC, z€D.

Thus, (a) holds if and only if

\ |
/—\
N
~—

AFME) = —elntz) ~ hO) + [ Q) — hO) ¢, ze D,

which is equivalent to (b) by differentiating both sides. Hence, (a) < (b) holds.
Also, if we assume (b), by differentiating both sides of (b), we see that

(0 ()™ + 2( ) = —p+
for alln =0,1,2,... Evaluating at z = 0, we have
(n+2)(fh)™(0) = =h"*(0)
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and thus

R("*1)(0) ( = n! n+2
bn+1 CESI ,z;) & 'k'f (Ol n+1zakbn k
for all n =0,1,..., so (c) holds. Finally, if we assume (c), we have

h("*1)(0) n+2 (fh)™(0)

n+1)!  n+1 n!

for all n = 0,1,... It follows that

2f(2)h(z) + z(fh)( inwm —Zw(nﬂ)

n! — (n+1)!
= — Z(TL + 1)bn+12n = —h/(Z), z € D.
n=0
So (b) holds and (b) < (c) follows. The proof is complete. O

Lemma 2.1 shows that h € ker Tz if and only if h € L2 is a solution of the first
order differential equation

(2.3) (zf+1)H + (2f +2f)H =

As is well known, the space of all solutions of (2.3) is at most one dimensional. Thus,
for f € H*°, the dimension of ker Tz is 0 or 1.

Proposition 2.1. Let f € H*> be such that the function

2f +zf'

Y= 14+ z2f

is well defined as an analytic function on D. Put

F(z) = exp{—/ozwdg}, z€D.

Then, the dimension of ker Ty, 5 is 0 or 1, and the following statements hold.
(a) dimkerTy4z =1 if and only if F € L2 and ker Ty = C - F.
(b) dimkerTyiz = 0 if and only if F ¢ L2.

Proof. First one can see that F satisfies the differential equation (2.3). Since
the dimension of ker T4z is 0 or 1 as mentioned above, (a) and (b) hold. The proof
is complete. ([
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Let B denote the C*-algebra consisting of all bounded linear operators on L2.
Also, let K be the algebra of all compact operators on L2. An operator L € B is said
to be Fredholm if L+ K is invertible in the Calkin algebra B/K. It turns out that for
L € B, L is Fredholm if and only if the range of L is closed and both the dimensions
of L and L* are finite. For a Fredholm operator L on L2, the index ind(L) of L is
defined by

ind(L) = dimker L — dim ker L*.

For a function ¢ € C(D), it is known that T, is Fredholm on L2 if and only if ¢(¢) # 0
for all ¢ € T, in which case ind(7,,) is given by —# (¢(T),0), where # (7, a) is the
winding number of a closed curve 7 in C with respect to a € C \ . Thus, we have

W (¢(T),0) = —dimker T, + dim kerT;‘7

see [7] and references therein for details and related facts.
The following result will be useful in our characterizations. Given a function
on D, let Z(¢)) denote the number of zeros of ¢ in D.

Proposition 2.2. Let f € H*NC(D) and put g := zf + 1. Assume g(¢) # 0 for
all ¢ € T. Then, the dimension of ker T4z is 0 or 1, and the following statements
hold.

(a) dimker T,z = 0 if and only if Z(g) = dimker T}, - + 1.
(b) dimkerTyyz =1 if and only if Z(g) = dimker T} -.

Proof. Let ¢ = f+z. For |z| =1, noting that

1 1+zf
p=f+-=—"L
z z

we obtain g = z¢ on T. It follows from the argument principle that
(2.4) Z(g9) =7 (9(1),0) = #(e(T),0) + 1.

Since g = zp on T, we see that ¢(¢) # 0 for all ¢ € T. Hence, T, is Fredholm
and (2.4) gives

Z(g9) = —dimker T, + dimker 7, + 1.

Since the dimension of ker T, is 0 or 1 as mentioned before, we have (a) and (b).
The proof is complete. O
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If dimker Ty, z = 1 and g has a zero in D in Proposition 2.2, we remark in passing
that ¢ has only finite many simple zeros. This is an immediate consequence of The-
orem 2.4 of [4], where the authors investigate structure of spectrum of the Toeplitz
operator Ty, z when f is a polynomial. See also [6] or [8] for more information on
the study of spectrum of a Bergman space Toeplitz operator.

The following theorem is the main result of this section.

Theorem 2.1. Let f € H*NC(D). Suppose that (f(¢)+1#0 forall ¢ € T and
the function ¥ := (2f+zf')/(1+zf) is well defined as an analytic function on D. Put

F(z)—exp[—/ozwd(}, z€D.

Then the the following statements are equivalent.
(a) The Coburn type theorem holds for the Toeplitz operator T¢, 3.
(b) Either F ¢ L2 or Z(1+ 2f) = 0.

Proof. By Proposition 2.2, we see that dimker T4z = 1 and dim ker Tf ;=0
if and only if Z(1 4+ zf) = 0. Thus, the result follows from Proposition 2.1. The
proof is complete. O

The following shows that an analytic function f on D with certain boundedness
properties induces a Toeplitz operator Tz satisfying the Coburn type theorem.
In the following, for 1 < p < oo, the notation || f]|, stands for the usual LP-norm
for f € LP(D, A).

Corollary 2.1. Let f € H*™. Suppose f’ is bounded and | f|lcc < 1. Then
dimker Ttz = 1 and dim ker TJ}"Jrz = 0. Moreover,

Z2f+Cf’d<}

kerTerg—C'exp{—/ 15 cf
0

Proof. Since f, f' are bounded, f can be extended to a continuous function
on D denoted also by f. Since || f||« < 1 by the assumption, the maximum modulus
principle implies that |f(z)| < 1 for all z € D, hence, the function zf + 1 has no
zeros on D. By Theorem 2.1, Ty4+z meets the Coburn type theorem and we have
the first part by Proposition 2.2. Also, by the assumptions, one can check that the
function F introduced at Proposition 2.1 is nonzero and contained in L2. Thus, the

kernel description follows from Proposition 2.1. The proof is complete. O
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We remark in passing that the Coburn type theorem fails even for harmonic sym-
bols generally. For example, Sundberg and Zheng in [8] constructed a function
f € H* satisfying the conditions of Theorem 2.1 such that Z(fz + 1) = 1 and the
function F' in Proposition 2.1 belongs to L2. By Propositions 2.1 and 2.2, we see
that both ker T,z and ker T}, ; have dimension 1.

3. KERNELS OF Ti.n,; AND T v .

Consider f = czV, where N > 0 is an integer and ¢ € C is a constant. Put
¢ = czV +7. If |¢] < 1, Corollary 2.1 shows that dimker T}, = 1 and dimker T} = 0.
Also, if |¢| > 1, then zf(z)+1 # 0 for every z € T and Z(zf+1) = N+ 1. Moreover,
dimker T, = 0 (see the proof of Theorem 3.1 below) and hence, dim ker T; = N by
Proposition 2.2.

In this section, we provide complete descriptions for kernels of T~z and T iz
for every integer N > 0 and constant ¢ € C. Our result shows that the characteriza-
tions depend on the absolute value of the constant c.

We first consider Toeplitz operators T, ,~  =.

Theorem 3.1. Let N > 0 be an integer and ¢ € C be a constant. Then, the
following statements hold.
(a) kerT, ~ 5 = {0} if and only if |c| > 1.
(b) |¢| <1 if and only if

oo

TG+1+(N+1)7Y
ker Toov =z =C- Y (—c) GH1+ NV +D v
7=0

i

Proof. First we prove (a). Corollary 2.1 shows that ker T,,~ ;> = {0} implies
lc| > 1. For the converse implication, assume |c| > 1 and h € kerT,,~ 5 for some
h € L2. Write

h(z) = i bp 2"
n=0

for the power series expansion of h. By Lemma 2.1, we see that by = by = ... =

by =0 and
N +2 N+j+1

————cby, bnij=—
N1 Nt N+j
for all j =1,2,... Hence, b, =0 for all k£ ¢ (N + 1)N and

bN—‘rl = ij_l

J(N+1)+1
bj—1)(N+1)

bj(N+1) - _CW
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for all j =1,2,... and thus,

(3.1) h(z) =Y bjnsnz VD, zeD.
Note that

(N+Dk+1 o Zrk+ N+
(3.2) binvin) = (— bOH S (—c) bog#

1“(;+1+(N+1) )
JTA+ (N +1)71)

= (=)o

for all j = 1,2,... Since |c[ > 1 by the assumption, (3.2) shows that |b; ny1)| > |bo]
for all j =0,1,2,... It follows from (3.1) that

= biven
Inl3 = thﬂ Z

J=
_ |b0| =1
/|°|Z N+1 (N—i—l)jz:;j'

Since h € L2, the above shows that by = 0 and then h = 0 by (3.2) and (3.1). Thus,
kerT,.,~,> = {0} and (a) holds.
Now we prove (b). Assume |c| < 1 and let

o0
= Z bnz" € ker T, ~v 5.

n=0
By the proof of (a), we see that
bo (LI Gy
h(z) = AV J(N+1) D.

< TE+1+(N+1)7Y
kerTczNﬁc([j.Z(_c)g U+ +(' +1) )zJ(NH),
=0 J:

To prove the reverse inclusion, let

> TUHFIFWN DY v
g:= Z(—C)j - 2’ .
i=0 7
We first show g € L2. Recall that
F(] + a’) %ja—b
I'(j +b)
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and hence,

F@¥%1+(N¥%U‘UQANF”N+DFV( 1 nymmN+n
G +D+1 — T \j+1

as j — oco. Thus, we see that g € L2 if and only if

(N—1)/(N+1)
3.3 c|? ( ) < 00.
(33) Z o (5
Note that the power series defined by
/1 \(N=D/(NHD)
Z Z(—) 2
=l

has the radius of convergence 1. Since |c| < 1 by assumption, we see that (3.3) holds
and then g € L2. Also, by a simple calculation, we can see that g satisfies (c) of
Lemma 2.1. Hence, g € ker T~ 5.

Also, the converse implication follows from (a). The proof is complete. O
Next, the following is about the kernel of T Nz Recall T Nz = Tcz_N+z' If
¢ =0, then T v, ; = kerT, = {0} for all N. Also, if N = 0, we see T/ v ; =

ker Tz, = {0} for any constant c¢. Thus, we assume the cases N > 1 and ¢ # 0.

Theorem 3.2. Let N > 1 be an integer and ¢ # 0 be a constant. Then, the
following statements hold.
(a) kerT} v - = {0} if and only if [c| < 1

(b) |c| > 1 if and only if

N—1 e’} k? + /B )F( )
(3.4) kerT” x. .- = C- —3 (N+1)k+1
= ;0 kzzo( ) T(k + a;)L(3;)

where a; := (j +2)/(N + 1) and 3 := (j + N +2)/(N + 1) for simplicity.

Proof. We first prove (a). When N = 1, noting

ker T*

cz+z

=kerTezt. =kerT, jzy3,

we see that kerT, . = {0} if and only if 1/|c| > 1 by Theorem 3.1. Hence, the

result holds for N = 1 and we furthermore assume N > 1.
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First assume |c| < 1. Suppose there exists a nonzero function h € L2 such that
h € kerT? n .. Since zh + ¢P(zNh) =0, one can see that

Il = PIPEEIE < [ ¥hPad= [ 2P0
< [ Jenaa = a3,
D

which is impossible, so h = 0 and hence, ker 77", v = {0} as desired.
For the converse, assume |c| > 1. We derive a contradiction by taking a nonzero
function h € L2 such that h € ker T’ N

= 0. Also, define a,, inductively by

4z First, let ag = a; = ... =any_1 = 1 and

. ol (N4 DR+
(N+1)k+5 — z (N+1)(I€—1)+j+2 (N+1)(k—1)+j

for k =1,2,... and j = 0,1,..., N. Define a nonzero analytic function h by h =
oo

> anz". Note a(yi1)p+n = 0 for all £ =0,1,2,... and

=0

= S T I =y )
G(N+1)k+j—(?) g (N+1l+j+2 _<_) ll;[l Qj
(ST 0Ty
L'(k + a;)T(8;)

forall k=1,2,...and j=0,1,..., N — 1. Now, since

N—-1 oo ]
ZG(N+1)k+jZ(N+1)k+jv
7=0 k=0
we have
5 N_li lav el
[hllz = .
= (N+1k+j+1
N-—-1
-y (o Z L(k+ ;)
2 T(B))? & [ePFIIN + 1k +j + 1Tk + a,)?
r i 1 T(k+B;)?
s )2 2 e Tk + )7

<.

Note that the power series defined by

o~ Dk +8;)°
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has the radius of convergence 1. Since |c| > 1 by assumption, we see that
oo
1 T'(k
> BT <
=0 | Lk + aj)?

for each j and hence, h € L2. Moreover, by using (2.1) and the definition of h, one
can see that h € ker T . and hence, (a) holds.

Now we prove (b). First, assume |c¢| > 1 and let N be the set on the right side
of (3.1) and

o0
fi= anz cker T n 5.

Then, fz + P(cz—Nf) =0. By (2.1), we have
EbN-i-i [b + cby i}zﬂl =0
: N2 '

Hence, by = 0 and
) _ IN+j+2,
N+ = 722

for all j =0,1,2,... It follows that byn41)4n =0 for all k =0,1,2,... and

J

b ol (WA Dk+j+1 4_(__1)kr(k+6j)r(aj)b_
NFORHT = e (N (k= 1) +j + 2 VDD = T(k + a;)T(B;)

fork=1,2,...and 5 =0,1,..., N — 1. Hence,

=2

= & P0(k 4 Bi)T() (v
bi:( ) T(k + o;)L(B;) DR

I
o

j k=0

which shows that ker T . C N. Also, by using (2.1) and the similar argument
as in the proof of Theorem 3.1, one can see that every function in A belongs to

both L2 and kerTCzN 4z Hence, ker T~ 4z = = N. Since the converse implication
follows from (a), we have (b). O

Finally, as an immediate consequence of Theorems 3.1 and 3.2, we have the fol-
lowing.

Corollary 3.1. The Coburn type theorem holds for the Toeplitz operator T,,~ >
for any integer N > 0 and ¢ € C.
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