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Abstract. We introduce the algebras satisfying the (B, n) condition. If Λ, Γ are algebras
satisfying the (B, n), (E ,m) condition, respectively, we give a construction of (m+n)-almost

split sequences in some subcategories (B ⊗ E)(i0,j0) of mod(Λ⊗ Γ) by tensor products and
mapping cones. Moreover, we prove that the tensor product algebra Λ ⊗ Γ satisfies the

((B ⊗ E)(i0,j0), n + m) condition for some integers i0, j0; this construction unifies and
extends the work of A.Pasquali (2017), (2019).
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1. Introduction

Almost split sequences (also called Auslander-Reiten sequences) are the main in-

gredient in Auslander-Reiten theory which play a central role in the representation

theory of artin algebras due to Auslander, Reiten and Smalø, see [1], [2], [3], [4].

Recently, as a generalization of the classical Auslander-Reiten theory, Iyama and

his co-authors introduced higher Auslander-Reiten theory (see [6], [8], [9], [16]) from

the viewpoint of higher homological algebra, which is extensively used in modern

representation theory, see [12], [13], [15]. In higher Auslander-Reiten theory, almost

split sequences were generalized to n-almost split sequences (see Definition 2.2),
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and Auslander-Reiten translations were generalized to n-Auslander-Reiten transla-

tions τn, τ
−
n .

As a generalization of representation finite hereditary algebras, n-representation

finite algebras and n-complete algebras are introduced and studied in [10], [14], [15],

which admit n-almost split sequences in n-cluster tilting subcategories of module

categories. Pasquali showed that every n-almost split sequence of an n-representation

finite algebra or n-complete algebra is isomorphic to the mapping cone of a suitable

chain map of complexes.

Tensor products over field create new algebras in higher representation theory,

particularly in the setting of perfect field, see [10], [11], [19]. Let Λ, Γ be, respec-

tively, n-, m-representation finite algebras over perfect field k. Under the condition

of l-homogeneous, Herschend and Iyama showed in [10] that their tensor product

Λ ⊗k Γ is an (n + m)-representation finite algebra. In this case, there must exist

(n + m)-almost split sequences over Λ ⊗k Γ; Pasquali showed how to describe the

structure of such sequences, see [18], Theorem 1.1. Later, using the same method,

he also constructed the (n+m)-almost split sequences under the tensor product of

higher complete algebras, see [19].

However, the tensor product Λ ⊗k Γ is not in general (n + m)-representation

finite. In fact, the condition (l-homogeneity) is a necessary and sufficient condition,

see [18], page 648, Remark 2. It is not easy to find the existence of (n+m)-almost

split sequences when Λ⊗k Γ is not an (n+m)-representation finite algebra.

The motivation of this article is to continue the study of the existence of

(n+m)-almost split sequences but in the setting of the tensor product of more

general algebras. We prove that the tensor product of higher almost split sequences

is also a higher almost split sequence; this generalizes the result of [18], [19] to

a unified framework of the algebras satisfying certain condition.

In this paper, we investigate the algebras satisfying the (B, n) condition (see Def-

inition 3.1), including n-representation finite algebras and n-complete algebras, and

give the construction of n-almost split sequences in subcategory B. Let Λ, Γ be

algebras satisfying the (B, n), (E ,m) conditions, respectively. We will construct new

(m+n)-almost split sequences in full subcategories (B⊗E)(i0,j0) of mod(Λ⊗k Γ) for

some i0, j0 > 0.

Theorem 1.1. Let k be a perfect field and Λ, Γ algebras satisfying the (B, n),

(E ,m) condition, respectively. Let ϕ ∈ Morr(C
n
r (B)), ψ ∈ Morr(C

m
r (E)) such that

Cone(ϕ) is an n-almost split sequence in B starting in slice i0, ending in slice i0 + 1

for some i0 > 0, and Cone(ψ) is an m-almost split sequence in E starting in slice j0,

ending in slice j0+1 for some j0 > 0. Then Cone(ϕ⊗T ψ) is an (n+m)-almost split

sequence in (B ⊗ E)(i0,j0).

1152



When higher almost split sequences start in common slice, then Theorem 1.1

reduces to [18], Theorem 1.1 for homogeneous higher representation finite alge-

bras, [19], Theorem 4.11 for higher complete algebras. Furthermore, as a corollary,

we obtain that the tensor product Λ⊗kΓ satisfies the ((B⊗E)(i0,j0), n+m) condition.

The paper is organized as follows. In Section 2, we will review some basic defini-

tions and facts needed. In Section 3, we introduce the algebras satisfying the (B, n)

condition and show that every n-almost split sequence in B is isomorphic to mapping

cone of morphism of complexes. In Section 4, we give the proof of the main Theo-

rem 1.1. In Section 5, by Theorem 1.1, we give an example to construct a 2-almost

split sequence via almost split sequences starting in a different slice for nonhomoge-

neous 1-representation finite algebras.

Conventions. Throughout this paper, we denote by k a field, by Λ a finite

dimensional algebra over k, and by modΛ the category of the finitely generated

left Λ-modules. All subcategories considered are supposed to be full subcategories,

closed under isomorphisms and direct summands. For a class X of objects in modΛ,

we denote by addX the full subcategory of modΛ consisting of direct summands of

finite direct sums of objects in X , by indX the class of indecomposable objects of X .

The Jacobson radical [1], Appendix A.3 of category modΛ is the two-sided ideal

radΛ in modΛ defined by the formula

radΛ(X,Y ) = {h ∈ HomΛ(X,Y ) : idX−g◦h is invertible for every g ∈ HomΛ(Y,X)}

for all objects X,Y ∈ modΛ. If objects X,Y in modΛ with X ≇ Y are indecompos-

able, then radΛ(X,Y ) = HomΛ(X,Y ). For X,Y ∈ modΛ, we denote by SΛ(X,Y )

the quotient vector space SΛ = HomΛ(X,Y )/radΛ(X,Y ) and we will simplify the

notation by writing rad(X,Y ) instead of radΛ(X,Y ).

2. Preliminaries

Let B be a full subcategory ofmodΛ, we denote by C(B) the category of complexes

of B, by K(B) the homotopy category of C(B), and by Cr(B) the full subcategory

of C(B) whose objects are chain complexes where differentials are radical morphisms.

Let n be a nonnegative integer, we denote by Cn(B) the full subcategory of C(B)

whose objects are defined by {(A•, d
A
• ) ∈ C(B) : Ai = 0 for all i < 0 or i > n}. Let

f : A• → B• be a morphism of chain complexes. The mapping cone Cone(f) of f is

defined as the complex Cone(f) = (Cone(f)i, d
Cone(f)
i ) with

Cone(f)i = A[−1]i ⊕Bi and the differentials d
Cone(f)
i =

[
d
A[−1]
i 0

f [−1]i dBi

]
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for every i ∈ Z, where [−] is the shift functor of C(B), that is, for every m ∈ Z

and A• = (Ai, d
A
i ) ∈ C(B), A•[m] = (A[m]i, d

A[m]
i ) with A[m]i = Ai+m and the

differentials d
A[m]
i = (−1)mdAi+m for every i ∈ Z, the shift f [m] of f is the morphism

of complexes f [m] = (f [m]i)i∈Z : A•[m] → B•[m] with components f [m]i = fi+m.

Let A be a full subcategory of C(B). We denote by Mor(A) the morphism cat-

egory whose objects are all morphisms of complexes in A. Let (A0
•

f
−→ B0

•),

(A1
•

g
−→ B1

•) ∈ Mor(A). The morphism f → g is a pair (ϕ, ψ) of morphisms

in A with ϕ : A0
• → A1

• and ψ : B0
• → B1

• such that ψf = gϕ. The compo-

sition of morphisms (ϕ, ψ) ∈ HomMor(A)(f, g) and (ϕ′, ψ′) ∈ HomMor(A)(g, z) is

the morphism (ϕ′ϕ, ψ′ψ) ∈ HomMor(A)(f, z). Let Morr(A) denote the full sub-

category of Mor(A) whose objects are given by {f : A• → B• ∈ Mor(A) : fi ∈

rad(Ai, Bi) for every i ∈ Z}; the objects are called the radical morphisms.

The following lemma is used repeatedly in the sequel.

Lemma 2.1 ([7]). For any f ∈ Mor(C(B)), Cone(f) is an acyclic complex

of C(modΛ) if and only if f is a quasi-isomorphism.

We give the following general definition of n-almost split sequence defined

in [13], [15].

Definition 2.2. Let n be a positive integer and B a full subcategory of modΛ.

(1) The complex . . .
f3
−→ C2

f2
−→ C1

f1
−→ C0 with terms in B is called a sink sequence

in B ofC0 if fi ∈ rad(Ci, Ci−1) for every integer i > 0, and the following sequence

is exact on B:

. . . f3◦− // HomΛ(−, C2)
f2◦− // HomΛ(−, C1)

f1◦− // radΛ(−, C0) // 0.

(2) The complex Cn
fn
−→ Cn−1

fn−1

−→ Cn−2
fn−2

−→ . . . with terms in B is called a source

sequence in B of Cn if fi ∈ rad(Ci, Ci−1) for every integer i 6 n, and the

following sequence is exact on B:

. . .
−◦fn−2

// HomΛ(Cn−2,−)
−◦fn−1

// HomΛ(Cn−1,−)
−◦fn // radΛ(Cn,−) // 0.

(3) The exact sequence C• : 0 −→ Cn+1
fn+1

−→ Cn −→ . . . −→ C1
f1
−→ C0 −→ 0 with

terms in B is called n-almost split sequence in B if C• is a sink sequence in B

of C0 and a source sequence in B of Cn+1 simultaneously.

It is well known that the rightmost (or leftmost) objects of sink (or source) se-

quences are nonprojective (or noninjective) in B and indecomposable, see [13]. We

say that B has n-almost split sequences for subcategories BI , BP of B if for each
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indecomposable object C ∈ BP , there is an n-almost split sequence 0 → Cn+1 →

Cn → . . . → C1 → C → 0; and for each indecomposable object X ∈ BI , there is an

n-almost split sequence 0 → X → Xn → . . .→ X1 → X0 → 0.

Remark 2.3. If B is an n-cluster tilting subcategory of modΛ, the definition

of n-almost split sequences in B is simpler, see [14], Proposition 2.10. This simple

definition was used in [18].

Fixed Λ-module X ∈ B, Pasquali defined two functors FX , G
n
X from Cr(B)

to C(mod k) as subfunctors of HomΛ(X,−) and HomΛ(−, X), respectively, [18], that

is, for any

C• : . . .
fi+1

−→ Ci
fi
−→ . . .

f1
−→ C0

f0
−→ . . .

in Cr(B),

FX(C•) : . . .
fi+1◦−

// HomΛ(X,Ci)
fi◦− // . . . f1◦− // radΛ(X,C0)

f0◦− // . . .

is the complex given by replacing HomΛ(X,C0) in complex HomΛ(X,C•) with

rad(X,C0), and the differentials of FX(C•) equal to the differentials of HomΛ(X,C•).

Similarly,

GnX(C•) : . . .
−◦fi // HomΛ(Ci, X)

−◦fi+1
// . . .

−◦fn+1
// radΛ(Cn+1, X)

−◦fn+2
// . . .

The functors FX , G
n
X can be used to characterize n-almost split sequences.

Lemma 2.4 ([19], Lemma 4.5). Let C• : . . . −→ Cn+1
fn+1

−→ Cn
fn
−→ . . .

f1
−→

C0
f0
−→ . . . be a complex in Cr(B). Then:

(1) If Ci = 0 for i < 0, then C• is a sink sequence of C0 in B if and only if FX(C•)

is acyclic for every X ∈ B.

(2) If Ci = 0 for i > n + 1, then C• is a source sequence of Cn+1 in B if and only

if GnX(C•) is acyclic for every X ∈ B.

(3) If C• ∈ Cn+1(B) is acyclic in modΛ, then C• is an n-almost split sequence in B

if and only if FX(C•) and G
n
X(C•) are acyclic for every X ∈ B.

Remark 2.5. If moreover B is a Krull-Schmidt subcategory, by the additivity

of FX and G
n
X , we can replace “every X ∈ B” by “every X ∈ indB” in the above

lemma.
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3. Construction of n-almost split sequence

In this section, we show that every n-almost split sequence is isomorphic to

a mapping cone in subcategory B for algebras satisfying the (B, n) condition, and

give a characterization of n-almost split sequences. This unifies and extends the

results of Pasquali for n-representation finite algebras ( see [18]) and n-complete

algebras, see [19].

3.1. Algebras satisfying the (B, n) conditions. Let us start by giving the

definition of algebras satisfying the (B, n) condition.

Definition 3.1. Let B be a subcategory of modΛ. We say that Λ satisfies

the (B, n) condition if there are full subcategories Bi (i > 0) of B satisfying the

following conditions:

(1) B =
⊕
i>0

Bi, that is, for every X ∈ B, there exist finite many nonzero objects

X i ∈ Bi such that X =
⊕
i>0

X i.

(2) If i > j, then HomΛ(X,Y ) = 0 for all objects X ∈ Bi, Y ∈ Bj .

(3) B has n-almost split sequences for some subcategories BI , BP of B.

We now present some classes of algebras satisfying the (B, n) condition. The

following notations τn, τ
−
n are n-Auslander-Reiten translations, see [13], [15].

Example 3.2. Let Λ be an n-representation finite algebra (see [16]) with

n-cluster tilting module M , we have M := addM =
⊕
i>0

Mi with Mi = add τ−in Λ

being an n-cluster tilting subcategory of modΛ. Then Λ satisfies the (M, n) condi-

tion andM has n-almost split sequences for subcategoriesMI = addM \ add(DΛ),

MP = addM \ (addΛ) ofM, see Theorem 3.3.1 of [13] or Proposition 2.1 of [18].

Example 3.3. Let Λ be an n-complete algebra (see [15]), there exists a positive

minimum integer l such that τ ln(DΛ) = 0. We define the subcategoryM =
l−1⊕
i=0

Mi of

modΛ withMi = add τ l−1−i
n DΛ, then Λ satisfies the (M, n) condition andM has

n-almost split sequences for the following subcategories of M, see Proposition 4.2

and Theorem 4.4 of [19]:

MI = {X ∈ M : X has no nonzero summands in addDΛ},

MP = {X ∈ M : X has no nonzero summand N such that τnN = 0}.

Example 3.4. Let Λ be an n-representation infinite algebra, see [11], Defini-

tion 2.7. We can define the subcategory P = PΛ = add{ν−in (Λ): i > 0} =

add {τ−in (Λ): i > 0} of modΛ, see [11], Definition 4.7. We get functors ν−in = τ−in
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for i > 0 on P by [11], Proposition 4.21. Thus, P =
⊕
i>0

Pi equipped with

Pi = add τ−in Λ. Then Λ satisfies the (P, n) condition and P has n-almost split

sequences for subcategories PI = P and

PP = {X ∈ P : X has no nonzero summands in addΛ}

of P, see Proposition 2.3 (b) and Theorem 4.25 of [11]. Note that P is not an

n-cluster tilting subcategory of modΛ in general.

Remark 3.5. By [15], Proposition 1.13 (b), an n-representation finite algebra

is a special n-complete algebra. For n-representation infinite algebra Λ, the func-

tor νn is an auto-equivalence of the bounded derived category of modΛ (see [11]),

so νin(DΛ) 6= 0 for i > 0. By [11], Proposition 4.21, we have τ in(DΛ) = νin(DΛ) 6= 0

for i > 0. Hence, n-complete algebras and n-representation infinite algebras are two

disjoint classes of algebras.

Assume that Λ satisfies the (B, n) condition and that 0−→Cn+1
fn+1

−→Cn−→ . . .−→

C1
f1
−→C0−→0 is an n-almost split sequence in B. Because B=

⊕
i>0

Bi and dimCm<∞,

there exist nonnegative integer l such that

Cm =
l⊕

i=0

Cim with Cim ∈ Bi

for 0 6 m 6 n+ 1.

Definition 3.6. Let Λ be an algebra satisfying the (B, n) condition with B =⊕
i>0

Bi, C• : 0 → Cn+1 → Cn → . . . → C1 → C0 → 0 be an n-almost split se-

quence in B and i0, j0 two nonnegative integers. We say that C• starts in slice i0 if

Cn+1 ∈ Bi0 and ends in slice j0 if C0 ∈ Bj0 .

Example 3.7. Let Λ be an n-representation finite algebra and C• : 0 → Cn+1 →

Cn → . . . → C1 → C0 → 0 be an n-almost split sequence in M. By [13], Theo-

rem 3.3.1, we obtain C0 = τ−n Cn+1 and Cn+1 = τnC0. Therefore, if C• starts in slice

i0, then C• ends in slice i0 + 1. Similar results hold for n-complete algebras (see

Example 3.3) and n-representation infinite algebras (see Example 3.4).

Proposition 3.8. Let Λ be an algebra satisfying the (B, n) condition with B =⊕
i>0

Bi, C• : 0 → Cn+1 → Cn → . . . → C0 → 0 be an n-almost split sequence in B

with Cm =
l⊕
i=0

Cim for some C
i
m ∈ Bi, 0 6 m 6 n+ 1, i > 0. Then we have

(1) if C• ends in slice j0, then C
i
m = 0 for i > j0;

(2) if C• starts in slice i0, then C
i
m = 0 for i < i0;

(3) if C• starts in slice i0 and ends in slice j0, then i0 6 j0.
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P r o o f. (1) Suppose that Cjq 6= 0 for some j > j0 and n+ 1 > q > 0. Let

b = max{i : i > j0, C
i
m 6= 0 and n+ 1 > m > 0},

a = min{m : Cbm 6= 0, n+ 1 > m > 0}.

Observe that by the definition of (B, n) condition, HomΛ(C
i
m, C

i′

m′) = 0, i > i′ for

n+ 1 > m, m′ > 0. Consider Cm =
l⊕
i=0

Cim for 0 6 m 6 a− 1, using the minimality

of a and maximality of b, we get Cim = 0 for b 6 i 6 l, hence

HomΛ(C
b
a, Cm) = HomΛ

(
Cba,

l⊕

i=0

Cim

)
∼=

b−1⊕

i=0

HomΛ(C
b
a, C

i
m) = 0.

For Ca =
l⊕
i=0

Cia, by the maximality of b, we have C
i
a = 0 for b+ 1 6 i 6 l, so

HomΛ(C
b
a, Ca) = HomΛ

(
Cba, C

b
a ⊕

( b−1⊕

i=0

Cia

))
= HomΛ(C

b
a, C

b
a).

Because C• is an n-almost split sequence in B and Cba ∈ B,

FCb
a
(C•) : 0 // HomΛ(C

b
a, Cn+1)

fn+1◦−
// . . .

// HomΛ(C
b
a, Ca+1)

fa+1◦−
// HomΛ(C

b
a, C

b
a)

// 0

is an exact sequence of k-vector spaces. The relation idCb
a
∈ radΛ(C

b
a, C

b
a) follows

from the fact that fa+1 ∈ radΛ(Ca+1, Ca), this contradicts the fact that C
b
a = 0.

Thus, Cim = 0 for i > j0.

(2) The proof is similar to (1).

(3) Suppose that i0 > j0. Since Cn+1 ∈ Bi0 and C0 ∈ Bj0 , for 0 < m < n+ 1, we

have Cim = 0 for i0 6 i 6 l by (1), and Cim = 0 for 0 6 i 6 i0 − 1 by (2). Hence,

Cm =

l⊕

i=0

Cim =

(i0−1⊕

i=0

Cim

)
⊕

( l⊕

i=i0

Cim

)
= 0,

this contradicts the fact that Cm 6= 0. �
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As a consequence of the above proposition, we have the following corollary.

Corollary 3.9. Let Λ be an algebra satisfying the (B, n) condition with B =⊕
i>0

Bi, C• : 0 → Cn+1 → Cn → . . . → C0 → 0 be an n-almost split sequence in B.

Then:

(1) If C• starts in slice i0 and ends in slice j0 with j0 > i0 > 0, then there exist

Cim ∈ Bi such that Cm =
j0⊕
i=i0

Cim for every 0 6 m 6 n+ 1.

(2) If C• starts in slice i0 and ends in slice i0 with i0 > 0, then C• ∈ Cr(Bi0).

P r o o f. (1) Under the assumptions, we have Cim = 0 for j0 + 1 6 i 6 l by

Proposition 3.8 (1), and Cim = 0 for 0 6 i 6 i0 − 1 by Proposition 3.8 (2), the

statement follows.

(2) easily follows from (1). �

3.2. Mapping cone of n-almost split sequences. In this subsection, we in-

vestigate the relationship between mapping cones and n-almost split sequences.

Theorem 3.10. Let Λ be an algebra satisfying the (B, n) condition with

B =
⊕
i>0

Bi, C• : 0 −→ Cn+1
fn+1

−→ Cn −→ . . .
f1
−→ C0 −→ 0 be an n-almost split

sequence in B starting in slice i0 and ending in slice j0 with 0 6 i0 < j0. Then for

each i0 6 b < j0, there exist complexes A
0
• ∈ Cnr

( b⊕
i=i0

Bi

)
, A1

• ∈ Cnr

( j0⊕
i=b+1

Bi

)
and

radical morphism ϕ : A0
• → A1

• such that C• = Cone(ϕ) in C(B).

P r o o f. For each i0 6 b < j0, by Corollary 3.9 (1), Cm =
j0⊕
i=i0

Cim for every

0 6 m 6 n+ 1, then Cm can be written as

Cm = A0
m−1 ⊕A1

m,

where A0
m−1 =

b⊕
i=i0

Cim ∈
b⊕

i=i0

Bi, A
1
m=

j0⊕
i=b+1

Cim∈
j0⊕

i=b+1

Bi, and fm can be written as

fm =

[
αbm βm

γm αb+1
m

]
: Cm → Cm−1,

where αbm : A0
m−1 → A0

m−2, βm : A1
m → A0

m−2, γm : A0
m−1 → A1

m−1, α
b+1
m :

A1
m → A1

m−1. Note that βm = 0 since i0 < j0.
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We may write A0
• = (A0

m, d
A0

m ), A1
• = (A1

m, d
A1

m ) and ϕ = (ϕm), where

dA
0

m = −αbm+1, d
A1

m = αb+1
m , and ϕm = γm+1 : A

0
m → A1

m for every m. We

note that fm−1fm = 0 and fm ∈ rad(Cm, Cm−1) for every m, it is easily seen that

ϕ : A0
• → A1

• is a radical morphism and A
0
• ∈ Cnr

( b⊕
i=i0

Bi

)
, A1

• ∈ Cnr

( j0⊕
i=b+1

Bi

)
.

We have

Cone(ϕ)m = A0
•[−1]m ⊕A1

m = A0
m−1 ⊕A1

m = Cm

and

dCone(ϕ)
m =

[
−dA

0

m−1 0

ϕm−1 dA
1

m

]
=

[
αbm 0

γm αb+1
m

]
= fm

for every m, therefore C• = Cone(ϕ) in C(B). �

Theorem 3.10 shows that under the (B, n) condition, every n-almost split sequence

is isomorphic to a mapping cone of certain complex morphism. This result generalizes

Theorem 2.4 of [18] and Theorem 4.7 of [19].

The following corollary follows directly from Theorem 3.10, Examples 3.4 and 3.7.

Corollary 3.11. Let Λ be an n-representation infinite algebra with PΛ =⊕
i>0

add τ−in Λ, C• be an n-almost split sequence inPΛ which starts in slice i0 for some

i0 > 0. Then there exist complexes A0
• ∈ Cnr (add τ

−i0
n Λ), A1

• ∈ Cnr (add τ
−(i0+1)
n Λ)

and radical morphism ϕ : A0
• → A1

• such that C• = Cone(ϕ) in C(PΛ).

Remark 3.12. In Theorem 3.10, assume that B =
⊕
i>0

Bi and n-almost split

sequence C• in B starts in slice i0 and ends in slice j0. In order to investigate the

tensor products of n-almost split sequences in Section 4, we can decompose B as

B = E =
⊕
j>0

Ej equipped with

Ej =





Bj, 0 6 j < i0,

b⊕
i=i0

Bi, j = i0,

j0⊕
i=b+1

Bi, j = i0 + 1,

Bj+j0−i0−1, j > i0 + 1,

then C• in C(E) starts in slice i0 and ends in slice i0 + 1, and Λ satisfies the (E , n)

condition.

The following proposition shows that under the (B, n) condition and isomorphism,

there is a uniqueness of ϕ of mapping cone Cone(ϕ).
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Proposition 3.13. Let Λ be an algebra satisfying the (B, n) condition with

B =
⊕
i>0

Bi. For any complexes A
0
•, B

0
• ∈ C

( b⊕
i=i0

Bi

)
, A1

•, B
1
• ∈ C

( j0⊕
i=b+1

Bi

)
and

morphisms ϕ : A0
• → A1

•, ψ : B0
• → B1

• , the following statements are equivalent:

(1) Cone(ϕ) ∼= Cone(ψ) in C(B).

(2) There are isomorphisms f : A0
• → B0

• , g : A
1
• → B1

• in C(B) such that the

following square is commutative in the homotopy category K(B):

(3.1) A0
•

f
//

ϕ

��

B0
•

ψ

��
A1

•

g
// B1

•

P r o o f. Let ε = (εm) : Cone(ϕ) → Cone(ψ) be a morphism of complexes with

εm =

[
αm rm

qm βm

]
: A0

m−1 ⊕A1
m → B0

m−1 ⊕B1
m,

then rm = 0 for m ∈ Z, because A1
m ∈

j0⊕
i=b+1

Bi, B
0
m−1 ∈

b⊕
i=i0

Bi and (B, n) con-

dition (2). Because (εm) is a chain map, we have εm−1d
Cone(ϕ)
m = d

Cone(ψ)
m εm for

m ∈ Z, that is

(3.2)

[
αm−1 0

qm−1 βm−1

] [
−dA

0

m−1 0

ϕm−1 dA
1

m

]
=

[
−dB

0

m−1 0

ψm−1 dB
1

m

] [
αm 0

qm βm

]

⇔






αm−1d
A0

m−1 = dB
0

m−1αm ∀m ∈ Z

βm−1d
A1

m = dB
1

m βm ∀m ∈ Z

−qm−1d
A0

m−1 + βm−1ϕm−1 = ψm−1αm + dB
1

m qm ∀m ∈ Z

⇔






α = (αm) : A0[−1]
•
→ B0[−1]

•
is a chain map.

β = (βm) : A1
• → B1

• is a chain map.

βm−1ϕm−1 = ψm−1αm + dB
1

m qm + qm−1d
A0

m−1 ∀m ∈ Z.

(1) ⇒ (2) Assume that (εm) : Cone(ϕ) → Cone(ψ) is an isomorphism in C(B),

then there is an isomorphism of complexes (ηm) : Cone(ψ) → Cone(ϕ) with

ηm =

[
xm 0

pm ym

]
: B0

m−1 ⊕ B1
m → A0

m−1 ⊕ A1
m, such that (εm)(ηm) = idCone(ψ),

(ηm)(εm) = idCone(ϕ), we have αmxm = idB0
m−1
and xmαm = idA0

m−1
, βmym = idB1

m

and ymβm = idA1
m
for m ∈ Z. Therefore, αm : A0

m−1 → B0
m−1 and βm : A1

m → B1
m

are isomorphisms, then by (3.2), α[1] : A0
• → B0

• and β : A
1
• → B1

• are isomorphisms

of complexes in C(B).

1161



We write f = α[1], g = β, then we have chain maps ψf , gϕ : A0
• → B1

• . The fact

that gmϕm = ψmfm+dB
1

m+1qm+1+qmd
A0

m for every m implies that the diagram (3.1)

commutes in the homotopy category K(B).

(2) ⇒ (1). Assume that the isomorphisms of complexes f : A0
• → B0

• , g : A
1
• → B1

•

in C(B) induced a commutative diagram (3.1) in K(B). Then there exist morphisms

qm : A0
m−1 → B1

m such that

(3.3) gmϕm − ψmfm = dB
1

m+1qm+1 + qmd
A0

m for every m.

Note that f and g are isomorphisms, thus for every m, fm and gm are invertible and

(3.4) fm−1d
A0

m = dB
0

m fm, gm−1d
A1

m = dB
1

m gm.

We define for every m

εm =

[
fm−1 0

qm gm

]
: A0

m−1 ⊕A1
m → B0

m−1 ⊕B1
m,

ηm =

[
f−1
m−1 0

−g−1
m qmf

−1
m−1 g−1

m

]
: B0

m−1 ⊕ B1
m → A0

m−1 ⊕A1
m,

then εm, ηm are mutually-inverse morphisms, (εm) : Cone(ϕ) → Cone(ψ) and (ηm) :

Cone(ψ) → Cone(ϕ) are morphisms in C(B) by (3.3) and (3.4), thus we have

Cone(ϕ) ∼= Cone(ψ) in C(B). �

Since n-almost split sequences are unique up to isomorphism of complexes [13],

Proposition 3.1.1, as a consequence of Proposition 3.13, the morphisms of complexes

whose mapping cone corresponds to an n-almost split sequence in B is unique up to

homology.

3.3. Characterization of n-almost split sequences. We see that every

n-almost split sequence is isomorphic to the mapping cone Cone(ϕ) for a mor-

phism of complexes ϕ (see Theorem 3.10) under (B, n) condition. In this subsection,

we will relate the properties of n-almost split sequences to the mapping cone.

Fix object X in B and n ∈ Z, we consider two functors F̃X and G̃nX from

Morr(Cr(B)) to Mor(C(mod k)) in [18], by putting

F̃X(ϕ) = ϕ ◦ − : Hom(X,A•) → FX(B•),

G̃nX(ϕ) = − ◦ (ϕ[−1]) : Hom(B•[−1], X) → GnX(A•[−1])

for ϕ : A• → B•. We consider the mapping cone functor Cone: Morr(Cr(B)) → C(B),

and for category of k-vector space mod k, we still denote by Cone the mapping cone

functor Cone: Mor(C(mod k)) → C(modk).
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Lemma 3.14. The diagram

Mor(C(mod k))

Cone

��

Morr(C
n
r (B))

G̃n

Xoo F̃X //

Cone

��

Mor(Cn(mod k))

Cone

��
C(mod k) Cr(B)

Gn

Xoo FX // C(modk)

commutes for every object X ∈ B and nonnegative integer n.

P r o o f. The right-hand square commutes by [18], Lemma 2.6. We only need to

prove that the left-hand square is commutative. For any object ϕ : A• → B• in

Morr(C
n
r (B)), note that G

n
X(A•[−1])i = 0 for i > −1 or i < −(n+ 1). The complex

GnX(A•[−1]) with

[Cone(G̃nX(ϕ))]i = [Hom(B•[−1], X)]i−1 ⊕ [GnX(A•[−1])]i

=

{
Hom(B−i, X)⊕Hom(A−i−1, X), i 6= −(n+ 1),

Hom(Bn+1, X)⊕ rad(An, X) = rad(An, X), i = −(n+ 1)

and the differential d
Cone(G̃n

X
(ϕ))

i : [Cone(G̃nX(ϕ))]i → [Cone(G̃nX(ϕ))]i−1 is given by

d
Cone(G̃n

X
(ϕ))

i =

[
− ◦ dB−i+1 0

− ◦ ϕ−i −(− ◦ dA−i)

]
.

On the other hand, consider the complex

GnX(Cone(ϕ)) = ([GnX(Cone(ϕ))]i, d
Gn

X
(Cone(ϕ))

i ),

where

[GnX(Cone(ϕ))]i

=

{
Hom(B−i ⊕A−i−1, X) = Hom(B−i, X)⊕Hom(A−i−1, X), i 6= −(n+ 1),

rad(An ⊕Bn+1, X) = rad(An, X), i = −(n+ 1)

and the differential d
Gn

X
(Cone(ϕ))

i : [GnX(Cone(ϕ))]i → [GnX(Cone(ϕ))]i−1 is given by

d
Gn

X
(Cone(ϕ))

i = − ◦ d
Cone(ϕ)
−i+1 =

[
− ◦ dB−i+1 0

− ◦ ϕ−i −(− ◦ dA−i)

]
.

�
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Using Lemma 3.14, we have a characterization of n-almost split sequences by

mapping cone.

Proposition 3.15. Let n be a positive integer. For any object ϕ : A0
• → A1

• in

Morr(C
n
r (B)), the following two conditions are equivalent:

(1) The mapping cone Cone(ϕ) is an n-almost split sequence in B.

(2) Cone(ϕ) ∈ Cn+1
r (B) is acyclic, and F̃X(ϕ), G̃nX(ϕ) are quasi-isomorphisms for

every object X ∈ B.

P r o o f. (1) ⇒ (2). Under the assumptions, it is clear that Cone(ϕ) ∈ Cn+1
r (B)

and is acyclic. By Lemma 2.4 (3), FX(Cone(ϕ)) and GnX(Cone(ϕ)) are acyclic for

every object X ∈ B, and by Lemma 3.14, we have

Cone(F̃X(ϕ)) = FX(Cone(ϕ)), Cone(G̃nX(ϕ)) = GnX(Cone(ϕ)),

which yields that F̃X(ϕ), G̃nX(ϕ) are quasi-isomorphisms for every X ∈ B by

Lemma 2.1.

(2) ⇒ (1). F̃X(ϕ), G̃nX(ϕ) being quasi-isomorphisms for every X ∈ B implies

that Cone(F̃X(ϕ)) = FX(Cone(ϕ)) and Cone(G̃nX(ϕ)) = GnX(Cone(ϕ)) are acyclic

by Lemmas 2.1 and 3.14. By Lemma 2.4 (3), we know that Cone(ϕ) is an n-almost

split sequence in B. �

The following lemma shows that if F̃X(ϕ) and G̃nX(ϕ) are quasi-isomorphisms,

F̃Z(ϕ), G̃
n
Z(ϕ) are also quasi-isomorphisms for any direct summand Z of X and

ϕ ∈ Morr(C
n
r (B)).

Lemma 3.16. Let n be a nonnegative integer. For any X = X1 ⊕ X2 ∈ B and

ϕ ∈ Morr(C
n
r (B)), we have:

(1) F̃X(ϕ) is a quasi-isomorphism if and only if F̃X1
(ϕ), F̃X2

(ϕ) are quasi-isomor-

phisms.

(2) G̃nX(ϕ) is a quasi-isomorphism if and only if G̃nX1
(ϕ), G̃nX2

(ϕ) are quasi-

isomorphisms.

P r o o f. We only prove (1); the proof of (2) is similar. Observe that F̃X(ϕ) is

a quasi-isomorphism if and only if Cone(F̃X(ϕ)) = FX(Cone(ϕ)) ∼= FX1
(Cone(ϕ))⊕

FX2
(Cone(ϕ)) is acyclic by Lemma 2.1 and Lemma 3.14, and if and only if

FX1
(Cone(ϕ)) = Cone(F̃X1

(ϕ)) and FX2
(Cone(ϕ)) = Cone(F̃X2

(ϕ)) are acyclic,

the conclusion follows at once from Lemma 2.1. �
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4. Tensor products of mapping cone

Let Λ, Γ be finite dimensional algebras over field k. The aim of this section is to

study the tensor products of complexes over field k and provide proof of the main

Theorem 1.1.

4.1. Tensor products of complexes. We use the symbol ⊗ for tensor product

of modules and ⊗T for tensor product complexes over field k. The tensor prod-

uct bifunctor − ⊗T − : C(modΛ) × C(modΓ) → C(mod(Λ ⊗ Γ)) follows [5], IV 4.4

and IV 4.5. For complexes A• ∈ C(modΛ) and B• ∈ C(modΓ), A• ⊗T B• is the

complex with (A• ⊗
T B•)p =

⊕
j∈Z

Aj ⊗Bp−j and the differential given by

dA•⊗
TB•

p (v ⊗ w) = dAj (v)⊗ w + (−1)jv ⊗ dBp−j(w) ∀ v ⊗ w ∈ Aj ⊗
T Bp−j .

For chain maps ϕ : A0
• → A1

• in C(modΛ) and ψ : B0
• → B1

• in C(modΓ), ϕ ⊗T ψ :

A0
• ⊗

T B0
• → A1

• ⊗
T B1

• is the chain map of complexes with

(ϕ⊗T ψ)p =
⊕

j∈Z

(ϕj ⊗ ψp−j) :
⊕

j∈Z

A0
j ⊗B0

p−j →
⊕

j∈Z

A1
j ⊗B1

p−j for p ∈ Z.

The following lemma tells us that the shift functors are related to functor GnX .

Corollary 4.1. Let Λ, Γ be finite dimensional algebras over field k. For any

A• ∈ C(modΛ), B• ∈ C(modΓ) and M ∈ modΛ, N ∈ modΓ, we have

Gn+mM⊗N (A•[i]⊗
T B•[j])[−m] = GnM⊗N ((A• ⊗

T B•)[m+ i+ j])

for every i, j,m, n ∈ Z.

P r o o f. We have

Gn+mM⊗N (A•[i]⊗
T B•[j])[−m] = GnM⊗N ((A•[i]⊗

T B•[j])[m])

= GnM⊗N (((A• ⊗
T B•)[i + j])[m])

= GnM⊗N ((A• ⊗
T B•)[m+ i+ j]).

�

We need the following two results.

Lemma 4.2 ([18], Lemma 3.1). Let Λ, Γ be finite dimensional algebras over field k

and B, E be full subcategories of modΛ, modΓ, respectively. Then, for any quasi-

isomorphisms ϕ ∈ Mor(C(B)) and ψ ∈ Mor(C(E)), ϕ⊗T ψ is a quasi-isomorphism.
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Proposition 4.3 ([18], Proposition 3.4). Let Λ, Γ be finite dimensional algebras

over field k. For each M,N ∈ modΛ and M ′, N ′ ∈ modΓ, the canonical map

HomΛ(M,N)⊗k HomΓ(M
′, N ′) → HomΛ⊗kΓ(M ⊗kM

′, N ⊗k N
′) given by f ⊗ g →

f ⊗ g is an isomorphism of k-vector spaces.

When k is perfect, tensor product preserves some nice properties, such as finite

global dimension and semi-simple algebras, so it is natural to consider the tensor

products of n-representation finite, n-complete and n-representation infinite algebras

over perfect field, see [10], [11], [18], [19]. Now we assume k to be a perfect field.

The following result can be easily shown by modifying Lemma 3.6 in [18].

Lemma 4.4. Let k be a perfect field and Λ, Γ finite dimensional algebras over k,

let M,N ∈ modΛ and M ′, N ′ ∈ modΓ. Then we have

(4.1) 0 // rad(M,N)⊗ rad(M ′, N ′)

[ α

−α

]

//
rad(M,N)⊗Hom(M ′, N ′)

⊕

Hom(M,N)⊗ rad(M ′, N ′)

[α,α]
// rad(M ⊗M ′, N ⊗N ′) // 0,

where α : f ⊗ g → f ⊗ g.

Let B, E be full subcategories of modΛ, modΓ, respectively. For any complexes

A• ∈ Cnr (B) and B• ∈ Cmr (E), and modules M ∈ B and N ∈ E , we define the

morphism of complexes

ι : Hom(M,A•)⊗
T Hom(N,B•) → Hom(M ⊗N,A• ⊗

T B•)

equipped with

ιp =
⊕

i+j=p

ιij :
⊕

i+j=p

Hom(M,A•)i ⊗Hom(N,B•)j →
⊕

i+j=p

Hom(M ⊗N,Ai ⊗Bj)

for every p ∈ Z, where ιij : Hom(M,A•)i ⊗Hom(N,B•)j → Hom(M ⊗N,Ai ⊗ Bj)

is given by the canonical map f ⊗ g → f ⊗ g. Then ιij is a canonical isomorphism,

see Proposition 4.3.

By Lemma 4.4, when ι is restricted to FM (A•) ⊗
T FN (B•), then it induces an

injective morphism

ι′ : FM (A•)⊗
T FN (B•) → FM⊗N (A• ⊗

T B•).
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Similarly, we obtain two morphisms of complexes

u : Hom(A•[−1],M)⊗T Hom(B•[−1], N) → Hom(A•[−1]⊗T B•[−1],M ⊗N),

u′ : GnM (A•[−1])⊗T GmN (B•[−1]) → Gn+m+1
M⊗N (A•[−1]⊗T B•[−1]).

Proposition 4.5. Let k be a perfect field. Under the above notations, the mor-

phisms ι, u are isomorphisms of complexes and ι′, u′ are injective morphisms of

complexes.

P r o o f. It follows easily from Proposition 4.3. �

We next consider the case when ι′, u′ are quasi-isomorphisms.

Proposition 4.6. Let k be a perfect field and Λ, Γ finite dimensional algebras

over k. Let B, E be full subcategories of modΛ, modΓ, respectively. Let ϕ ∈

Mor(Cnr (B)), ψ ∈ Mor(Cmr (E)), where ϕ : A0
• → A1

•, ψ : B0
• → B1

• such that Cone(ϕ)

is an n-almost split sequence in B and Cone(ψ) is an m-almost split sequence in E .

For any M ∈ B, N ∈ E , we have:

(1) If ι′ : FM (A1
•) ⊗

T FN (B1
•) → FM⊗N (A1

• ⊗T B1
•) is a quasi-isomorphism, then

F̃M⊗N (ϕ ⊗T ψ) is also a quasi-isomorphism.

(2) If u′ : GnM (A0
•[−1])⊗T GmN (B0

• [−1]) → Gn+m+1
M⊗N (A0

•[−1]⊗T B0
• [−1]) is a quasi-

isomorphism, then G̃n+mM⊗N (ϕ⊗T ψ) is also a quasi-isomorphism.

P r o o f. We only prove (1); the proof of (2) is similar. The following diagram is

commutative:

(4.2) Hom(M,A0
•)⊗

T Hom(N,B0
•)

ι

≃
//

≃F̃M (ϕ)⊗T F̃N (ψ)

��

Hom(M ⊗N,A0
• ⊗

T B0
•)

F̃M⊗N (ϕ⊗Tψ)

��
FM (A1

•)⊗
T FN (B1

•)
ι′ // FM⊗N (A1

• ⊗
T B1

•),

where ≃ is the quasi-isomorphism. The maps F̃M (ϕ) and F̃N (ψ) are quasi-isomor-

phisms by Proposition 3.15, and then F̃M (ϕ)⊗T F̃N (ϕ) is also a quasi-isomorphism

by Lemma 4.2. Assume that ι′ : FM (A1
•)⊗

T FN (B1
•) → FM⊗N (A1

•⊗
T B1

•) is a quasi-

isomorphism, then ι′(F̃M (ϕ) ⊗T F̃N (ϕ)) is a quasi-isomorphism. This implies that

(F̃M⊗N (ϕ ⊗T ψ))ι is a quasi-isomorphism by the commutative diagram (4.2), and

then F̃M⊗N (ϕ⊗T ψ) is a quasi-isomorphism because ι is a quasi-isomorphism. �

The following proposition is needed in the proof of the main theorem.

Proposition 4.7. Under the above notations, we have:
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(1) The cokernel of ι′ is the complex Coker ι′ ∼= D1
• ⊕D2

•, where

D1
• = FM (A•)⊗k S(N,B0), D2

• = S(M,A0)⊗k FN (B•),

D1
i = FM (A•)i ⊗k S(N,B0), dD

1

i = d
FM (A•)
i ⊗ idS(N,B0),

D2
i = S(M,A0)⊗k FN (B•)i, dD

2

i = idS(M,A0) ⊗ d
FN (B•)
i .

(2) The cokernel of u′ is the complex Cokeru′ ∼= E1
• ⊕ E2

• , where

E1
• = GnM (A•[−1])⊗k S(Bm, N), E2

• = S(An,M)⊗k G
m
N (B•[−1])[n+ 1],

E1
i = GnM (A•[−1])i+m+1 ⊗k S(Bm, N), dE

1

i = d
Gn

M
(A•[−1])

i+m+1 ⊗ idS(Bm,N),

E2
i = S(An,M)⊗k G

m
N (B•[−1])i+n+1, dE

2

i = idS(An,M) ⊗ (−1)n+1d
Gm

N
(B•[−1])

i+n+1 .

P r o o f. The proof of (1) is similar to the proof in [18], Section 3.3, pages 660–662.

(2) follows from the duality of (1). �

Proposition 4.8. Let k be a perfect field and Λ, Γ finite dimensional algebras

over k. Let ϕ ∈ Morr(C
n
r (modΛ)) and ψ ∈ Morr(C

m
r (modΓ)) such that Cone(ϕ)

and Cone(ψ) are acyclic complexes. Then Cone(ϕ ⊗T ψ) ∈ Cn+m+1
r (mod(Λ ⊗ Γ)) is

acyclic.

P r o o f. Let ϕ : A0
• → A1

•, ψ : B0
• → B1

• such that Cone(ϕ) and Cone(ψ) are

acyclic, then ϕ and ψ are quasi-isomorphisms by Lemma 2.1, this implies that

Cone(ϕ ⊗T ψ) is an acyclic complex by Lemma 4.2 and Lemma 2.1. Observing

that ϕ ⊗T ψ ∈ Mor(Cn+m(mod(Λ ⊗ Γ))), by Lemma 4.4, we know that d
A0

•⊗B
0
•

i ∈

rad((A0
• ⊗

T B0
•)i, (A

0
• ⊗

T B0
•)i−1), d

A1
•⊗B

1
•

i ∈ rad((A1
• ⊗

T B1
•)i, (A

1
• ⊗

T B1
•)i−1), and

(ϕ⊗T ψ)i ∈ rad((A0
• ⊗

T B0
•)i, (A

1
• ⊗

T B1
•)i) for every i ∈ Z. Hence, Cone(ϕ⊗T ψ) ∈

Cn+m+1
r (mod(Λ⊗ Γ)). �

Let Λ be an algebra satisfying the (B, n) condition with B =
b1⊕
i=0

Bi, and Γ an

algebra satisfying the (E ,m) condition with E =
b2⊕
i=0

Ei, here b1, b2 ∈ Z>0 ∪ {∞}. Fix

integers 0 6 i0 < b1, 0 6 j0 < b2. Let l1 = max{0, i0 − j0} and l2 = min{b1, b2 +

i0 − j0}. We construct the subcategory (B ⊗ E)(i0,j0) =
l2⊕
i=l1

addHi ⊆ mod(Λ ⊗k Γ),

where for l1 6 i 6 l2,

Hi = {M ⊗k N : M ∈ indBi, N ∈ ind Ei−i0+j0}.
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4.2. Proof of Theorem 1.1. We may suppose the morphisms ϕ : A0
• → A1

•

and ψ : B0
• → B1

• . Since Cone(ϕ) is starting in slice i0 and ending in slice i0 + 1,

by Theorem 3.10, we have A0
• ∈ Cnr (Bi0) and A

1
• ∈ Cnr (Bi0+1), similarly, B

0
• ∈

Cmr (Ej0) and B
1
• ∈ Cmr (Ej0+1). Then A

0
• ⊗T B0

• ∈ Cn+mr (addHi0) and A
1
• ⊗T B1

• ∈

Cn+mr (addHi0+1), and hence

Cone(ϕ⊗T ψ) ∈ C

(i0+1⊕

i=i0

addHi

)
⊆ C((B ⊗ E)(i0,j0)).

By Proposition 4.8, Cone(ϕ⊗T ψ) ∈ Cn+m+1
r ((B ⊗ E)(i0,j0)) is acyclic.

Notice that every X ∈ ind(B ⊗ E)(i0,j0) is a direct summand of an object Y ′ ∈
l2⋃
i=l1

Hi. If F̃Y (ϕ ⊗T ψ) and G̃n+mY (ϕ ⊗T ψ) are quasi-isomorphisms for every object

Y ∈
l2⋃
i=l1

Hi, by Lemma 3.16, F̃X(ϕ⊗T ψ) and G̃n+mX (ϕ⊗T ψ) are quasi-isomorphisms

for every X ∈ ind(B⊗E)(i0,j0), this implies that Cone(ϕ⊗T ψ) is an (n+m)-almost

split sequence in (B ⊗ E)(i0,j0) by Proposition 3.15.

Fix an object M ⊗k N ∈
l2⋃
i=l1

Hi, there exists i
′ with l1 6 i′ 6 l2 such that

M ∈ indBi′ and N ∈ ind Ei′−i0+j0 . Now, it suffices to show that F̃M⊗N (ϕ⊗T ψ)

and G̃n+mM⊗N (ϕ ⊗T ψ) are quasi-isomorphisms. We only prove the second quasi-

isomorphism; the proof of the first is similar. Consider the morphism

u′ : GnM (A0
•[−1])⊗T GmN (B0

• [−1]) → Gn+m+1
M⊗N (A0

•[−1]⊗T B0
• [−1]).

By Proposition 4.7 (2), we have

Cokeru′ ∼= (GnM (A0
•[−1])⊗k S(B

0
m, N))⊕ (S(A0

n,M)⊗k G
m
N (B0

• [−1])[n+ 1]);

here GnM (A0
•[−1]) ⊗k S(B

0
m, N) is acyclic. Indeed, if S(B0

m, N) = 0, the statement

is trivial. If S(B0
m, N) 6= 0, then N is a direct summand of B0

m, it follows from

B0
m ∈ Ej0 that N ∈ Ej0 and M ∈ Bi0 . By A

1
• ∈ Cnr (Bi0+1) and Definition 3.1 (2),

we have Hom(A1
•[−1],M) = 0. Since Cone(ϕ) is an n-almost split sequence in B,

by Proposition 3.15, we deduce that G̃nM (ϕ) is a quasi-isomorphism, and then

GnM (A0
•[−1]) ∼= Cone(G̃nM (ϕ)) is acyclic by Lemma 2.1. Applying the exact tensor

functor −⊗k S(B
0
m, N) over k, we get an acyclic complex GnM (A0

•[−1])⊗kS(B
0
m, N).

By symmetry, we obtain that S(A0
n,M)⊗k G

m
N (B0

• [−1])[n+1] is acyclic. Therefore,

Cokeru′ is acyclic, this implies that the injective u′ : GnM (A0
•[−1])⊗T GmN (B0

• [−1]) →

Gn+m+1
M⊗N (A0

•[−1]⊗T B0
• [−1]) is a quasi-isomorphism. Consequently, by Proposi-

tion 4.6 (2), the morphism G̃n+mM⊗N (ϕ⊗T ψ) is a quasi-isomorphism. �
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Remark 4.9. Let Λ, Γ be respectively n-,m-representation finite l-homogeneous

algebras over perfect field k, MΛ and MΓ are, respectively, n-, m-cluster tilt-

ing modules of Λ, Γ. Herschend and Iyama showed in [10] that Λ ⊗k Γ is an

(n + m)-representation finite algebra admitting an (n + m)-cluster tilting module

MΛ⊗kΓ =
l−1⊕
i=0

(τ−in Λ⊗kτ
−i
m Γ). Then we obtain addMΛ⊗kΓ =

l−1⊕
i=0

add(τ−in Λ⊗kτ
−i
m Γ) =

(addMΛ, addMΓ)
(i0,i0) for any i0 with 0 6 i0 6 l − 1. Hence, the main Theorem 1.1

generalizes [18], Theorem 1.1. Similar constructions hold for higher complete alge-

bras [19]. Theorem 1.1 states that we do not have to care about l-homogeneity and

whether the respectively n-, m-almost split sequences start in common slice.

For n-representation infinite algebras [11], by Theorem 1.1, we have the following

corollary.

Corollary 4.10. Let k be a perfect field. Let Λ, Γ be, respectively, n-, m-

representation infinite algebras. Let ϕ ∈ Morr(C
n
r (PΛ)), ψ ∈ Morr(C

m
r (PΓ)) such

that Cone(ϕ) and Cone(ψ) are respectively n-, m-almost split sequences in PΛ

and PΓ starting in common slice i0 > 0. Then Cone(ϕ⊗T ψ) is an (n+m)-almost

split sequence in PΛ⊗Γ.

If M1,M2 ∈ modΛ and N1, N2 ∈ modΓ, by Lemma 4.10 of [19], there is a func-

torial isomorphism

ExtiΛ⊗Γ(M1 ⊗N1,M2 ⊗N2) ∼=
⊕

p+q=i

ExtpΛ(M1,M2)⊗ ExtqΓ(N1, N2).

This shows that M1 ⊗ N1 is projective if and only if M1, N1 are projective;

M2 ⊗N2 is injective if and only if M2, N2 are injective. If moreover k is an al-

gebraically closed field, then M ∈ ind(modΛ) and N ∈ ind(modΓ) if and only

if M ⊗ N ∈ ind(modΛ ⊗ Γ). Indeed, M ⊗ N being indecomposable implies that

EndΛ(M) ⊗ EndΓ(N) = EndΛ⊗Γ(M ⊗ N) is a local algebra, it is follows from [17],

Theorem 3 that EndΛ(M) and EndΓ(N) are local. Hence, M and N are inde-

composable. On the contrary, assume M ∈ ind(modΛ), N ∈ ind(modΓ), then

(EndΛ(M)/rad(EndΛ(M))) ⊗ (EndΓ(N)/rad(EndΓ(N))) ∼= k ⊗ k ∼= k is a local

algebra. By [17], Theorem 4 again, EndΛ(M) ⊗ EndΓ(N) ∼= EndΛ⊗Γ(M ⊗ N) is

a local algebra, hence M ⊗N ∈ ind(modΛ⊗ Γ).

We have the following result for tensor product of algebras.

Corollary 4.11. Let k be a perfect field. Let Λ be an algebra satisfying the (B, n)

condition with B =
b1⊕
i=0

Bi, and Γ an algebra satisfying the (E ,m) condition with

E =
b2⊕
i=0

Ei. Assume that any n-almost split sequences in B starts in slice i, ends in
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slice i + 1 for some i > 0, and any m-almost split sequences in E starts in slice j,

ends in slice j + 1 for some j > 0. Fix integer 0 6 i0 < b1, 0 6 j0 < b2.

(1) For any indecomposable objects M ∈ BI ∩ Bs and N ∈ EI ∩ Es−i0+j0 for an

integer s > 0, there exists an (n + m)-almost split sequence in (B ⊗ E)(i0,j0)

starting at M ⊗N .

(2) For any indecomposable objects M ∈ BP ∩ Bs and N ∈ EP ∩ Es−i0+j0 for an

integer s > 0, there exists an (n + m)-almost split sequence in (B ⊗ E)(i0,j0)

ending at M ⊗N .

(3) If field k is algebraically closed, then (B ⊗ E)(i0,j0) has (n + m)-almost split

sequences for the following subcategories of (B ⊗ E)(i0,j0):

(B ⊗ E)
(i0,j0)
I = add{M ⊗N ∈ (B ⊗ E)(i0,j0) : M ∈ BI ∩ Bs

and N ∈ EI ∩ Es−i0+j0 for some s},

(B ⊗ E)
(i0,j0)
P = add{M ⊗N ∈ (B ⊗ E)(i0,j0) : M ∈ BP ∩ Bs

and N ∈ EP ∩ Es−i0+j0 for some s}.

(4) If field k is algebraically closed, then Λ ⊗ Γ satisfies the ((B ⊗ E)(i0,j0), n+m)

condition.

P r o o f. (1) Suppose indecomposable objectsM ∈ BI ∩Bs and N ∈ EI ∩Es−i0+j0
for an integer s > 0, then there exists n-almost split sequence C1

• in B starting at

object M and m-almost split sequence C2
• in E starting at object N . It is clear

from Theorem 3.10 that there exists ϕ ∈ Morr(C
n
r (B)) and ψ ∈ Morr(C

m
r (E)) such

C1
• = Cone(ϕ) and C2

• = Cone(ψ). By Theorem 1.1, Cone(ϕ ⊗T ψ) is an (n +m)-

almost split sequence in (B⊗E)(s,s−i0+j0) = (B⊗E)(i0,j0) starting at moduleM ⊗N .

(2) is dual to (1), and (3) easily follows from (1) and (2).

(4) Λ ⊗ Γ is a finite dimension algebra since dimk(Λ ⊗k Γ) = dimk(Λ) × dimk(Γ)

is finite. By (3) and the construction of (B ⊗ E)(i0,j0), it is enough to show that

HomΛ⊗Γ(X,Y ) = 0 for all l2 > s > t > l1 and every X ∈ Hs, Y ∈ Ht.

For s > t, suppose M ⊗ N ∈ Hs and M
′ ⊗ N ′ ∈ Ht, then M ∈ Bs, M

′ ∈ Et and

N ∈ Bs−i0+j0 , N
′ ∈ Et−i0+j0 . It follows from Proposition 4.3 and Definition 3.1 (2)

that

HomΛ⊗Γ(M ⊗N,M ′ ⊗N ′) ∼= HomΛ(M,M ′)⊗HomΓ(N,N
′) = 0.

Therefore, HomΛ⊗Γ(M ⊗N,M ′ ⊗N ′) = 0, the proof is complete. �

The tensor product algebra Λ⊗Γ in Corollary 4.11 behaves well, particularly, un-

der certain conditions, tensor product of algebras preserves n-representation finite-

ness [10], n-completeness [19] and n-representation infiniteness [11].
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5. Example

In this section, we give an example for nonhomogeneous, 1-representation finite

algebra, and by Theorem 1.1, construct a 2-almost split sequence via (1-)almost split

sequences starting in different slice.

Let Λ = kQ be the path algebra defined by the quiver

Q : 1
•

// 2
•

3
•

oo 4
•

oo 5
•

oo

Λ is a nonhomogeneous, 1-representation finite algebra, see [10]. We consider the

algebra Γ = Λ⊗k Λ, which is not 2-representation finite since Λ is nonhomogeneous.

For 1 6 i 6 5, let Pi and Ii be the indecomposable projective, injective Λ-modules

corresponding vertex i, respectively. The 15 nonisomorphic indecomposable modules

in modΛ given by the following dimension vectors:

P1 : (11000), M11 : (00100), M21 : (00010),

P2 : (01000), M12 : (11100), M22 : (00110),

P3 : (01100), M13 : (11110), M23 = I3 : (00111),

P4 : (01110), M14 = I2 : (11111), M31 = I5 : (00001),

P5 : (01111), M15 = I1 : (10000), M32 = I4 : (00011).

The Auslander-Reiten quiver of Λ is given as

P5

%%❏
❏❏

❏
// M15

P4

%%❏
❏❏

❏

99ttttt
// M14

%%❏❏
❏❏

99tttt

P3

$$❍
❍❍

❍

::✈✈✈✈
// M13

%%❏❏
❏❏

99tttt
// M23

%%❏❏
❏❏

P2

""❊
❊❊

<<②②②
// M12

%%❏❏
❏❏

99tttt
// M22

%%❏❏
❏❏

99tttt
// M32

%%❏❏
❏❏

P1

;;✈✈✈✈
// M11

99tttt
// M21

99tttt
// M31,

where the dashed arrows show the Auslander-Reiten translation τ−1 .

Notice that Λ satisfies the (B, 1) condition with B = modΛ =
3⊕
i=0

Bi where

B0 = add{Pi : 1 6 i 6 5}, B1 = add{M1i : 1 6 i 6 5},

B2 = add{M2i : 1 6 i 6 3}, B3 = add{M31,M32}.
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There are the following two (1-)almost split sequences in B:

A• : 0 → P3

[ a
b

]

−→ P4 ⊕M12
[c,d]
−→M13 → 0,

B• : 0 →M13

[ e
f

]

−→M14 ⊕M22
[g,h]
−→ M23 → 0.

We see that A• starts in slice 0, ends in slice 1 and B• starts in slice 1, ends in slice 2.

By Theorem 3.10, A• = Cone(ϕ) and B• = Cone(ψ), where

ϕ :

. . . // 0 //

��

P3
−a

//

b
��

P4
//

c
��

0 //

��

. . .

. . . // 0 // M12
d // M13

// 0 // . . .

ψ :

. . . // 0 //

��

M13
−e

//

f
��

M14
//

g
��

0 //

��

. . .

. . . // 0 // M22
h // M23

// 0 // . . .

Then tensor product ϕ⊗T ψ is the following morphism:

. . . // 0 //

��

P3 ⊗M13

[
−(1⊗e)
−(a⊗1)

]

//

b⊗f

��

(P3 ⊗M14)⊕ (P4 ⊗M13)
[
b⊗g 0
0 c⊗f

]

��
. . . // 0 // M12 ⊗M22

[
1⊗h

d⊗1

]

// (M12 ⊗M23)⊕ (M13 ⊗M22)

[−(a⊗1),−(1⊗e)]
// P4 ⊗M14

//

c⊗g

��

0 //

��

. . .

[d⊗1,1⊗h]
// M13 ⊗M23

// 0 // . . .

We construct the subcategory (B ⊗ B)(0,1) =
2⊕
i=0

addHi, where H0 = {Pi ⊗M1j :

1 6 i, j 6 5}, H1 = {M1i ⊗M2j : 1 6 i 6 5, 1 6 j 6 3} and H2 = {M2i ⊗M3j :

k1 6 i 6 3, 1 6 j 6 2}. By Theorem 1.1, we obtain that the mapping cone

Cone(ϕ ⊗T ψ)

0 // P3 ⊗M13



1⊗e

a⊗1

b⊗f




//

P3 ⊗M14

⊕

P4 ⊗M13

⊕

M12 ⊗M22

[
a⊗1 1⊗e 0

b⊗g 0 1⊗h
0 c⊗f d⊗1

]

//

P4 ⊗M14

⊕

M12 ⊗M23

⊕

M13 ⊗M22

[c⊗g,d⊗1,1⊗h]
// M13 ⊗M23

// 0

is a 2-almost split sequence in (B ⊗ B)(0,1) starting in slice 0, ending in slice 1. The

algebra Γ satisfies the ((B ⊗ B)(0,1), 2) condition by Corollary 4.11.
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