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Abstract. By employing one of the cubic transformations (due to W.N. Bailey (1928))
for the 3Fy(z)-series, we examine a class of 3F»(4)-series. Several closed formulae are es-
tablished by means of differentiation, integration and contiguous relations. As applications,
some remarkable binomial sums are explicitly evaluated, including one proposed recently
as an open problem.
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1. INTRODUCTION AND OUTLINE

In a recent paper (see [10]), the following conjectured binomial identity was pro-
posed as an open problem (here we have corrected a typo by exchanging the odd
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and even cases):
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4—|—4{ J if n is even.

By making use of a computer algebra system, Campbell in [3], Theorems 1 and 2
provided a verification proof via nontrivial applications of Zeilberger’s algorithm
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and produced another similar identity. To achieve this, the binomial sum displayed
in (1) was split into six individual target sums (see [3], Theorem 1) according to the
residues of n modulo 6. Moreover, the most complicated aspect in the proofs given
by Campbell (see [3], Theorems 1 and 2) is that they involve very large “certificates”
and horrible polynomials, that are unreadable by human beings.

Taking into account the elegance and simplicity of (1), the author believes that
there should exist a classical proof by human beings. In fact, by converting the
binomial sum in (1) into a hypergeometric series, we find that the resulting expression
has close ties with one of Bailey’s cubic transformations, see [1]. The objective of
the present paper is to illustrate how to derive binomial identity (1) and similar ones
by the hypergeometric series approach, especially, Bailey’s cubic transformation.
Unlike the WZ-method to deal with binomial sums individually, the advantage of
our method is that it can be utilized to find systematically a large number of binomial
identities, but with none of them being verifiable via the WZ-method.

The rest of the paper is organized as follows. By differentiating and integrating
the afore-mentioned Bailey’s cubic transformation, we prove, in the next section,
two important summation theorems for the terminating 3 F>(4)-series that lead us to
eight closed formulae. Then in Section 3, further summation identities are derived
through contiguous relations. The reversal series of argument % is briefly reviewed
in Section 4. Finally, the paper ends with Section 5, where nine remarkable binomial
identities are proved, including (1).

Throughout the paper, the following notations are utilized. For a real number =z,
the greatest integer not exceeding x is denoted by |z |. When m is a natural number,
a =p, b stands for that “a is congruent to b modulo m”. The logical function y is
defined by x(true) = 1 and x(false) = 0. For a nonnegative integer n € Ny and an
indeterminate x, the rising factorial is defined by

(x)o=1 and (v)p,=z(x+1)...(z+n—-1) forneN.

The quotient form with multiparameters is abbreviated to

o] e

Following Bailey (see [2], Section 2.1), the classical hypergeometric series is de-
fined by

ap, @1, ...,0p
bi,... by

oo(a) al) ...(ap
(2) 14pFp [ Z} - z:: lzlfb(l)k k . (bp)k)kzk'

k=0
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The above series is terminating if one of the numerator parameters is a nonpositive
integer. Otherwise, the series is nonterminating, which is convergent for all the
complex z with |z] < 1.

Finally, we point out that not only (1) is not verifiable directly by the WZ-method,
as Campbell in [3] claimed, but also the following slightly simpler binomial iden-
tity (36) is not verifiable either:

0 g—l)k GG )
EE R
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Furthermore, the WZ-method cannot prove the identities for the reversal series
of (3) and (1) as recorded below:

(4) kzno(_l)k (Z) (2:) <2nn— k)
=2x(n =3 0)

5) kzn:o(_l)k (Z) (2:) (2:__1k>

e (P )+

HEVANE Y

3
n+1 e .
(_1)n+Ln/3J 2—}—4{ 5 J if n is odd,
Xi
1 -1
nt 4—1—4{”6 J if n is even.
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2. BAILEY’S CUBIC TRANSFORMATION

In 1928, Bailey in [1] found the cubic transformation formula

1
U+v—,u,v
(6) 3k 2 4x
2u, 2v
vu+v 1 ud+v 1 ut+v 1
-, -, _ - )
—_ _ 1/2—u—v 3 2 3 6 3 6‘ 27x
1-2) 3t Lol ‘4(1—@3
—+u, -+
2 2

The terminating form of (6) under u — 3 and v — —m with m € N is given in

the following lemma.

Lemma 1. Let m € Ng. Then

-m 1l—-—m 2—m

5w | e

1
—,—m,—m
(7) 3f> 2 ‘ 4z | = (1 — J))m’3F2 —
1,-2m ‘ 1,%—m ‘ 4(1—x)

When z — 1, only the end term from 3F5-series on the right-hand side survives.

We can therefore deduce the closed formula

1, m=30,
(8) 3F2 2 ‘ 41 = Am X { s
]_’ —2m ‘ 07 m 7%3 07

where A,, is the factorial quotient defined by

1

13 -,

A - BB [M] |3
Lm/3) 1

) ?

(%)3@/3) 1,1
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= NG e
DOt s w
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We remark that (8) can be rewritten as the following binomial identity:

m 2 _
2k\ [m 2m 1, m=30,
k=0 0) m 7_é3 0.
Even though there exist numerous hypergeometric series identities in the math-

ematical literature (see [4], [5], [6], [7], [11], [12], [14] for example), the summation
formula (8) has not appeared previously.
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2.1. Differentiation. For an indeterminate A, by considering the combination

Equation (7) + %Dm Equation (7),

we can establish another transformation formula

1
— 14+ X —-m,—m ‘
4x

(10) 4F5 | 2
AL —2m ‘
1 A—=dx—mr —m 1l—m 2—m
A=Az —mx * 2+ 37’ 3 7 3 ‘ 2722
_—A(1_$)17m4 3 )\_)\x_mx’lvl_m 4(1 —z)3
24+ 2

Its limiting case as © — 1 leads to the identity with a free parameter A.

Theorem 2. Let m € Ny. Then

3A+2m

=30

1 EYN m=s
—,1+)\,—m,—m‘

4F3 2 4 ZAmX —m(4m—1) m =1

A715_2m ‘ v?))\(27’ﬂ—].)7 0

0, m =3 2.

For the sake of brevity, we introduce the notation

-m,—m—a,b+ - ‘
204,

1+c¢,d—2m ‘

a,b
(11) (I)m |:C d:| = 3F2

where a,c € Ng and b,d € Z. Then (8) can be restated as

3x(m =5 0)

4m+3 Vin-

0,0
(12) ®,, {O 0] =A, X x(m=30)=

Henceforth, V,, denotes another factorial quotient

ml 35
Vi = 1— X l4’4] ,
@m L0110 ],,
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which is related to A,, by

3

74m+3, 7’77,5307
3(2m—1)
A, = — =51
m =V XN S am = 1) mes s
2m —1)(2m —
3(2m = 1)(2m = 3) m =3 2.

dm(m — 1)(4m — 5)’

Both symbols A,, and V,, are alternatively employed in order to shorten most of
evaluating expressions.

By assigning particular values for A, we derive from Theorem 2 four identities
below:

> Let A\ = % The first identity:

1, m =3 07
0,1
(13) P, 0.0] = Vi xq -1, m=31,
0, m =3 2.
> Let A = —1 — 2m. The second identity:
1

0 O 2m + 1, m =3 0,
(1) m [O7 J—me 1 m =31
T dm + 2’ o
07 m =3 2.

> Let A = 0. Multiply across the equation in Theorem 2 by A and then let A — 0:

1
01 72m—|—17 m:30,
(15) @m[l Ll]::lex 0, m=31,
’ —(4m+1) 5
m =3 2.

(2m + 1)(4m + 4)’ 8
> Let A = —m and then reindex m — m + 1:

1
10 2m—|—17 m:30,
(16) @m[o ;2]::VWLX 0, m=31,

’ dm +1

:32.

8(m+1)2m+1)’
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2.2. Integration. For an indeterminate A\, multiplying across (7) by z*~! and
then integrating the resulting expression with respect to = over [0, z], we have the
following expression for the exotic 4F3-series:

(17) |2

_ Z (.—4)_j (m)3; /x P (] gym3 4,

5 ()3 = m); Jo

For m,n € Ny, by means of the integration by parts, it is not hard to verify that

¢ ] — g™ x:m/ <m>k xnkl _xmfk
/Ox(l )™ d 24(714-1)“1 Rl gymk

(m = 35)k A2j+k —3j—k
1—g)m=3
GRG—m); 2 D2 07

j=0 0
_ f: (m)k (=4)79(m — k)3;(N)2; AHE+2) |
k=0 (A)k+1 >0 (D25 —m);(A+ &+ 1)g; (1 —z)3tk-—m

When x — 1, the inner sum on the right reduces to the end term

(—4)~Hm=R/31m — k) k(N2 (m—k)/3)
(L(m = k) /3]1)2(3 = m) [(m—t)/3) A+ & + D) (m—1)/3)

Replacing k£ by m — 3k, we can further determine the limit

x(m =3 k)

Lm/3]

. B (M) m—3k (—=4) " (3k)3k (N)2k

lim RES(17) = kzzo Wm-see1 ()2 —m)e(A+m — 3k + Lor
Coomt T Waca—
= W 2 5020 )y

Therefore, the limit of (17) as  — 1 results in the following identity.

Theorem 3. Let m € Ny. Then

1 .

5 A —m, —m‘ ml T k(=X = m)
4F3 4 :7(1_’_)\) Z —4’“(19')2(1 e

14+ A1, —2m | m = D2 (3 —m)k
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By examining particular cases of the above identity and then making use of the
Pfaff-Saalschiitz theorem (see [2], Section 2.2) for the balanced 3F»-series

1} _|e—a,c—0
~lee—a-b],’
we find the following four closed formulae for the terminating ®,,-series.

> Let A = —%. The first identity:

0,—1 m! /3l 1 . m!
o] -dn & (D) () = |

where the above sum with respect to k is evaluated by (18) as

—n,a,b
18 F: Y
(18) 3n2 c,14a+b—c—n

sl ] e
3Fh 1| =14"4 )
)|
’ 3 ’ [m/3]
> Let A = —1 — m. The second identity:
/3] 1-m 2—m
107 o & /(L m)/2 | T2 2
o 0,0 =" > K —m) =(-1) 1 ;
’ k=0 2 k 1,- —m
2 Lm./3]

where the above sum with respect to k is evaluated by (18) as

-m —1—m LmJ 1—-m 2—m
2’ 2 ’ 3 ‘

IR I
2 ’ 3 "2

There is also an equivalent expression:

1
s ram’ m =3 0 and m # 0,
1,0 —1
(19) @, [0,0}vax m’ m=31,
dm+1 = 9
4m(m +1)’ o
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> Let A = 1. The third identity:

3

o [0:0]_ 1 L’iﬂ” Me(-1-m)y 1 |2

"™11,0]  m+1 E(X—m),  m+1 1 2m+2
k=0 2 1, —|—{ J

2 3 m/3]

)

where the above sum with respect to k is evaluated by (18) as

1 1 LmJ r § m
F 2) m7 3 ‘ B 2’
302 1 m - 1
-l Lo
2 3 L 2 lm/3]
r3 +{2m+2J
2 3
- 1 2 2
3+ 75
-2 3 Lm /3]
There is also an equivalent expression:
2m+3 —. 0
(m+1)(@m+3) >
0,0 1
2 | | =V ) =31,
(20) {1,0] VXN 2 ) "=
dm +1 —. 9
8(m +1)2’ s

> Let A = —2m. The fourth identity:
m,q Lm/3] m
o [0,0} ~(=1)"m! Z <m> <—m> ~(=1)™ml! {1+m,1—m}
0,1 (Mm)m P k k (Mm)m 1,1 lm/3)

where the above sum with respect to k is evaluated by (18) as

—

5]

There is also an equivalent expression as below:

1+m,1—m
3l _{

]-7]- :| lm/3]

4
m, ngoandm#o,
0,0 1
(21) D, |:0’1] =V, X %, m =3 1,
1
— =3 2.
4ma m =3
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3. CONTIGUOUS RELATIONS

c,d

There exist numerous contiguous relations for the series ®,, [a’b] Some of them
will be recorded and then employed to evaluate further series in closed form.

3.1. The first contiguous relation.

Proposition 4. Let m € Ng. Then

o [a,b]_ 2(a+c+m+1)(b+%)¢ [a+1,b+1}

"led]  (a+m+1)(20—2c+1) " c,d
(2a +2b+2m + 3)(c) a+1,0b

(a+m+1)(2b—2c+1) ’”’[c—Ld]

In particular, when a = b =d = 0 and ¢ = 1, we have the equation

0,01 2m+3 1,01 m+2 1,1
® =—"9 -—— .
"’[1,0] m+1 "’[0,0] m+1 m[1,0]

Form this we deduce the summation formula

1,1 2m+ 3 1,0 m+1 0,0
22 P ) S
(22) m[l,o} m+ 2 m[o,o} m+ 2 "’[1,0]
0, m =3 0 and m # 0,
—3(m+1)
S S~ =31
=Vm X< 2m(m+2)’ s
3(4m+1)
—_— =3 2.
8m(m+1)’ s

3.2. The second contiguous relation.

Proposition 5. Let m € Ng. Then

c,d|  (c+1)(2b—2d+4m+3) " |c+1,d
(2b—2c—1)(d—1—2m) a,b
(c+1)(2b — 2d + 4m + 3) c+1l,d—1]"

®, [a,b} _(c—d+2m+2)(2b+1) [a,b—i— 1}
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In particular, when b = ¢ = d = 0 and a = 1, we have the equation

1,01 2m+2 L,1] 2m+1 1,0
(0] =—9 7¢’n .
m[o,o} 4m + 3 m[1,0}+4m+3 ’[1,—1}

Form this we deduce the summation formula

1,0 Im + 3 1,0 2m + 2 1,1
23 P -— "9, - —— 9
(23) m[1,—1] 2m + 1 ’[o,o] 2m + 1 mL,o}
1
1 m =30,
=V, X 1 =31
— Vm 2m+47 m =31,
4m +1
mt m =3 2.

4(m+1)(2m+1)’

3.3. The third contiguous relation.

Proposition 6. Let m € Ng. Then

a,b (142b—2d+4m)(a+m) a—1,b—1
D, = D,
¢, d 1-20)(1—a—d+m) ¢, d
(2a42b—142m)(d —1—2m) a,b—1
(1-2b)(1—a—d+m) "le,d—1]"

In particular, when a = b =d =1 and ¢ = 0, we derive the summation formula

1,1 2m(2m + 3 1,0 (m+1)(4m+1 0,0
(24) q)m[o,l] - 7(n—1 )<I>m[070}— m)(—l )q)m{o,J
—2(2m+1)(3m + 2)
(m—1)(4m+3) ~’
-1
.
(4m +1)(3m? 4+ 4m — 1)
dm(m+1)(m—-1)

3.4. The fourth contiguous relation.

m =3 0 and m # 0,

Vi X m =31 and m # 1,

m =3 2.

Proposition 7. Let m € Ng. Then

a,b cla+d—m) a,b
q)m, = q)m,
¢, d (a+c+m)(d—2m) c—1,d+1

_(e=d+2m)(a+m) [a—l,b}
(a+c+m)(d—2m) " |e,d+1]"
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In particular, when a = b = ¢ =1 and d = 0, we have the equation

1,1 m—1 1,1 (14+2m)(1+m) 0,1
D, = 5 o\ xm D, .
1,0 2m(m + 2) 0,1 2m(m + 2) 1,1
From this, we derive the summation formula
0,1 2m(m + 2) 1,1 m—1 1,1
1,1 (14+2m)(1+m) 1,0 (14+2m)(1+m) 0,1
2(2+3m)
=3 0 and 0
(m+)am 13 M=0adm#0,
—(3m+1)
= _ = =31
Vi Xy omlm 4 1)’ m=s s
dm+1 = 9
4m(m +1)2’ 3
3.5. The fifth contiguous relation.
Proposition 8. Let m € Ny. Then
a,b a,b 2m(a+m)(2b+ 1) a,b+1
D, =, - m—1 .
¢, d c,d—1 I+c¢)(2m —d)(1+2m—d) c+1l,d—1

In particular, when a = d =1 and b = ¢ = 0, we deduce the summation formula

1,0 1,01 m+1 1,1
2 o = -2,
(26) m[al} m[qo] 2m — 1 ml[Lo}

—(2m+4)
=3 0 and 0
m-D@m+3 e0adm#0,
-1
=V X< —, m =31 and m # 1,
2m
™m? —1 m=s 2
Am(m+ )(m—1) — °7
3.6. The sixth contiguous relation.
Proposition 9. Let m € Ng. Then
o a,b] 1—d+2m a,b m a+1,b
"led] 1—d+m "led—-1] 1—-d+m " 'ed-2]
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In particular, when a = b = ¢ =0 and d = 2, we deduce the summation formula

0,0] 2m—1_ [0,0 m 1,0
27) B || =B | | - —— Dy |
@7 m[o,2] m—lm[Ol] m—lml[0,0]
1)

2(m —2)(2m —
(m —1)2(4m + 3)’
—(m+2)2m —1)(5m —1)
2m(m —1)(m +2)(4m — 1)’

(2m — 1)2
4m(m —1)2’

m =3 0 and m # 0,

m =3 1 and m # 1,
m =3 2.
3.7. The seventh contiguous relation.

Proposition 10. Let m € Ng. Then
a,b a+m a—1,0 c a,b
d,, =—9, —,, .
[c,d] a+c+m { c,d ]+a+c+m [c—l,d]

In particular, when a = ¢ =1 and b = d = 0, we deduce the summation formula

1,0 1 1,0 m+1 0,0
28 ) =—07 —
(28) m[l,o} m+ 2 m[0,0]+m+2 m[l,o}
2
I3 m =3 0 and m # 0,
m—1
:vm PSSR = ]-7
% 2m(m + 2) s
dm+1 —. 9
8m(m+1)’ M=
3.8. The eighth contiguous relation.
Proposition 11. Let m € Ng. Then
a,b 1—d+2m a,b a+m a—1,b
D, =—9,, -9, .
c,d l—a—d+m c,d—1 l—a—d+m c,d

In particular, when @ = 1 and b = ¢ = d = 0, we have the equation

1,0 142m 1,0 14+m 0,0
P =—09 - .
" [0,0] m " [0,—1] m " [0,0]
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From this we deduce the summation formula

1,0 14+m 0,0 m 1,0
29 P =—09> —
(29) m[o,—1] 1+2m "1’[0,0]+1+2m m[o,o}
1
=30
1+2m7 m =3V,
=V, X -1 =51
- m 2(1+2m)7 m =31,
dm+1 —. 9
Am+1)(1+2m) 7
3.9. The ninth contiguous relation.
Proposition 12. Let m € Nyg. Then
o a,b]  1+2b a,b+1 2¢ ® a,b
"led| 1420—2¢ ™| ed 1+20—2¢ " |e—1,d

Three summation formulae can further be established as follows:

>a=b=d=0and ¢c=1:

_r
m+1’
0,1 0,0 0,0 -1
30 S, | =20, | —-®n|. | =Vmx ,
(30) [1,0} [0,0] [170} 2(m +1)
—(4m+1)
8(m + 1)2
>pa=d=0and b= —-c=-1:
0,—-1 1 0,0 2 0,—-1
1 D, | ) ==&, | =®,, |’
By o) =5 (o) 3o o
1+8(m+1)? _ 0
3(m+1)[Am—+3)
dm +5
:vm PYAREEEY E]-a
. 6(m+1) m=s
16m? + 36m + 17 =
24(m+1)2 T
> a=>b=c=d =0 in Proposition 5:
0,01 2m+2 0,17 2m+1 0,0
P = P —
m[o,o} 4m + 3 m[1,0}+4m+3 "’[1,—1}

1144
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we can further evaluate the series

(32) o | 00 ] _4m+3, [0,0] 2m+2 0,1
"l1,-1]  2m+1 "]0,0] 2m+1 "[1,0
1

=30
2m+17 m =3V,

=V, X # m =31
— Vm 2m+17 =3 1,

dm +1 = 9

Am+1D@2m+1) 3

4. REVERSAL SERIES OF ARGUMENT %

For a,c € Ny and b,d € Z, by inverting the summation order, we can reformulate

b+1

a,b —m,—m — a, —‘

(I>m|: d:|:3F2 2 4
G 1+c¢,d—2m ‘

2 )
Letting ¥, [Zs} stand for the series

-m,—m—a,l —b+m

a,b 1
(33) V. [ d] =3F 1 1
& l4e¢,=—d—m
2
we have established the reciprocal relation
1-5 b
1+a,—,1— =
b d Y )
(34) v, [a’d] = (—1)"®,, [C’b} x 2 . 2
“ @ 14+e¢,1-b,=+d
2 m

In particular a = b = ¢ = d = 0, we get a remarkable reciprocity

(35) w0 [o7o] = 1" [0 | = 0" Anm =20

We record six further summation formulae for those ¥,, [ZH with all the param-
eters a, b, ¢, d being zero except for one parameter equal to £1.
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Corollary 13. Let m € Ng. Then

2m+ 3 —. 0
4m+37 3 Y,
1,0 m 1
(a) \Ilm[o 0] =(=1)"V,, X 3 m =31,
4m +1 —. 9
8(m+1)’ 8
1
=3 0 and 0
MA@ am) Mes0andm#0,
0,0 -1
b v ’ = (-1 _ =31
(b) ’"[1,0] SR ey m=s
dm +1 —. 9
dm(m + 1)2’ M=
2
T3 m =3 0 and m # 0,
m
0,1 -1
(C) v, |:O 0:| :(—l)meX R, m =3 ].,
1
8—m, m532.
o —. 0
. X m+17 m =3 U,
(d) \pm[’_]—( 1)™V,, X 1
= =31
0,0 om+2 D
0, m532.
1 =30
00 2m+17 m =3V,
(e) \I/m{ ’ ] = (=1)"V,, x -1
_— =31
Oa]- 2m+17 m =3 1,
0, m532.

5. IDENTITIES OF BINOMIAL SUMS

In recent papers [8], [9], [13], [15], several alternating binomial sums containing
Catalan numbers were evaluated in closed forms. In particular, the conjectured
identity (1) was proposed as an open problem in [10]. This section will illustrate that
the hypergeometric series treated in the last section can be utilized to confirm (1)
and further to evaluate explicitly more binomial sums of similar nature.
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The examples exhibited in this section show that for this class of binomial sums,
the closed expressions obtained via the hypergeometric series approach are more
elegant than those produced in [3] by a computer algebra system.

5.1. The first one is the following formula anticipated in “Introduction”, which
can be shown without difficulty by invoking ¥, [8’8} :

o - SO ()
5 ) (ol

5 =5

5.2. Another example comes from a problem posed recently in [10], where the

authors demanded to show the following binomial identity (here we have corrected
a typo by exchanging the odd case and the even case), which is confirmed by com-
bining @, | {'g | with @, [0 |:

o - )
e (217 ])
AN

2+ 4LTJ if n is odd;

n—1

(=}
[}

NE

(37) Wa(n) =

e

(—1)Ln/3]
8 nn+1)

4—|—4{ J if n is even.

5.3. The next sum was examined recently by Campbell [3], Theorem 2, which
follows easily from the difference W3(n) = Wy(n) — Wa(n):

O oL = 1 [y
S RRANE (Gl R
{%J L2n3— 1J

n(2+3n), n=30;
2+4+n, n=sl;

2
3n(n+1)
—4—n, n =3 2.

1147



5.4. By utilizing ¥, [8’8} and ¥, [?’8}, we can deduce the binomial identity
below:

n

s = (B () ()

k=0
6n +5
- E d .
CESCTEE) n =3 0 and n # 0;
2n 1
=(-1)" Vn I — =3 1;
(=1) <n> x 2n(n+1) n=s
—(4 1
—(n+1) n=s2.
4n(n +1)?
5.5. By applying ¥, [éﬂ and P, (1)(1)} , we can evaluate the next binomial sum:
n
2K\ (2n—2k+ 1\ (n+k
40 Ws(n) =) (=1)F
(10) s =30 () T ()
k=0
1
S n =3 0;
2n -1
=(-1)" Vn _— =3 1;
(=1) < n > X 2(n+1) n=s
—(4n+1) 9
8(n+1)2’ s
5.6. By making use of ¥, [1(’)701} and ®,, [ 10f1 } , we can show the identity below:

" 2k\ (2n —2k\ /n+k+1

41 = —1)k
(41) Waln) = 3 O
1, n =3 0;
= (=1)" (2’11) v, X 1, n =3 1;
n 4n +1 —. 9
nta TR

5.7. The following binomial identity is derived by appealing to ¥, “8}
and ¢, “’8}:

(42)  Wy(n) = y i+ 1)((_,3)_: 1) (2:) (ZZ _ ik) (n;;k>

k=0
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2
(n+1)(4n+3)

2n n—1
—(—1)" =3 1;
( )<n>Vn>< 2n(n—|—1)(n+2)’n 8o
dn+1 —. 9
8n(n + 1)’ n=s s

,n =30 and n # 0;

5.8. By combining ®,, [(1)(1)} with ®,, “H, we find the following binomial iden-

tity:
" 2k 4+ 1\ [2n—2k+1\ (n+k
4 =) (-1)F
6 Wl =3 G [ | v
2
T n =3 0 and n # 0;

B n(2n (I-=n)(2n+3) .
(_1)( )V”X on(n+1)(n+2)’ n=sl;

—(2n+3)(4n+1)

=3 2.
8n(n+1)2 7’ n=s
5.9. Finally, the following binomial identity is established by employing the two
contiguous values ¥, [Oi_ol and &, Olf)l :
n
2k +1\ [2n—2k\ (n+ k+1
44 Wy(n) =Y (=1)*
(14) o =3 NG [ I v
1
S n =3 0;
2n -1
=(-1)" Vn ) = ]-a
(=1) < n ) x 2(n+1) n=s
dn+1 —. 9
An+1)2 T3
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