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Abstract. We introduce the algebras satisfying the (B,n) condition. If A, I" are algebras
satisfying the (B, n), (£, m) condition, respectively, we give a construction of (m+n)-almost
split sequences in some subcategories (B ® S)UOJO) of mod(A ® I') by tensor products and
mapping cones. Moreover, we prove that the tensor product algebra A @ I' satisfies the

(B® 5)(i°’j°),n + m) condition for some integers ig, jo; this construction unifies and
extends the work of A.Pasquali (2017), (2019).

Keywords: n-representation finite algebra; higher almost split sequence; tensor product;
mapping cone

MSC 2020: 16G70, 16D90, 16G10

1. INTRODUCTION

Almost split sequences (also called Auslander-Reiten sequences) are the main in-
gredient in Auslander-Reiten theory which play a central role in the representation
theory of artin algebras due to Auslander, Reiten and Smalg, see [1], [2], [3], [4].
Recently, as a generalization of the classical Auslander-Reiten theory, Iyama and
his co-authors introduced higher Auslander-Reiten theory (see [6], [8], [9], [16]) from
the viewpoint of higher homological algebra, which is extensively used in modern
representation theory, see [12], [13], [15]. In higher Auslander-Reiten theory, almost
split sequences were generalized to n-almost split sequences (see Definition 2.2),
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and Auslander-Reiten translations were generalized to n-Auslander-Reiten transla-

tions 7, 7,, .

As a generalization of representation finite hereditary algebras, n-representation
finite algebras and n-complete algebras are introduced and studied in [10], [14], [15],
which admit n-almost split sequences in n-cluster tilting subcategories of module
categories. Pasquali showed that every n-almost split sequence of an n-representation
finite algebra or n-complete algebra is isomorphic to the mapping cone of a suitable
chain map of complexes.

Tensor products over field create new algebras in higher representation theory,
particularly in the setting of perfect field, see [10], [11], [19]. Let A, T" be, respec-
tively, n-, m-representation finite algebras over perfect field k. Under the condition
of I-homogeneous, Herschend and Iyama showed in [10] that their tensor product
A @, T is an (n + m)-representation finite algebra. In this case, there must exist
(n 4+ m)-almost split sequences over A ®j I'; Pasquali showed how to describe the
structure of such sequences, see [18], Theorem 1.1. Later, using the same method,
he also constructed the (n + m)-almost split sequences under the tensor product of
higher complete algebras, see [19].

However, the tensor product A ®; I' is not in general (n + m)-representation
finite. In fact, the condition (I-homogeneity) is a necessary and sufficient condition,
see [18], page 648, Remark 2. It is not easy to find the existence of (n + m)-almost
split sequences when A ® I' is not an (n + m)-representation finite algebra.

The motivation of this article is to continue the study of the existence of
(n + m)-almost split sequences but in the setting of the tensor product of more
general algebras. We prove that the tensor product of higher almost split sequences
is also a higher almost split sequence; this generalizes the result of [18], [19] to
a unified framework of the algebras satisfying certain condition.

In this paper, we investigate the algebras satisfying the (B,n) condition (see Def-
inition 3.1), including n-representation finite algebras and n-complete algebras, and
give the construction of m-almost split sequences in subcategory B. Let A, ' be
algebras satisfying the (B,n), (£, m) conditions, respectively. We will construct new
(m + n)-almost split sequences in full subcategories (B® &)(070) of mod(A ®j, T') for
some %g, jo = 0.

Theorem 1.1. Let k be a perfect field and A, T algebras satisfying the (B, n),
(€,m) condition, respectively. Let ¢ € Mor,(C(B)), ¥ € Mor,(C"(£)) such that
Cone(p) is an n-almost split sequence in B starting in slice ig, ending in slice ig + 1
for some iy > 0, and Cone(t)) is an m-almost split sequence in £ starting in slice jo,
ending in slice jo + 1 for some jo > 0. Then Cone(yp @7 1)) is an (n +m)-almost split
sequence in (B @ &)0-Jo),
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When higher almost split sequences start in common slice, then Theorem 1.1
reduces to [18], Theorem 1.1 for homogeneous higher representation finite alge-
bras, [19], Theorem 4.11 for higher complete algebras. Furthermore, as a corollary,
we obtain that the tensor product A ®;,T satisfies the ((B®&)(0:70) n4m) condition.

The paper is organized as follows. In Section 2, we will review some basic defini-
tions and facts needed. In Section 3, we introduce the algebras satisfying the (B,n)
condition and show that every n-almost split sequence in B is isomorphic to mapping
cone of morphism of complexes. In Section 4, we give the proof of the main Theo-
rem 1.1. In Section 5, by Theorem 1.1, we give an example to construct a 2-almost
split sequence via almost split sequences starting in a different slice for nonhomoge-
neous l-representation finite algebras.

Conventions. Throughout this paper, we denote by k a field, by A a finite
dimensional algebra over k, and by mod A the category of the finitely generated
left A-modules. All subcategories considered are supposed to be full subcategories,
closed under isomorphisms and direct summands. For a class X' of objects in mod A,
we denote by add X' the full subcategory of mod A consisting of direct summands of
finite direct sums of objects in X', by ind X the class of indecomposable objects of X.

The Jacobson radical [1], Appendix A.3 of category mod A is the two-sided ideal
rady in mod A defined by the formula

rada(X,Y) = {h € Homa(X,Y): idx —goh is invertible for every g € Homa (Y, X)}

for all objects X,Y € mod A. If objects X, Y in mod A with X 2 Y are indecompos-
able, then rads(X,Y) = Homa (X,Y). For X,Y € mod A, we denote by SA(X,Y)
the quotient vector space Sy = Homy (X,Y)/rads(X,Y) and we will simplify the
notation by writing rad(X,Y") instead of rada (X,Y).

2. PRELIMINARIES

Let B be a full subcategory of mod A, we denote by C(B) the category of complexes
of B, by K(B) the homotopy category of C(B), and by C,.(B) the full subcategory
of C(B) whose objects are chain complexes where differentials are radical morphisms.
Let n be a nonnegative integer, we denote by C™(B) the full subcategory of C(B)
whose objects are defined by {(As,ds') € C(B): A; =0 for alli < 0 or i > n}. Let
f: Ae = Be be a morphism of chain complexes. The mapping cone Cone(f) of f is
defined as the complex Cone(f) = (Cone(f);, d?one(f)) with

. . Cone(f) df‘[il 0
Cone(f); = A[—1]; ® B, and the differentials d; = [
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for every i € Z, where [—] is the shift functor of C(B), that is, for every m € Z
and A, = (A;,d2) € C(B), Adm] = (A[m];,d"™) with A[m); = A, and the
differentials dA[m] (—=1)md{.,, for every i € Z, the shift f[m] of f is the morphism

of complexes f[m] = (f[m]:)icz: Ae[m] — Be¢[m] with components f[m]; = fitm.

Let A be a full subcategory of C(B). We denote by Mor(A) the morphism cat-
egory whose objects are all morphisms of complexes in A. Let (A9 N BY),
(Al %5 Bl) € Mor(A). The morphism f — g is a pair (¢,1) of morphisms
in A with ¢: AY — Al and ¢: BY — B! such that ¥f = gp. The compo-
sition of morphisms (,v) € Homyiora)(f,9) and (¢',¢") € Homypor(a)(g, 2) is
the morphism (¢'p,1"1)) € Homypor(a)(f,2). Let Mor,(A) denote the full sub-
category of Mor(A) whose objects are given by {f: Ae — Be € Mor(A): f; €
rad(A;, B;) for every ¢ € Z}; the objects are called the radical morphisms.

The following lemma is used repeatedly in the sequel.

Lemma 2.1 ([7]). For any f € Mor(C(B)), Cone(f) is an acyclic complex
of C(mod A) if and only if f is a quasi-isomorphism.

We give the following general definition of n-almost split sequence defined
n [13], [15].

Definition 2.2. Let n be a positive integer and B a full subcategory of mod A.
(1) The complex .. £> Cy —= L C1 i) Cy with terms in B is called a sink sequence
in Bof Cy if f; € rad(C;, C;—1) for every integer ¢ > 0, and the following sequence

is exact on B:

LS Homp (—, Cs) L Homp (—, Cy) _rem rad (—, Cyp) —— 0.

(2) The complex C,, ELN Ch_1 f—_i Ch_o f—>_2 ... with terms in B is called a source

sequence in B of C, if f; € rad(C;,C;_1) for every integer ¢ < n, and the
following sequence is exact on B:

Lo Homp (Chp—2, —) oy Homa (Cp—1,—) ol rady (Cp, —) —= 0.

Inty = C,— ... — Oy LN Cy — 0 with

terms in B is called n-almost split sequence in B 1f C, is a sink sequence in B

(3) The exact sequence Co: 0 — Cpp1 —>

of Cy and a source sequence in B of C,, 41 simultaneously.

It is well known that the rightmost (or leftmost) objects of sink (or source) se-
quences are nonprojective (or noninjective) in B and indecomposable, see [13]. We
say that B has n-almost split sequences for subcategories By, Bp of B if for each
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indecomposable object C' € Bp, there is an n-almost split sequence 0 — Cj 11 —
C, — ... (C1 — C — 0; and for each indecomposable object X € By, there is an
n-almost split sequence 0 - X — X,, — ... > X; = Xo — 0.

Remark 2.3. If B is an n-cluster tilting subcategory of mod A, the definition
of n-almost split sequences in B is simpler, see [14], Proposition 2.10. This simple
definition was used in [18].

Fixed A-module X € B, Pasquali defined two functors Fx, G% from C,(B)
to C(mod k) as subfunctors of Homp (X, —) and Homp (—, X), respectively, [18], that
is, for any

c.. .. o gy Do Loy

in C,(B),

Fx(Co): "'ﬁ+—1O_>H0mA(X;Ci) from ... Jro” radA(X,Co)—>foo_

is the complex given by replacing Homy (X, Cp) in complex Homp (X, Ce) with
rad(X, Cp), and the differentials of Fix (C,) equal to the differentials of Homy (X, Cs).
Similarly,

G&(C.): ... ;f"; HomA(Ci, X) —ofit1 . —Oofnt1 I“adA(Cn_H, X) —0fnq2 o

The functors Fx, G' can be used to characterize n-almost split sequences.

Lemma 2.4 ([19], Lemma 4.5). Let Co: ... — Chy1 f”—ﬂ Cn ELT i
Co Loy bea complex in C,(B). Then:

(1) If C; = 0 for i < 0, then C, is a sink sequence of Cy in B if and only if Fx(Cl)
is acyclic for every X € B.

(2) If C; =0 for i > n + 1, then C, is a source sequence of Cy,+1 in B if and only
if G% (C,) is acyclic for every X € B.

(3) If Cy € C"Y(B) is acyclic in mod A, then C, is an n-almost split sequence in B
if and only if Fx(Cs) and G% (C,) are acyclic for every X € B.

Remark 2.5. If moreover B is a Krull-Schmidt subcategory, by the additivity
of Fx and G, we can replace “every X € B” by “every X € ind B” in the above
lemma.
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3. CONSTRUCTION OF n-ALMOST SPLIT SEQUENCE

In this section, we show that every n-almost split sequence is isomorphic to
a mapping cone in subcategory B for algebras satisfying the (B,n) condition, and
give a characterization of n-almost split sequences. This unifies and extends the
results of Pasquali for n-representation finite algebras ( see [18]) and n-complete
algebras, see [19].

3.1. Algebras satisfying the (B,n) conditions. Let us start by giving the
definition of algebras satisfying the (B,n) condition.

Definition 3.1. Let B be a subcategory of mod A. We say that A satisfies
the (B,n) condition if there are full subcategories B; (i > 0) of B satisfying the
following conditions:

(1) B = 6 B;, that is, for every X € B, there exist finite many nonzero objects
i>0
X' e B; such that X = € X"
i>0

(2) If i > j, then Homu (X,Y") = 0 for all objects X € B;, Y € B;.
(3) B has n-almost split sequences for some subcategories By, Bp of B.

We now present some classes of algebras satisfying the (B,n) condition. The

following notations 7, 7,, are n-Auslander-Reiten translations, see [13], [15].

Example 3.2. Let A be an n-representation finite algebra (see [16]) with
n-cluster tilting module M, we have M := add M = @ M; with M; = add 7, ‘A
i>0
being an n-cluster tilting subcategory of mod A. Then A satisfies the (M, n) condi-
tion and M has n-almost split sequences for subcategories M; = add M \ add(DA),
Mp =add M \ (add A) of M, see Theorem 3.3.1 of [13] or Proposition 2.1 of [18].
Example 3.3. Let A be an n-complete algebra (see [15]), there exists a positive
-1
minimum integer [ such that 7', (DA) = 0. We define the subcategory M = @ M, of
i=0
mod A with M; = add 7\"17¢DA, then A satisfies the (M,n) condition and M has
n-almost split sequences for the following subcategories of M, see Proposition 4.2

and Theorem 4.4 of [19]:

M;={X € M: X has no nonzero summands in add DA},
Mp ={X € M: X has no nonzero summand N such that 7, N = 0}.

Example 3.4. Let A be an n-representation infinite algebra, see [11], Defini-
tion 2.7. We can define the subcategory & = %, = add{y,"(A): i > 0} =
add {;;*(A): i > 0} of mod A, see [11], Definition 4.7. We get functors v, = 7,,°

n
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for i > 0 on & by [11], Proposition 4.21. Thus, & = @ &; equipped with
i>0
P; = add 1, *A. Then A satisfies the (,n) condition and & has n-almost split

sequences for subcategories #; = & and
Pp ={X € &: X has no nonzero summands in add A}

of &, see Proposition 2.3 (b) and Theorem 4.25 of [11]. Note that & is not an
n-cluster tilting subcategory of mod A in general.

Remark 3.5. By [15], Proposition 1.13(b), an n-representation finite algebra
is a special n-complete algebra. For n-representation infinite algebra A, the func-
tor v, is an auto-equivalence of the bounded derived category of mod A (see [11]),
so vt (DA) # 0 for i > 0. By [11], Proposition 4.21, we have 7¢ (DA) = v (DA) # 0
for ¢ > 0. Hence, n-complete algebras and n-representation infinite algebras are two
disjoint classes of algebras.

Assume that A satisfies the (B, n) condition and that 0— C), 41 Inig Cp—...—

Ch ELN Cy—0 is an n-almost split sequence in B. Because B= P B; and dim Cm <00,

there exist nonnegative integer [ such that 20

Cm =@DC;, with CJ, € B;

for0<m<n+1.

Definition 3.6. Let A be an algebra satisfying the (B,n) condition with B =

PBi, Co: 0 = Cpy1 —» Cp, —» ... > C1 = Cy — 0 be an n-almost split se-
i>0
quence in B and ig, jo two nonnegative integers. We say that C, starts in slice i if

Crn+1 € B;, and ends in slice jg if Cy € By, .

Example 3.7. Let A be an n-representation finite algebra and Co: 0 — Cj 11 —
Cn — ... > C1 = Cy — 0 be an n-almost split sequence in M. By [13], Theo-
rem 3.3.1, we obtain Cy = 7,, Cy, 41 and Cp41 = 7,,Cp. Therefore, if C, starts in slice
i0, then C,o ends in slice iy + 1. Similar results hold for n-complete algebras (see
Example 3.3) and n-representation infinite algebras (see Example 3.4).

Proposition 3.8. Let A be an algebra satisfying the (B,n) condition with B =

@B, C,: 0 — Cpy1 = Cp — ... = Cy — 0 be an n-almost split sequence in B
120

with C,, = @ C¢, for some C! € B;, 0 <m <n+1,i>0. Then we have

(1) ifC, ends in slice jo, then C! =0 for i > jo;
(2) if C, starts in slice iy, then C% = 0 for i < ig;
(3) if Cq starts in slice ip and ends in slice jo, then iy < jo.
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Proof. (1) Suppose that CJ#Oforsomej >joandn+12>q>0. Let

b=max{i: i > jo, C}, #0and n+1>m > 0},
a=min{m: C° #0, n+1>m > 0}.

Observe that by the definition of (B, n) condition, HomA(C’ﬁn,C’ﬁ;,) =0, 4> 7 for
n+1l>2m > 0. Consider C,, = @ C!, for 0 < m < a— 1, using the minimality

=0
of a and maximality of b, we get C¢, = 0 for b < i < [, hence

l b—1
Homy (C?, Cp,) = Hompy (Cj;, b C};n> =~ D Homy (CL, C,) =0

=0

l . .
For C, = @ C?, by the maximality of b, we have C., =0 for b+ 1 < i <, so
i=0

Hom, (C?, C,) = Homy (C};, Ct o (@C@)) = Hom, (C?, CY).

Because C, is an n-almost split sequence in B and C? € B,

fny10—

ch(C.): 0 —>H0mA(Cg7Cn+1) _—. ..

—— Homy (C?, Cuyi1) Jor1og Homy (C8,C%) ——0

is an exact sequence of k-vector spaces. The relation idgs € rady (C?, C?) follows
from the fact that f,11 € rads(Cat1,Cy), this contradicts the fact that C = 0.
Thus, C%, = 0 for i > jo.

(2) The proof is similar to (1).

(3) Suppose that io > jo. Since Cpy1 € By, and Cp € Bj,, for 0 <m < n+1, we
have C! = 0 for ip <i < by (1), and C!, =0 for 0 < i < ip — 1 by (2). Hence,

e ()< (&)

1=0 i=io

this contradicts the fact that C,, # 0. (]
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As a consequence of the above proposition, we have the following corollary.

Corollary 3.9. Let A be an algebra satisfying the (B,n) condition with B =

P Bi, Ce: 0= Chy1 — Cp, — ... = Cyp — 0 be an n-almost split sequence in B.
i>0
Then:
(1) If C, starts in slice ip and ends in slice jo with jo > i9 > 0, then there exist
) Jo
C?. € B, such that Cp, = @ CJ, for every 0 < m < n+ 1.

i=1g

(2) If C, starts in slice iy and ends in slice ig with ig > 0, then Co € C,.(B;,).

Proof. (1) Under the assumptions, we have C¢, = 0 for jo +1 < i < [ by
Proposition 3.8 (1), and C!, = 0 for 0 < i < ig — 1 by Proposition 3.8 (2), the
statement follows.

(2) easily follows from (1). O

3.2. Mapping cone of n-almost split sequences. In this subsection, we in-
vestigate the relationship between mapping cones and n-almost split sequences.

Theorem 3.10. Let A be an algebra satisfying the (B,n) condition with

B=@ B, Co: 0 — Cpy1 fﬂ—+§ C, — ... LN Co — 0 be an n-almost split
sequéi(():e in B starting in slice iy and ending in slice jo with 0 < ip < jQ. Then for
each ig < b < jo, there exist complexes AY € Cﬁ(,é Bi), Al € C,’f( éoa Bi) and
radical morphism p: A9 — Al such that Cy = Cor:(:oo) in C(B). -

Jo )
Proof. For each ig < b < jo, by Corollary 3.9(1), Cp, = € C!, for every
0 <m < n+1, then C), can be written as v

Con = A1 @ Ay,

b ) b jo ) Jo
where AY _, = @ Ci, e @ B, AL, = @ Ci e @ B, and f,, can be written as
i=io i=io i=b+1 i=b+1
b
Oy Pm
Jm = |: " b+1:| 0 Oy = Cip1,
Tm Qo
. oAl . 1 1.
where alr)n,' Agn,—l - A?n,—Q: 6m- Am - A?n,—Qv Ym Agn,—l - Am—l? alr)r-xi_ :
Al — Al .. Note that 3,, = 0 since iy < jo.
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dAO, Al = (Al dA") and ¢ = (Ym), where
m m

mo

We may write A = (A2

m
0 1
dd" = —ab dA = o and o, = Yme1: A2 — Al for every m. We
m m-+1» m m "2 Ym+ m m y

note that f,,—1fm = 0 and f,, € rad(Cy,, Cp—1) for every m, it is easily seen that
b Jo
p: AY — Al is a radical morphism and Ay € Cf(@ Bi>, Al € C,TL( &b Bi>.

i=io i=b+1

We have

Cone(p)m = A[~1]m ® Ap, = Ay & A7, = Oy
and

A° b
dCone(ap) — |:_dm1 21:| _ |:am bo :| _ fm
" Pm—1 dm Ym an;rl

for every m, therefore Cy = Cone(yp) in C(B). O

Theorem 3.10 shows that under the (B, n) condition, every n-almost split sequence
is isomorphic to a mapping cone of certain complex morphism. This result generalizes
Theorem 2.4 of [18] and Theorem 4.7 of [19].

The following corollary follows directly from Theorem 3.10, Examples 3.4 and 3.7.

Corollary 3.11. Let A be an n-representation infinite algebra with P, =

@ add 7, *A, C, be an n-almost split sequence in &, which starts in slice iy for some
i>0

ip = 0. Then there exist complexes A € C*(add 7, ®A), AL € C*(add T{UOH)A)
and radical morphism ¢: AJ — Al such that Cy = Cone(p) in C(2}).
Remark 3.12. In Theorem 3.10, assume that B = @ B; and n-almost split
i>0
sequence C4 in B starts in slice i9 and ends in slice jo. In order to investigate the
tensor products of n-almost split sequences in Section 4, we can decompose B as
B=¢&= @ &, equipped with

j=0
5, 0<j <o,
b . .
@ Biv J = %o,
5‘ _ 1=10
J Jo ' )
@ Bia J =10 + 17
i=b+1
Bjtjo—ig—1, J >0+ 1,

then C, in C(€) starts in slice ip and ends in slice ig + 1, and A satisfies the (£,n)
condition.

The following proposition shows that under the (8, n) condition and isomorphism,
there is a uniqueness of ¢ of mapping cone Cone(yp).
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Proposition 3.13. Let A be an algebra satisfying the (B,n) condition with
b Jo

B= @ B;. For any complexes AY, BY ¢ C(@ Bi), Al Bl ¢ C( é Bi) and
i>0 i=io i=b+1

morphisms ¢: A? — Al : BY — Bl, the following statements are equivalent:

(1) Cone(p) = Cone(v) in C(B).

(2) There are isomorphisms f: AY — BY, g: Al — B! in C(B) such that the
following square is commutative in the homotopy category K(B):

(3.1) 40 L. po

pook

AL —*~ B!

Proof. Let e = (e,,): Cone(p) — Cone(t)) be a morphism of complexes with

(6% T
gm:[ m m] A @Al LB @Bl
Gm  Bm

Jo b
then 7,, = 0 for m € 7, because AL, € @ B;, B _, € @ B; and (B,n) con-
i=b+1 i=io

dition (2). Because (e,,) is a chain map, we have Emo1do™®) = dSemetz for
m € Z, that is

(52) [am_l 0 ] {—dﬁfl 01} _ [—dﬁ°1 01} {am 0}
gm—1 Bm-1l| om-1  dp Ym-1 dpy | Lam B
ozm_ld;‘,‘il = dﬁilam VmeZ
& { Bno1dA =dB' B, VmeZ
—Gm iy + B 1Pm 1 = Ym10m + dE g YmEZ
a = (am): A°[-1], — B°[-1], is a chain map.
&< B=(Bm): Al — B! is a chain map.

Bm—19Pm-1 = Ym—10m + dﬁlqm + qm_ld;‘,‘f,l Vm e 7.

(1) = (2) Assume that (g,,): Cone(y) — Cone(v)) is an isomorphism in C(B),
then there is an isomorphism of complexes (7,,): Cone(y)) — Cone(p) with

0
Nm = Lﬁm y } : B?n_l ® Bl — A?n_l D A}n, such that (€m,)(Nm) = idcone(y)s

(Nm)(Em) = idcone(p)s We have a2, = idgo and zmap, =idgo , Bnym = idps,
and Y, By = ida1 for m € Z. Therefore, oy, : A) | — By, and B,,: A}, — B},
are isomorphisms, then by (3.2), a[1]: A — BY and 8: Al — B! are isomorphisms
of complexes in C(B).
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We write f = a[l], g = 3, then we have chain maps ¥ f, go: A} — Bl. The fact
that gmem = Ymfm + dﬁlﬂqmﬂ +qmdﬁl0 for every m implies that the diagram (3.1)
commutes in the homotopy category K(B).

(2) = (1). Assume that the isomorphisms of complexes f: A — BY, g: Al — Bl
in C(B) induced a commutative diagram (3.1) in K(B). Then there exist morphisms
qm: AV _, — B} such that

(33) ImPm — 1Z)mfm = dﬁ:_lqurl + qmdﬁo for every m.

Note that f and g are isomorphisms, thus for every m, f,, and g,, are invertible and
0 0 1 1
(34) frordy, = dp fmy gmordiy = dyy g

We define for every m

m— 0

dm Im
711 0 0 1 0 1
Nm = met _}:B@B—MI@A
m |:_gm1Qm,fm11 gml m—1 m m—1 mo

then &, 7, are mutually-inverse morphisms, (g,,): Cone(¢) — Cone(v)) and (1,,):
Cone(¢) — Cone(p) are morphisms in C(B) by (3.3) and (3.4), thus we have
Cone(yp) = Cone(y)) in C(B). O

Since n-almost split sequences are unique up to isomorphism of complexes [13],
Proposition 3.1.1, as a consequence of Proposition 3.13, the morphisms of complexes
whose mapping cone corresponds to an n-almost split sequence in B is unique up to
homology.

3.3. Characterization of n-almost split sequences. We see that every
n-almost split sequence is isomorphic to the mapping cone Cone(yp) for a mor-
phism of complexes ¢ (see Theorem 3.10) under (53, n) condition. In this subsection,
we will relate the properties of n-almost split sequences to the mapping cone.

Fix object X in B and n € Z, we consider two functors Fx and é’}( from
Mor,(C.(B)) to Mor(C(mod k)) in [18], by putting

Fx(p) =¢po—: Hom(X,A,) = Fx(B.),
G% () = — o (p[~1]): Hom(Bs[-1], X) = G% (Ad[-1])

for ¢: Ae — Be. We consider the mapping cone functor Cone: Mor,.(C,.(B)) — C(B),

and for category of k-vector space mod k, we still denote by Cone the mapping cone
functor Cone: Mor(C(mod k)) — C(mod k).
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Lemma 3.14. The diagram

~n

Mor(C(mod k)) L Mor,.(C*(B)) I Mor(C™(mod k))

l/Cone lCone l/Cone

C(mod k) <— »(B) ——————— C(mod k)

commutes for every object X € B and nonnegative integer n.

Proof. The right-hand square commutes by [18], Lemma 2.6. We only need to
prove that the left-hand square is commutative. For any object ¢: Ay — B, in
Mor,(C(B)), note that G% (Ae[—1]); =0 for i > —1 or i < —(n + 1). The complex
G (Ae[—1]) with

[Cone(Gx ()] = [Hom(Bu[—1], X);1 & [G'x (As[-1])]i
B Hom(B_;, X) ® Hom(A_;_1, X), i#—(n+1),
B Hom(Bp+1,X) ®rad(4,,X) =rad(4,,X), i=—-(n+1)

and the differential dCone(G [Cone(G” ()] — [Cone(é} (¢))]i—1 is given by
JCome(@x o) _ [ —edBip 0
' —opi  —(-o0dy)

On the other hand, consider the complex
n n Gy (Con
G (Cone(p)) = ([G% (Cone(w))]i, d; * ")),
where

(G (Cone(p))]i
Hom(B_; ® A_;_1,X) =Hom(B_;, X) PHom(4A_;_1,X), i# —(n+1),
| rad(4, @ Buy1, X) = rad(A,, X), i=—(n+1)
and the differential d; ¢ (Cone(2)), [G% (Cone(p))]i = [G%(Cone(p))]i—1 is given by
Ak (Cone(e)) _ _ g gConele) _ | ™ odB;,, 0

s —op_; —(—od?)
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Using Lemma 3.14, we have a characterization of m-almost split sequences by
mapping cone.

Proposition 3.15. Let n be a positive integer. For any object p: A — Al in
Mor,(C"(B)), the following two conditions are equivalent:
(1) The mapping cone Cone(yp) is an n-almost split sequence in B.
(2) Cone(yp) € C*TY(B) is acyclic, and Fx(p), G% () are quasi-isomorphisms for
every object X € B.

Proof. (1) = (2). Under the assumptions, it is clear that Cone(p) € C*™1(B)
and is acyclic. By Lemma 2.4 (3), F'x(Cone(y)) and G% (Cone(y)) are acyclic for
every object X € B, and by Lemma 3.14, we have

Cone(Fx (¢)) = Fx (Cone(y)), Cone(G% (¢)) = G’ (Cone(y)),

which yields that F x (©), é’}((ap) are quasi-isomorphisms for every X € B by
Lemma 2.1.

(2) = (1). Fx(p), G%(p) being quasi-isomorphisms for every X € B implies
that Cone(Fx (¢)) = Fx(Cone(y)) and Cone(G% (¢)) = G%(Cone(y)) are acyclic
by Lemmas 2.1 and 3.14. By Lemma 2.4 (3), we know that Cone(y) is an n-almost
split sequence in B. O

The following lemma shows that if Fix () and é}(gp) are quasi-isomorphisms,
Fz(p), G%(p) are also quasi-isomorphisms for any direct summand Z of X and
© € Mor,.(C1(B)).

Lemma 3.16. Let n be a nonnegative integer. For any X = X; ® X5 € B and
¢ € Mor,.(C*(B)), we have:
(1) Fx(y) is a quasi-isomorphism if and only if Fx, (¢), Fx,(p) are quasi-isomor-
phisms.
(2) G%(¢) is a quasi-isomorphism if and only if G% (¢), G%,(p) are quasi-

isomorphisms.

Proof. We only prove (1); the proof of (2) is similar. Observe that Fix(y) is
a quasi-isomorphism if and only if Cone(Fx (¢)) = Fx (Cone(p)) = Fx, (Cone(p)) &
Fx,(Cone(p)) is acyclic by Lemma 2.1 and Lemma 3.14, and if and only if
Fx, (Cone(g)) = Cone(Fx, (¢)) and Fx,(Cone(p)) = Cone(Fx,(¢)) are acyclic,
the conclusion follows at once from Lemma 2.1. O
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4. TENSOR PRODUCTS OF MAPPING CONE

Let A, T be finite dimensional algebras over field k. The aim of this section is to
study the tensor products of complexes over field k£ and provide proof of the main
Theorem 1.1.

4.1. Tensor products of complexes. We use the symbol ® for tensor product
of modules and ®7 for tensor product complexes over field k. The tensor prod-
uct bifunctor — ®7 —: C(mod A) x C(modT') — C(mod(A ® I')) follows [5], IV 4.4
and IV 4.5. For complexes A, € C(modA) and B, € C(modT'), Ay ®T B, is the
complex with (Ae @ B,), = @ A; ® B,_; and the differential given by

JEZ

d;"®TB‘ (vew)= dj‘(v) @w+ (—1)v® df_j(w) Vvowe A; @F B,_;.

For chain maps ¢: Ay — Al in C(mod A) and ¢: BY — Bl in C(modT), ¢ @1 9:
AV @T BY — Al ®T Bl is the chain map of complexes with

(" ¥)y =Des @vpy): PAJOB,; ~(DAj©B,; forpel

jez jez jez

The following lemma tells us that the shift functors are related to functor G'.

Corollary 4.1. Let A, T" be finite dimensional algebras over field k. For any
As € C(mod A), Be € C(modT") and M € mod A, N € modT', we have

Ghiian(Asli] @7 Ba[j])[=m] = GRrgn((Ae @ Ba)m +i + j])
for every i,j,m,n € Z.
Proof. We have

Ghtgn (Aelil @ Ba[j))[=m] = Glygn ((As[i] @ Bo[j])[m])
= Glron (((Ae @ Ba)[i + j])[ml])
= Glron ((Ae ® Ba)[m + i+ j]).

We need the following two results.

Lemma 4.2 ([18], Lemma 3.1). Let A, I" be finite dimensional algebras over field k
and B, £ be full subcategories of mod A, modT', respectively. Then, for any quasi-
isomorphisms ¢ € Mor(C(B)) and ¢ € Mor(C(£)), ¢ ®” 4 is a quasi-isomorphism.
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Proposition 4.3 ([18], Proposition 3.4). Let A, I' be finite dimensional algebras
over field k. For each M,N € modA and M’ ,N' € modT, the canonical map
Homyp (M, N) @ Homp (M, N') — Hompg,r(M ®; M', N @, N') given by f ® g —
f ® g is an isomorphism of k-vector spaces.

When k is perfect, tensor product preserves some nice properties, such as finite
global dimension and semi-simple algebras, so it is natural to consider the tensor
products of n-representation finite, n-complete and n-representation infinite algebras
over perfect field, see [10], [11], [18], [19]. Now we assume k to be a perfect field.
The following result can be easily shown by modifying Lemma 3.6 in [18].

Lemma 4.4. Let k be a perfect field and A, T" finite dimensional algebras over k,
let M, N € mod A and M’, N’ € modT'. Then we have

(4.1) 0——rad(M,N)®rad(M’,N")
[ o ] rad(M, N) ® Hom(M’, N')

—a [a,a]

— @ ——=rad M ® M',N ® N') —= 0,
Hom(M, N) ® rad(M’, N")

where a: fRg— fRyg.

Let B, £ be full subcategories of mod A, mod I', respectively. For any complexes
A, € C*(B) and B, € C™(€), and modules M € B and N € &, we define the
morphism of complexes

v Hom(M, Ay) @ Hom(N, B,) — Hom(M ® N, Ae @* B,)
equipped with

= P u;: €D Hom(M, A,); ® Hom(N,B,); » D Hom(M ® N, A; @ B;)

t+j=p t+j=p t+j=p

for every p € Z, where ¢;;: Hom(M, A,); ® Hom(N, B,); — Hom(M ® N, A; ® B;)
is given by the canonical map f ® g = f ® g. Then ¢;; is a canonical isomorphism,
see Proposition 4.3.

By Lemma 4.4, when ¢ is restricted to Fis(Aes) @1 Fn(B,), then it induces an
injective morphism

V' Far(Ad) T Fx(Bs) = Faeon(Ae @7 B,).
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Similarly, we obtain two morphisms of complexes

u: Hom(Ae[—1], M) @ Hom(Be[~1], N) — Hom(A.[-1] @ Bs[-1], M @ N),
W G(Ad=1]) @7 GR(Ba[-1]) = G (A1) @7 Bu[-1]).

Proposition 4.5. Let k be a perfect field. Under the above notations, the mor-
phisms , u are isomorphisms of complexes and ¢/, v’ are injective morphisms of

complexes.
Proof. It follows easily from Proposition 4.3. (]

We next consider the case when ¢/, v/ are quasi-isomorphisms.

Proposition 4.6. Let k be a perfect field and A, T' finite dimensional algebras
over k. Let B, £ be full subcategories of mod A, mod T, respectively. Let ¢ €
Mor(C™(B)), ¥ € Mor(C™(£)), where ¢: AY — AL, v: BY — Bl such that Cone(y)
is an n-almost split sequence in B and Cone(t)) is an m-almost split sequence in £.
For any M € B, N € &£, we have:

(1) If /2 Fp(AL) @T Fy(BY) — Fuen (ALl @1 Bl) is a quasi-isomorphism, then
F ven (p @1 1) is also a quasi-isomorphism.
(2) Ifu': GR (A1) ® GR(BI[-1]) — G (AY-1] @ BY[-1]) is a quasi-

isomorphism, then GTJ\L}'Q;”N(QD ®T 1) is also a quasi-isomorphism.

Proof. We only prove (1); the proof of (2) is similar. The following diagram is

commutative:
(4.2) Hom(M, AY) @7 Hom(N, BY) — Hom(M ® N, A ®T BY)
FM(w@TFN(w)l: ﬁM@N(W@TWl
Fu(AL) @7 Fy(Bl) ——— Fuen(A} @7 BY),

where ~ is the quasi-isomorphism. The maps Fu (¢) and F ~ (1) are quasi-isomor-
phisms by Proposition 3.15, and then F (o) @ F N (¢) is also a quasi-isomorphism
by Lemma 4.2. Assume that t/: Fp(A) @7 Fx(BL) = Fugn (AL ®T Bl) is a quasi-
isomorphism, then LI(ﬁM (p) @T ﬁN(ga)) is a quasi-isomorphism. This implies that
(Faan (p @T ¥)) is a quasi-isomorphism by the commutative diagram (4.2), and
then ﬁM® ~(p ®T 1)) is a quasi-isomorphism because ¢ is a quasi-isomorphism. [

The following proposition is needed in the proof of the main theorem.

Proposition 4.7. Under the above notations, we have:
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(1) The cokernel of ' is the complex Coker' = D! @ D2, where

Di:FM(AO)(@kS(NaBO)a szs(MaAO)Q@kFN(B')v
D} = Fyy(A); @1 S(N, Bo), d’?l =" @ids(n,po),
D? = S(M, Ag) @ Fn(Ba)iy dP° =idsasa,) @ di NP

(2) The cokernel of v is the complex Cokeru’ & El & E2, where

= G (Ad~1]) @k S(Bp, N), E2 = S(Ay, M) @5, GR(Bo[-1])[n + 1],
= G (Aa[~1))isms1 @k S(B, N),  dP' = dZ3 ) @idgp ny,
= S(An, M) @1, GR(Bo[~1)ipns1,  d2 =idgea, an ® (—1)"HHdERE P11,

Proof. The proof of (1) is similar to the proof in [18], Section 3.3, pages 660—662.
(2) follows from the duality of (1). O

Proposition 4.8. Let k be a perfect field and A, T' finite dimensional algebras
over k. Let ¢ € Mor,(C*(mod A)) and ¢ € Mor,(C"(modT')) such that Cone(yp)
and Cone(¢)) are acyclic complexes. Then Cone(p ®@T ) € CP+™+ ! (mod(A ®I)) is
acyclic.

Proof. Let p: A — Al, ¢: BY — Bl such that Cone(y) and Cone(z)) are
acyclic, then ¢ and 1 are quasi-isomorphisms by Lemma 2.1, this implies that
Cone(p ®T 1) is an acyclic complex by Lemma 4.2 and Lemma 2.1. Observing
that ¢ ®T 1 € Mor(C""™ (mod(A ® I‘))) by Lemma 4.4, we know that dA‘®B' €
rad((A0 @7 BO):, (A9 ®T BY);_y), d*®P+ € rad((A} ®T BL);, (AL @7 Bl);_,), and
(p@T 9); € rad((A% @7 BY);, (AL ®T Bl);) for every i € 7. Hence, Cone(p @7 ¢) €

crtmtl(mod(A ®T)). O

Let A be an algebra satisfying the (B,n) condltlon with B = @Bz, and I' an
=0

algebra satisfying the (£, m) condition with & = @ i, here by,by € Z>9U{oo}. Fix

i=0
integers 0 < g < b1, 0 < jo < ba. Let I3 = max{0,ip — jo} and Iy = min{by, b2 +

o !
io — jo}. We construct the subcategory (B ® &£)(i0J0) = é add H; C mod(A ®; I),

where for [y < i <o, i=l

Hi={M®, N: M €indB;, N €ind&_;y+j,}-
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4.2. Proof of Theorem 1.1. We may suppose the morphisms ¢: A? — Al
and ¢: BY — Bl. Since Cone(y) is starting in slice iy and ending in slice ig + 1,
by Theorem 3.10, we have A9 € C"(B,,) and Al € C"(Bj,+1), similarly, BY €
Cm(&j,) and Bl € C™(Ej,+1). Then A ®T BY € Crt™(add Hy,) and Al @7 Bl €
Crt™(add Hiy41), and hence

i0+1
COHG(SO ®T w) c C<@ add 'Hz> - C((B ® g)(ioyjo)).

i=1g

By Proposition 4.8, Cone(p @7 ) € CPH™ (B @ &£)0:d0)) is acyclic.

Notice that every X € ind(B @ £)(0-J0) is a direct summand of an object Y’ €
lo ~ ~
U Hi. If Fy (e @7 ) and G3™ (¢ @T 1) are quasi-isomorphisms for every object
i=ly lo - -
Y € U Hi, by Lemma 3.16, Fx (p®T ) and Gy (¢®7 ¢) are quasi-isomorphisms

i=ly

for every X € ind(B® £)("0+J0)  this implies that Cone(p @7 ¢) is an (n + m)-almost
split sequence in (B ® £)(0:70) by Proposition 3.15.

l2
Fix an object M ®, N € |J H;, there exists i’ with I3 < 7 < Iz such that
M € indB; and N € ind Sif_f_lﬁjo. Now, it suffices to show that Fyen(p @71 )
and GWQN(w ®T 1)) are quasi-isomorphisms. We only prove the second quasi-
isomorphism; the proof of the first is similar. Consider the morphism

u's Gy (AY[-1) @ GR(BI[-1)) = GyaN  (Ad-1] © BJ[-1)).
By Proposition 4.7 (2), we have
Cokeru' = (G (AY[—1]) @1, S(BY, N)) & (S(A%, M) @5, G (BI—1])[n + 1]);

here G, (AY[—1]) ®) S(BY,, N) is acyclic. Indeed, if S(BY,N) = 0, the statement
is trivial. If S(BY,,N) # 0, then N is a direct summand of BY,, it follows from
BY € &j, that N € &, and M € B;,. By Al € C"(B;,+1) and Definition 3.1(2),
we have Hom(AL[-1], M) = 0. Since Cone(yp) is an n-almost split sequence in B,
by Proposition 3.15, we deduce that é}f/[(go) is a quasi-isomorphism, and then
G7,(AY—1]) = Cone(G7,(p)) is acyclic by Lemma 2.1. Applying the exact tensor
functor — @y, S(BY,, N) over k, we get an acyclic complex G, (A%[—1]) @, S(BY,, N).
By symmetry, we obtain that S(AS, M) @y GR(BJ[—1])[n+ 1] is acyclic. Therefore,
Coker v/ is acyclic, this implies that the injective u': G%,(A%[-1]) @1 GR(BI[-1]) —

G’ﬁé’}\}" A1) @7 B?[—l]l is a quasi-isomorphism. Consequently, by Proposi-
tion 4.6 (2), the morphism G?{j‘g}v (¢ ®T 1)) is a quasi-isomorphism. O
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Remark 4.9. Let A, I" be respectively n-, m-representation finite /-homogeneous
algebras over perfect field k, My and Mr are, respectively, n-, m-cluster tilt-
ing modules of A, T'. Herschend and Iyama showed in [10] that A ®; I' is an

(n + m)-representation finite algebra admitting an (n + m)-cluster tilting module
-1 . -1 4 .

Mg, r = @ (7, "A®7,.'T). Then we obtain add Mg, r = @ add(r,, "A®y7,,'T) =
i=0 1=0

(add My, add MF)(iO’iO) for any ig with 0 < 49 <[ — 1. Hence, the main Theorem 1.1

generalizes [18], Theorem 1.1. Similar constructions hold for higher complete alge-

bras [19]. Theorem 1.1 states that we do not have to care about I-homogeneity and

whether the respectively n-, m-almost split sequences start in common slice.

For n-representation infinite algebras [11], by Theorem 1.1, we have the following
corollary.

Corollary 4.10. Let k be a perfect field. Let A, T' be, respectively, n-, m-
representation infinite algebras. Let ¢ € Mor,.(C*(y)), ¥ € Mor,.(C"(Pr)) such
that Cone(y) and Cone(y)) are respectively n-, m-almost split sequences in Px
and Pr starting in common slice iy > 0. Then Cone(p ®7 1) is an (n + m)-almost
split sequence in Ppgr.

If My, My € mod A and Ny, N2 € mod T, by Lemma 4.10 of [19], there is a func-

torial isomorphism

Extor (M1 ® N1, My ® Np) = @ Ext}} (My, M,) @ Ext{(Ny, Na).
pHq=i
This shows that M; ® N; is projective if and only if M;, N; are projective;
Ms ® Ns is injective if and only if Ms, Ny are injective. If moreover k is an al-
gebraically closed field, then M € ind(modA) and N € ind(modT) if and only
if M® N € ind(modA ®T'). Indeed, M ® N being indecomposable implies that
Endy (M) ® Endr(N) = Endpagr(M ® N) is a local algebra, it is follows from [17],
Theorem 3 that Enda (M) and Endp(N) are local. Hence, M and N are inde-
composable. On the contrary, assume M € ind(modA), N € ind(modT'), then
(Enda(M)/rad(Endp(M))) @ (Endp(N)/rad(Endr(N))) =2 k® k = k is a local
algebra. By [17], Theorem 4 again, Enda (M) ® Endr(N) = Endpagr(M ® N) is
a local algebra, hence M ® N € ind(mod A ®T').
We have the following result for tensor product of algebras.
Corollary 4.11. Let k be a perfect field. Let A be an algebra satisfying the (B, n)
b1
condition with B = @B;, and T' an algebra satisfying the (£, m) condition with
b i=0
&= 629 &;. Assume that any n-almost split sequences in B starts in slice i, ends in

=0
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slice i + 1 for some i > 0, and any m-almost split sequences in £ starts in slice j,
ends in slice j + 1 for some j > 0. Fix integer 0 < ig < b1, 0 < jo < bo.

(1) For any indecomposable objects M € By N Bs and N € & N Es_jy+j, for an
integer s > 0, there exists an (n + m)-almost split sequence in (B ® &)(i0:d0)
starting at M @ N.

(2) For any indecomposable objects M € Bp N Bs and N € Ep N Es_;y+j, for an
integer s > 0, there exists an (n + m)-almost split sequence in (B ® &)(i0:d0)
ending at M ® N.

(3) If field k is algebraically closed, then (B ® £)(0+7°) has (n + m)-almost split
sequences for the following subcategories of (B ® £)(#0+0) ;

(B® &)\ — add{M @ N € (B® &)(): M e B; N B,

and N € 1 N Es_;y+j, for some s},
(B® &)\ = add{M @ N € (B® E)): M € Bpn By

and N € Ep N Es_;y+j, for some s}.

(4) If field k is algebraically closed, then A @ T' satisfies the ((B @ &)(0+70) n 4 m)
condition.

Proof. (1) Suppose indecomposable objects M € ByNBs and N € ErNEs_ig+jo
for an integer s > 0, then there exists n-almost split sequence C! in B starting at
object M and m-almost split sequence C? in &£ starting at object N. It is clear
from Theorem 3.10 that there exists ¢ € Mor,(C(B)) and ¢ € Mor,(C/(€)) such
Cl = Cone(p) and C? = Cone(t)). By Theorem 1.1, Cone(¢ ®7T ) is an (n + m)-
almost split sequence in (B®&)s~0+i0) = (B® &)(0:J0) starting at module M ® N.

(2) is dual to (1), and (3) easily follows from (1) and (2).

(4) A®T is a finite dimension algebra since dimg (A ®x I') = dimy(A) x dimg(T")
is finite. By (3) and the construction of (B ® &£)(0+0) it is enough to show that
Hompgr(X,Y)=0for allly > s>t >1; and every X € H,, Y € Hy.

For s > t, suppose M @ N € Hs, and M’ @ N’ € Hy, then M € Bs;, M’ € & and
N € Bs_ig+jo, N' € Et—iy1jo- It follows from Proposition 4.3 and Definition 3.1(2)
that

Hompgr(M @ N,M' @ N') = Homy (M, M') @ Homr (N, N') = 0.

Therefore, Hompagr (M ® N, M’ @ N') = 0, the proof is complete. O

The tensor product algebra A ® ' in Corollary 4.11 behaves well, particularly, un-
der certain conditions, tensor product of algebras preserves n-representation finite-
ness [10], n-completeness [19] and n-representation infiniteness [11].
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5. EXAMPLE

In this section, we give an example for nonhomogeneous, 1-representation finite
algebra, and by Theorem 1.1, construct a 2-almost split sequence via (1-)almost split
sequences starting in different slice.

Let A = kQ be the path algebra defined by the quiver

Q.l 2 3 4 5
e [ ] [ ] [ ] [ ]

A is a nonhomogeneous, 1-representation finite algebra, see [10]. We consider the
algebra I' = A ®j A, which is not 2-representation finite since A is nonhomogeneous.
For 1 < ¢ <5, let P, and I; be the indecomposable projective, injective A-modules
corresponding vertex i, respectively. The 15 nonisomorphic indecomposable modules
in mod A given by the following dimension vectors:

Py : (11000), Mj; : (00100), My : (00010),
P, : (01000), M, : (11100), Ms, : (00110),
P31 (01100), M;s : (11110), Mys = I3 : (00111),
Py : (01110), Myy = I : (11111), Mz = I5 : (00001),
P5: (01111), Mys = I : (10000), Msy = Iy : (00011).

The Auslander-Reiten quiver of A is given as

) > M5
N
Py s > My
NN
Py SV Spprn— > Mos
N A N N
Py SV ST — 3= Migg oo > Mo
N7 N 7 N T
Py o = My e SV > Ms,

where the dashed arrows show the Auslander-Reiten translation 7 .

3
Notice that A satisfies the (B,1) condition with B = mod A = € B; where
i=0

By =add{P;: 1 <i<5}, B =add{My;: 1 <i<5},
82 add{Mgl ]. ) < 3}, 83 = add{Mgl, M32}
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There are the following two (1-)almost split sequences in B:

A, O—>P3MP4@M12[C—7(1;M13—>07

B.: 0—>M13@M14@M22MM23—>0-

We see that A, starts in slice 0, ends in slice 1 and B, starts in slice 1, ends in slice 2.
By Theorem 3.10, A, = Cone(y) and B, = Cone(t)), where

..._>0_>P3i>P4_>0_>... ..._>0_>M13;§M14_>0_>...
S N O T
...909M12iM13909... ...909M22LM23+0+...

Then tensor product ¢ ®7 1) is the following morphism:

—(1®e)
—(a®1)
--—>0—>P3®M13[—>](P3®M14)@(P4®M13)

b®g 0
l lb@f [1®h] M %g c®f}
de1
o —> 0 — M2 ® Moy —— (Miz ® Ma3) & (Mig @ Mao)

—(a®1),—(1Qe
o) 2099 b o My —— ) —— -

=]
d®1,19h
[ ] M3 ® Moz ——=0 ——>---

2
We construct the subcategory (B ® B)(%Y = @ add H;, where Ho = {P; ® M

=0
1<i, j g 5}, Hl = {Mli@ng: 1 glg 5, 1 S] <3} and’Hg = {MQi@ng:
k1 < i <3, 1< j < 2} By Theorem 1.1, we obtain that the mapping cone
Cone(p @ 1)

1®e Py@Mua oo o Py ® My
e [lhm] e

0—= P3® M3 Py® Mz ————— M2 ® Mo3
S¥) (&)

Mo ® Mao M3 ® Mo

®9,d®1,1Qh
(oo dBLIEH M3 ® Moz —=0

is a 2-almost split sequence in (B ® B)(O’l) starting in slice 0, ending in slice 1. The
algebra T satisfies the ((B ® B)(%1),2) condition by Corollary 4.11.
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