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Quasigroup covers of division groupoids

1 JAROSLAV J. JEZEK, ToMmAS J. KEPKA, PETR C. NEMEC

Abstract. Let G be a division groupoid that is not a quasigroup. For each regular
cardinal a > |G| we construct a quasigroup @ on G X « that is a quasigroup
cover of G (i.e., G is a homomorphic image of @ and G is not an image of any
quasigroup that is a proper factor of Q). We also show how to easily obtain
quasigroup covers from free quasigroups.

Keywords: groupoid; division; quasigroup; cover

Classification: 20N05

Throughout the paper, a set with a binary operation will be called a groupotd,
following the classical usage of B.A. Hausmann and O. Ore in [9]; groupoids
are also known as magmas, binars or multiplicative systems. One rather familiar
groupoid/magma is the multiplicative semigroup N(-) of positive integers (recog-
nised for several millenia). The multiplicative group Q7 (-) of positive rationals is
widely used as well. Positive integers form a subgroupoid/submagma of positive
rationals and the latter serve as a group of fractions of the former ones.

It is a notoriously known fact that a division semigroup is a group, whence
a quasigroup. This is not true for general groupoids anymore. E.g., setting
n*m = |n—m| for all n,m € Ny (nonnegative integers), we get a division
groupoid Ny(x) that is not a quasigroup. Homomorphic images of quasigroups
are division groupoids, however not necessarily quasigroups. The investigation of
homomorphic images (i.e., factors by stable equivalences) of quasigroups started
already in the forties of the last century, see, e.g., [1], [2], [3], [4], [5], [6], [8], [11],
and is continued in the present note. Stable equivalences that are not quasigroup
congruences were constructed, e.g., in [3] and [6]. Our main aim is to show that
every proper division groupoid possesses a quasigroup cover of “arbitrary size”.

This paper (after many years) finalizes a common research started several
months before untimely death of our colleague J.J. Jezek who deceased in 2011,
see also [10].
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1. Basic notions

Let G be a groupoid. For every element a € G we define two mappings L,
and R, (called the left and the right translation by a) of G into G by L, (z) = ax
and Rq(z) = za. The submonoid of the transformation monoid of G generated
by all the mappings L, and R, (for a € G) is called the multiplication monoid
of G.

We shall say that G is a left (right, respectively) division groupoid if for any
two elements a,b € G there is an element x € G with a = bz (a = xb, respec-
tively). Clearly, G is a left (right, respectively) division groupoid if and only
if all left (right, respectively) translations are surjective. Similarly, we shall say
that G is a left (right, respectively) cancellation groupoid if all left (right, respec-
tively) translations are injective. If G is both left and right division (cancellation,
respectively) groupoid then it is said to be a division (cancellation, respectively)
groupoid.

A relation r on a groupoid G is said to be left stable if (x,y) € r implies
(ax,ay) € r for any a € G. Right stable relations are defined dually. A relation
is said to be stable if it is both left and right stable. A congruence on G turns
out to be precisely a stable equivalent relation.

A congruence r of a groupoid G is said to be left (right, respectively) can-
cellative if for all a,z,y € G, (ax,ay) € r ((za,ya) € r, respectively) implies
(x,y) € r. A congruence which is both left and right cancellative is said to be
cancellative.

A subset S of a groupoid G is said to be left (right, respectively) closed (in G)
if x € S whenever z € G and ax € S (za € S, respectively) for some a € S.
A subset is said to be closed if it is both left and right closed.

An element x € G is said to be idempotent if zxz = x. The set of idempotent
elements of a groupoid G will be denoted by Id(G).

By a quasigroup we mean a groupoid which is both division and cancellation
groupoid (i.e., all left and right translations are bijective). Evidently, every finite
division (cancellation) groupoid is a quasigroup.

A homomorphic image of a quasigroup is not necessarily a quasigroup, however
it is a division groupoid. We will see that, conversely, every division groupoid is
a homomorphic image of a quasigroup.

By a quasigroup cover of a division groupoid G we mean a pair consisting
of a quasigroup ) and a homomorphism h of () onto G such that there is no
quasigroup congruence (i.e., no cancellative congruence) of @ contained in the
kernel of h, except the identity.

By a coreflection of a division groupoid G in the class of quasigroups we mean
a quasigroup ) together with a homomorphism h of @ to G such that whenever
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Q' is a quasigroup and &’ is a homomorphism of Q' into G then there is a unique
homomorphism ¢ of Q' into () with h’' = hg.

In this paper, we will prove that if G is a division groupoid such that G is
not a quasigroup then G has arbitrarily large quasigroup covers and G has no
coreflection in the class of quasigroups.

2. Cancellative congruences of (division) groupoids

Lemma 2.1. Let 7, s be two congruences of a groupoid G; let A be a block of r
and B a block of s.

(i) If G is a left division groupoid, s is right cancellative and A C B then
r Cs.
(ii) If G is a division groupoid, s is right cancellative and B C A then s C r.

Proor: (i) Let (x,y) € r. Take an element a € A. There is an element v € G
such that a = zu. We have (zu,yu) € r, zu € A, yu € A, so that zu and yu
belong to B, and hence (zu,yu) € s. Since s is right cancellative, this implies
(x,y) € s.

(ii) Let (z,y) € s. Take an element b € B. There are elements u,c € G such
that & = bu and y = cu. Since (bu,cu) € s and s is right cancellative, (b,c) € s.
But then ¢ € B, b,c € A, (b,c) €, (bu,cu) € r and (z,y) € . O

Corollary 2.2. Let r,s be two congruences of a groupoid G. Then r = s,
provided that r and s have a common block and, moreover, at least one of the
following three conditions is satisfied:

(i) G is a left division groupoid and both r and s are right cancellative.
(ii) G is a right division groupoid and both r and s are left cancellative.
(iii) G is a division groupoid and at least one of r,s is either left or right
cancellative.

Lemma 2.3. Let A be a block of a congruence r of a groupoid G.

(i) If r is right cancellative and x,y € G are elements such that xANyA # ()
then (x,y) € r.

(ii) If G is a left division groupoid, r is left cancellative and (x,y) € r then
A =yA.

PRrOOF: (i) We have za = yb for some elements a,b € A. Now (a,b) € r implies
(xza,xb) € 7, so that (yb,xb) € r, and hence (y,z) € 7.

(ii) Let ya, with a € A, be an arbitrary element of yA. There is an element
b € G with ya = xb. Since (ya,yb) € r, we have (a,b) € r, and hence b € A. So,
ya = xb € A and we get yA C xA. Quite similarly, zA C yA. O
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Corollary 2.4. Let A be a block of a cancellative congruence r of a left division
groupoid G. The following are equivalent for x,y € G:
(i) (z,y)er
(ii) zANyA #0;
(iii) zA = yA.

Corollary 2.5. Let r be a cancellative congruence of a division groupoid G.
The following are equivalent for x,y € G:

(i) (z,y) €

(ii) zAN yA 7& () for at least one block A of r;
(i) Az N Ay # 0 for at least one block A of r;
(iv) A = yA for every block A of r;
(v) Az = Ay for every block A of r.

Proposition 2.6. Let A be a block of a cancellative congruence r of a division
groupoid G. Then any block B of r can be expressed as B = x A for some x € G,
and also as B = Ay for some y € G.

PROOF: According to Lemma 2.3, the family {zA: x € G} is a partition of G.
Denote by s the corresponding equivalence relation. If (uv) € r and a € A then
there are elements w,b € G with v = wa and v = wb, and we have (a,b) € r
be A uv e wA, and hence (u,v) € s. This shows that » C s. On the other
hand, each of the sets A, for x € G, is contained in a block of r. Consequently,
s C r, and we have shown that r = s. Now B = Ay is a matter of duality. ]

Proposition 2.7. Let r be a cancellative congruence of a division groupoid G
and let A, B be two blocks of r. Then card(A) = card(B) and

card(G) = card(A) - card(g).

PrOOF: By Proposition 2.6, B =zA and A = yB for some z,y € G. The rest is
clear. 0

Proposition 2.8. Let r be a congruence of a right cancellation left division
groupoid G and let A,B be two blocks of r. Then card(A) = card(B) and
card(G) = card(A) - card(G/r).

PROOF: Take an element a € A. We have ab € B for some element b € (G, and it
follows that Ry(A) C B. Since Ry is injective, we have card(A) < card(B). The
rest is clear. ([

Lemma 2.9. Let r be a congruence of a right cancellation left division groupoid.
If at least one of the blocks of r is finite then r is right cancellative.
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PROOF: Let z,y,z € G be such that (yz,zz) € r. Denote by A and B the
blocks of 7 containing the elements y and yx, respectively. Then zx € B and
Az C B. Since G is a right cancellation groupoid, we have card(Ax) = card(A).
On the other hand, according to Proposition 2.8, A and B are both finite and
card(A) = card(B). Consequently, Az = B and zz = az for some a € A. But
then z = a and (y,z) € 7. O

Corollary 2.10. Let r be a congruence of a quasigroup () such that at least one
of the blocks of r is finite. Then r is cancellative.

Proposition 2.11. Let G be a left division groupoid. The join of any nonempty
collection S of left cancellative congruences of G in the congruence lattice of G
is a left cancellative congruence.

PROOF: Denote by r the join of S, so that r is the transitive closure of the union
of S. Let a,b,c € G and (ab,ac) € r. There is a finite sequence dy,...,d, of
elements of G such that dyg = ab, d,, = ac and, for every ¢ = 1,...,n, the pair
(di—1,d;) belongs to a congruence s; € S. Since G is a left division groupoid, for
every i = 0,...,n there is an element e; € G with d; = ae;; of course, we can
take eg = b and e,, = c. Since the congruences s; are left cancellative, we have
(e;—1,€;) € s;. Hence (eg,e,) € 1, i.e., (b,c) € R. O

Proposition 2.12. Let G be a division groupoid. The join of any nonempty
collection of cancellative congruences of GG in the congruence lattice of G is a can-
cellative congruence.

PROOF: It is similar to the proof of Proposition 2.11. (I

Proposition 2.13. Let r,s be two cancellative congruences of a division group-
oid G. Then r o s = sor is a cancellative congruence of G.

PROOF: Let (z,z) € ros, so that (z,y) € r and (y,z) € s for an element
y € G. There are elements a,b,c € G such that x = za, y = ba and z = be. We
have (za,ba) € r, (ba,bc) € s, and hence (x,b) € r and (a,c¢) € s. Then also
(za,zc) € s, (xe,be) € 1, (z,xc) € s and (xc, z) € r. It follows that ros C sor.
The converse inclusion can be proved similarly. Now it is easy to see that this is
a cancellative congruence of G. O

Lemma 2.14. Let r be a congruence of a left division groupoid G and let H
be a subgroupoid of G containing at least one block of r. Then H is a union
of blocks of r, provided that either H is a right division groupoid and r is left
cancellative or H is a closed subgroupoid of G.

PROOF: Let A be a block of r contained in H. Let z € H, y € G and (z,y) € 7.
We have to show that y € H.
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Assume first that H is a right division groupoid and r is left cancellative.
There are elements a € A, b € H and ¢ € G such that x = ba and y = bc. Then
(ba,bc) € r, (a,c) €r,c€e ACH and y=bc € H.

Next assume that H is a closed subgroupoid of G. We have za € A for some
a € G. Then (za,ya) € r and thus ya € A. Since z,za,ya € H and H is closed,
we get y € H. [l

Lemma 2.15. Let H be a subgroupoid of a groupoid G such that H is a block
of a left (or right) cancellative congruence r of G. Then H is a left (or right,
respectively) closed subgroupoid of G.

PRrOOF: Consider, e.g., the left case. Let ax € H, where a € H and x € G. We
have aa € H, (aa,ax) € r, (a,2) € r, and hence = € H. O

Lemma 2.16. Let r, s be two cancellative congruences of a division groupoid G
and let t = ros. Let A be a block of r and B that of s such that A is a sub-
groupoid of G and AN B # (). The closed subset of G generated by AU B is
a block of the cancellative congruence t; it is a subgroupoid of G.

PRrROOF: According to Proposition 2.13, ¢t = ros = sor is a cancellative con-
gruence. Since both r and s are contained in ¢ and A N B is nonempty, there is
a block D of ¢ such that AUB C D. If a € A then (a,aa) € r Ct and it follows
that D is a subgroupoid of G. By Lemma 2.15, D is a closed subgroupoid of G.
Denote by C' the closed subset of G generated by AU B. We get C C D. In
order to prove the converse inclusion, let x € A and y € D. Then (z,y) € t and
there is an element z € G with (x,2) € r and (z,y) € s. Then also z € A and
we have uy € B for some u € G. Consequently, (uz,uy) € s, uz € B, and hence
u € C, since C' is right closed. But C is also left closed and the elements u,uy
belong to C, so we get y € C. This proves D C C. O

Proposition 2.17. Let r be a congruence of a groupoid G. Then r is a sub-
groupoid of G x G. This subgroupoid is left (or right) closed in G x G if and
only if r is a left (or right, respectively) cancellative congruence of G.

PROOF: It is easy. (I

3. Cancellative cores of congruences

Definition 3.1. Let G be a groupoid. We denote by ¢;(G) (or ¢.(G)) the
smallest left (or right, respectively) cancellative congruence of G and by ¢(G) the
smallest cancellative congruence of G. Further, we denote by a;(G) (or a,(G),
wcckerLy (or |J,cq kerR,),
respectively) and by a(G) the congruence generated by a;(G) U a,(G).

respectively) the congruence of G generated by (J
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cancellation groupoid then a;(G) = ¢;(G) = idg. If G is a cancellation groupoid
then a(G) = ¢(G) = idg.

Clearly, a;(G) C ¢;(G), a,(G) C ¢,(G) and a(G) C c(G). If G is a left
c

Definition 3.2. Let r be a congruence of a groupoid G. If it exists, the
largest left (or right, respectively) cancellative congruence of G contained in r
is called the left (or right, respectively) cancellative core of r and it is denoted
by core;c(r) (or core, g, respectively). Similarly, the largest cancellative con-
gruence of G contained in r, if it exists, is called the cancellative core of r and
it is denoted by coreg(r).

Proposition 3.3. Let r be a congruence of a division (left division, respectively)
groupoid G. Then coreg(r) (or core;q(r), respectively) exists if and only if
c(G) Cr (or ¢;(G) Cr, respectively).

PROOF: Suppose that ¢(G) C r. Then the set S of cancellative congruences
contained in 7 is nonempty and, according to Proposition 2.12, coreg(r) is just
the congruence generated by the union of S. The rest is clear. (I

Definition 3.4. For any binary relation r on a groupoid G we define two rela-
tions ag(r) and Bg(r) as follows: (a,b) € ag(r) if and only if (y, z) € r whenever
a =xy and b = zz for some x,y, z € G.

Dually, (a,b) € Ba(r) if and only if (y,z) € r whenever a = yx and b = zx
for some x,y,z € G.

Lemma 3.5. Let r be a binary relation on a groupoid G. Put s = ag(r).

(i) If r is symmetric then s is symmetric.

(ii) If G is a left division groupoid and r is transitive then s is transitive.

) If G is a left cancellation groupoid and r is reflexive then s is reflexive.
)

)

If G is a left division groupoid and r is left stable then s C r.
(v) If t is a left cancellative congruence of G such that t C r then t C s.

(i
(iv

PRrOOF: It is easy. O

Lemma 3.6. Let r be a congruence of a left quasigroup G. Then ag(r) is an
equivalence and core; (r) C ag(r) Cr.

PRrOOF: Combine Proposition 3.3 and Lemma 3.5. (|

Lemma 3.7. Let r be a binary relation on a groupoid G. Put s = ag(r)N fa(r).

(i) If r is symmetric then s is symmetric.
(ii) If G is a division groupoid and r is transitive then s is transitive.
(iii) If G is a cancellation groupoid and r is reflexive then s is reflexive.
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(iv) If G is a division groupoid and r is stable then s C r.
(v) If t is a cancellative congruence of G such that t C r thent C s.

ProOOF: Combine Lemma 3.5 and its dual.

Lemma 3.8. Let r be a congruence of a quasigroup ). Then coreg(r) C
ag(r) N Bo(r) Cr and ag(r) N Bg(r) is an equivalence.
PRrROOF: Combine Proposition 3.3 and Lemma 3.7. (|

Definition 3.9. For any binary relation r on a groupoid G we define two rela-
tions v¢ (1) and d¢(r) as follows: (a,b) € va(r) if and only if (f(a), f(b)) € ag(r)
for every f from the multiplication monoid of G.

Dually, (a,b) € dg(r) if and only if (f(a), f(b)) € Ba(r) for every f from the
multiplication monoid of G.

Lemma 3.10. Let r be a binary relation on a groupoid G. Put s = yg(r).
(i) Then s is stable and s C ag(r).
(ii) If r is symmetric then s is symmetric.
(iii) If G is a left division groupoid and r is transitive then s is transitive.
(iv) If G is a left cancellation groupoid and r is reflexive then s is reflexive.
(v) If G is a left division groupoid and r is left stable then s C r.
(vi) If t is a left cancellative congruence of G such that t C r then t C s.

Proor: Use Lemma 3.5. O
-

Lemma 3.11. Let r be a congruence of a left quasigroup G. Then core; c(r)
v6(r) C ag(r) Cr and v (r) is a congruence of G.

O

ProOF: Combine Proposition 3.3 and Lemma 3.10.

Lemma 3.12. Let r be a binary relation on a groupoid G. Put s = yg(r)Ndg(r).

(i) Then s is stable and s C ag(r) N Ba(r).
(ii) If r is symmetric then s is symmetric.

If G is a cancellation groupoid and r is reflexive then s is reflexive.

)
(iii) If G is a division groupoid and r is transitive then s is transitive.
(iv)

)

(v) If G is a division groupoid and r is left stable then s C r.
(vi) If t is a cancellative congruence of G such that ¢t C r thent C s.

PrOOF: Combine Lemma 3.10 and its dual. O
Lemma 3.13. Let r be a congruence of a quasigroup (. Then
coreg(r) C vo(r)Ndg(r) Cag(r)NpBg(r) Cr

and o (r) Ndg(r) is a congruence of Q.
PRrROOF: Combine Proposition 3.3 and Lemma 3.12. O
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Lemma 3.14. Let r be a congruence of a left division groupoid G. If ¢;(G) Cr
then
a;(G) C ¢i(GQ) Ccoreyg(r) Cya(r) Cag(r)Cr

and ~yg(r) is a congruence of G.

PROOF: Since a;(G) C r, one can easily see that ag(r) is reflexive. The rest
follows from Proposition 3.3 and Lemmas 3.5 and 3.10. O

Proposition 3.15. Let r be a congruence of a left division groupoid G such that
¢/(@) Cr. Define a chain ro 211 D1y 2

Tit1 = yc(ri). Then corerg(r) =(;5q7i-

. of congruences of G by ro = r and

PROOF: Put s =[);5 i It follows from Lemma 3.14 that s is a congruence of G
and ¢;(G) C corelﬁgzr) C s C r. In order to prove s = core; ¢(r), it remains to
show that s is left cancellative. Let (zy,zz) € s, so that (zy,xz) € 1141 = va (1)
for all s. We have (zy,zz) € ag(r;), and hence (y, z) € r;. Since this is true for
all i, we get (y,z) € s. O

Lemma 3.16. Let r be a congruence of a division groupoid G. If ¢(G) C r then
a(G@) C ¢(G) C coreg(r) Cya(r) Nég(r) Cag(r)NBa(r) Cr

and g (r) N dg(r) is a congruence of G.

PrOOF: Use Lemma 3.14 and its dual. (]

Proposition 3.17. Let r be a congruence of a division groupoid G such that
c(G) C r. Define a chain rg 2 r1 2 ro O ... of congruences of G by 1o = r and

Tit1 =ac(ri) N 6 (ri). Then coreg(r) = (;5qTi-

PROOF: Similar to the proof of Proposition 3.15. O

4. Quasigroup covers and pseudo-coreflections

Definition 4.1. Let V be a variety of groupoids and G be a division groupoid
from V. By a V-quasigroup cover of G we mean a surjective homomorphism
m: @ — G such that @ is a quasigroup belonging to V' and coreg (ker(7)) = idg.
The cover is said to be minimal if P = () whenever P is a subquasigroup of @)
such that 7(P) = G.

By a pseudo-coreflection of G in the class of quasigroups from V we mean
a homomorphism o: @ — G such that Q) is a quasigroup from V and whenever
o' Q' — G is a homomorphism of a quasigroup @’ from V into G then there is
at least one homomorphism o: Q' — @ such that ¢’ = op.

273
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By a coreflection of G in the class of quasigroups from V' we mean a homomor-
phism o: @ — G such that @ is a quasigroup from V and whenever ¢/': Q" — G
is a homomorphism of a quasigroup @’ from V into G then there is a unique
homomorphism ¢: Q" — @ such that ¢ = ogp.

Lemma 4.2. Let w: Q — G be a surjective homomorphism of a quasigroup @
onto a division groupoid G. Put s = coreg(ker(m)) and denote by o the natural
projection of @ onto QQ/s. There is a unique homomorphism p: Q/s — G with
m=p0o and 9: Q/s — G is a quasigroup cover of G.

PROOF: The core exists by Proposition 3.3 and the rest is clear. O

Proposition 4.3. Let G be a division groupoid and let there exist a surjective
homomorphism 7: @ — G, where ) is a quasigroup. Then G has a quasigroup
cover m: Q1 — G such that card(Q1) = card(Q) and @ is a homomorphic
image of a subquasigroup of ().

PROOF: If G is finite then G is a quasigroup and we can put Q1 = G. Let G be
infinite. There is a subset S of @ such that card(S) = card(G) and 7(S) = G.
Denote by P the subquasigroup of ) generated by S. According to Lemma 4.2,
there is a congruence s of P such that ¢: P/s — G is a quasigroup cover of G.
We have card(P/s) = card(G). O

Proposition 4.4. If 7: Q — G is a minimal quasigroup cover of a division
groupoid G then card(Q) = card(G).

PRroOOF: It is easy. O

Proposition 4.5. Let V' be a variety of groupoids and let G € V be a division
groupoid having a pseudo-coreflection o: (Q — G in the class of quasigroups
from V. Let m: P — G be a V-quasigroup cover of G. Then o is surjective and
there is an injective homomorphism p: P — @) such that m = op. Consequently,
card(P) < card(Q). If o: @ — G is a minimal quasigroup cover of G then p is
an isomorphism of P onto Q.

PROOF: Since o is a pseudo-coreflection, there is a homomorphism g¢: P — @
with m = op. We have ker(p) C corep(ker(m)) = idp, so that g is injective. The
rest is clear. O

Proposition 4.6. Let V' be a variety of groupoids and let G € V' be a division
groupoid having a pseudo-coreflection o: () — G in the class of quasigroups
from V. Put s = coreg(ker(o)) and denote by w: Q — @Q/s the natural projec-
tion. There is a homomorphism ¢: Q/s — G with o = pm, and this homomor-
phism is also a pseudo-coreflection of G in the class of quasigroups from V. If o
is surjective then o is a quasigroup cover of G. If o is a coreflection then s = id.



Quasigroup covers of division groupoids

PROOF: Since o is a pseudo-coreflection, there is a homomorphism 7: Q/s — @
such that o = o7. Clearly, 7 is injective. We have oidg = ¢ = o7 = o77. So,
if o is a coreflection then 77 = idg, and hence s = idg. The rest is clear. O

5. Quasigroup covers of large regular cardinalities

Let G be a division groupoid and let a be a regular cardinal number (i.e., no
set of cardinality less than « is the union of fewer than « sets for cardinality
less than «) such that « > card(G). In this section we are going to construct
a quasigroup cover of G of cardinality a.

Construction 5.1. Put Q = G x a. An element (a,i) € @ will be denoted by a;.
We have card(Q) = a.

A partial binary operation f on @ is said to be small if card(f) < a. An
element a; € Q is said to be f-unused if f(z,y) = z implies a; ¢ {z,y,z}. If f
is small then for every a € G the set of f-unused elements in {a;: i € a} is of
cardinality o.

Denote by Z the set of ordered quintuples (a;, bj, ak, bm,€), where a,b € G,
i,j,k,m € a and ¢ € {0,1,2,3}.

Take a bijection B of a onto Z. We are going to define, by transfinite induc-
tion, a small partial binary operation f; on @ for any I € «, in such a way that
I < J implies f; C f;. Let I € o and suppose that f; has been defined for all
J < I. Denote by f; the union of all these f;, J < I. Then f} is a partial binary
operation on @ and f7 is small (since « is regular). Let B(I) = (a;, b;, ak, b, €).
We distinguish four cases.

Case 1: Let € = 0. If fj(a;,b;) is defined, put f; = f]. Otherwise, put ¢ = ab
(the product in G), choose p € « in such a way that ¢, is f;-unused, and left f;
be the extension of f; by fr(a;,b;) = ¢p.

Case 2: Let ¢ = 1. If there is an element x € @ with fj(a;,z) = b;, put
fr = f;. Otherwise, choose ¢ € G such that ac = b (this is possible, since G is
a division groupoid), choose p € « in such a way that ¢, is fj-unused, and let f;
be the extension of f; by fr(a;,cp) = b;.

Case 3: Let ¢ = 2. If there is an element y € @ with f;(y,a;) = b, put
fr = f;. Otherwise, choose ¢ € G so that ca = b, choose p € « in such a way that
¢p is f-unused, and let fr be the extension of f; by fr(cp,a:) = b;.

Case 4: Let ¢ = 3. Take elements ¢,d,e € G such that ac = d and de = b
(the element ¢ can be taken arbitrarily, and then the existence of e follows from
the fact that G is a division groupoid). Choose p,q,r, s € o in such a way that
Cp, dg, dr, €5 are pairwise different and f -unused, and let f; be the extension of f;

by f](ai7cp) = dm f](dq,es) = ij f](ak;c[)) =d,, f](d’r';es) = by,.

275



276 J.J. Jezek, T.J. Kepka, P. C. Némec

This completes the transfinite induction. Denote by f the union of all the
partial operations f7, I € a. Clearly, f is a binary operation on ) and it is not
difficult to check that @ is a quasigroup with respect to f. The mapping a; — a
is a homomorphism of @ onto G. Denote by & its kernel, i.e., (a;,b;) € s if and
only if a =b.

Let 6 be a groupoid congruence of ) such that § C x and 6 # idg. We are
going to prove that § = k. We have (a;,ax) € 0 for some a € G and some i # j.
Consider any pair (bj,bn,) € £ with j # m. There is an I € a with B(I) =
(@i, bj, ak, by, 3). By Case 4, there are elements ¢, dg, dr, es with f(a;, cp) = dy,
flak,cp) = dr (so that (dy,d,) € 0) and f(dg,es) = b;, f(dr,es) = by, so that
(bj, bm) € 6. Hence 6 = k.

We have proved the following theorem.

Theorem 5.2. Let G be a division groupoid and « be a regular cardinal number
such that « > card(G). The mapping h, defined by h(a;) = a, is a homomor-
phism of the (above constructed) quasigroup @ of cardinality o onto G. There is
no groupoid congruence of @) contained in the kernel of h, other than the identity
on () and the kernel of h. In particular, if G is not a quasigroup then h: Q — G
is a quasigroup cover of G.

Theorem 5.3. Let G be a division groupoid such that G is not a quasigroup.
Then G has no pseudo-coreflection in the class of quasigroups.

PROOF: Suppose that G has a pseudo-coreflection o: @ — G. Take an arbitrary
regular cardinal number a > card(G). By Theorem 5.2, there is a quasigroup
cover hy: P, — G such that card(P,) = a. According to Proposition 4.5,
a = card(P,) < card(Q). But there are arbitrarily large regular cardinal numbers,
so we get a contradiction. (Il

Theorem 5.4. Let V be any of the following three varieties:
(i) the variety of idempotent groupoids;
(ii) the variety of commutative groupoids;
(iii) the variety of idempotent commutative groupoids.

Let G € V be a division groupoid such that G is not a quasigroup. Then for every
regular cardinal number « > card(G) there is a V-quasigroup cover h: Q@ — G
such that card(Q)) = «. The groupoid G has no pseudo-coreflection in the class
of quasigroups from V.

PRrROOF: Construction 5.1 can be slightly modified in an obvious individual way
to the needs of each of these three cases. Then we can proceed as in the proofs
of Theorems 5.2 and 5.3. ]



Quasigroup covers of division groupoids

6. A simple construction of a quasigroup cover

Let G be a division groupoid (which is not a quasigroup). Then G has also
a quasigroup cover of cardinality card(G). This could be proved by the techniques
used in the proof of Construction 5.1 (cf. Proposition 4.3), at the cost of some
technical difficulties. We will give here a different, more simple proof. We first
need a construction of free quasigroups that can be traced back to T. Evans,
see [7].

Construction 6.1. Let X be a nonempty set. Denote by T the absolutely free
(term) algebra with three binary operations -, /,\ over X and let FQx be the
subset of T consisting of the terms that contain no subterm of any of the forms
(uv),/v, u\ (uv), u(u\wv), (v, u)u, v,/ (L\v), (v, u)\v (for any terms v and v).
Define three binary operations o, /N on FQyx as follows. If uv € FQx, put
u o v = uv; otherwise, if either v = u\w or u = w, v for a term w then put
vov =w. If u/ve FQRx, put u /v = u,v; otherwise, if either v = wv or
v =w\u then put v /v =w. If W\wv € FQx, put u\_ v = u\w; otherwise, if
either v = uw or u = v, w then put u \ v = w. Then FQx is a free quasigroup
over X with respect to these operations o, N\

Construction 6.2. Now, let G be a division groupoid. For every ¢t € FQg
define h(t) € G by induction on the length of the term ¢ as follows. If ¢ € G, let
h(t) =t. If t = uw, let h(t) = h(u)h(v). If t = uw v, let h(t) be an arbitrarily
chosen element a € G with ah(v) = h(u) (its existence follows from the fact that
G is a division groupoid). If ¢t = u\w, let h(t) be an arbitrarily chosen element
a € G with h(u)a = h(v).

Let us prove that h is a homomorphism of the quasigroup F Qg onto G. Let
u,v € FQg. We must prove h(u)h(v) = h(uowv) in G. If wowv = uw, it follows
from the definition. Let v = u\w, so that wov = w. Then h(v) was defined in
such a way that h(u)h(v) = h(w) = h(u o v). In the remaining case u = w, v
the proof is similar.

Therefore for every division groupoid G we have constructed a quasigroup
FQ¢ and a homomorphism h of FQg onto G. Clearly, if GG is infinite then
card(FQg) = card(G). This need not to be a quasigroup cover, but according
to Lemma 4.2, we obtain a quasigroup cover of G if we take the factor of FQg
through the congruence corepg,, (ker(h)).

Observe that this construction of quasigroup cover is canonical in some sense
(which we do not fully understand).
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