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Abstract. Let F/k be a finite abelian extension of number fields with k& imaginary
quadratic. Let Op be the ring of integers of F' and n > 2 a rational integer. We con-
struct a submodule in the higher odd-degree algebraic K-groups of Op using corresponding
Gross’s special elements. We show that this submodule is of finite index and prove that this
index can be computed using the higher “twisted” class number of F', which is the cardinal
of the finite algebraic K-group Ka,_2(OF).
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1. INTRODUCTION

Let F' be a number field. The Quillen higher algebraic K-groups of the ring of
integers Op of the field F' have the following property:

Theorem 1.1 (Borel). For integers n > 2, the groups Ka,_2(OF) are finite and
the groups Ko,—1(F) = Ka,—1(OF) are of finite type over Z,

r1 +ry ifn is odd,
rankz (Kop—1(F)) :=d, =

) if n is even,

where 71 and ro denote, respectively, the number of real and complex places of F'.

Let O} be the group of units of Op. Let (r(s) denote the Dedekind zeta function
associated with the number field F' and defined for (Re(s) > 1) by the following
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Euler product over all prime ideals of Op:

1
rls) ng 1= Npja(p)~
where Ny /g is the norm map relative to the extension F//Q. The function (r(s) has
an analytic continuation to the complex plane C as a meromorphic function with
a simple pole at s = 1. Moreover, it is known that the order of vanishing of the
function (p(s) at s = 0 is exactly the Z-rank of the group of units O} equal by
Dirichlet’s unit theorem to r1 + ro — 1.

At strictly negative integers 1 — n (n > 2), the zeta function (r(s) has the order
of vanishing equal to d,,, the Z-rank of the group Ks,_1(F): This shows that the
group Ko,_1(F) plays at negative integers the role the unit group O3 plays at
zero. This is the first observation of a far-reaching analogy between higher algebraic
K-theory and the classical arithmetic objects associated with F: In fact, for n > 2,
the odd degree K-groups Ko, _1(F') are the analogues of the unit group O} and the
even degree finite K-groups Ko, 2(Op) are the analogues of the class group Clgp
of F. To go even further with this analogy, Siegel and Klingen showed in [12], [20]
that when F' is totally real, (r(s) is a nonzero rational number at negative odd
integers. Borel in [1] later built on this result and showed that the special value
(r(1—n):= Sii{rin(s +n—1)"9(p(s) is always the product of a rational number g,

by the Borel regulator RZ(F) € R*. The Borel regulator is exactly the Beilinson
regulator described below in Subsection 2.1 multiplied by a fixed power of 2 (by [3],
this fixed power is exactly 297). This motivated Lichtenbaum to conjecture the exact
expression of the rational number ¢, in terms of higher algebraic K-groups: This is
the famous Lichtenbaum conjecture (see Subsection 4 for its statement). Another
remarkable example is the work of Kurihara (see [14]) to prove Vandiver’s conjecture
using K-theory. Kurihara showed that the conjecture is equivalent to the vanishing
of the groups K,,(Z) whenever n is a multiple of 4. Later, Soulé in [25] expanded
Kurihara’s result using similar methods, see for example the article of [9] for more
details on this work and the proof of Vandiver’s conjecture using K-theory.

The next step in this analogy framework concerns “special” units which are related
to the special values of L-functions and which play an important role in number
theory. These are for example cyclotomic units for abelian extensions of @ and
more generally Stark units, see [27]. Gross formulated in the 1970s a conjecture
which asserts that the leading term at any strictly negative integer of the Artin
L-function should be equal, within an undetermined algebraic factor, to the image
by the Beilinson regulator of a certain element in odd degree higher algebraic K-group
(Gross’s conjecture was published more recently in [10]). Gross’s conjecture is the
natural analogue in higher algebraic K-theory of Stark’s conjecture.

1334



In the absolute abelian case, Gross’s conjectural units are given by Beilinson’s ele-
ments (see [16]) and p-adically by the Beilinson-Deligne-Soulé elements, see e.g., [24].
An application of Beilinson’s units is the following equality which holds (see [13],
proof of Theorem 6.4) whenever F' is an abelian number field and p is an odd ratio-
nal prime (n > 2):

K2n—1 (F)/tors

(1) B, (F)

~p |K2n—2(OF)|,

where Ko, 1(F) jtors is the torsion-free quotient of Ko, 1(F) and B, (F) is a sub-
module of Koy, 1(F)/tors constructed from Beilinson’s units (~, refers to equality
of p-primary parts). This equation requires the Quillen-Lichtenbaum conjecture
(i.e., the local higher algebraic K-groups coincide with cohomological K-groups for
all odd p), which is now a theorem thanks to work of Rost, Weibel and Voevodsky,
see [29]. There are also refinements of this result, see e.g., [5], [6] among others.
Equation (1.1) is a natural analogue of the following classical equality of cardinals
proved by Sinnott, see [21], Section 4:

(1.2) |O%/Cr| = [Clp+]| - cr,

where CF is the subgroup of circular units (see [21], Section 4), F'* is the maximal real
subfield of F' and cp is a rational number whose definition does not involve |Clg+|.

In the nonabsolute abelian case, we can mention partial results obtained by Snaith,
see [22], and Nickel, see [18]. Nickel shows that the Equivariant Tamagawa Number
conjecture, or ETNc for short, (see e.g., [8] for an excellent survey on the ETNc)
implies the existence of certain elements constructed using leading terms of Artin
L-functions and higher algebraic K-theory which verify a refinement of the Coates-
Sinnott conjecture.

When the field F is “almost” abelian (i.e., F' is a finite abelian extension of an
imaginary quadratic field), the ETNc provides the exact definition of the special units
mentioned before, see Subsection 2.2 below for more details. The aim of the following
work is to generalize equation (1.1) to the case of abelian extensions of an imaginary
quadratic field (see Theorem 2.2 below) using these special units. For this purpose
we combine techniques of calculation of generalized indices (see Subsection 3) and
the Lichtenbaum conjecture.

1.1. Notations. We adopt the following notations throughout this paper:

> F'/k is a finite abelian extension of number fields with Galois group G := Gal(F/k).
From Subsection 2.2 onward we suppose that k is imaginary quadratic.

> If K is any number field, we let Ok denote its ring of integers and we fix an
algebraic closure K of K. We set Gk = Gal(K/K).
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> For any nonzero integer r we write Q/Z(r) for the group Q/Z regarded as
a Gp-module by setting g.x := Xcyc(g9) "« for all g € Gr and « € Q/Z, where Xcyc
is the cyclotomic character, see e.g., [17], Definition (7.3.6).

> If A is a finite group we let |A| denote the cardinal of A (i.e., the number of
elements of A).

2. SPECIAL “TWISTED” UNITS IN AN ODD-DEGREE ALGEBERIC K-THEORY OVER
AN IMAGINARY QUADRATIC NUMBER FIELD

2.1. The Beilinson regulator map. Let n > 2 be a rational integer. The
Beilinson regulator defined over the K-group of the field of complex numbers (see
e.g., [19] for more details) is a map

reg,: Ka,_1(C) — Hb(Spec((C)7 (2ni)"R) = (27:1)"71[}%,

where H7,() is the first group of Deligne’s cohomology and i := /—1.
We assign a number field F' with the map

Kopn_1(F) — H Ks,-1(C),
o: F—C

where the product is taken over all embeddings o € Hom(F,C) of F in the field of
complex numbers. We obtain a map

reg,,(F): Koy 1(F) = (Xr® (2r)" " 'R)T,

where Xp := Z[Hom(F,C)] (the free abelian group over the set Hom(F,C)) and
(XFr @ (21)" IR)T is the “plus part” of (X ® (2ni)" " R), i.e., the submodule that
is invariant under the action of complex conjugation.

Note that for all n > 2 we have Ks,,_1(Ofp) = Ka,,—1(F), see e.g., [23]. Thus, the
map reg,, (F') can be equivalently defined over Ka,_1(OF).

The image of reg,(F) is a complete lattice of the R-vector-space (X p@(27i)" " 1R)T.
The covolume R, (F') of this lattice is also called the Beilinson regulator. Borel
in [1] proved that the kernel of the Borel regulator is equal to Kop—1(F)tors,
where Kon—1(F)tors is the Z-torsion subgroup of Ka,_1(F). Since the Beilinson
and the Borel regulators agree up to a fixed power of 2 (see [3]), we also have

ker(reg, (F)) = Kan—1(F)tors-

Hence, if we write Ko, 1(F) /i for the torsion-free quotient of Ko, 1(F), then
reg,, (F) induces the injective map

reg, (F): Kan—1(F) jtors = (Xp ® (211)"'R) T,

which becomes an isomorphism if we tensor the left-hand side with R.
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2.2. Special “twisted” units. Let G = Hom(G,C*). Let Ram(F/k) denote
the set of finite places of k which ramify in F/k and S the set of Archimedean
places of k. If x € @, the Artin L-function attached to x is defined for {s € C:
Re(s) > 1} by

L(s,x) = [T  @—x(op)Np),
pERam(F/k)USoo
where 0, € G is the Frobenius of the (unramified) prime p. This function can be
analytically continued to a meromorphic function on C.

We can view L(s,x) as the L-function of a Hecke character (one dimensional
Artin representation) of the absolute Galois group Gj. The functional equation
relating L(s, x) and L(1—s, x ') shows that the order of vanishing r, (1—n) of L(s, x)
at 1 —n, n > 1, is given for any nontrivial character x by

(1 —n) = ra(k) + (the number of real places of k, where x has sign (—1)'"),

where the integer ro(k) denotes the number of complex places of k. Let L'(s,x)
denote the first derivative of the Artin L-function L(s, x).

In the rest of the paper we assume that k is an imaginary quadratic number field
and that n > 2.

Since k is imaginary quadratic, we get for all x € G

(2.1) L(1—n,x)=0 and L'(1-—n,x)#0.

This is also shown in [4], (3.4), where a formula for the first derivative of the
L-function L(s, x) is also provided at negative integers.

Let x € G. Let Z[x] be the ring generated over Z by the values of the character x.
Again since k is imaginary quadratic and taking into account the Galois action
on (Xp ® (2ni)""'R)™, we can see that

(Xrp® (2n)" 'R)" 2 R[G] (as R[G] modules).

Indeed, since k is imaginary quadratic, for each o € Hom(F,C) there is a unique
o € G such that either 0 = ¢ or o0 = 7 o g, where 7 stands for complex conjugation.
If we add to this the fact that (Xp ® (27i)" " 1R)T is generated (as an R-module)
by elements of the form o ® (27i)"~! + 70 ® (2ni)"~! (¢ € Hom(F,C) and “+”
depending on the parity of n), we can form the isomorphism above by sending each
such element to 51 (¢! and not & since the G-action on X is contragredient) and
extending it by scalars over R.
Thus, by extension of scalars, we can rewrite the Beilinson regulator as

regn(F): K2n71(F)/tors &z Z[X] — IR[G] Xz Z[X]
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Conjecture 2.1. Suppose that n > 2. There exists a unique element e(x) €
Kon1(F) jtors @7 Z[X] (a special “twisted” unit) such that

reg,, (F)(e(x)) = wa(F*" ) L'(1 —n,x"1)[Gley,

where:

(1) wn (F ) = |HO(Gal(@/F ), @/Z(n)),

(2) ey :=|G|™' 3 x (0)o is the idempotent associated with .
oeG

Note that the group H°(Gal(Q/F*r™)) Q/Z(n)) is a “twisted” analogue of the
group of roots of unity in F¥*)  and is known to be finite for all n # 0, see e.g., [17],
Proposition (7.3.10) (i). Further, we also know that for twists n > 2, the group
HY(Gal(@/F*rX)),Q/Z(n)) agrees with the finite torsion group Ko, 1 (F*T0))
modulo a power of 2, see [13], Lemma 2.2 (1).

The strongest evidence in support of Conjecture 2.1 is the following theorem:

Theorem 2.1. Conjecture 2.1 holds locally (i.e., its p-primary part holds) for all
rational primes p which are split in k and such that p 1 6.

Proof. The existence of (), and consequently the fact that
Wy (F*" )L (1 = n, x71)|Glex € RIG] ®7 Z[x],

is a consequence of the Equivariant Tamagawa Number conjecture. This is shown in
detail in [7].

By [11], the local Equivariant Tamagawa Number conjecture holds in the case of
a finite extension of an imaginary quadratic number field for all primes p which are
split in k and such that p { 6. O

In the rest of this work we assume that Conjecture 2.1 holds (i.e., holds locally for
all primes).

The element £(x) is unique since reg, (F) is injective over Kop_1(F) jtors @7 Z[X].

Remark 2.1. We call the element e(x) a “twisted unit” since the group
Koy 1(F) = Ko,-1(Op) is considered in the literature to be a “Tate-twisted”
analogue of the group of units of the ring of integers O of F, see for example the
introduction of [13].

The element () is said to be special, since it maps through the Beilinson regulator
to the “special” value of the L-function L(s, x) at 1 — n.
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2.3. The main result. Let £ denote the field extension of (0 generated by all
values of characters y € G and let O be its ring of integers. Let 0 := Rank;(0O).

We define Vr as the O[G]-module generated by the set {e(x), x € @} and written
additively. It is clear that Vr is a submodule of Ko, 1(F) /tors ®7 O.

Our main result is the following theorem:

Theorem 2.2. Suppose that the Lichtenbaum conjecture (see Section 4 below)
holds for F'. Then the quotient (K2, 1(F)/tors @z O)/VF is finite and we have

Kon-1(F) jtors ®7 (’)‘ 2 ((eré wn (FRr00)) |G

0
Ko, —2(0O ,
yF |K2n71(OF)tors| | 2 2( F)l)

where “%2” denotes equality up to a power of 2.

3. THE NOTION OF GENERALIZED INDEX

For any two Z-modules A and B such that B C A and A/B is finite, we write
[A : B] to refer to the usual index of B in A, equal to the cardinal of the finite
group A/B.

Let O be an integral domain which is also a free finite-extension of Z, i.e., O = 7*
for some k € Z>1 (e.g., the ring of integers of a number field) and E a field contain-
ing O and flat as an O-module. Let V denote a finite dimensional E-vector space.
An O-lattice M of V of rank djs is a free O-submodule of V which verifies

dar = tkoM = dimp EM,

where EM := E ®o M. Let M # 0 (respectively N) be such O-lattices of rank dps
(respectively dy) of a given E-vector space V. We recall that the generalized index
(M : N)o over O of N in M is defined as the O-module

(M : N)o = (det(u), u € Endg(V") and u(M) C N),
where V' is the E-vector subspace of V generated by M and N. If
dM = l"koM = dlmE V,

we say that M is a complete O-lattice in the E-vector space V = EM. Let M and N
be such complete lattices of the vector space V = EM = EN. Since we suppose
rkoM =rkoN = dimg V, we have

(M : N)o =detg(u)O
for any given endomorphism w of V such that u(M) = N.
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For instance, if d := dyr = dy, and (e;)1<i<a (respectively (€;)1<i<qa) is an O-basis

X

of M (respectively of N), then one has

(M : N)o = det(Mat, €1,...,€4))0,

)1<7:<d(

where Mat,, €1,...,€4) is the matrix of the vectors (¢;)1<icq written in the

N<izal
basis (e;)1<i<d of V.

In the following, we are only interested in the case, where both M and N are
complete lattices of V. The following properties can be inferred directly from its
definition:

Let M, N and L be complete lattices of the E-vector space V.

(P1) The generalized index is multiplicative (multiplication of submodules of the
O-algebra E):
(M : N)O = (M : L)O . (L:N)O.

(P2) We have (M : N)o - (N : M)o = O and we write
(M :N)5' = (N: M)o.
(P3) If ¢ is any automorphism of V, then (M : N)o = (¢(M) : ¢(N))o. In
particular, if ¢»: A < B is an injective homomorphism of O-modules such that
EA=FEB =Y and M,N C A, then (M : N)o = ((M) : ¥(N))o.

(P4) If M and N are complete Z-lattices of an E-vector space V, then M ®7 O and
N ®7 O are complete O-lattices of the E-vector space }V and

(M®70:N®;O)o=(M:N)z-0.
If additionally N C M, then
(M®z0:N®z0)0 =[M:N|O.
(P5) If M and N are complete O-lattices of an E-vector space V, then M and N are
complete Z-lattices of the E-vector space V ®7 O = VKO (since M and N
are O-generated by bases of V and O is free of finite rank over 7) and

(M : N)Emk9 — (M : N);0.

Indeed, (M : N)o = det(M)O, where M := Mat(, . ., (e1,...,€4) and
(es)1<i<d (respectively (gi)1<ica) is an O-basis of M (respectively of N). Let

1340



(1,...,%m) be a Z-basis of O, then (xze])iégigl (respectively (xzaj)izigl) is
a Z-basis of M (respectively of N) and

(M : N); = det (Maty,,, i<ien (i) 15550 ) Z

If we order the vectors (z;e;); ; (respectively (z;€;); ;) as zie1,x1eg,...,Te;,
Ti€j4+1,---,Tmeq (respectively zi1e1,x1€2,. .., Ti€), Ti€j41,- - ., TmEd), then we
get
M 0 0
1<ismy | 00 M
Mat 1<i§m,(($i€j)1£j%d) = .

(@sei)i<j<a S

o ... 0 M

with M appearing m times in the diagonal of the block matrix above.

3.1. Case of a Dedekind domain. When O is a Dedekind domain, we can ex-
tend the definition of generalized index to finitely generated torsion-free O-modules.
For this we follow the definition provided in [28].

Let M and N be such O-modules (finitely generated and torsion-free). Again sup-
pose that F is a field containing the Dedekind domain O and that there is a nonzero
E-vector space V such that

EM = EN =V.
The generalized index (M : N)i, is defined exactly as above. It is the O-module
generated as follows:

(M : N)p := (det(u),u € Endg(V) and u(M) C N).

Since M and N are finitely generated and torsion-free and O is a Dedekind domain,
they are projective O-modules of finite rank (the rank of a finitely generated projec-
tive module is well defined over integral domains or more generally, over any ring with
connected spectrum (see e.g., [2], Chapter II, Section 5, 3)). Further, since E is flat
over O (every torsion-free module over a Dedekind domain is flat), the equality EM =
EN =V shows that M and N have the same O-rank equal to the F-dimension of V.

Let d := dimg V. Since EM = EN = V, by the structure theorem of finitely
generated modules over a Dedekind domain (see e.g., [2], Chapter VII, Sections 4, 10,
Proposition 24) there exists a fractional ideal m (respectively n) and an E-basis
(es)1<i<d (respectively (Ei)liigd) of V such that

d
M =me; ® @eiO respectively N =ne; @ @QO.
i=2 i=2
Then (by [28], Proposition 2.1)
(M : N)/O = nm_l det(Mat(ei)lggd (81, cee ,Ed)).
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The generalized index of finitely generated projective modules over a Dedekind do-
main verifies the invertibility and multiplicativity properties listed above (by [28],
Proposition 2.4 and Corollary 2.2). It is also straightforward to check that it verifies
Property (P3) listed above and to observe that the index (M : N), coincides with
(M : N)o when M and N are free O-modules. Further, if there exists an endomor-
phism u of V such that u(M) = N, then (M : N)j, is generated over O by detg(u)
(by [28], Proposition 2.2):
(M : N)p = detg(u)O.

Remark 3.1. The index (M : N)j, is (obviously) slightly easier to compute
when M and N are free O-modules (i.e., (M : N), = (M : N)op). This is why
we opted to note (M : N)o and (M : N), differently to keep track of the nature
of modules in question: If we write (M : N)o, the reader should automatically

understand that M and N are free. If we write (M : N)j,, it means that at least one
of the two O-modules is not necessarily free (or is not proven to be so).

4. PROOF OF THEOREM 2.2

Proposition 4.1. The O[G]-modules Koy, 1(F) jtors ®7 O and Yr are both com-
plete O-lattices of the C-vector space Ka,_1(F) ®z C.

Proof. Since k is imaginary quadratic, the group Ko, 1(F) /tors is free over Z
with rank rankz(Kopn—1(F) jtors) = m2(F) = |G|, where r3(F) is the number of com-
plex places of F, see the introduction. Thus, dim¢(Kz2,—1(F) ®z C) = |G|. More-
over, O is Z-flat (since it is free), hence, the O-module Koy, 1 (F) jtors ®7 O is free and

ranko (KQn—l(F)/tors KRz O) = ranky (K2n—1(F)/tors) = dimc(Kgn_l(F) Xz C) = |G|
On the other hand, consider the isomorphism
reg,(F) ® Ide : Ka,,—1(F) ®7 C = C[G).

Since (reg, (F') ® Idc)(eye(x)) = (reg,(F) ® Idc)(e(x)), we get eye(x) = e(x)-
Hence, (as a submodule of Ka,,_1(F) ®z C), we have

Vri= Y e()O[G] = Y (exe(x))OIC)

x€G xe@
= @(exe(x))O (since e, O[G] = e, O and €(x) # 0).
xeé

Consequently, the O-module YV is free of rank |G| and Yr ®p C = Ka,—1(F) ®z C.
O
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Corollary 4.1. The quotient (K2, 1(F') jtors ®7 O)/VF is finite and

K2n—1(F)/tors Kz @)
Vr

0= ((KQn—l(F)/tors ®z O : yF)O)D-

Proof. By Proposition 4.1 the index (K2, —1(F) /1ors ®2 O : YF)o is well defined.
Now use Property (P5) of Section 3. O

Proposition 4.2. We have

(Kanl(F)/tors Kz O: yF)O = H (eX(Kanl(F)/tors Kz O) : CXyF)/o-
xe@

Proof. Let f be an endomorphism of the C-vector space V := Ks,,_1(F) ®z C
such that f(Ka2n—1(F) jtors ®7 O) = Yr. By definition we have

(K2n-1(F) jtors ®7 O : Yr)o = dete(f)O.
Since V is a C[G]-module, we can define for each x € G the induced maps
fxi eV = eV, ez — e f(x),

and we get detc(f) = [[ detc(fy). Again, by definition, we also have
x€@G

detC(fX)O = (eX(KQn—l(F)/tors Rz O) : eXyF)/Oa

which gives

(Kanl(F)/tors Kz O: yF)O - H (ex(Kanl(F)/tors Xz O) : eXyF),(9~
xeé

It remains to show that the indices (ey(Kaon—1(F)/tors @7 O) : exVr)p are well
defined, which is equivalent to showing that the O-modules e, (K2,—1(F) jtors ®7 O)
and e, Y are both finitely generated (torsion-free) submodules of the C-vector space
Vy = ex(K2n—1(F) jtors ®7 C) and that

ranko (ey (K2n—1(F) jtors @2 O)) = ranko (e, Vr) = dime V.

If Ais an O-module generated over O by {as,...,a;} for an integer ¢, then e, A is gen-
erated over O by {eyai,...,eya;}. This shows that e, Vr and e, (K2/—1(F) /tors ®70)
are finitely generated O-modules.
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Since ex Vr C ex(Kon—1(F) jtors ®2 O) C |G| (K2n—1(F) jtors ®7 O), both e, Vp
and ey (Kapn—1(F) jors @7 O) are torsion-free (as O-modules) and they can be viewed
as O-submodules of V. These observations also show that they are projective of
finite rank. On the one hand,

ranko (ey (K2n—1(F) tors @2 O)) = dime Vy

(since ey (Kaon—1(F) /tors ®70)®0 C = Vy ). On the other hand, the regulator reg,, (F)
induces the following isomorphism:

VX = 6X(I(-anl(F‘)/tors &z C) ad GXC[G] ~ C.

Hence, ranko(ey (Kaon—1(F) jtors ®z O)) = 1. Moreover, by the proof of Proposi-
tion 4.1, we have e, Vp = ¢(x)O # 0. Thus, e, Vr is a nonzero finitely generated and
projective submodule of a rank-one module and hence it also has rank one over O. [

Let (r(s) denote the Dedekind zeta function associated with the field F and
((1 —n) its special value at 1 — n (i.e., the coefficient of the first nonzero term in
the Taylor expansion of (r(s) at 1 —n). Then:

Proposition 4.3. We have

(KQn—l(F)/tors XKz O: yF)O

= G911 = n) T (wa(F*"0)(exreg,, (Kan-1(F) jtors @2 O) : ex0)p).
xe@

Proof. Let reg, , be the following map induced from reg,,:
reg,, . ex(Kon—1(F) jtors @7 0) = ey (R[G] ® O),  eyx — eyreg, (z).

The injectivity of reg, , is a direct consequence of the injectivity of reg, and
the fact that reg, is G-linear (meaning reg,(eya) = eyreg,(a) for any a €
Kon 1(F) jtors ®7 O). By the previous points and Property (P3) of Section 3 we get

(eX(K%lfl(F)/tors Xz O) : exyF),o
= (regn,x(eX(KQTL—l(F)/tors Xz O)) : regn,x(eXE(X)O))/O
= (exregn(K%—l(F)/tors ®z 0) : wn(err(X))L,(l - n,x_1)|G|eX(’))'O,

which gives by multiplicativity of generalized indices (see Property (P1) in Section 3):

(ex(K2n71(F)/tors Kz O) : exyF)/O = (exregn (K2n71(F)/tors Kz O) . GXO),O
X (64O 1w, (F*T0N) L' (1 — n, x™1)|Gley O)o.
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The proof ends by using Proposition 4.2 and noticing that
(exO : wy(F*" 0N L (1 = n, x 7 1)|GlexO)o = |Glwn (F*<" X)L/ (1 — n, x 1)O.
d
Recall that R, (F) (# 0) refers to the covolume of the regulator map reg,, (F):
reg, (F) : Kon_1(F) — R[G].
Proposition 4.4. We have

H (exreg, (Kon—1(F) jtors @2 O) : €,,0)p = R,.(F)"'O.
xe@

Proof. By the definition of the regulator R,,(F') we have
Ra(F) = (2(G] : xegy (F) (Kan_1(F))):z.
Now we can apply Property (P4) of Section 3 to get
Rn(F)O = (O[G] : reg,, (F)(K2n-1(F) ©z2 O))o.
Let f be an endomorphism of the C-vector space Ka,_1(F) ®z C such that
(O[G] : regn(F)(Ksn-1(F) @z 0))o = detc(f)O.
Again, as in the proof of Proposition 4.2, we can write

dete(f) = [ dete(fy),

xE(A}

where for each element y € CA?, fx denotes the induced endomorphism defined over
ex(Kon—1(F) ®z C). By definition,

detc (f)O = (exO : ex(reg,, (F)(Kan—1(F) jtors ®2 0)))o-

O

Corollary 4.2. The following equality holds:
* 1 _
(Kons(F) o 22 0 : V)0 = ( J[ wal ) ) i1 EC -1
! R (F)
—~ mn
x€G

Proof. Combine Propositions 4.3 and 4.4. O

We now consider the Lichtenbaum conjecture for a number field K:

1345



The Lichtenbaum conjecture. For a number field Kand for allm > 1 we have

" 2 | [Kon—2(Ok)
(k(l=mn)= imRn(K)'

The Lichtenbaum conjecture holds if K is an abelian number field (see [15]) or if K
is a real number field, see [30]. In the case of a finite abelian extension of an imaginary
quadratic field, one of the most promising results is given in [26]. It shows that the
Lichtenbaum conjecture should hold in this case modulo a given finite set of primes.

It is also worth noting that the original statement of the Lichtenbaum conjecture
involves the Borel regulator RZ(K) instead of the Beilinson regulator R,,(K). By [3],
we know that the two regulators agree modulo a fixed power of 2 (the Borel regulator
map is twice the Beilinson map reg, (K)). Thus, it is also correct to state the
conjecture using R,, (K).

Using Corollary 4.2 and assuming the Lichtenbaum conjecture yields the following
corollary.

Corollary 4.3. We have

2 ([Tyegwn(F™))|GII

Kon1(F) jors ©7 O :
( 2 1( )/t z yF)O |K2n_1(OF)tors|

| K2n—2(0F)|O.

Theorem 2.2 ensues from Corollaries 4.3 and 4.1.
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