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Abstract. By employing one of the cubic transformations (due to W.N.Bailey (1928))
for the 3F2(x)-series, we examine a class of 3F2(4)-series. Several closed formulae are es-
tablished by means of differentiation, integration and contiguous relations. As applications,
some remarkable binomial sums are explicitly evaluated, including one proposed recently
as an open problem.
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1. Introduction and outline

In a recent paper (see [10]), the following conjectured binomial identity was pro-

posed as an open problem (here we have corrected a typo by exchanging the odd

and even cases):

(1)

n
∑

k=0

(−1)k

k + 1

(

2k

k

)(

2n− 2k

n− k

)(

n+ k

2k

)

=







⌊2n− 1

3

⌋

+ 1

⌊n

3

⌋













2
(⌊2n− 1

3

⌋)

+ 1

⌊2n− 1

3

⌋







×
(−1)⌊n/3⌋

n(n+ 1)















2 + 4
⌊n+ 1

6

⌋

if n is odd,

4 + 4
⌊n− 1

6

⌋

if n is even.

By making use of a computer algebra system, Campbell in [3], Theorems 1 and 2

provided a verification proof via nontrivial applications of Zeilberger’s algorithm
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and produced another similar identity. To achieve this, the binomial sum displayed

in (1) was split into six individual target sums (see [3], Theorem 1) according to the

residues of n modulo 6. Moreover, the most complicated aspect in the proofs given

by Campbell (see [3], Theorems 1 and 2) is that they involve very large “certificates”

and horrible polynomials, that are unreadable by human beings.

Taking into account the elegance and simplicity of (1), the author believes that

there should exist a classical proof by human beings. In fact, by converting the

binomial sum in (1) into a hypergeometric series, we find that the resulting expression

has close ties with one of Bailey’s cubic transformations, see [1]. The objective of

the present paper is to illustrate how to derive binomial identity (1) and similar ones

by the hypergeometric series approach, especially, Bailey’s cubic transformation.

Unlike the WZ-method to deal with binomial sums individually, the advantage of

our method is that it can be utilized to find systematically a large number of binomial

identities, but with none of them being verifiable via the WZ-method.

The rest of the paper is organized as follows. By differentiating and integrating

the afore-mentioned Bailey’s cubic transformation, we prove, in the next section,

two important summation theorems for the terminating 3F2(4)-series that lead us to

eight closed formulae. Then in Section 3, further summation identities are derived

through contiguous relations. The reversal series of argument 1
4 is briefly reviewed

in Section 4. Finally, the paper ends with Section 5, where nine remarkable binomial

identities are proved, including (1).

Throughout the paper, the following notations are utilized. For a real number x,

the greatest integer not exceeding x is denoted by ⌊x⌋. When m is a natural number,

a ≡m b stands for that “a is congruent to b modulo m”. The logical function χ is

defined by χ(true) = 1 and χ(false) = 0. For a nonnegative integer n ∈ N0 and an

indeterminate x, the rising factorial is defined by

(x)0 = 1 and (x)n = x(x+ 1) . . . (x+ n− 1) for n ∈ N.

The quotient form with multiparameters is abbreviated to

[

α, β, . . . , γ

A,B, . . . , C

]

n

=
(α)n(β)n . . . (γ)n
(A)n(B)n . . . (C)n

.

Following Bailey (see [2], Section 2.1), the classical hypergeometric series is de-

fined by

(2) 1+pFp

[ a0, a1, . . . , ap
b1, . . . , bp

z
]

=
∞
∑

k=0

(a0)k(a1)k . . . (ap)k
k!(b1)k . . . (bp)k

zk.
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The above series is terminating if one of the numerator parameters is a nonpositive

integer. Otherwise, the series is nonterminating, which is convergent for all the

complex z with |z| < 1.

Finally, we point out that not only (1) is not verifiable directly by the WZ-method,

as Campbell in [3] claimed, but also the following slightly simpler binomial iden-

tity (36) is not verifiable either:

(3)

n
∑

k=0

(−1)k
(

2k

k

)(

2n− 2k

n− k

)(

n+ k

2k

)

= 2(−1)nχ(n ≡3 0)







⌊2n− 1

3

⌋

+ 1

⌊n

3

⌋













2
(⌊2n− 1

3

⌋)

+ 1

⌊2n− 1

3

⌋






.

Furthermore, the WZ-method cannot prove the identities for the reversal series

of (3) and (1) as recorded below:

n
∑

k=0

(−1)k
(

n

k

)(

2k

k

)(

2n− k

n

)

(4)

= 2χ(n ≡3 0)







⌊2n− 1

3

⌋

+ 1

⌊n

3

⌋













2
(⌊2n− 1

3

⌋)

+ 1

⌊2n− 1

3

⌋






,

n
∑

k=0

(−1)k
(

n

k

)(

2k

k

)(

2n− k

n− 1

)

(5)

=







⌊2n− 1

3

⌋

+ 1

⌊n

3

⌋













2
(⌊2n− 1

3

⌋)

+ 1

⌊2n− 1

3

⌋







×
(−1)n+⌊n/3⌋

n+ 1















2 + 4
⌊n+ 1

6

⌋

if n is odd,

4 + 4
⌊n− 1

6

⌋

if n is even.
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2. Bailey’s cubic transformation

In 1928, Bailey in [1] found the cubic transformation formula

(6) 3F2







u+ v −
1

2
, u, v

2u, 2v
4x







= (1− x)1/2−u−v
3F2







u+ v

3
+

1

2
,
u+ v

3
+

1

6
,
u+ v

3
−

1

6
1

2
+ u,

1

2
+ v

27x2

4(1− x)3






.

The terminating form of (6) under u → 1
2 and v → −m with m ∈ N0 is given in

the following lemma.

Lemma 1. Let m ∈ N0. Then

(7) 3F2







1

2
,−m,−m

1,−2m
4x






= (1 − x)m3F2







−m

3
,
1−m

3
,
2−m

3

1,
1

2
−m

27x2

4(1− x)3






.

When x → 1, only the end term from 3F2-series on the right-hand side survives.

We can therefore deduce the closed formula

(8) 3F2







1

2
,−m,−m

1,−2m
4






= ∆m ×

{

1, m ≡3 0,

0, m 6≡3 0,

where ∆m is the factorial quotient defined by

∆m =
(3⌊m/3⌋)!

(12 )3⌊m/3⌋

×

[ 1

4
,
3

4
1, 1

]

⌊m/3⌋

=







1

3
,
2

3
,
1

4
,
3

4

1,
1

2
,
1

6
,
5

6







⌊m/3⌋

.

We remark that (8) can be rewritten as the following binomial identity:

(9)

m
∑

k=0

(−1)k
(

2k

k

)(

m

k

)2/(
2m

k

)

= ∆m ×

{

1, m ≡3 0,

0, m 6≡3 0.

Even though there exist numerous hypergeometric series identities in the math-

ematical literature (see [4], [5], [6], [7], [11], [12], [14] for example), the summation

formula (8) has not appeared previously.
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2.1. Differentiation. For an indeterminate λ, by considering the combination

Equation (7) +
x

λ
Dx Equation (7),

we can establish another transformation formula

(10) 4F3







1

2
, 1 + λ,−m,−m

λ, 1,−2m
4x







=
λ− λx−mx

λ(1 − x)1−m 4F3







1 +
λ− λx−mx

2 + x
,
−m

3
,
1−m

3
,
2−m

3
λ− λx−mx

2 + x
, 1,

1

2
−m

27x2

4(1− x)3






.

Its limiting case as x → 1 leads to the identity with a free parameter λ.

Theorem 2. Let m ∈ N0. Then

4F3







1

2
, 1 + λ,−m,−m

λ, 1,−2m
4






= ∆m ×























3λ+ 2m

3λ
, m ≡3 0;

−m(4m− 1)

3λ(2m− 1)
, m ≡3 1;

0, m ≡3 2.

For the sake of brevity, we introduce the notation

(11) Φm

[

a, b

c, d

]

= 3F2







−m,−m− a, b+
1

2

1 + c, d− 2m
4






,

where a, c ∈ N0 and b, d ∈ Z. Then (8) can be restated as

(12) Φm

[

0, 0

0, 0

]

= ∆m × χ(m ≡3 0) =
3χ(m ≡3 0)

4m+ 3
∇m.

Henceforth, ∇m denotes another factorial quotient

∇m =
m!

(12 )m
×

[ 3

4
,
5

4
1, 1

]

⌊m/3⌋

,
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which is related to ∆m by

∆m = ∇m ×































3

4m+ 3
, m ≡3 0,

3(2m− 1)

2m(4m− 1)
, m ≡3 1,

3(2m− 1)(2m− 3)

4m(m− 1)(4m− 5)
, m ≡3 2.

Both symbols ∆m and ∇m are alternatively employed in order to shorten most of

evaluating expressions.

By assigning particular values for λ, we derive from Theorem 2 four identities

below:

⊲ Let λ = 1
2 . The first identity:

(13) Φm

[

0, 1

0, 0

]

= ∇m ×











1, m ≡3 0,

−1, m ≡3 1,

0, m ≡3 2.

⊲ Let λ = −1− 2m. The second identity:

(14) Φm

[

0, 0

0,−1

]

= ∇m ×























1

2m+ 1
, m ≡3 0,

1

4m+ 2
, m ≡3 1,

0, m ≡3 2.

⊲ Let λ = 0. Multiply across the equation in Theorem 2 by λ and then let λ → 0:

(15) Φm

[

0, 1

1,−1

]

= ∇m ×























1

2m+ 1
, m ≡3 0,

0, m ≡3 1,

−(4m+ 1)

(2m+ 1)(4m+ 4)
, m ≡3 2.

⊲ Let λ = −m and then reindex m → m+ 1:

(16) Φm

[

1, 0

0,−2

]

= ∇m ×























1

2m+ 1
, m ≡3 0,

0, m ≡3 1,

4m+ 1

8(m+ 1)(2m+ 1)
, m ≡3 2.
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2.2. Integration. For an indeterminate λ, multiplying across (7) by xλ−1 and

then integrating the resulting expression with respect to x over [0, x], we have the

following expression for the exotic 4F3-series:

(17)
xλ

λ
4F3







1

2
, λ,−m,−m

1 + λ, 1,−2m
4x







=
∑

j>0

(−4)−j〈m〉3j

(j!)2(12 −m)j

∫ x

0

xλ−1+2j(1 − x)m−3j dx.

For m,n ∈ N0, by means of the integration by parts, it is not hard to verify that

∫ x

0

xn(1− x)m dx =
m
∑

k=0

〈m〉k
(n+ 1)k+1

xn+k+1(1− x)m−k.

Then the right-hand side of (17) can be expressed as

RHS(17) =
∑

j>0

(−4)−j〈m〉3j

(j!)2(12 −m)j

m−3j
∑

k=0

〈m− 3j〉k
(λ + 2j)k+1

xλ+2j+k(1− x)m−3j−k

=
m
∑

k=0

〈m〉k
(λ)k+1

∑

j>0

(−4)−j〈m− k〉3j(λ)2j

(j!)2(12 −m)j(λ+ k + 1)2j

xλ+k+2j

(1− x)3j+k−m
.

When x → 1, the inner sum on the right reduces to the end term

χ(m ≡3 k)
(−4)−⌊(m−k)/3⌋〈m− k〉m−k(λ)2⌊(m−k)/3⌋

(⌊(m− k)/3⌋!)2(12 −m)⌊(m−k)/3⌋(λ+ k + 1)2⌊(m−k)/3⌋

.

Replacing k by m− 3k, we can further determine the limit

lim
x→1
RHS(17) =

⌊m/3⌋
∑

k=0

〈m〉m−3k

(λ)m−3k+1
×

(−4)−k〈3k〉3k(λ)2k

(k!)2(12 −m)k(λ+m− 3k + 1)2k

=
m!

(λ)m+1

⌊m/3⌋
∑

k=0

(λ)2k(−λ−m)k

4k(k!)2(12 −m)k
.

Therefore, the limit of (17) as x → 1 results in the following identity.

Theorem 3. Let m ∈ N0. Then

4F3







1

2
, λ,−m,−m

1 + λ, 1,−2m
4






=

m!

(1 + λ)m

⌊m/3⌋
∑

k=0

(λ)2k(−λ−m)k

4k(k!)2(12 −m)k
.
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By examining particular cases of the above identity and then making use of the

Pfaff-Saalschütz theorem (see [2], Section 2.2) for the balanced 3F2-series

(18) 3F2

[ −n, a, b

c, 1 + a+ b− c− n
1
]

=

[

c− a, c− b

c, c− a− b

]

n

,

we find the following four closed formulae for the terminating Φm-series.

⊲ Let λ = − 1
2 . The first identity:

Φm

[

0,−1

0, 0

]

=
m!

(12 )m

⌊m/3⌋
∑

k=0

( 1

4
k

)(

−
1

4
k

)

= ∇m =
m!

(12 )m

[ 3

4
,
5

4
1, 1

]

⌊m/3⌋

,

where the above sum with respect to k is evaluated by (18) as

3F2







1

4
,−

1

4
,−
⌊m

3

⌋

1,−
⌊m

3

⌋

1






=

[ 3

4
,
5

4
1, 1

]

⌊m/3⌋

.

⊲ Let λ = −1−m. The second identity:

Φm

[

1, 0

0, 0

]

= (−1)m
⌊m/3⌋
∑

k=0

(−m/2)k((−1−m)/2)k

k!(12 −m)k
= (−1)m







1−m

2
,
2−m

2

1,
1

2
−m







⌊m/3⌋

,

where the above sum with respect to k is evaluated by (18) as

3F2







−m

2
,
−1−m

2
,−
⌊m

3

⌋

1

2
−m,−

⌊m

3

⌋

1






=







1−m

2
,
2−m

2

1,
1

2
−m







⌊m/3⌋

.

There is also an equivalent expression:

(19) Φm

[

1, 0

0, 0

]

= ∇m ×































1

3 + 4m
, m ≡3 0 and m 6= 0,

−1

2m
, m ≡3 1,

4m+ 1

4m(m+ 1)
, m ≡3 2.
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⊲ Let λ = 1. The third identity:

Φm

[

0, 0

1, 0

]

=
1

m+ 1

⌊m/3⌋
∑

k=0

(12 )k(−1−m)k

k!(12 −m)k
=

1

m+ 1







3

2
, 1 +

⌊2m+ 2

3

⌋

1,
1

2
+
⌊2m+ 2

3

⌋







⌊m/3⌋

,

where the above sum with respect to k is evaluated by (18) as

3F2







1

2
,−1−m,−

⌊m

3

⌋

1

2
−m,−

⌊m

3

⌋

1






=







3

2
,−m

1,
1

2
−m







⌊m/3⌋

=







3

2
, 1 +

⌊2m+ 2

3

⌋

1,
1

2
+
⌊2m+ 2

3

⌋







⌊m/3⌋

.

There is also an equivalent expression:

(20) Φm

[

0, 0

1, 0

]

= ∇m ×































2m+ 3

(m+ 1)(4m+ 3)
, m ≡3 0,

1

2(m+ 1)
, m ≡3 1,

4m+ 1

8(m+ 1)2
, m ≡3 2.

⊲ Let λ = −2m. The fourth identity:

Φm

[

0, 0

0, 1

]

=
(−1)mm!

(m)m

⌊m/3⌋
∑

k=0

(

m

k

)(

−m

k

)

=
(−1)mm!

(m)m

[

1 +m, 1−m

1, 1

]

⌊m/3⌋

,

where the above sum with respect to k is evaluated by (18) as

3F2







m,−m,−
⌊m

3

⌋

1,−
⌊m

3

⌋

1






=

[

1 +m, 1−m

1, 1

]

⌊m/3⌋

.

There is also an equivalent expression as below:

(21) Φm

[

0, 0

0, 1

]

= ∇m ×































4

4m+ 3
, m ≡3 0 and m 6= 0,

−1

2m
, m ≡3 1,

1

4m
, m ≡3 2.
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3. Contiguous relations

There exist numerous contiguous relations for the series Φm

[

a,b

c,d

]

. Some of them

will be recorded and then employed to evaluate further series in closed form.

3.1. The first contiguous relation.

Proposition 4. Let m ∈ N0. Then

Φm

[

a, b

c, d

]

=
2(a+ c+m+ 1)(b+ 1

2 )

(a+m+ 1)(2b− 2c+ 1)
Φm

[

a+ 1, b+ 1

c, d

]

−
(2a+ 2b+ 2m+ 3)(c)

(a+m+ 1)(2b− 2c+ 1)
Φm

[

a+ 1, b

c− 1, d

]

.

In particular, when a = b = d = 0 and c = 1, we have the equation

Φm

[

0, 0

1, 0

]

=
2m+ 3

m+ 1
Φm

[

1, 0

0, 0

]

−
m+ 2

m+ 1
Φm

[

1, 1

1, 0

]

.

Form this we deduce the summation formula

(22) Φm

[

1, 1

1, 0

]

=
2m+ 3

m+ 2
Φm

[

1, 0

0, 0

]

−
m+ 1

m+ 2
Φm

[

0, 0

1, 0

]

= ∇m ×























0, m ≡3 0 and m 6= 0,

−3(m+ 1)

2m(m+ 2)
, m ≡3 1,

3(4m+ 1)

8m(m+ 1)
, m ≡3 2.

3.2. The second contiguous relation.

Proposition 5. Let m ∈ N0. Then

Φm

[

a, b

c, d

]

=
(c− d+ 2m+ 2)(2b+ 1)

(c+ 1)(2b− 2d+ 4m+ 3)
Φm

[

a, b+ 1

c+ 1, d

]

+
(2b− 2c− 1)(d− 1− 2m)

(c+ 1)(2b− 2d+ 4m+ 3)
Φm

[

a, b

c+ 1, d− 1

]

.
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In particular, when b = c = d = 0 and a = 1, we have the equation

Φm

[

1, 0

0, 0

]

=
2m+ 2

4m+ 3
Φm

[

1, 1

1, 0

]

+
2m+ 1

4m+ 3
Φm

[

1, 0

1,−1

]

.

Form this we deduce the summation formula

(23) Φm

[

1, 0

1,−1

]

=
4m+ 3

2m+ 1
Φm

[

1, 0

0, 0

]

−
2m+ 2

2m+ 1
Φm

[

1, 1

1, 0

]

= ∇m ×































1

2m+ 1
, m ≡3 0,

1

2m+ 4
, m ≡3 1,

4m+ 1

4(m+ 1)(2m+ 1)
, m ≡3 2.

3.3. The third contiguous relation.

Proposition 6. Let m ∈ N0. Then

Φm

[

a, b

c, d

]

=
(1 + 2b− 2d+ 4m)(a+m)

(1− 2b)(1− a− d+m)
Φm

[

a− 1, b− 1

c, d

]

+
(2a+ 2b− 1 + 2m)(d− 1− 2m)

(1− 2b)(1− a− d+m)
Φm

[

a, b− 1

c, d− 1

]

.

In particular, when a = b = d = 1 and c = 0, we derive the summation formula

(24) Φm

[

1, 1

0, 1

]

=
2m(2m+ 3)

m− 1
Φm

[

1, 0

0, 0

]

−
(m+ 1)(4m+ 1)

m− 1
Φm

[

0, 0

0, 1

]

= ∇m ×































−2(2m+ 1)(3m+ 2)

(m− 1)(4m+ 3)
, m ≡3 0 and m 6= 0,

−1

2m
, m ≡3 1 and m 6= 1,

(4m+ 1)(3m2 + 4m− 1)

4m(m+ 1)(m− 1)
, m ≡3 2.

3.4. The fourth contiguous relation.

Proposition 7. Let m ∈ N0. Then

Φm

[

a, b

c, d

]

=
c(a+ d−m)

(a+ c+m)(d− 2m)
Φm

[

a, b

c− 1, d+ 1

]

−
(c− d+ 2m)(a+m)

(a+ c+m)(d− 2m)
Φm

[

a− 1, b

c, d+ 1

]

.
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In particular, when a = b = c = 1 and d = 0, we have the equation

Φm

[

1, 1

1, 0

]

=
m− 1

2m(m+ 2)
Φm

[

1, 1

0, 1

]

+
(1 + 2m)(1 +m)

2m(m+ 2)
Φm

[

0, 1

1, 1

]

.

From this, we derive the summation formula

(25) Φm

[

0, 1

1, 1

]

=
2m(m+ 2)

(1 + 2m)(1 +m)
Φm

[

1, 1

1, 0

]

−
m− 1

(1 + 2m)(1 +m)
Φm

[

1, 1

0, 1

]

= ∇m ×































2(2 + 3m)

(m+ 1)(4m+ 3)
, m ≡3 0 and m 6= 0,

−(3m+ 1)

2m(m+ 1)
, m ≡3 1,

4m+ 1

4m(m+ 1)2
, m ≡3 2.

3.5. The fifth contiguous relation.

Proposition 8. Let m ∈ N0. Then

Φm

[

a, b

c, d

]

= Φm

[

a, b

c, d− 1

]

−
2m(a+m)(2b+ 1)

(1 + c)(2m− d)(1 + 2m− d)
Φm−1

[

a, b+ 1

c+ 1, d− 1

]

.

In particular, when a = d = 1 and b = c = 0, we deduce the summation formula

(26) Φm

[

1, 0

0, 1

]

= Φm

[

1, 0

0, 0

]

−
m+ 1

2m− 1
Φm−1

[

1, 1

1, 0

]

= ∇m ×































−(2m+ 4)

(m− 1)(4m+ 3)
, m ≡3 0 and m 6= 0,

−1

2m
, m ≡3 1 and m 6= 1,

7m2 − 1

4m(m+ 1)(m− 1)
, m ≡3 2.

3.6. The sixth contiguous relation.

Proposition 9. Let m ∈ N0. Then

Φm

[

a, b

c, d

]

=
1− d+ 2m

1− d+m
Φm

[

a, b

c, d− 1

]

−
m

1− d+m
Φm−1

[

a+ 1, b

c, d− 2

]

.
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In particular, when a = b = c = 0 and d = 2, we deduce the summation formula

(27) Φm

[

0, 0

0, 2

]

=
2m− 1

m− 1
Φm

[

0, 0

0, 1

]

−
m

m− 1
Φm−1

[

1, 0

0, 0

]

= ∇m ×































2(m− 2)(2m− 1)

(m− 1)2(4m+ 3)
, m ≡3 0 and m 6= 0,

−(m+ 2)(2m− 1)(5m− 1)

2m(m− 1)(m+ 2)(4m− 1)
, m ≡3 1 and m 6= 1,

(2m− 1)2

4m(m− 1)2
, m ≡3 2.

3.7. The seventh contiguous relation.

Proposition 10. Let m ∈ N0. Then

Φm

[

a, b

c, d

]

=
a+m

a+ c+m
Φm

[

a− 1, b

c, d

]

+
c

a+ c+m
Φm

[

a, b

c− 1, d

]

.

In particular, when a = c = 1 and b = d = 0, we deduce the summation formula

(28) Φm

[

1, 0

1, 0

]

=
1

m+ 2
Φm

[

1, 0

0, 0

]

+
m+ 1

m+ 2
Φm

[

0, 0

1, 0

]

= ∇m ×































2

4m+ 3
, m ≡3 0 and m 6= 0,

m− 1

2m(m+ 2)
, m ≡3 1,

4m+ 1

8m(m+ 1)
, m ≡3 2.

3.8. The eighth contiguous relation.

Proposition 11. Let m ∈ N0. Then

Φm

[

a, b

c, d

]

=
1− d+ 2m

1− a− d+m
Φm

[

a, b

c, d− 1

]

−
a+m

1− a− d+m
Φm

[

a− 1, b

c, d

]

.

In particular, when a = 1 and b = c = d = 0, we have the equation

Φm

[

1, 0

0, 0

]

=
1 + 2m

m
Φm

[

1, 0

0,−1

]

−
1 +m

m
Φm

[

0, 0

0, 0

]

.
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From this we deduce the summation formula

(29) Φm

[

1, 0

0,−1

]

=
1 +m

1 + 2m
Φm

[

0, 0

0, 0

]

+
m

1 + 2m
Φm

[

1, 0

0, 0

]

= ∇m ×































1

1 + 2m
, m ≡3 0,

−1

2(1 + 2m)
, m ≡3 1,

4m+ 1

4(m+ 1)(1 + 2m)
, m ≡3 2.

3.9. The ninth contiguous relation.

Proposition 12. Let m ∈ N0. Then

Φm

[

a, b

c, d

]

=
1 + 2b

1 + 2b− 2c
Φm

[

a, b+ 1

c, d

]

−
2c

1 + 2b− 2c
Φm

[

a, b

c− 1, d

]

.

Three summation formulae can further be established as follows:

⊲ a = b = d = 0 and c = 1:

(30) Φm

[

0, 1

1, 0

]

= 2Φm

[

0, 0

0, 0

]

− Φm

[

0, 0

1, 0

]

= ∇m ×































1

m+ 1
, m ≡3 0,

−1

2(m+ 1)
, m ≡3 1,

−(4m+ 1)

8(m+ 1)2
, m ≡3 2.

⊲ a = d = 0 and b = −c = −1:

(31) Φm

[

0,−1

1, 0

]

=
1

3
Φm

[

0, 0

1, 0

]

+
2

3
Φm

[

0,−1

0, 0

]

= ∇m ×































1 + 8(m+ 1)2

3(m+ 1)(4m+ 3)
, m ≡3 0,

4m+ 5

6(m+ 1)
, m ≡3 1,

16m2 + 36m+ 17

24(m+ 1)2
, m ≡3 2.

⊲ a = b = c = d = 0 in Proposition 5:

Φm

[

0, 0

0, 0

]

=
2m+ 2

4m+ 3
Φm

[

0, 1

1, 0

]

+
2m+ 1

4m+ 3
Φm

[

0, 0

1,−1

]

,
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we can further evaluate the series

(32) Φm

[

0, 0

1,−1

]

=
4m+ 3

2m+ 1
Φm

[

0, 0

0, 0

]

−
2m+ 2

2m+ 1
Φm

[

0, 1

1, 0

]

= ∇m ×































1

2m+ 1
, m ≡3 0,

1

2m+ 1
, m ≡3 1,

4m+ 1

4(m+ 1)(2m+ 1)
, m ≡3 2.

4. Reversal series of argument
1
4

For a, c ∈ N0 and b, d ∈ Z, by inverting the summation order, we can reformulate

Φm

[

a, b

c, d

]

= 3F2







−m,−m− a, b+
1

2

1 + c, d− 2m
4







= (−1)m







1 + a,
1

2
+ b, 1− d

1 + c,
1− d

2
, 1−

d

2







m

3F2







−m,−m− c, 1− d+m

1 + a,
1

2
− b−m

1

4






.

Letting Ψm

[

a,b

c,d

]

stand for the series

(33) Ψm

[

a, b

c, d

]

= 3F2







−m,−m− a, 1− b+m

1 + c,
1

2
− d−m

1

4






,

we have established the reciprocal relation

(34) Ψm

[

a, b

c, d

]

= (−1)mΦm

[

c, d

a, b

]

×







1 + a,
1− b

2
, 1−

b

2

1 + c, 1− b,
1

2
+ d







m

.

In particular a = b = c = d = 0, we get a remarkable reciprocity

(35) Ψm

[

0, 0

0, 0

]

= (−1)mΦm

[

0, 0

0, 0

]

= (−1)m∆mχ(m ≡3 0).

We record six further summation formulae for those Ψm

[

a,b

c,d

]

with all the param-

eters a, b, c, d being zero except for one parameter equal to ±1.
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Corollary 13. Let m ∈ N0. Then

Ψm

[

1, 0

0, 0

]

= (−1)m∇m ×































2m+ 3

4m+ 3
, m ≡3 0,

1

2
, m ≡3 1,

4m+ 1

8(m+ 1)
, m ≡3 2.

(a)

Ψm

[

0, 0

1, 0

]

= (−1)m∇m ×































1

(m+ 1)(3 + 4m)
, m ≡3 0 and m 6= 0,

−1

2m(m+ 1)
, m ≡3 1,

4m+ 1

4m(m+ 1)2
, m ≡3 2.

(b)

Ψm

[

0, 1

0, 0

]

= (−1)m∇m ×































2

4m+ 3
, m ≡3 0 and m 6= 0,

−1

4m
, m ≡3 1,

1

8m
, m ≡3 2.

(c)

Ψm

[

0,−1

0, 0

]

= (−1)m∇m ×























1

m+ 1
, m ≡3 0,

1

2m+ 2
, m ≡3 1,

0, m ≡3 2.

(d)

Ψm

[

0, 0

0, 1

]

= (−1)m∇m ×























1

2m+ 1
, m ≡3 0,

−1

2m+ 1
, m ≡3 1,

0, m ≡3 2.

(e)

Ψm

[

0, 0

0,−1

]

= (−1)m(1− 2m)∇m.(f)

5. Identities of binomial sums

In recent papers [8], [9], [13], [15], several alternating binomial sums containing

Catalan numbers were evaluated in closed forms. In particular, the conjectured

identity (1) was proposed as an open problem in [10]. This section will illustrate that

the hypergeometric series treated in the last section can be utilized to confirm (1)

and further to evaluate explicitly more binomial sums of similar nature.
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The examples exhibited in this section show that for this class of binomial sums,

the closed expressions obtained via the hypergeometric series approach are more

elegant than those produced in [3] by a computer algebra system.

5.1. The first one is the following formula anticipated in “Introduction”, which

can be shown without difficulty by invoking Ψn

[

0,0

0,0

]

:

(36) W1(n) =

n
∑

k=0

(−1)k
(

2k

k

)(

2n− 2k

n− k

)(

n+ k

2k

)

= 2(−1)nχ(n ≡3 0)







⌊2n− 1

3

⌋

+ 1

⌊n

3

⌋













2
(⌊2n− 1

3

⌋)

+ 1

⌊2n− 1

3

⌋






.

5.2. Another example comes from a problem posed recently in [10], where the

authors demanded to show the following binomial identity (here we have corrected

a typo by exchanging the odd case and the even case), which is confirmed by com-

bining Ψn

[

0,0

1,0

]

with Φn

[

1,0

0,0

]

:

(37) W2(n) =

n
∑

k=0

(−1)k

k + 1

(

2k

k

)(

2n− 2k

n− k

)(

n+ k

2k

)

=







⌊2n− 1

3

⌋

+ 1

⌊n

3

⌋













2
(⌊2n− 1

3

⌋)

+ 1

⌊2n− 1

3

⌋







×
(−1)⌊n/3⌋

n(n+ 1)















2 + 4
⌊n+ 1

6

⌋

if n is odd;

4 + 4
⌊n− 1

6

⌋

if n is even.

5.3. The next sum was examined recently by Campbell [3], Theorem 2, which

follows easily from the difference W3(n) = W1(n)−W2(n):

(38) W3(n) =

n
∑

k=0

k(−1)k

k + 1

(

2k

k

)(

2n− 2k

n− k

)(

n+ k

2k

)

=







⌊2n− 1

3

⌋

+ 1

⌊n

3

⌋













2
(⌊2n− 1

3

⌋)

+ 1

⌊2n− 1

3

⌋







×
2(−1)n

3n(n+ 1)











n(2 + 3n), n ≡3 0;

2 + n, n ≡3 1;

−4− n, n ≡3 2.
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5.4. By utilizing Ψn

[

0,0

0,0

]

and Ψn

[

0,0

1,0

]

, we can deduce the binomial identity

below:

(39) W4(n) =

n
∑

k=0

(−1)k
(

2k + 1

k

)(

2n− 2k

n− k

)(

n+ k

2k

)

= (−1)n
(

2n

n

)

∇n ×































6n+ 5

(n+ 1)(4n+ 3)
, n ≡3 0 and n 6= 0;

1

2n(n+ 1)
, n ≡3 1;

−(4n+ 1)

4n(n+ 1)2
, n ≡3 2.

5.5. By applying Ψn

[

1,0

0,1

]

and Φn

[

0,1

1,0

]

, we can evaluate the next binomial sum:

(40) W5(n) =
n
∑

k=0

(−1)k
(

2k

k

)(

2n− 2k + 1

n− k

)(

n+ k

2k

)

= (−1)n
(

2n

n

)

∇n ×































1

n+ 1
, n ≡3 0;

−1

2(n+ 1)
, n ≡3 1;

−(4n+ 1)

8(n+ 1)2
, n ≡3 2.

5.6. By making use of Ψn

[

1,−1

0,0

]

and Φn

[

0,0

1,−1

]

, we can show the identity below:

(41) W6(n) =

n
∑

k=0

(−1)k
(

2k

k

)(

2n− 2k

n− k

)(

n+ k + 1

2k

)

= (−1)n
(

2n

n

)

∇n ×















1, n ≡3 0;

1, n ≡3 1;

4n+ 1

4n+ 4
, n ≡3 2.

5.7. The following binomial identity is derived by appealing to Ψn

[

1,0

1,0

]

and Φn

[

1,0

1,0

]

:

W7(n) =
n
∑

k=0

(−1)k

(k + 1)(n− k + 1)

(

2k

k

)(

2n− 2k

n− k

)(

n+ k

2k

)

(42)
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= (−1)n
(

2n

n

)

∇n ×































2

(n+ 1)(4n+ 3)
, n ≡3 0 and n 6= 0;

n− 1

2n(n+ 1)(n+ 2)
, n ≡3 1;

4n+ 1

8n(n+ 1)2
, n ≡3 2.

5.8. By combining Φn

[

0,1

1,0

]

with Φn

[

1,1

1,0

]

, we find the following binomial iden-

tity:

(43) W8(n) =

n
∑

k=0

(−1)k
(

2k + 1

k

)(

2n− 2k + 1

n− k

)(

n+ k

2k

)

= (−1)n
(

2n

n

)

∇n ×































2

n+ 1
, n ≡3 0 and n 6= 0;

(1− n)(2n+ 3)

2n(n+ 1)(n+ 2)
, n ≡3 1;

−(2n+ 3)(4n+ 1)

8n(n+ 1)2
, n ≡3 2.

5.9. Finally, the following binomial identity is established by employing the two

contiguous values Ψn

[

0,−1

1,0

]

and Φn

[

1,0

0,−1

]

:

(44) W9(n) =
n
∑

k=0

(−1)k
(

2k + 1

k

)(

2n− 2k

n− k

)(

n+ k + 1

2k + 1

)

= (−1)n
(

2n

n

)

∇n ×































1

n+ 1
, n ≡3 0;

−1

2(n+ 1)
, n ≡3 1;

4n+ 1

4(n+ 1)2
, n ≡3 2.
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