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Abstract. Standard algorithms for numerical integration are defined for simple integrals.
Formulas for computation of repeated integrals and derivatives for equidistant domain par-
tition based on modified Newton-Cotes formulas are derived. We compare usage of the
new formulas with the classical quadrature formulas and discuss possible application of the
results to solving higher order differential equations.
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1. Introduction

The initial motivation for derivation of the formulas discussed in this paper origi-

nates from technical practice. One of the classic problems in construction engineering

is to determine the effect of various factors (weather, load, etc.) on the structure

deformations. The basic theory used to model such deformations is Euler-Bernoulli

beam theory, see e.g., [2], [6], [7].

Consider a tall bridge pillar made of reinforced concrete, see Figure 1 (a). The

pillar is affected by vertical forces N (weight of the bridge, traffic) and horizontal

forces F (wind), which generate bending moment M(x). Let L be the height of the

pillar. Denote by W (x) for x ∈ [0, L] the deflection of the pillar at x caused by the

forces. The initial deflection caused by the horizontal forces which generate linear
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bending moment can be obtained from the classic Euler-Bernoulli equation

d2

dx2

(

EI(x)
d2W (x)

dx2

)

= q(x).

Here, EI(x) is the flexural rigidity of the structure and q(x) is the distributed load.
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Figure 1. Bridge pillar.

The vertical forces do not affect the initial deflection, but this is no more true after

the deformation occurs, see Figure 1 (b). An additional bending moment is generated

which creates an additional deflection. This generates another moment and so on,

until the equilibrium is reached. The deflection can be calculated iteratively using

the formula

Wk+1(x) =

∫ x

0

∫ x1

0

M(x2) + F (Wk(L)−Wk(x2))

EI(M,N,Wk, x2)
dx2 dx1 for k = 0, 1, . . . ,

where W0 is the initial deflection, see [8] for more details.

To be able to perform the above iterations, we need an effective way to evaluate the

repeated integral. The expression under the integral is a complicated function and the

integration can be accomplished only numerically using the values at discrete points.

We now introduce the concept more formally. Let a 6 b be real numbers, n > 2

be an integer and

f : [min{0, a},max{0, b}] → R

be a continuous function. We use the notation

(1.1) f (−n)
α (β) :=

∫ β

α

∫ x1

α

. . .

∫ xn−1

α

f(xn) dxn . . . dx2 dx1
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for the nth repeated integral of f based at α. Consider the repeated integral

D
(−n)
[a,b] (f) :=

∫ b

a

∫ x1

0

∫ x2

0

. . .

∫ xn−1

0

f(xn) dxn . . . dx3 dx2 dx1.

In [9], the formula

(1.2) D
(−n)
[a,b] (f) =

n−1
∑

i=1

(b − a)i

i!
f
(i−n)
0 (a) + f (−n)

a (b)

is derived. Using this result, one can rewrite any repeated integral as a sum of

repeated integrals with a fixed lower boundary in each of them. By the Cauchy

formula for repeated integration (see [4], page 193) we have

(1.3) f (−n)
α (β) =

1

(n− 1)!

∫ β

α

(β − t)n−1f(t) dt.

With the help of this formula, one can rewrite the repeated integrals in (1.2) in terms

of simple integrals. In [9], this approach is applied to obtain the weights for the

cubature of Gaussian type. In the present work, we use it to derive the formulas for

the computation of repeated integrals and derivatives in the Newton-Cotes fashion.

2. Results obtained by the Cauchy formula for repeated integration

By rewriting the integral in (1.3) using the Newton-Cotes formula (see, e.g., [3],

Section 4.3) with k subintervals of length h = (β − α)/k and points tj = α+ jh for

j = 0, 1, . . . , k, we obtain

(2.1)

∫ β

α

(β − t)n−1f(t) dt = Ah

k
∑

j=0

wj(β − tj)
n−1f(tj) +R

= Ah
k

∑

j=0

wj(h(k − j))n−1f(tj) +R

= Ahn
k

∑

j=0

wj(k − j)n−1f(tj) +R.

Here, wj and A are standard Newton-Cotes weights and coefficient, and R is the

error term. For instance, when we use the classical Simpson’s rule, we have k = 2,

A = 1
3 , (w0, w1, w2) = (1, 4, 1) and R = − 1

90h
5f (4)(ξ) for some ξ ∈ (α, β).

We denote by

(2.2) wn,j = wj(k − j)n−1, An =
A

(n− 1)!
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the new weights and coefficient for the nth repeated integral. Hence, we have

(2.3) f (−n)
α (β) = hnAn

k
∑

j=0

wn,jf(tj) +R.

When we use (2.1) to compute the nth repeated integral, we integrate the func-

tion (β − t)n−1f(t) instead of f(t). This usually leads to a loss of precision, since

Newton-Cotes formulas produce exact results for polynomials up to a certain degree

and the term (β − t)n−1 rises the degree of the integrand. On the other hand, the

benefit of this approach is that in (2.2) the value of wn,j for j = k is zero. Therefore,

we do not need to know the value of f in β to compute (2.3). This is very useful

when applying the result to stepwise solving of higher order differential equations –

we can avoid using open Newton-Cotes formulas.

The weights and coefficients derived by (2.2) for some of the Newton-Cotes schemes

are presented in Tables 1 and 2 in the appendix.

3. Results obtained by integration of Lagrange

interpolation polynomial

The second method to calculate (1.1) is derived by replacing f with the Lagrange

interpolation polynomial. We present here the details of the derivation with four

interpolation nodes, the same technique can be applied to any number of nodes.

Let the notation fj be a shorthand for f(tj) with h = 1
3 (β−α) and tj = α+ jh for

j = 0, 1, 2, 3. Let L be the Lagrange interpolating polynomial satisfying L(tj) = fj ,

i.e.,

L(x) = f0l0(x) + f1l1(x) + f2l2(x) + f3l3(x),

where {l0, l1, l2, l3} is the standard Lagrange basis. By integrating,

L(−1)
α (β) =

∫ t3

t0

L(x) dx = h

∫ 3

0

L(t0 + uh) du

= h

3
∑

j=0

fj

∫ 3

0

lj(t0 + uh) du =
3

8
h(f0 + 3f1 + 3f2 + f3),

which is classical Simpson’s 3
8 rule, see, e.g., [1], equation 25.4.13.
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Similarly, we have

(3.1) L(−2)
α (β) =

∫ t3

t0

∫ x1

t0

L(x2) dx2 dx1 = h2

∫ 3

0

∫ u1

0

L(t0 + u2h) du2 du1

= h2
3

∑

j=0

fj

∫ 3

0

∫ u1

0

lj(t0 + u2h) du2 du1

=
3

40
h2(13f0 + 36f1 + 9f2 + 2f3).

The last expression displays the weights w2,j and the coefficient A2 for the second re-

peated integral. We can obtain wn,j and An for other values of n in the same fashion.

These values (except for closed formulas for n = 2 with an odd number of nodes)

are different from the values derived by the Cauchy formula in the previous sec-

tion. When using them, we do not lose precision when n increases – the method

produces exact results for polynomials up to the degree equal to the number of

subintervals, regardless of the value of n > 2. On the other hand, the weights

may be negative, which affects the stability, and they are not zero at the end

of the interval.

We can generalize the previous concept and notation by using it also for negative

values of n, thus deriving the formulas for calculation of derivatives of f . The

derivative of f of order n can be viewed as the integral of the derivative of f of

order n + 1. When we replace f with the Lagrange interpolation polynomial, we

need to select the degree of the polynomial with respect to the order of derivative.

For the second derivative with four interpolation nodes, using the same notation as

above, we obtain

(3.2)

∫ t3

t0

d2

dx2
L(x) dx = h

∫ 3

0

d2

h2 du2
L(t0 + uh) du

=
1

h

3
∑

j=0

fj

∫ 3

0

d2

du2
lj(t0 + uh) du

=
3

2h
(f0 − f1 − f2 + f3).

Denote by w1−n,j and A1−n the derived weights and coefficient, respectively, where n

is the order of the derivative. Hence, we have w−1,0 = 1, w−1,1 = −1, w−1,2 = −1,

w−1,3 = 1 and A−1 = 3
2 .

The method used in this section may be applied for any number of nodes and

works both for open and closed formulas. The weights and coefficients derived by

this technique (both for repeated integrals and derivatives) are presented in Table 3

in the appendix.
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4. Comparison with results obtained by repeated simple integration

Let us consider the situation as at the beginning of Section 1, where we need to

evaluate (1.1) for some function f , integer n > 2 and endpoints α, β, with the values

of f being known only at discrete equidistant points tj ∈ [α, β] for j = 0, . . . , k.

Without the derived formulas and weights, we are left with the classical quadrature

formulas for simple integrals applied repeatedly. During this process, when calculat-

ing the inner sub-integrals with bounds [α, tj ], only a portion of equidistant points

lies between the bounds. Therefore, we need to use quadrature formulas with lower

number of nodes, which leads to the loss of precision.

The plots on Figure 2 show the comparison of the errors obtained when using our

method versus using the classical Newton-Cotes formulas for simple integrals. The

calculations were performed for functions cosx and 1/(1+ x2) with endpoints α = 0

and β = 1.
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(a) f(x) = cosx, n=2 (b) f(x) = cosx, n=3

(c) f(x) = 1/(1 + x2), n=2 (d) f(x) = 1/(1 + x2), n=3

Figure 2. Integration error; dash-and-dotted—simple integrals, dashed—method from Sec-
tion 2, solid—method from Section 3.
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5. Application of the results to the solution

of differential equations

The derived formulas can be used as a tool for solving higher-order differential

equations. Consider an unknown function f with known values of its derivatives and

integrals in the initial point t0 up to some orders. More formally, let f
(i) denote

the ith derivative of f for i > 0 and the repeated integral (antiderivative) of order |i|

for i < 0, respectively. Suppose that the values of

(5.1) f (−n)(t0), f
(−n+1)(t0), . . . , f

(m−1)(t0), f
(m)(t0)

are all known. For a given step h, let tj = t0+jh for j = 0, 1, . . . , k. We can estimate

the values of f(tj) from (5.1) using Taylor series approximations or other methods.

Then we can use the weights and coefficients derived in the previous sections to

calculate the values of

(5.2) f (−n)(tk), f
(−n+1)(tk), . . . , f

(m−1)(tk), f
(m)(tk).

The process of obtaining (5.2) from (5.1) can be replicated variously: The role

of f = f (0) in the list f (−n), f (−n+1), . . . , f (m−1), f (m) is not special. We can select

any function from this list as a basis function and consider the other functions as its

derivatives and antiderivatives. This variability offers the opportunity to choose an

optimal strategy based on the specific properties of the equation we are dealing with.

In technical practice, we often deal with the case, where both the values of (5.1)

and (5.2) are known and our goal is to find f(tj) for j = 1, 2, . . . , k−1. It is a special

case of boundary value problem with known values playing the role of boundary con-

ditions. The approach described above can be inverted. Since in our formulas (5.2)

they depend linearly on f(tj), we can gain the information about f(tj) by solv-

ing a simple linear system. In Appendix C, we provide an example demonstrating

this procedure.

6. Conclusions

In this paper, we present a new method for computation of repeated integrals

and derivatives from known values of the function in equidistant points. Based on

this, we propose a novel technique for dealing with some kinds of boundary value

problems. It can be used to extract information about the unknown function in

a very simple manner, which makes it an alternative approach to other methods, see

Appendix C for demonstration.
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The paper illustrates how to derive the weights for a small number of nodes from

classical Newton-Cotes formulas. It is well-known that polynomial interpolation at

equidistant nodes may introduce high interpolation error. Therefore, using the same

approach with a higher number of nodes may not be optimal. In such cases, one may

consider to modify a different kind of formulas in a similar way, for example stable

Newton-Cotes formulas introduced in [5].

Appendix A. Derived weights and coefficients

Tables 1 and 2 contain the weights and coefficients derived by the technique de-

scribed in Section 2. Table 3 contains the weights and coefficients derived by the

technique described in Section 3. In all the tables, k is the number of subintervals

and m is the highest polynomial degree for which the formula produces exact results.

k n An wn,0 wn,1 wn,2 wn,3 wn,4 wn,5 wn,6 m

1 1/3 1 4 1 3

2
2 1/3 2 4 0 2

3 1/6 4 4 0 1

4 1/18 8 4 0 0

1 3/8 1 3 3 1 3

3
2 3/8 3 6 3 0 2

3 3/16 9 12 3 0 1

4 3/48 27 24 3 0 0

1 2/45 7 32 12 32 7 5

4
2 2/45 28 96 24 32 0 4

3 2/90 112 288 48 32 0 3

4 2/270 448 864 96 32 0 2

1 5/288 19 75 50 50 75 19 5

5
2 5/288 95 300 150 100 75 0 4

3 5/576 475 1200 450 200 75 0 3

4 5/1728 2375 4800 1350 400 75 0 2

1 1/140 41 216 27 272 27 216 41 7

6
2 1/140 246 1080 108 816 54 216 0 6

3 1/280 1476 5400 432 2448 108 216 0 5

4 1/840 8856 27000 1728 7344 216 216 0 4

Table 1. Weights and coefficients derived by the Cauchy theorem from closed Newton-Cotes
formulas.
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k n An wn,1 wn,2 wn,3 wn,4 wn,5 wn,6 wn,7 m

1 4/3 2 −1 2 3

4
2 4/3 6 −2 2 2

3 2/3 18 −4 2 1

4 2/9 54 −8 2 0

1 5/24 11 1 1 11 3

5
2 5/24 44 3 2 11 2

3 5/48 176 9 4 11 1

4 5/144 704 27 8 11 0

1 3/10 11 −14 26 −14 11 5

6
2 3/10 55 −56 78 −28 11 4

3 3/20 275 −224 234 −56 11 3

4 1/20 1375 −896 702 −112 11 2

1 7/1440 611 −453 562 562 −453 611 5

7
2 7/1440 3666 −2265 2248 1686 −906 611 4

3 7/2880 21996 −11325 8992 5058 −1812 611 3

4 7/8640 131976 −56625 35968 15174 −3624 611 2

1 8/945 460 −954 2196 −2459 2196 −954 460 7

8
2 8/945 3220 −5724 10980 −9836 6588 −1908 460 6

3 8/1890 22540 −34344 54900 −39344 19764 −3816 460 5

4 8/5670 157780 −206064 274500 −157376 59292 −7632 460 4

Table 2. Weights and coefficients derived by the Cauchy theorem from open Newton-Cotes
formulas.

The presented weights and coefficients can be used with the formula similar

to (2.3), that is,

f (−n)
α (β) ≈ hnAn

k
∑

j=0

wn,jf(tj) for n > 0

and
∫ β

α

d1−n

dx1−n
f(x) dx ≈ hnAn

k
∑

j=0

wn,jf(tj) for n < 0,

where h = (β − α)/k and tj = α+ jh for j = 0, 1, . . . , k.

Note that when we use the formula to calculate (1.2), we have to take into account

also the contribution of the terms f
(i−n)
0 (a), not only the single term f

(−n)
a (b).
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k n An wn,0 wn,1 wn,2 wn,3 wn,4 wn,5 wn,6 m

−1 2 1 −2 1 3

1 1/3 1 4 1 3

2 2 2/3 1 2 0 2

3 1/15 9 12 −1 2

4 2/45 8 8 −1 2

−2 3 −1 3 −3 1 4

−1 3/2 1 −1 −1 1 3

3
1 3/8 1 3 3 1 3

2 3/40 13 36 9 2 3

3 9/80 12 27 0 1 3

4 27/280 13 24 −3 1 3

−2 2 −1 2 0 −2 1 4

−1 1/3 7 −16 18 −16 7 5

4
1 2/45 7 32 12 32 7 5

2 8/45 7 24 6 8 0 4

3 8/315 93 272 12 48 −5 4

4 32/945 88 224 −24 32 −5 4

−2 5/12 −11 43 −74 74 −43 11 6

−1 5/12 5 −9 4 4 −9 5 5

5
1 5/288 19 75 50 50 75 19 5

2 25/2016 122 475 100 250 50 11 5

3 125/8064 233 815 10 310 −35 11 5

4 125/72576 3346 10525 −1400 3350 −850 149 5

−2 3/4 −5 16 −17 0 17 −16 5 6

−1 1/60 157 −432 675 −800 675 −432 157 7

6
1 1/140 41 216 27 272 27 216 41 7

2 3/70 41 180 18 136 9 36 0 6

3 9/350 198 792 −45 480 −90 72 −7 6

4 9/175 191 702 −135 380 −135 54 −7 6

Table 3. Weights and coefficients derived by the Lagrange polynomial integration
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Appendix B. Application of the formulas

We provide an example for illustrative purposes. Consider the function cosx and

the integrals

∫

π/2

0

∫ x1

0

cosx2 dx2 dx1 = 1,

∫

π/2

0

d2

dx2
cosxdx = −1,(B.1)

∫

π/2

0

∫ x1

0

∫ x2

0

cosx3 dx3 dx2 dx1 =
π

2
− 1,

∫

π/2

0

d3

dx3
cosxdx = 1

with known exact values. Using the notation (1.1), we can rewrite the expressions

in the first column of (B.1) as cos
(−2)
0 (12π) and cos

(−3)
0 (12π), respectively.

With four equidistant nodes t0 = 0, t1 = 1
6π, t2 = 1

3π and t3 = 1
2π, using (2.2) and

classical Simpson’s 3
8 rule with A = 3

8 and (w0, w1, w2, w3) = (1, 3, 3, 1), we have

w2,0 = 3, w2,1 = 6, w2,2 = 3, w2,3 = 0, A2 =
3

8
,

w3,0 = 9, w3,1 = 12, w3,2 = 3, w3,3 = 0, A3 =
3

16
.

By applying the formula (2.3) we obtain

cos
(−2)
0

(

π

2

)

≈
π
2

62
3

8

(

3 cos 0 + 6 cos
π

6
+ 3 cos

π

3

)

≈ 0.99685,

cos
(−3)
0

(

π

2

)

≈
π
3

63
3

16

(

9 cos 0 + 12 cos
π

6
+ 3 cos

π

3

)

≈ 0.56232

with relative errors 0.31543% and 1.48501%, respectively.

We may estimate the same values with the weights and coefficients

w2,0 = 13, w2,1 = 36, w2,2 = 9, w2,3 = 2, A2 =
3

40
,

w3,0 = 12, w3,1 = 27, w3,2 = 0, w3,3 = 1, A3 =
9

80
,

derived as in (3.1). We obtain

cos
(−2)
0

(

π

2

)

≈
π
2

62
3

40

(

13 cos 0 + 36 cos
π

6
+ 9 cos

π

3
+ 2 cos

π

2

)

≈ 1.00088,

cos
(−3)
0

(

π

2

)

≈
π
3

63
9

80

(

12 cos 0 + 27 cos
π

6
+ cos

π

2

)

≈ 0.5714

with relative errors 0.08789% and 0.10552%, respectively.
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The expressions in the second column of (B.1) can be estimated with the weights

and coefficients

w−1,0 = 1, w−1,1 = −1, w−1,2 = −1, w−1,3 = 1, A−1 =
3

2
,

w−2,0 = −3, w−2,1 = 9, w−2,2 = −9, w−2,3 = 3, A−2 = 1,

derived as in (3.2). We obtain

∫

π/2

0

d2

dx2
cosxdx ≈

6

π

3

2

(

cos 0− cos
π

6
− cos

π

3
+ cos

π

2

)

≈ −1.04859,

∫

π/2

0

d3

dx3
cosxdx ≈

62

π
2

(

−3 cos 0 + 9 cos
π

6
− 9 cos

π

3
+ 3 cos

π

2

)

≈ 1.07322

with relative errors 4.85855% and 7.32174%, respectively.

Appendix C. Boundary value problem example

Consider the situation described at the end of Section 5. Put t0 = 0, h = 1
10π and

tj = t0 + jh for j = 0, 1, . . . , 5. Let f be an unknown function with known values

f (−2)(t0) = −1, f (−1)(t0) = 0, f(t0) = 1, f (1)(t0) = 0, f (2)(t0) = −1,

f (−2)(t5) = 0, f (−1)(t5) = 1, f(t5) = 0, f (1)(t5) = −1, f (2)(t5) = 0.

Our goal is to estimate the values f(tj) for j = 1, 2, 3, 4. Typically, one would

solve this problem by setting g := f (−2) and estimating g with Hermite interpolation

polynomialH of degree 9. The desired values f(tj)would be approximated asH
′′(tj).

Since we are only interested in the values of f at the specific nodes tj , instead

of generating a (potentially unstable) high degree polynomial over the entire inter-

val [t0, t5], we can use the approach described in Section 5. Using the weights and co-

efficients from Table 3 (case k = 5), with the shorthand notation fj for f(tj), we have

∫ t5

t0

d3

dx3
f(x) dx ≈

5

12h2
(−11f0 + 43f1 − 74f2 + 74f3 − 43f4 + 11f5),

∫ t5

t0

d2

dx2
f(x) dx ≈

5

12h
(5f0 − 9f1 + 4f2 + 4f3 − 9f4 + 5f5),

f
(−1)
t0 (t5) ≈

5h

288
(19f0 + 75f1 + 50f2 + 50f3 + 75f4 + 19f5),

f
(−2)
t0 (t5) ≈

25h2

2016
(122f0 + 475f1 + 100f2 + 250f3 + 50f4 + 11f5).
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On the other hand, we can express the above as

∫ t5

t0

d3

dx3
f(x) dx = f (2)(t5)− f (2)(t0) = 1,

∫ t5

t0

d2

dx2
f(x) dx = f (1)(t5)− f (1)(t0) = −1,

f
(−1)
t0 (t5) = f (−1)(t5)− f (−1)(t0) = 1,

f
(−2)
t0 (t5) = f (−2)(t5)− f (−2)(t0)− f (−1)(t0)(t5 − t0) = 1.

This leads to the system









43 −74 74 −43

−9 4 4 −9

75 50 50 75

475 100 250 50

















f1
f2

f3
f4









≈

























12h2

5
+ 11f0 − 11f5

−
12h

5
− 5f0 − 5f5

288

5h
− 19f0 − 19f5

2016

25h2
− 122f0 − 11f5

























with the solution (f1, f2, f3, f4) ≈ (0.95108, 0.80899, 0.58777, 0.30904). Note that the

function f(x) = cosx meets the original boundary conditions and we have

(cos t1, cos t2, cos t3, cos t4) ≈ (0.95106, 0.80902, 0.58779, 0.30902),

so the error is around 2 · 10−5.
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