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Abstract. A Coburn theorem says that a nonzero Toeplitz operator on the Hardy space
is one-to-one or its adjoint operator is one-to-one. We study the corresponding problem for
certain Toeplitz operators on the Bergman space.
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1. Introduction

Let D denote the unit disk of the complex plane C and T be the boundary

of D. The Bergman space L2
a is the closed subspace of the usual Lebesgue space

L2 := L2(D,A) consisting of all analytic functions on D, where the measure A is

the normalized area measure on D. Let P be the Hilbert space orthogonal projec-

tion from L2 onto L2
a. For a bounded measurable function u on D, the Toeplitz

operator Tu with the symbol u is defined by

Tuf = P (uf)

for functions f ∈ L2
a. Clearly, Tu is a bounded linear operator on L

2
a. See [10] for

details and more information on Toeplitz operators.

For Toeplitz operators acting on the Hardy space of unit disk, a celebrated theo-

rem of Coburn asserts that a nonzero Toeplitz operator is one-to-one or its adjoint

operator is one-to-one; see Theorem 4.1 of [3]. Coburns result can be rephrased as

a nonzero Hardy space Toeplitz operator has either trivial kernel or dense range.
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Later, Vukotić in [9] reproved the theorem by showing that if a nonzero Hardy space

Toeplitz operator is not injective then its range contains all polynomials, which is

due to the simple fact that the commutator of the shift and any Hardy space Toeplitz

operator have rank at most one. Also, the corresponding problem has been studied

on the Hardy space of polydisk or Dirichlet space as in [1] and [5].

In this paper we consider the corresponding natural problem for Toeplitz operators

acting on the Bergman space of the unit disk. First of all, we should mention that

the Coburn type theorem fails generally on the Bergman space. Indeed, using (2.1)

in Section 2, one can see that

T|z|2n−1/(n+1)(1) = 0

and moreover

kerT|z|2n−1/(n+1) = C · 1

for all n = 0, 1, . . . Here, kerS denotes the kernel of operator S as usual. Since

T ∗
ψ = Tψ for any bounded function ψ, the above shows that the Coburn type theorem

fails for Toeplitz operators with symbol |z|2n − 1/(n+ 1) for every n.

In this paper, given a bounded analytic function f on D, we study the problem of

when the Coburn type theorem holds for the Toeplitz operator with symbol f + z.

More explicitly, we consider analytic functions f on D continuous up to T with a cer-

tain boundary condition and then give a characterization in terms of integrability and

the number of zeros of a certain function induced by f ; see Theorem 2.1 of Section 2.

In Section 3, we specially take f to be czN , where N > 0 is an integer and c ∈ C

is a constant. We then give complete descriptions for kernels of TczN+z and T
∗
czN+z,

respectively. Our result shows that the characterizations depend on the absolute

value of the constant c; see Theorems 3.1 and 3.2. As an immediate consequence, we

show that the Coburn type theorem holds for the Toeplitz operator TczN+z for all N

and c; see Corollary 3.1. But, we were not able to characterize a general symbol for

which the Coburn type theorem holds for the corresponding Toeplitz operator.

2. The kernel of Tf+z̄

As is well known, the projection P is the Bergman projection whose explicit for-

mula can be given by

Pψ(z) =

∫

D

ψ(w)Kz(w) dA(w), z ∈ D,

for functions ψ ∈ L2. Here, function Kz is the Bergman kernel given by

Kz(w) =
1

(1− wz)2
, w ∈ D.
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Using this formula for P , one can see that for integers n,m > 0

(2.1) P (znzm) =







n−m+ 1

n+ 1
zn−m if n > m,

0 if n < m.

Also, given a function h ∈ L2
a with h(0) = 0, we have

(2.2) P (wh)(z) =
1

z
h(z)−

1

z2

∫ z

0

h dζ

for all z ∈ D; see Lemma 2 of [2] or Lemma 2.1 of [8] for details.

We start with an equivalent condition for the kernel of the Toeplitz operator Tf+z,

where f ∈ H∞. Here, the notation H∞ stands for the space of all bounded analytic

functions on D.

Lemma 2.1. Let f ∈ H∞ and h ∈ L2
a. Write

f(z) =

∞
∑

n=0

anz
n, h(z) =

∞
∑

n=0

bnz
n

for power series expansions of f and h, respectively. Then all the following statements

are equivalent.

(a) h ∈ kerTf+z.

(b) (zf + 1)h′ + (zf ′ + 2f)h = 0.

(c) bn+1 = −(n+ 2)/(n+ 1)
n
∑

k=0

akbn−k for all n = 0, 1, 2, . . .

P r o o f. By (2.1), we note P (w) = 0. It follows from (2.2) that

Tf+wh(z) = f(z)h(z) + P (wh)(z) = f(z)h(z) + P [w(h− h(0)](z) + h(0)P (w)(z)

= f(z)h(z) + P [w(h− h(0)](z)

= f(z)h(z) +
1

z
[h(z)− h(0)]−

1

z2

∫ z

0

[h(ζ)− h(0)] dζ, z ∈ D.

Thus, (a) holds if and only if

z2f(z)h(z) = −z[h(z)− h(0)] +

∫ z

0

[h(ζ) − h(0)] dζ, z ∈ D,

which is equivalent to (b) by differentiating both sides. Hence, (a) ⇔ (b) holds.

Also, if we assume (b), by differentiating both sides of (b), we see that

(n+ 2)(fh)(n) + z(fh)(n+1) = −h(n+1)

for all n = 0, 1, 2, . . . Evaluating at z = 0, we have

(n+ 2)(fh)(n)(0) = −h(n+1)(0)
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and thus

bn+1 =
h(n+1)(0)

(n+ 1)!
= −

(n+ 2)

(n+ 1)!

n
∑

k=0

n!

(n− k)!k!
f (k)(0)h(n−k)(0) = −

n+ 2

n+ 1

n
∑

k=0

akbn−k

for all n = 0, 1, . . ., so (c) holds. Finally, if we assume (c), we have

h(n+1)(0)

(n+ 1)!
= −

n+ 2

n+ 1

(fh)(n)(0)

n!

for all n = 0, 1, . . . It follows that

2f(z)h(z) + z(fh)′(z) =

∞
∑

n=0

(n+ 2)
(fh)(n)(0)

n!
zn = −

∞
∑

n=0

h(n+1)(0)

(n+ 1)!
(n+ 1)zn

= −
∞
∑

n=0

(n+ 1)bn+1z
n = −h′(z), z ∈ D.

So (b) holds and (b) ⇔ (c) follows. The proof is complete. �

Lemma 2.1 shows that h ∈ kerTf+z if and only if h ∈ L2
a is a solution of the first

order differential equation

(2.3) (zf + 1)H ′ + (zf ′ + 2f)H = 0.

As is well known, the space of all solutions of (2.3) is at most one dimensional. Thus,

for f ∈ H∞, the dimension of kerTf+z is 0 or 1.

Proposition 2.1. Let f ∈ H∞ be such that the function

ψ :=
2f + zf ′

1 + zf

is well defined as an analytic function on D. Put

F (z) := exp

[

−

∫ z

0

ψ dζ

]

, z ∈ D.

Then, the dimension of kerTf+z is 0 or 1, and the following statements hold.

(a) dimkerTf+z = 1 if and only if F ∈ L2
a and kerTf+z = C · F.

(b) dimkerTf+z = 0 if and only if F /∈ L2
a.

P r o o f. First one can see that F satisfies the differential equation (2.3). Since

the dimension of kerTf+z is 0 or 1 as mentioned above, (a) and (b) hold. The proof

is complete. �
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Let B denote the C∗-algebra consisting of all bounded linear operators on L2
a.

Also, let K be the algebra of all compact operators on L2
a. An operator L ∈ B is said

to be Fredholm if L+K is invertible in the Calkin algebra B/K. It turns out that for

L ∈ B, L is Fredholm if and only if the range of L is closed and both the dimensions

of L and L∗ are finite. For a Fredholm operator L on L2
a, the index ind(L) of L is

defined by

ind(L) = dimkerL− dimkerL∗.

For a function ϕ ∈ C(D), it is known that Tϕ is Fredholm on L
2
a if and only if ϕ(ζ) 6= 0

for all ζ ∈ T, in which case ind(Tϕ) is given by −W (ϕ(T), 0), where W (γ, a) is the

winding number of a closed curve γ in C with respect to a 6∈ C \ γ. Thus, we have

W (ϕ(T), 0) = − dimkerTϕ + dim kerT ∗
ϕ,

see [7] and references therein for details and related facts.

The following result will be useful in our characterizations. Given a function ψ

on D, let Z(ψ) denote the number of zeros of ψ in D.

Proposition 2.2. Let f ∈ H∞∩C(D) and put g := zf +1. Assume g(ζ) 6= 0 for

all ζ ∈ T. Then, the dimension of kerTf+z is 0 or 1, and the following statements

hold.

(a) dimkerTf+z = 0 if and only if Z(g) = dimkerT ∗
f+z + 1.

(b) dimkerTf+z = 1 if and only if Z(g) = dimkerT ∗
f+z.

P r o o f. Let ϕ = f + z. For |z| = 1, noting that

ϕ = f +
1

z
=

1 + zf

z
,

we obtain g = zϕ on T. It follows from the argument principle that

(2.4) Z(g) = W (g(T), 0) = W (ϕ(T), 0) + 1.

Since g = zϕ on T, we see that ϕ(ζ) 6= 0 for all ζ ∈ T. Hence, Tϕ is Fredholm

and (2.4) gives

Z(g) = − dimkerTϕ + dim kerT ∗
ϕ + 1.

Since the dimension of kerTϕ is 0 or 1 as mentioned before, we have (a) and (b).

The proof is complete. �
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If dimkerTf+z = 1 and g has a zero in D in Proposition 2.2, we remark in passing

that g has only finite many simple zeros. This is an immediate consequence of The-

orem 2.4 of [4], where the authors investigate structure of spectrum of the Toeplitz

operator Tf+z when f is a polynomial. See also [6] or [8] for more information on

the study of spectrum of a Bergman space Toeplitz operator.

The following theorem is the main result of this section.

Theorem 2.1. Let f ∈ H∞∩C(D). Suppose that ζf(ζ)+1 6= 0 for all ζ ∈ T and

the function ψ := (2f+zf ′)/(1+zf) is well defined as an analytic function onD. Put

F (z) = exp

[

−

∫ z

0

ψ dζ

]

, z ∈ D.

Then the the following statements are equivalent.

(a) The Coburn type theorem holds for the Toeplitz operator Tf+z.

(b) Either F /∈ L2
a or Z(1 + zf) = 0.

P r o o f. By Proposition 2.2, we see that dimkerTf+z = 1 and dim kerT ∗
f+z = 0

if and only if Z(1 + zf) = 0. Thus, the result follows from Proposition 2.1. The

proof is complete. �

The following shows that an analytic function f on D with certain boundedness

properties induces a Toeplitz operator Tf+z satisfying the Coburn type theorem.

In the following, for 1 6 p 6 ∞, the notation ‖f‖p stands for the usual Lp-norm

for f ∈ Lp(D,A).

Corollary 2.1. Let f ∈ H∞. Suppose f ′ is bounded and ‖f‖∞ < 1. Then

dimkerTf+z = 1 and dimkerT ∗
f+z = 0. Moreover,

kerTf+z = C · exp

[

−

∫ z

0

2f + ζf ′

1 + ζf
dζ

]

.

P r o o f. Since f , f ′ are bounded, f can be extended to a continuous function

on D denoted also by f . Since ‖f‖∞ < 1 by the assumption, the maximum modulus

principle implies that |f(z)| < 1 for all z ∈ D, hence, the function zf + 1 has no

zeros on D. By Theorem 2.1, Tf+z meets the Coburn type theorem and we have

the first part by Proposition 2.2. Also, by the assumptions, one can check that the

function F introduced at Proposition 2.1 is nonzero and contained in L2
a. Thus, the

kernel description follows from Proposition 2.1. The proof is complete. �
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We remark in passing that the Coburn type theorem fails even for harmonic sym-

bols generally. For example, Sundberg and Zheng in [8] constructed a function

f ∈ H∞ satisfying the conditions of Theorem 2.1 such that Z(fz + 1) = 1 and the

function F in Proposition 2.1 belongs to L2
a. By Propositions 2.1 and 2.2, we see

that both kerTf+z and kerT ∗
f+z have dimension 1.

3. Kernels of TczN+z̄ and T
∗
czN+z̄

Consider f = czN , where N > 0 is an integer and c ∈ C is a constant. Put

ϕ = czN + z. If |c| < 1, Corollary 2.1 shows that dimkerTϕ = 1 and dimkerT ∗
ϕ = 0.

Also, if |c| > 1, then zf(z)+1 6= 0 for every z ∈ T and Z(zf+1) = N+1. Moreover,

dimkerTϕ = 0 (see the proof of Theorem 3.1 below) and hence, dim kerT ∗
ϕ = N by

Proposition 2.2.

In this section, we provide complete descriptions for kernels of TczN+z and T
∗
czN+z

for every integer N > 0 and constant c ∈ C. Our result shows that the characteriza-

tions depend on the absolute value of the constant c.

We first consider Toeplitz operators TczN+z.

Theorem 3.1. Let N > 0 be an integer and c ∈ C be a constant. Then, the

following statements hold.

(a) kerTczN+z = {0} if and only if |c| > 1.

(b) |c| < 1 if and only if

kerTczN+z = C ·
∞
∑

j=0

(−c)j
Γ(j + 1 + (N + 1)−1)

j!
zj(N+1).

P r o o f. First we prove (a). Corollary 2.1 shows that kerTczN+z = {0} implies

|c| > 1. For the converse implication, assume |c| > 1 and h ∈ kerTczN+z for some

h ∈ L2
a. Write

h(z) =

∞
∑

n=0

bnz
n

for the power series expansion of h. By Lemma 2.1, we see that b1 = b2 = . . . =

bN = 0 and

bN+1 = −
N + 2

N + 1
cb0, bN+j = −

N + j + 1

N + j
cbj−1

for all j = 1, 2, . . . Hence, bk = 0 for all k /∈ (N + 1)N and

bj(N+1) = −c
j(N + 1) + 1

j(N + 1)
b(j−1)(N+1)
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for all j = 1, 2, . . . and thus,

(3.1) h(z) =

∞
∑

j=0

bj(N+1)z
j(N+1), z ∈ D.

Note that

(3.2) bj(N+1) = (−c)jb0

j
∏

k=1

(N + 1)k + 1

(N + 1)k
= (−c)jb0

j
∏

k=1

k + (N + 1)−1

k

= (−c)jb0
Γ(j + 1 + (N + 1)−1)

j!Γ(1 + (N + 1)−1)

for all j = 1, 2, . . . Since |c| > 1 by the assumption, (3.2) shows that |bj(N+1)| > |b0|

for all j = 0, 1, 2, . . . It follows from (3.1) that

‖h‖22 =

∞
∑

j=0

|bj(N+1)|
2

j(N + 1) + 1
> |b0|

2
∞
∑

j=1

1

j(N + 1) + 1

> |b0|
2

∞
∑

j=1

1

2j(N + 1)
=

|b0|2

2(N + 1)

∞
∑

j=1

1

j
.

Since h ∈ L2
a, the above shows that b0 = 0 and then h = 0 by (3.2) and (3.1). Thus,

kerTczN+z = {0} and (a) holds.

Now we prove (b). Assume |c| < 1 and let

h(z) :=

∞
∑

n=0

bnz
n ∈ kerTczN+z.

By the proof of (a), we see that

h(z) =
b0

Γ(1 + (N + 1)−1)

∞
∑

j=0

(−c)j
Γ(j + 1 + (N + 1)−1)

j!
zj(N+1), z ∈ D.

Hence,

kerTczN+z ⊂ C ·
∞
∑

j=0

(−c)j
Γ(j + 1 + (N + 1)−1)

j!
zj(N+1).

To prove the reverse inclusion, let

g :=

∞
∑

j=0

(−c)j
Γ(j + 1 + (N + 1)−1)

j!
zj(N+1).

We first show g ∈ L2
a. Recall that

Γ(j + a)

Γ(j + b)
≈ ja−b
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and hence,

Γ(j + 1 + (N + 1)−1)2

(j!)2[j(N + 1) + 1]
≈
j2/(N+1)

j
≈

( 1

j + 1

)(N−1)/(N+1)

as j → ∞. Thus, we see that g ∈ L2
a if and only if

(3.3)

∞
∑

j=0

|c|2j
( 1

j + 1

)(N−1)/(N+1)

<∞.

Note that the power series defined by

z 7→
∞
∑

j=0

( 1

j + 1

)(N−1)/(N+1)

zj

has the radius of convergence 1. Since |c| < 1 by assumption, we see that (3.3) holds

and then g ∈ L2
a. Also, by a simple calculation, we can see that g satisfies (c) of

Lemma 2.1. Hence, g ∈ kerTczN+z.

Also, the converse implication follows from (a). The proof is complete. �

Next, the following is about the kernel of T ∗
czN+z. Recall T

∗
czN+z = T

czN+z
. If

c = 0, then T ∗
czN+z = kerTz = {0} for all N . Also, if N = 0, we see T ∗

czN+z =

kerTc̄+z = {0} for any constant c. Thus, we assume the cases N > 1 and c 6= 0.

Theorem 3.2. Let N > 1 be an integer and c 6= 0 be a constant. Then, the

following statements hold.

(a) kerT ∗
czN+z = {0} if and only if |c| 6 1.

(b) |c| > 1 if and only if

(3.4) kerT ∗
czN+z =

N−1
∑

j=0

C ·
∞
∑

k=0

(−1

c̄

)k Γ(k + βj)Γ(αj)

Γ(k + αj)Γ(βj)
z(N+1)k+j ,

where αj := (j + 2)/(N + 1) and βj := (j +N + 2)/(N + 1) for simplicity.

P r o o f. We first prove (a). When N = 1, noting

kerT ∗
cz+z = kerTcz+z = kerTz/c+z ,

we see that kerT ∗
cz+z = {0} if and only if 1/|c| > 1 by Theorem 3.1. Hence, the

result holds for N = 1 and we furthermore assume N > 1.
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First assume |c| 6 1. Suppose there exists a nonzero function h ∈ L2
a such that

h ∈ kerT ∗
czN+z. Since zh+ c̄P (zNh) = 0, one can see that

‖zh‖22 = |c|2‖P (zNh)‖22 6

∫

D

|zNh|2 dA =

∫

D

|z|2(N−1)|zh|2 dA

<

∫

D

|zh|2 dA = ‖zh‖22,

which is impossible, so h = 0 and hence, kerT ∗
czN+z = {0} as desired.

For the converse, assume |c| > 1. We derive a contradiction by taking a nonzero

function h ∈ L2
a such that h ∈ kerT ∗

czN+z. First, let a0 = a1 = . . . = aN−1 = 1 and

aN = 0. Also, define an inductively by

a(N+1)k+j =
−1

c̄

(N + 1)k + j + 1

(N + 1)(k − 1) + j + 2
a(N+1)(k−1)+j

for k = 1, 2, . . . and j = 0, 1, . . . , N . Define a nonzero analytic function h by h =
∞
∑

n=0
anz

n. Note a(N+1)k+N = 0 for all k = 0, 1, 2, . . . and

a(N+1)k+j =
(−1

c̄

)k k−1
∏

l=0

(N + 1)l + j +N + 2

(N + 1)l+ j + 2
=

(−1

c̄

)k k−1
∏

l=0

l + βj
l+ αj

=
(−1

c̄

)k Γ(k + βj)Γ(αj)

Γ(k + αj)Γ(βj)

for all k = 1, 2, . . . and j = 0, 1, . . . , N − 1. Now, since

h =

N−1
∑

j=0

∞
∑

k=0

a(N+1)k+jz
(N+1)k+j,

we have

‖h‖22 =
N−1
∑

j=0

∞
∑

k=0

|a(N+1)k+j |
2

(N + 1)k + j + 1

=

N−1
∑

j=0

Γ(αj)
2

Γ(βj)2

∞
∑

k=0

Γ(k + βj)
2

|c|2k[(N + 1)k + j + 1]Γ(k + αj)2

6

N−1
∑

j=0

Γ(αj)
2

Γ(βj)2

∞
∑

k=0

1

|c|2k
Γ(k + βj)

2

Γ(k + αj)2
.

Note that the power series defined by

z 7→
∞
∑

k=0

Γ(k + βj)
2

Γ(k + αj)2
zk
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has the radius of convergence 1. Since |c| > 1 by assumption, we see that

∞
∑

k=0

1

|c|2k
Γ(k + βj)

2

Γ(k + αj)2
<∞

for each j and hence, h ∈ L2
a. Moreover, by using (2.1) and the definition of h, one

can see that h ∈ kerT ∗
czN+z and hence, (a) holds.

Now we prove (b). First, assume |c| > 1 and let N be the set on the right side

of (3.1) and

f :=

∞
∑

n=0

bnz
n ∈ kerT ∗

czN+z.

Then, fz + P (czNf) = 0. By (2.1), we have

c̄bN +

∞
∑

j=0

[

bj + c̄bN+1+j
j + 2

N + j + 2

]

zj+1 = 0.

Hence, bN = 0 and

bN+1+j = −
1

c̄

N + j + 2

j + 2
bj

for all j = 0, 1, 2, . . . It follows that bk(N+1)+N = 0 for all k = 0, 1, 2, . . . and

b(N+1)k+j =
−1

c̄

(N + 1)k + j + 1

(N + 1)(k − 1) + j + 2
b(N+1)(k−1)+j =

(−1

c̄

)k Γ(k + βj)Γ(αj)

Γ(k + αj)Γ(βj)
bj

for k = 1, 2, . . . and j = 0, 1, . . . , N − 1. Hence,

f(z) =

N−1
∑

j=0

bj

∞
∑

k=0

(−1

c̄

)k Γ(k + βj)Γ(αj)

Γ(k + αj)Γ(βj)
z(N+1)k+j ,

which shows that kerT ∗
czN+z ⊂ N . Also, by using (2.1) and the similar argument

as in the proof of Theorem 3.1, one can see that every function in N belongs to

both L2
a and kerT ∗

czN+z. Hence, kerT
∗
czN+z = N . Since the converse implication

follows from (a), we have (b). �

Finally, as an immediate consequence of Theorems 3.1 and 3.2, we have the fol-

lowing.

Corollary 3.1. The Coburn type theorem holds for the Toeplitz operator TczN+z

for any integer N > 0 and c ∈ C.
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[9] D.Vukotić: A note on the range of Toeplitz operators. Integr. Equations Oper. Theory
50 (2004), 565–567. zbl MR doi

[10] K.Zhu: Operator Theory in Function Spaces. Mathematical Surveys and Monographs
138. AMS, Providence, 2007. zbl MR doi

Author’s address: Yo u n g J o o L e e, Department of Mathematics, Chonnam Na-
tional University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea, e-mail: leeyj
@chonnam.ac.kr.

1130

https://zbmath.org/?q=an:06897108
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3818158
http://dx.doi.org/10.1016/j.jmaa.2018.06.034
https://zbmath.org/?q=an:0969.47023
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1682896
http://dx.doi.org/10.1307/mmj/1030132367
https://zbmath.org/?q=an:0173.42904
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0201969
http://dx.doi.org/10.1307/mmj/1031732778
https://zbmath.org/?q=an:1308.47037
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3165305
http://dx.doi.org/10.1016/j.jmaa.2014.01.020
https://zbmath.org/?q=an:0439.47022
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0542947
http://dx.doi.org/10.1512/iumj.1979.28.28042
https://zbmath.org/?q=an:1262.47046
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2798798
http://dx.doi.org/10.7153/oam-05-06
https://zbmath.org/?q=an:1195.47019
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2666483
http://dx.doi.org/10.1512/iumj.2010.59.3799
https://zbmath.org/?q=an:1062.47034
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2105965
http://dx.doi.org/10.1007/s00020-004-1312-x
https://zbmath.org/?q=an:1123.47001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2311536
http://dx.doi.org/10.1090/surv/138
mailto:leeyj@chonnam.ac.kr
mailto:leeyj@chonnam.ac.kr

