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Abstract. Let F/k be a finite abelian extension of number fields with k imaginary
quadratic. Let OF be the ring of integers of F and n > 2 a rational integer. We con-
struct a submodule in the higher odd-degree algebraic K-groups of OF using corresponding
Gross’s special elements. We show that this submodule is of finite index and prove that this
index can be computed using the higher “twisted” class number of F , which is the cardinal
of the finite algebraic K-group K2n−2(OF ).
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1. Introduction

Let F be a number field. The Quillen higher algebraic K-groups of the ring of

integers OF of the field F have the following property:

Theorem 1.1 (Borel). For integers n > 2, the groups K2n−2(OF ) are finite and

the groups K2n−1(F ) = K2n−1(OF ) are of finite type over Z,

rankZ(K2n−1(F )) := dn =

{
r1 + r2 if n is odd,

r2 if n is even,

where r1 and r2 denote, respectively, the number of real and complex places of F .

Let O∗
F be the group of units of OF . Let ζF (s) denote the Dedekind zeta function

associated with the number field F and defined for (Re(s) > 1) by the following
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Euler product over all prime ideals of OF :

ζF (s) =
∏

p⊆OF

1

1−NF/Q(p)−s
,

where NF/Q is the norm map relative to the extension F/Q. The function ζF (s) has

an analytic continuation to the complex plane C as a meromorphic function with

a simple pole at s = 1. Moreover, it is known that the order of vanishing of the

function ζF (s) at s = 0 is exactly the Z-rank of the group of units O∗
F equal by

Dirichlet’s unit theorem to r1 + r2 − 1.

At strictly negative integers 1 − n (n > 2), the zeta function ζF (s) has the order

of vanishing equal to dn, the Z-rank of the group K2n−1(F ): This shows that the

group K2n−1(F ) plays at negative integers the role the unit group O
∗
F plays at

zero. This is the first observation of a far-reaching analogy between higher algebraic

K-theory and the classical arithmetic objects associated with F : In fact, for n > 2,

the odd degree K-groups K2n−1(F ) are the analogues of the unit group O
∗
F and the

even degree finite K-groups K2n−2(OF ) are the analogues of the class group ClF
of F . To go even further with this analogy, Siegel and Klingen showed in [12], [20]

that when F is totally real, ζF (s) is a nonzero rational number at negative odd

integers. Borel in [1] later built on this result and showed that the special value

ζ∗F (1−n) := lim
s→1−n

(s+n−1)−dnζF (s) is always the product of a rational number qn

by the Borel regulator RB
n (F ) ∈ R×. The Borel regulator is exactly the Beilinson

regulator described below in Subsection 2.1 multiplied by a fixed power of 2 (by [3],

this fixed power is exactly 2dn). This motivated Lichtenbaum to conjecture the exact

expression of the rational number qn in terms of higher algebraic K-groups: This is

the famous Lichtenbaum conjecture (see Subsection 4 for its statement). Another

remarkable example is the work of Kurihara (see [14]) to prove Vandiver’s conjecture

using K-theory. Kurihara showed that the conjecture is equivalent to the vanishing

of the groups Kn(Z) whenever n is a multiple of 4. Later, Soulé in [25] expanded

Kurihara’s result using similar methods, see for example the article of [9] for more

details on this work and the proof of Vandiver’s conjecture using K-theory.

The next step in this analogy framework concerns “special” units which are related

to the special values of L-functions and which play an important role in number

theory. These are for example cyclotomic units for abelian extensions of Q and

more generally Stark units, see [27]. Gross formulated in the 1970s a conjecture

which asserts that the leading term at any strictly negative integer of the Artin

L-function should be equal, within an undetermined algebraic factor, to the image

by the Beilinson regulator of a certain element in odd degree higher algebraicK-group

(Gross’s conjecture was published more recently in [10]). Gross’s conjecture is the

natural analogue in higher algebraic K-theory of Stark’s conjecture.
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In the absolute abelian case, Gross’s conjectural units are given by Beilinson’s ele-

ments (see [16]) and p-adically by the Beilinson-Deligne-Soulé elements, see e.g., [24].

An application of Beilinson’s units is the following equality which holds (see [13],

proof of Theorem 6.4) whenever F is an abelian number field and p is an odd ratio-

nal prime (n > 2):

(1.1)
∣∣∣
K2n−1(F )/tors

Bn(F )

∣∣∣ ∼p |K2n−2(OF )|,

where K2n−1(F )/tors is the torsion-free quotient of K2n−1(F ) and Bn(F ) is a sub-

module of K2n−1(F )/tors constructed from Beilinson’s units (∼p refers to equality

of p-primary parts). This equation requires the Quillen-Lichtenbaum conjecture

(i.e., the local higher algebraic K-groups coincide with cohomological K-groups for

all odd p), which is now a theorem thanks to work of Rost, Weibel and Voevodsky,

see [29]. There are also refinements of this result, see e.g., [5], [6] among others.

Equation (1.1) is a natural analogue of the following classical equality of cardinals

proved by Sinnott, see [21], Section 4:

(1.2) |O∗
F /CF | = |ClF+ | · cF ,

where CF is the subgroup of circular units (see [21], Section 4), F
+ is the maximal real

subfield of F and cF is a rational number whose definition does not involve |ClF+ |.
In the nonabsolute abelian case, we can mention partial results obtained by Snaith,

see [22], and Nickel, see [18]. Nickel shows that the Equivariant Tamagawa Number

conjecture, or ETNc for short, (see e.g., [8] for an excellent survey on the ETNc)

implies the existence of certain elements constructed using leading terms of Artin

L-functions and higher algebraic K-theory which verify a refinement of the Coates-

Sinnott conjecture.

When the field F is “almost” abelian (i.e., F is a finite abelian extension of an

imaginary quadratic field), the ETNc provides the exact definition of the special units

mentioned before, see Subsection 2.2 below for more details. The aim of the following

work is to generalize equation (1.1) to the case of abelian extensions of an imaginary

quadratic field (see Theorem 2.2 below) using these special units. For this purpose

we combine techniques of calculation of generalized indices (see Subsection 3) and

the Lichtenbaum conjecture.

1.1. Notations. We adopt the following notations throughout this paper:

⊲ F/k is a finite abelian extension of number fields with Galois groupG := Gal(F/k).

From Subsection 2.2 onward we suppose that k is imaginary quadratic.

⊲ If K is any number field, we let OK denote its ring of integers and we fix an

algebraic closure K of K. We set GK := Gal(K/K).
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⊲ For any nonzero integer r we write Q/Z(r) for the group Q/Z regarded as

a GF -module by setting g.x := χcyc(g)
rx for all g ∈ GF and x ∈ Q/Z, where χcyc

is the cyclotomic character, see e.g., [17], Definition (7.3.6).

⊲ If A is a finite group we let |A| denote the cardinal of A (i.e., the number of
elements of A).

2. Special “twisted” units in an odd-degree algeberic K-theory over

an imaginary quadratic number field

2.1. The Beilinson regulator map. Let n > 2 be a rational integer. The

Beilinson regulator defined over the K-group of the field of complex numbers (see

e.g., [19] for more details) is a map

regn : K2n−1(C) → H1
D(Spec(C), (2πi)nR) ∼= (2πi)n−1R,

where H1
D() is the first group of Deligne’s cohomology and i :=

√
−1.

We assign a number field F with the map

K2n−1(F ) →
∏

σ : F→C

K2n−1(C),

where the product is taken over all embeddings σ ∈ Hom(F,C) of F in the field of

complex numbers. We obtain a map

regn(F ) : K2n−1(F ) → (XF ⊗ (2πi)n−1R)+,

where XF := Z[Hom(F,C)] (the free abelian group over the set Hom(F,C)) and

(XF ⊗ (2πi)n−1R)+ is the “plus part” of (XF ⊗ (2πi)n−1R), i.e., the submodule that

is invariant under the action of complex conjugation.

Note that for all n > 2 we have K2n−1(OF ) = K2n−1(F ), see e.g., [23]. Thus, the

map regn(F ) can be equivalently defined over K2n−1(OF ).

The image of regn(F ) is a complete lattice of the R-vector-space (XF⊗(2πi)n−1R)+.

The covolume Rn(F ) of this lattice is also called the Beilinson regulator. Borel

in [1] proved that the kernel of the Borel regulator is equal to K2n−1(F )tors,

where K2n−1(F )tors is the Z-torsion subgroup of K2n−1(F ). Since the Beilinson

and the Borel regulators agree up to a fixed power of 2 (see [3]), we also have

ker(regn(F )) = K2n−1(F )tors.

Hence, if we write K2n−1(F )/tors for the torsion-free quotient of K2n−1(F ), then

regn(F ) induces the injective map

regn(F ) : K2n−1(F )/tors →֒ (XF ⊗ (2πi)n−1R)+,

which becomes an isomorphism if we tensor the left-hand side with R.
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2.2. Special “twisted” units. Let Ĝ = Hom(G,C×). Let Ram(F/k) denote

the set of finite places of k which ramify in F/k and S∞ the set of Archimedean

places of k. If χ ∈ Ĝ, the Artin L-function attached to χ is defined for {s ∈ C :

Re(s) > 1} by
L(s, χ) =

∏

p 6∈Ram(F/k)∪S∞

(1− χ(σp)Np
−s)−1,

where σp ∈ G is the Frobenius of the (unramified) prime p. This function can be

analytically continued to a meromorphic function on C.

We can view L(s, χ) as the L-function of a Hecke character (one dimensional

Artin representation) of the absolute Galois group Gk. The functional equation

relating L(s, χ) and L(1−s, χ−1) shows that the order of vanishing rχ(1−n) of L(s, χ)
at 1− n, n > 1, is given for any nontrivial character χ by

rχ(1− n) = r2(k) + (the number of real places of k, where χ has sign (−1)1−n),

where the integer r2(k) denotes the number of complex places of k. Let L
′(s, χ)

denote the first derivative of the Artin L-function L(s, χ).

In the rest of the paper we assume that k is an imaginary quadratic number field

and that n > 2.

Since k is imaginary quadratic, we get for all χ ∈ Ĝ

(2.1) L(1− n, χ) = 0 and L′(1− n, χ) 6= 0.

This is also shown in [4], (3.4), where a formula for the first derivative of the

L-function L(s, χ) is also provided at negative integers.

Let χ ∈ Ĝ. Let Z[χ] be the ring generated over Z by the values of the character χ.

Again since k is imaginary quadratic and taking into account the Galois action

on (XF ⊗ (2πi)n−1R)+, we can see that

(XF ⊗ (2πi)n−1R)+ ∼= R[G] (as R[G] modules).

Indeed, since k is imaginary quadratic, for each σ ∈ Hom(F,C) there is a unique

σ̃ ∈ G such that either σ = σ̃ or σ = τ ◦ σ̃, where τ stands for complex conjugation.
If we add to this the fact that (XF ⊗ (2πi)n−1R)+ is generated (as an R-module)

by elements of the form σ ⊗ (2πi)n−1 ± τσ ⊗ (2πi)n−1 (σ ∈ Hom(F,C) and “±”
depending on the parity of n), we can form the isomorphism above by sending each

such element to σ̃−1 (σ̃−1 and not σ̃ since the G-action on XF is contragredient) and

extending it by scalars over R.

Thus, by extension of scalars, we can rewrite the Beilinson regulator as

regn(F ) : K2n−1(F )/tors ⊗Z Z[χ] →֒ R[G]⊗Z Z[χ].
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Conjecture 2.1. Suppose that n > 2. There exists a unique element ε(χ) ∈
K2n−1(F )/tors ⊗Z Z[χ] (a special “twisted” unit) such that

regn(F )(ε(χ)) = wn(F
ker(χ))L′(1− n, χ−1)|G|eχ,

where:

(1) wn(F
ker(χ)) := |H0(Gal(Q/F ker(χ)),Q/Z(n))|,

(2) eχ := |G|−1
∑
σ∈G

χ−1(σ)σ is the idempotent associated with χ.

Note that the group H0(Gal(Q/F ker(χ)),Q/Z(n)) is a “twisted” analogue of the

group of roots of unity in F ker(χ), and is known to be finite for all n 6= 0, see e.g., [17],

Proposition (7.3.10) (i). Further, we also know that for twists n > 2, the group

H0(Gal(Q/F ker(χ)),Q/Z(n)) agrees with the finite torsion group K2n−1(F
ker(χ))tors

modulo a power of 2, see [13], Lemma 2.2 (1).

The strongest evidence in support of Conjecture 2.1 is the following theorem:

Theorem 2.1. Conjecture 2.1 holds locally (i.e., its p-primary part holds) for all

rational primes p which are split in k and such that p ∤ 6.

P r o o f. The existence of ε(χ), and consequently the fact that

wn(F
ker(χ))L′(1− n, χ−1)|G|eχ ∈ R[G]⊗Z Z[χ],

is a consequence of the Equivariant Tamagawa Number conjecture. This is shown in

detail in [7].

By [11], the local Equivariant Tamagawa Number conjecture holds in the case of

a finite extension of an imaginary quadratic number field for all primes p which are

split in k and such that p ∤ 6. �

In the rest of this work we assume that Conjecture 2.1 holds (i.e., holds locally for

all primes).

The element ε(χ) is unique since regn(F ) is injective over K2n−1(F )/tors ⊗Z Z[χ].

Remark 2.1. We call the element ε(χ) a “twisted unit” since the group

K2n−1(F ) = K2n−1(OF ) is considered in the literature to be a “Tate-twisted”

analogue of the group of units of the ring of integers OF of F , see for example the

introduction of [13].

The element ε(χ) is said to be special, since it maps through the Beilinson regulator

to the “special” value of the L-function L(s, χ) at 1− n.
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2.3. The main result. Let E denote the field extension of Q generated by all
values of characters χ ∈ Ĝ and let O be its ring of integers. Let d := RankZ(O).

We define YF as the O[G]-module generated by the set {ε(χ), χ ∈ Ĝ} and written
additively. It is clear that YF is a submodule of K2n−1(F )/tors ⊗Z O.
Our main result is the following theorem:

Theorem 2.2. Suppose that the Lichtenbaum conjecture (see Section 4 below)

holds for F . Then the quotient (K2n−1(F )/tors ⊗Z O)/YF is finite and we have

∣∣∣
K2n−1(F )/tors ⊗Z O

YF

∣∣∣ 2
=

((∏
χ∈Ĝ wn(F

ker(χ))
)
|G||G|

|K2n−1(OF )tors|
|K2n−2(OF )|

)d

,

where “
2
=” denotes equality up to a power of 2.

3. The notion of generalized index

For any two Z-modules A and B such that B ⊆ A and A/B is finite, we write

[A : B] to refer to the usual index of B in A, equal to the cardinal of the finite

group A/B.

Let O be an integral domain which is also a free finite-extension of Z, i.e., O ∼= Zk

for some k ∈ Z>1 (e.g., the ring of integers of a number field) and E a field contain-

ing O and flat as an O-module. Let V denote a finite dimensional E-vector space.
An O-lattice M of V of rank dM is a free O-submodule of V which verifies

dM := rkOM = dimE EM,

where EM := E ⊗O M . Let M 6= 0 (respectively N) be such O-lattices of rank dM

(respectively dN ) of a given E-vector space V . We recall that the generalized index
(M : N)O over O of N in M is defined as the O-module

(M : N)O := 〈det(u), u ∈ EndE(V ′) and u(M) ⊆ N〉,

where V ′ is the E-vector subspace of V generated by M and N . If

dM = rkOM = dimE V ,

we say thatM is a complete O-lattice in the E-vector space V = EM . LetM and N

be such complete lattices of the vector space V = EM = EN . Since we suppose

rkOM = rkON = dimE V , we have

(M : N)O = detE(u)O

for any given endomorphism u of V such that u(M) = N .
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For instance, if d := dM = dN , and (ei)16i6d (respectively (εi)16i6d) is an O-basis

of M (respectively of N), then one has

(M : N)O = det(Mat(ei)16i6d
(ε1, . . . , εd))O,

where Mat(ei)16i6d
(ε1, . . . , εd) is the matrix of the vectors (εi)16i6d written in the

basis (ei)16i6d of V .
In the following, we are only interested in the case, where both M and N are

complete lattices of V . The following properties can be inferred directly from its
definition:

Let M , N and L be complete lattices of the E-vector space V .
(P1) The generalized index is multiplicative (multiplication of submodules of the

O-algebra E):

(M : N)O = (M : L)O · (L : N)O.

(P2) We have (M : N)O · (N :M)O = O and we write

(M : N)−1
O := (N :M)O.

(P3) If ϕ is any automorphism of V , then (M : N)O = (ϕ(M) : ϕ(N))O . In

particular, if ψ : A →֒ B is an injective homomorphism of O-modules such that

EA = EB = V and M,N ⊆ A, then (M : N)O = (ψ(M) : ψ(N))O.

(P4) If M and N are complete Z-lattices of an E-vector space V , then M ⊗Z O and

N ⊗Z O are complete O-lattices of the E-vector space V and

(M ⊗Z O : N ⊗Z O)O = (M : N)Z · O.

If additionally N ⊆M , then

(M ⊗Z O : N ⊗Z O)O = [M : N ]O.

(P5) IfM and N are complete O-lattices of an E-vector space V , then M and N are
complete Z-lattices of the E-vector space V ⊗Z O ∼= VrankZO (since M and N

are O-generated by bases of V and O is free of finite rank over Z) and

(M : N)rankZO
O = (M : N)ZO.

Indeed, (M : N)O = det(M)O, where M := Mat(e1,...,ed)(ε1, . . . , εd) and

(ei)16i6d (respectively (εi)16i6d) is an O-basis of M (respectively of N). Let
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(x1, . . . , xm) be a Z-basis of O, then (xiej)
16i6m
16j6d (respectively (xiεj)

16i6m
16j6d ) is

a Z-basis of M (respectively of N) and

(M : N)Z = det
(
Mat

(xiej)
16i6m

16j6d

((xiεj)
16i6m
16j6d )

)
Z.

If we order the vectors (xiej)i,j (respectively (xiεj)i,j) as x1e1, x1e2, . . . , xiej ,

xiej+1, . . . , xmed (respectively x1ε1, x1ε2, . . . , xiεj , xiεj+1, . . . , xmεd), then we

get

Mat
(xiej)

16i6m

16j6d

((xiεj)
16i6m
16j6d ) =




M 0 . . . 0

0 M . . .
...

...
. . .

. . . 0

0 . . . 0 M




withM appearing m times in the diagonal of the block matrix above.

3.1. Case of a Dedekind domain. When O is a Dedekind domain, we can ex-

tend the definition of generalized index to finitely generated torsion-free O-modules.

For this we follow the definition provided in [28].

LetM and N be such O-modules (finitely generated and torsion-free). Again sup-

pose that E is a field containing the Dedekind domain O and that there is a nonzero

E-vector space V such that
EM = EN = V .

The generalized index (M : N)′O is defined exactly as above. It is the O-module

generated as follows:

(M : N)′O := 〈det(u), u ∈ EndE(V) and u(M) ⊆ N〉.

Since M and N are finitely generated and torsion-free and O is a Dedekind domain,

they are projective O-modules of finite rank (the rank of a finitely generated projec-

tive module is well defined over integral domains or more generally, over any ring with

connected spectrum (see e.g., [2], Chapter II, Section 5, 3)). Further, since E is flat

overO (every torsion-free module over a Dedekind domain is flat), the equalityEM =

EN = V shows that M and N have the same O-rank equal to the E-dimension of V .
Let d := dimE V . Since EM = EN = V , by the structure theorem of finitely

generated modules over a Dedekind domain (see e.g., [2], Chapter VII, Sections 4, 10,

Proposition 24) there exists a fractional ideal m (respectively n) and an E-basis

(ei)16i6d (respectively (εi)16i6d) of V such that

M = me1 ⊕
d⊕

i=2

eiO respectively N = nε1 ⊕
d⊕

i=2

εiO.

Then (by [28], Proposition 2.1)

(M : N)′O = nm
−1 det(Mat(ei)16i6d

(ε1, . . . , εd)).
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The generalized index of finitely generated projective modules over a Dedekind do-

main verifies the invertibility and multiplicativity properties listed above (by [28],

Proposition 2.4 and Corollary 2.2). It is also straightforward to check that it verifies

Property (P3) listed above and to observe that the index (M : N)′O coincides with

(M : N)O when M and N are free O-modules. Further, if there exists an endomor-

phism u of V such that u(M) = N , then (M : N)′O is generated over O by detE(u)

(by [28], Proposition 2.2):

(M : N)′O = detE(u)O.

Remark 3.1. The index (M : N)′O is (obviously) slightly easier to compute

when M and N are free O-modules (i.e., (M : N)′O = (M : N)O). This is why

we opted to note (M : N)O and (M : N)′O differently to keep track of the nature

of modules in question: If we write (M : N)O, the reader should automatically

understand that M and N are free. If we write (M : N)′O, it means that at least one

of the two O-modules is not necessarily free (or is not proven to be so).

4. Proof of Theorem 2.2

Proposition 4.1. The O[G]-modules K2n−1(F )/tors ⊗Z O and YF are both com-

plete O-lattices of the C-vector space K2n−1(F )⊗Z C.

P r o o f. Since k is imaginary quadratic, the group K2n−1(F )/tors is free over Z

with rank rankZ(K2n−1(F )/tors) = r2(F ) = |G|, where r2(F ) is the number of com-
plex places of F , see the introduction. Thus, dimC(K2n−1(F ) ⊗Z C) = |G|. More-
over, O is Z-flat (since it is free), hence, the O-module K2n−1(F )/tors⊗ZO is free and

rankO(K2n−1(F )/tors⊗ZO) = rankZ(K2n−1(F )/tors) = dimC(K2n−1(F )⊗ZC) = |G|.

On the other hand, consider the isomorphism

regn(F )⊗ IdC : K2n−1(F )⊗Z C
∼→ C[G].

Since (regn(F ) ⊗ IdC)(eχε(χ)) = (regn(F ) ⊗ IdC)(ε(χ)), we get eχε(χ) = ε(χ).

Hence, (as a submodule of K2n−1(F )⊗Z C), we have

YF :=
∑

χ∈Ĝ

ε(χ)O[G] =
∑

χ∈Ĝ

(eχε(χ))O[G]

=
⊕

χ∈Ĝ

(eχε(χ))O (since eχO[G] = eχO and ε(χ) 6= 0).

Consequently, the O-module YF is free of rank |G| and YF ⊗O C = K2n−1(F )⊗Z C.

�
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Corollary 4.1. The quotient (K2n−1(F )/tors ⊗Z O)/YF is finite and

∣∣∣
K2n−1(F )/tors ⊗Z O

YF

∣∣∣O = ((K2n−1(F )/tors ⊗Z O : YF )O)
d.

P r o o f. By Proposition 4.1 the index (K2n−1(F )/tors⊗ZO : YF )O is well defined.

Now use Property (P5) of Section 3. �

Proposition 4.2. We have

(K2n−1(F )/tors ⊗Z O : YF )O =
∏

χ∈Ĝ

(eχ(K2n−1(F )/tors ⊗Z O) : eχYF )
′
O.

P r o o f. Let f be an endomorphism of the C-vector space V := K2n−1(F ) ⊗Z C

such that f(K2n−1(F )/tors ⊗Z O) = YF . By definition we have

(K2n−1(F )/tors ⊗Z O : YF )O = detC(f)O.

Since V is a C[G]-module, we can define for each χ ∈ Ĝ the induced maps

fχ : eχV → eχV, eχx 7→ eχf(x),

and we get detC(f) =
∏

χ∈Ĝ

detC(fχ). Again, by definition, we also have

detC(fχ)O = (eχ(K2n−1(F )/tors ⊗Z O) : eχYF )
′
O,

which gives

(K2n−1(F )/tors ⊗Z O : YF )O =
∏

χ∈Ĝ

(eχ(K2n−1(F )/tors ⊗Z O) : eχYF )
′
O.

It remains to show that the indices (eχ(K2n−1(F )/tors ⊗Z O) : eχYF )
′
O are well

defined, which is equivalent to showing that the O-modules eχ(K2n−1(F )/tors ⊗Z O)

and eχYF are both finitely generated (torsion-free) submodules of the C-vector space

Vχ = eχ(K2n−1(F )/tors ⊗Z C) and that

rankO(eχ(K2n−1(F )/tors ⊗Z O)) = rankO(eχYF ) = dimC Vχ.

If A is anO-module generated overO by {a1, . . . , ai} for an integer i, then eχA is gen-
erated overO by {eχa1, . . . , eχai}. This shows that eχYF and eχ(K2n−1(F )/tors⊗ZO)

are finitely generated O-modules.
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Since eχYF ⊆ eχ(K2n−1(F )/tors ⊗Z O) ⊆ |G|−1(K2n−1(F )/tors ⊗Z O), both eχYF

and eχ(K2n−1(F )/tors⊗ZO) are torsion-free (as O-modules) and they can be viewed
as O-submodules of Vχ. These observations also show that they are projective of
finite rank. On the one hand,

rankO(eχ(K2n−1(F )/tors ⊗Z O)) = dimC Vχ

(since eχ(K2n−1(F )/tors⊗ZO)⊗OC = Vχ). On the other hand, the regulator regn(F )

induces the following isomorphism:

Vχ = eχ(K2n−1(F )/tors ⊗Z C) ≃ eχC[G] ≃ C.

Hence, rankO(eχ(K2n−1(F )/tors ⊗Z O)) = 1. Moreover, by the proof of Proposi-

tion 4.1, we have eχYF = ε(χ)O 6= 0. Thus, eχYF is a nonzero finitely generated and

projective submodule of a rank-one module and hence it also has rank one overO. �

Let ζF (s) denote the Dedekind zeta function associated with the field F and

ζ∗F (1 − n) its special value at 1 − n (i.e., the coefficient of the first nonzero term in

the Taylor expansion of ζF (s) at 1− n). Then:

Proposition 4.3. We have

(K2n−1(F )/tors ⊗Z O : YF )O

= |G||G|ζ∗F (1 − n)
∏

χ∈Ĝ

(wn(F
ker(χ))(eχregn(K2n−1(F )/tors ⊗Z O) : eχO)′O).

P r o o f. Let regn,χ be the following map induced from regn:

regn,χ : eχ(K2n−1(F )/tors ⊗Z O) →֒ eχ(R[G]⊗O), eχx→ eχregn(x).

The injectivity of regn,χ is a direct consequence of the injectivity of regn and

the fact that regn is G-linear (meaning regn(eχa) = eχregn(a) for any a ∈
K2n−1(F )/tors ⊗Z O). By the previous points and Property (P3) of Section 3 we get

(eχ(K2n−1(F )/tors ⊗Z O) : eχYF )
′
O

= (regn,χ(eχ(K2n−1(F )/tors ⊗Z O)) : regn,χ(eχε(χ)O))′O

= (eχregn(K2n−1(F )/tors ⊗Z O) : wn(F
ker(χ))L′(1− n, χ−1)|G|eχO)′O,

which gives by multiplicativity of generalized indices (see Property (P1) in Section 3):

(eχ(K2n−1(F )/tors ⊗Z O) : eχYF )
′
O = (eχregn(K2n−1(F )/tors ⊗Z O) : eχO)′O

× (eχO : wn(F
ker(χ))L′(1 − n, χ−1)|G|eχO)O .
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The proof ends by using Proposition 4.2 and noticing that

(eχO : wn(F
ker(χ))L′(1− n, χ−1)|G|eχO)O = |G|wn(F

ker(χ))L′(1− n, χ−1)O.

�

Recall that Rn(F ) (6= 0) refers to the covolume of the regulator map regn(F ):

regn(F ) : K2n−1(F ) → R[G].

Proposition 4.4. We have
∏

χ∈Ĝ

(eχregn(K2n−1(F )/tors ⊗Z O) : eχO)′O = Rn(F )
−1O.

P r o o f. By the definition of the regulator Rn(F ) we have

Rn(F ) = (Z[G] : regn(F )(K2n−1(F )))Z.

Now we can apply Property (P4) of Section 3 to get

Rn(F )O = (O[G] : regn(F )(K2n−1(F )⊗Z O))O .

Let f be an endomorphism of the C-vector space K2n−1(F )⊗Z C such that

(O[G] : regn(F )(K2n−1(F )⊗Z O))O = detC(f)O.

Again, as in the proof of Proposition 4.2, we can write

detC(f) =
∏

χ∈Ĝ

detC(fχ),

where for each element χ ∈ Ĝ, fχ denotes the induced endomorphism defined over

eχ(K2n−1(F )⊗Z C). By definition,

detC(fχ)O = (eχO : eχ(regn(F )(K2n−1(F )/tors ⊗Z O)))′O .

�

Corollary 4.2. The following equality holds:

(K2n−1(F )/tors ⊗Z O : YF )O =

(∏

χ∈Ĝ

wn(F
ker(χ))

)
|G||G| ζ

∗
F (1 − n)

Rn(F )
O.

P r o o f. Combine Propositions 4.3 and 4.4. �

We now consider the Lichtenbaum conjecture for a number field K:
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The Lichtenbaum conjecture. For a number field Kand for all n > 1 we have

ζ∗K(1− n)
2
= ± |K2n−2(OK)|

|K2n−1(OK)tors|
Rn(K).

The Lichtenbaum conjecture holds if K is an abelian number field (see [15]) or if K

is a real number field, see [30]. In the case of a finite abelian extension of an imaginary

quadratic field, one of the most promising results is given in [26]. It shows that the

Lichtenbaum conjecture should hold in this case modulo a given finite set of primes.

It is also worth noting that the original statement of the Lichtenbaum conjecture

involves the Borel regulator RB
n (K) instead of the Beilinson regulator Rn(K). By [3],

we know that the two regulators agree modulo a fixed power of 2 (the Borel regulator

map is twice the Beilinson map regn(K)). Thus, it is also correct to state the

conjecture using Rn(K).

Using Corollary 4.2 and assuming the Lichtenbaum conjecture yields the following

corollary.

Corollary 4.3. We have

(K2n−1(F )/tors ⊗Z O : YF )O
2
=

(
∏

χ∈Ĝ wn(F
ker(χ)))|G||G|

|K2n−1(OF )tors|
|K2n−2(OF )|O.

Theorem 2.2 ensues from Corollaries 4.3 and 4.1.
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