
Commentationes Mathematicae Universitatis Carolinae

Jaroslav J. Ježek; Tomáš Kepka; Petr Němec
Quasigroup covers of division groupoids

Commentationes Mathematicae Universitatis Carolinae, Vol. 64 (2023), No. 3, 265–278

Persistent URL: http://dml.cz/dmlcz/152297

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2023

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/152297
http://dml.cz


Comment.Math.Univ.Carolin. 64,3 (2023) 265–278 265

Quasigroup covers of division groupoids

† Jaroslav J. Ježek, Tomáš J. Kepka, Petr C. Němec

Abstract. Let G be a division groupoid that is not a quasigroup. For each regular
cardinal α > |G| we construct a quasigroup Q on G × α that is a quasigroup
cover of G (i.e., G is a homomorphic image of Q and G is not an image of any
quasigroup that is a proper factor of Q). We also show how to easily obtain
quasigroup covers from free quasigroups.
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Throughout the paper, a set with a binary operation will be called a groupoid,

following the classical usage of B.A. Hausmann and O. Ore in [9]; groupoids

are also known as magmas, binars or multiplicative systems. One rather familiar

groupoid/magma is the multiplicative semigroup N(·) of positive integers (recog-

nised for several millenia). The multiplicative group Q+(·) of positive rationals is

widely used as well. Positive integers form a subgroupoid/submagma of positive

rationals and the latter serve as a group of fractions of the former ones.

It is a notoriously known fact that a division semigroup is a group, whence

a quasigroup. This is not true for general groupoids anymore. E.g., setting

n ∗ m = |n − m| for all n,m ∈ N0 (nonnegative integers), we get a division

groupoid N0(∗) that is not a quasigroup. Homomorphic images of quasigroups

are division groupoids, however not necessarily quasigroups. The investigation of

homomorphic images (i.e., factors by stable equivalences) of quasigroups started

already in the forties of the last century, see, e.g., [1], [2], [3], [4], [5], [6], [8], [11],

and is continued in the present note. Stable equivalences that are not quasigroup

congruences were constructed, e.g., in [3] and [6]. Our main aim is to show that

every proper division groupoid possesses a quasigroup cover of “arbitrary size”.

This paper (after many years) finalizes a common research started several

months before untimely death of our colleague J. J. Ježek who deceased in 2011,

see also [10].
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266 J. J. Ježek, T. J. Kepka, P. C. Němec

1. Basic notions

Let G be a groupoid. For every element a ∈ G we define two mappings La

and Ra (called the left and the right translation by a) of G into G by La(x) = ax

and Ra(x) = xa. The submonoid of the transformation monoid of G generated

by all the mappings La and Ra (for a ∈ G) is called the multiplication monoid

of G.

We shall say that G is a left (right, respectively) division groupoid if for any

two elements a, b ∈ G there is an element x ∈ G with a = bx (a = xb, respec-

tively). Clearly, G is a left (right, respectively) division groupoid if and only

if all left (right, respectively) translations are surjective. Similarly, we shall say

that G is a left (right, respectively) cancellation groupoid if all left (right, respec-

tively) translations are injective. If G is both left and right division (cancellation,

respectively) groupoid then it is said to be a division (cancellation, respectively)

groupoid.

A relation r on a groupoid G is said to be left stable if (x, y) ∈ r implies

(ax, ay) ∈ r for any a ∈ G. Right stable relations are defined dually. A relation

is said to be stable if it is both left and right stable. A congruence on G turns

out to be precisely a stable equivalent relation.

A congruence r of a groupoid G is said to be left (right, respectively) can-

cellative if for all a, x, y ∈ G, (ax, ay) ∈ r ((xa, ya) ∈ r, respectively) implies

(x, y) ∈ r. A congruence which is both left and right cancellative is said to be

cancellative.

A subset S of a groupoid G is said to be left (right, respectively) closed (in G)

if x ∈ S whenever x ∈ G and ax ∈ S (xa ∈ S, respectively) for some a ∈ S.

A subset is said to be closed if it is both left and right closed.

An element x ∈ G is said to be idempotent if xx = x. The set of idempotent

elements of a groupoid G will be denoted by Id(G).

By a quasigroup we mean a groupoid which is both division and cancellation

groupoid (i.e., all left and right translations are bijective). Evidently, every finite

division (cancellation) groupoid is a quasigroup.

A homomorphic image of a quasigroup is not necessarily a quasigroup, however

it is a division groupoid. We will see that, conversely, every division groupoid is

a homomorphic image of a quasigroup.

By a quasigroup cover of a division groupoid G we mean a pair consisting

of a quasigroup Q and a homomorphism h of Q onto G such that there is no

quasigroup congruence (i.e., no cancellative congruence) of Q contained in the

kernel of h, except the identity.

By a coreflection of a division groupoid G in the class of quasigroups we mean

a quasigroup Q together with a homomorphism h of Q to G such that whenever
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Q′ is a quasigroup and h′ is a homomorphism of Q′ into G then there is a unique

homomorphism g of Q′ into Q with h′ = hg.

In this paper, we will prove that if G is a division groupoid such that G is

not a quasigroup then G has arbitrarily large quasigroup covers and G has no

coreflection in the class of quasigroups.

2. Cancellative congruences of (division) groupoids

Lemma 2.1. Let r, s be two congruences of a groupoid G; let A be a block of r

and B a block of s.

(i) If G is a left division groupoid, s is right cancellative and A ⊆ B then

r ⊆ s.

(ii) If G is a division groupoid, s is right cancellative and B ⊆ A then s ⊆ r.

Proof: (i) Let (x, y) ∈ r. Take an element a ∈ A. There is an element u ∈ G

such that a = xu. We have (xu, yu) ∈ r, xu ∈ A, yu ∈ A, so that xu and yu

belong to B, and hence (xu, yu) ∈ s. Since s is right cancellative, this implies

(x, y) ∈ s.

(ii) Let (x, y) ∈ s. Take an element b ∈ B. There are elements u, c ∈ G such

that x = bu and y = cu. Since (bu, cu) ∈ s and s is right cancellative, (b, c) ∈ s.

But then c ∈ B, b, c ∈ A, (b, c) ∈ r, (bu, cu) ∈ r and (x, y) ∈ r. �

Corollary 2.2. Let r, s be two congruences of a groupoid G. Then r = s,

provided that r and s have a common block and, moreover, at least one of the

following three conditions is satisfied:

(i) G is a left division groupoid and both r and s are right cancellative.

(ii) G is a right division groupoid and both r and s are left cancellative.

(iii) G is a division groupoid and at least one of r, s is either left or right

cancellative.

Lemma 2.3. Let A be a block of a congruence r of a groupoid G.

(i) If r is right cancellative and x, y ∈ G are elements such that xA∩yA 6= ∅

then (x, y) ∈ r.

(ii) If G is a left division groupoid, r is left cancellative and (x, y) ∈ r then

xA = yA.

Proof: (i) We have xa = yb for some elements a, b ∈ A. Now (a, b) ∈ r implies

(xa, xb) ∈ r, so that (yb, xb) ∈ r, and hence (y, x) ∈ r.

(ii) Let ya, with a ∈ A, be an arbitrary element of yA. There is an element

b ∈ G with ya = xb. Since (ya, yb) ∈ r, we have (a, b) ∈ r, and hence b ∈ A. So,

ya = xb ∈ xA and we get yA ⊆ xA. Quite similarly, xA ⊆ yA. �
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Corollary 2.4. Let A be a block of a cancellative congruence r of a left division

groupoid G. The following are equivalent for x, y ∈ G:

(i) (x, y) ∈ r;

(ii) xA ∩ yA 6= ∅;

(iii) xA = yA.

Corollary 2.5. Let r be a cancellative congruence of a division groupoid G.

The following are equivalent for x, y ∈ G:

(i) (x, y) ∈ r;

(ii) xA ∩ yA 6= ∅ for at least one block A of r;

(iii) Ax ∩ Ay 6= ∅ for at least one block A of r;

(iv) xA = yA for every block A of r;

(v) Ax = Ay for every block A of r.

Proposition 2.6. Let A be a block of a cancellative congruence r of a division

groupoid G. Then any block B of r can be expressed as B = xA for some x ∈ G,

and also as B = Ay for some y ∈ G.

Proof: According to Lemma 2.3, the family {xA : x ∈ G} is a partition of G.

Denote by s the corresponding equivalence relation. If (uv) ∈ r and a ∈ A then

there are elements w, b ∈ G with u = wa and v = wb, and we have (a, b) ∈ r,

b ∈ A, u, v ∈ wA, and hence (u, v) ∈ s. This shows that r ⊆ s. On the other

hand, each of the sets xA, for x ∈ G, is contained in a block of r. Consequently,

s ⊆ r, and we have shown that r = s. Now B = Ay is a matter of duality. �

Proposition 2.7. Let r be a cancellative congruence of a division groupoid G

and let A,B be two blocks of r. Then card(A) = card(B) and

card(G) = card(A) · card
(G

r

)

.

Proof: By Proposition 2.6, B = xA and A = yB for some x, y ∈ G. The rest is

clear. �

Proposition 2.8. Let r be a congruence of a right cancellation left division

groupoid G and let A,B be two blocks of r. Then card(A) = card(B) and

card(G) = card(A) · card(G/r).

Proof: Take an element a ∈ A. We have ab ∈ B for some element b ∈ G, and it

follows that Rb(A) ⊆ B. Since Rb is injective, we have card(A) ≤ card(B). The

rest is clear. �

Lemma 2.9. Let r be a congruence of a right cancellation left division groupoid.

If at least one of the blocks of r is finite then r is right cancellative.
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Proof: Let x, y, z ∈ G be such that (yx, zx) ∈ r. Denote by A and B the

blocks of r containing the elements y and yx, respectively. Then zx ∈ B and

Ax ⊆ B. Since G is a right cancellation groupoid, we have card(Ax) = card(A).

On the other hand, according to Proposition 2.8, A and B are both finite and

card(A) = card(B). Consequently, Ax = B and zx = ax for some a ∈ A. But

then z = a and (y, z) ∈ r. �

Corollary 2.10. Let r be a congruence of a quasigroup Q such that at least one

of the blocks of r is finite. Then r is cancellative.

Proposition 2.11. Let G be a left division groupoid. The join of any nonempty

collection S of left cancellative congruences of G in the congruence lattice of G

is a left cancellative congruence.

Proof: Denote by r the join of S, so that r is the transitive closure of the union

of S. Let a, b, c ∈ G and (ab, ac) ∈ r. There is a finite sequence d0, . . . , dn of

elements of G such that d0 = ab, dn = ac and, for every i = 1, . . . , n, the pair

(di−1, di) belongs to a congruence si ∈ S. Since G is a left division groupoid, for

every i = 0, . . . , n there is an element ei ∈ G with di = aei; of course, we can

take e0 = b and en = c. Since the congruences si are left cancellative, we have

(ei−1, ei) ∈ si. Hence (e0, en) ∈ r, i.e., (b, c) ∈ R. �

Proposition 2.12. Let G be a division groupoid. The join of any nonempty

collection of cancellative congruences of G in the congruence lattice of G is a can-

cellative congruence.

Proof: It is similar to the proof of Proposition 2.11. �

Proposition 2.13. Let r, s be two cancellative congruences of a division group-

oid G. Then r ◦ s = s ◦ r is a cancellative congruence of G.

Proof: Let (x, z) ∈ r ◦ s, so that (x, y) ∈ r and (y, z) ∈ s for an element

y ∈ G. There are elements a, b, c ∈ G such that x = xa, y = ba and z = bc. We

have (xa, ba) ∈ r, (ba, bc) ∈ s, and hence (x, b) ∈ r and (a, c) ∈ s. Then also

(xa, xc) ∈ s, (xc, bc) ∈ r, (x, xc) ∈ s and (xc, z) ∈ r. It follows that r ◦ s ⊆ s ◦ r.

The converse inclusion can be proved similarly. Now it is easy to see that this is

a cancellative congruence of G. �

Lemma 2.14. Let r be a congruence of a left division groupoid G and let H

be a subgroupoid of G containing at least one block of r. Then H is a union

of blocks of r, provided that either H is a right division groupoid and r is left

cancellative or H is a closed subgroupoid of G.

Proof: Let A be a block of r contained in H . Let x ∈ H , y ∈ G and (x, y) ∈ r.

We have to show that y ∈ H .
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Assume first that H is a right division groupoid and r is left cancellative.

There are elements a ∈ A, b ∈ H and c ∈ G such that x = ba and y = bc. Then

(ba, bc) ∈ r, (a, c) ∈ r, c ∈ A ⊆ H and y = bc ∈ H .

Next assume that H is a closed subgroupoid of G. We have xa ∈ A for some

a ∈ G. Then (xa, ya) ∈ r and thus ya ∈ A. Since x, xa, ya ∈ H and H is closed,

we get y ∈ H . �

Lemma 2.15. Let H be a subgroupoid of a groupoid G such that H is a block

of a left (or right) cancellative congruence r of G. Then H is a left (or right,

respectively) closed subgroupoid of G.

Proof: Consider, e.g., the left case. Let ax ∈ H , where a ∈ H and x ∈ G. We

have aa ∈ H , (aa, ax) ∈ r, (a, x) ∈ r, and hence x ∈ H . �

Lemma 2.16. Let r, s be two cancellative congruences of a division groupoid G

and let t = r ◦ s. Let A be a block of r and B that of s such that A is a sub-

groupoid of G and A ∩ B 6= ∅. The closed subset of G generated by A ∪ B is

a block of the cancellative congruence t; it is a subgroupoid of G.

Proof: According to Proposition 2.13, t = r ◦ s = s ◦ r is a cancellative con-

gruence. Since both r and s are contained in t and A ∩ B is nonempty, there is

a block D of t such that A∪B ⊆ D. If a ∈ A then (a, aa) ∈ r ⊆ t and it follows

that D is a subgroupoid of G. By Lemma 2.15, D is a closed subgroupoid of G.

Denote by C the closed subset of G generated by A ∪ B. We get C ⊆ D. In

order to prove the converse inclusion, let x ∈ A and y ∈ D. Then (x, y) ∈ t and

there is an element z ∈ G with (x, z) ∈ r and (z, y) ∈ s. Then also z ∈ A and

we have uy ∈ B for some u ∈ G. Consequently, (uz, uy) ∈ s, uz ∈ B, and hence

u ∈ C, since C is right closed. But C is also left closed and the elements u, uy

belong to C, so we get y ∈ C. This proves D ⊆ C. �

Proposition 2.17. Let r be a congruence of a groupoid G. Then r is a sub-

groupoid of G × G. This subgroupoid is left (or right) closed in G × G if and

only if r is a left (or right, respectively) cancellative congruence of G.

Proof: It is easy. �

3. Cancellative cores of congruences

Definition 3.1. Let G be a groupoid. We denote by cl(G) (or cr(G)) the

smallest left (or right, respectively) cancellative congruence of G and by c(G) the

smallest cancellative congruence of G. Further, we denote by al(G) (or ar(G),

respectively) the congruence of G generated by
⋃

a∈G kerLa (or
⋃

a∈G kerRa),

respectively) and by a(G) the congruence generated by al(G) ∪ ar(G).
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Clearly, al(G) ⊆ cl(G), ar(G) ⊆ cr(G) and a(G) ⊆ c(G). If G is a left

cancellation groupoid then al(G) = cl(G) = idG. If G is a cancellation groupoid

then a(G) = c(G) = idG.

Definition 3.2. Let r be a congruence of a groupoid G. If it exists, the

largest left (or right, respectively) cancellative congruence of G contained in r

is called the left (or right, respectively) cancellative core of r and it is denoted

by core l,G(r) (or core r,G, respectively). Similarly, the largest cancellative con-

gruence of G contained in r, if it exists, is called the cancellative core of r and

it is denoted by coreG(r).

Proposition 3.3. Let r be a congruence of a division (left division, respectively)

groupoid G. Then coreG(r) (or core l,G(r), respectively) exists if and only if

c(G) ⊆ r (or cl(G) ⊆ r, respectively).

Proof: Suppose that c(G) ⊆ r. Then the set S of cancellative congruences

contained in r is nonempty and, according to Proposition 2.12, coreG(r) is just

the congruence generated by the union of S. The rest is clear. �

Definition 3.4. For any binary relation r on a groupoid G we define two rela-

tions αG(r) and βG(r) as follows: (a, b) ∈ αG(r) if and only if (y, z) ∈ r whenever

a = xy and b = xz for some x, y, z ∈ G.

Dually, (a, b) ∈ βG(r) if and only if (y, z) ∈ r whenever a = yx and b = zx

for some x, y, z ∈ G.

Lemma 3.5. Let r be a binary relation on a groupoid G. Put s = αG(r).

(i) If r is symmetric then s is symmetric.

(ii) If G is a left division groupoid and r is transitive then s is transitive.

(iii) If G is a left cancellation groupoid and r is reflexive then s is reflexive.

(iv) If G is a left division groupoid and r is left stable then s ⊆ r.

(v) If t is a left cancellative congruence of G such that t ⊆ r then t ⊆ s.

Proof: It is easy. �

Lemma 3.6. Let r be a congruence of a left quasigroup G. Then αG(r) is an

equivalence and core l,G(r) ⊆ αG(r) ⊆ r.

Proof: Combine Proposition 3.3 and Lemma 3.5. �

Lemma 3.7. Let r be a binary relation on a groupoid G. Put s = αG(r)∩ βG(r).

(i) If r is symmetric then s is symmetric.

(ii) If G is a division groupoid and r is transitive then s is transitive.

(iii) If G is a cancellation groupoid and r is reflexive then s is reflexive.
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(iv) If G is a division groupoid and r is stable then s ⊆ r.

(v) If t is a cancellative congruence of G such that t ⊆ r then t ⊆ s.

Proof: Combine Lemma 3.5 and its dual. �

Lemma 3.8. Let r be a congruence of a quasigroup Q. Then coreQ(r) ⊆

αQ(r) ∩ βQ(r) ⊆ r and αQ(r) ∩ βQ(r) is an equivalence.

Proof: Combine Proposition 3.3 and Lemma 3.7. �

Definition 3.9. For any binary relation r on a groupoid G we define two rela-

tions γG(r) and δG(r) as follows: (a, b) ∈ γG(r) if and only if (f(a), f(b)) ∈ αG(r)

for every f from the multiplication monoid of G.

Dually, (a, b) ∈ δG(r) if and only if (f(a), f(b)) ∈ βG(r) for every f from the

multiplication monoid of G.

Lemma 3.10. Let r be a binary relation on a groupoid G. Put s = γG(r).

(i) Then s is stable and s ⊆ αG(r).

(ii) If r is symmetric then s is symmetric.

(iii) If G is a left division groupoid and r is transitive then s is transitive.

(iv) If G is a left cancellation groupoid and r is reflexive then s is reflexive.

(v) If G is a left division groupoid and r is left stable then s ⊆ r.

(vi) If t is a left cancellative congruence of G such that t ⊆ r then t ⊆ s.

Proof: Use Lemma 3.5. �

Lemma 3.11. Let r be a congruence of a left quasigroup G. Then core l,G(r) ⊆

γG(r) ⊆ αG(r) ⊆ r and γG(r) is a congruence of G.

Proof: Combine Proposition 3.3 and Lemma 3.10. �

Lemma 3.12. Let r be a binary relation on a groupoid G. Put s = γG(r)∩ δG(r).

(i) Then s is stable and s ⊆ αG(r) ∩ βG(r).

(ii) If r is symmetric then s is symmetric.

(iii) If G is a division groupoid and r is transitive then s is transitive.

(iv) If G is a cancellation groupoid and r is reflexive then s is reflexive.

(v) If G is a division groupoid and r is left stable then s ⊆ r.

(vi) If t is a cancellative congruence of G such that t ⊆ r then t ⊆ s.

Proof: Combine Lemma 3.10 and its dual. �

Lemma 3.13. Let r be a congruence of a quasigroup Q. Then

coreQ(r) ⊆ γQ(r) ∩ δQ(r) ⊆ αQ(r) ∩ βQ(r) ⊆ r

and γQ(r) ∩ δQ(r) is a congruence of Q.

Proof: Combine Proposition 3.3 and Lemma 3.12. �



Quasigroup covers of division groupoids 273

Lemma 3.14. Let r be a congruence of a left division groupoid G. If cl(G) ⊆ r

then
al(G) ⊆ cl(G) ⊆ core l,G(r) ⊆ γG(r) ⊆ αG(r) ⊆ r

and γG(r) is a congruence of G.

Proof: Since al(G) ⊆ r, one can easily see that αG(r) is reflexive. The rest

follows from Proposition 3.3 and Lemmas 3.5 and 3.10. �

Proposition 3.15. Let r be a congruence of a left division groupoid G such that

cl(G) ⊆ r. Define a chain r0 ⊇ r1 ⊇ r2 ⊇ . . . of congruences of G by r0 = r and

ri+1 = γG(ri). Then core l,G(r) =
⋂

i≥0
ri.

Proof: Put s =
⋂

i≥0
ri. It follows from Lemma 3.14 that s is a congruence of G

and cl(G) ⊆ core l,G(r) ⊆ s ⊆ r. In order to prove s = core l,G(r), it remains to

show that s is left cancellative. Let (xy, xz) ∈ s, so that (xy, xz) ∈ ri+1 = γG(ri)

for all i. We have (xy, xz) ∈ αG(ri), and hence (y, z) ∈ ri. Since this is true for

all i, we get (y, z) ∈ s. �

Lemma 3.16. Let r be a congruence of a division groupoid G. If c(G) ⊆ r then

a(G) ⊆ c(G) ⊆ coreG(r) ⊆ γG(r) ∩ δG(r) ⊆ αG(r) ∩ βG(r) ⊆ r

and γG(r) ∩ δG(r) is a congruence of G.

Proof: Use Lemma 3.14 and its dual. �

Proposition 3.17. Let r be a congruence of a division groupoid G such that

c(G) ⊆ r. Define a chain r0 ⊇ r1 ⊇ r2 ⊇ . . . of congruences of G by r0 = r and

ri+1 = γG(ri) ∩ δG(ri). Then coreG(r) =
⋂

i≥0
ri.

Proof: Similar to the proof of Proposition 3.15. �

4. Quasigroup covers and pseudo-coreflections

Definition 4.1. Let V be a variety of groupoids and G be a division groupoid

from V . By a V -quasigroup cover of G we mean a surjective homomorphism

π : Q → G such that Q is a quasigroup belonging to V and coreQ(ker(π)) = idQ.

The cover is said to be minimal if P = Q whenever P is a subquasigroup of Q

such that π(P ) = G.

By a pseudo-coreflection of G in the class of quasigroups from V we mean

a homomorphism σ : Q → G such that Q is a quasigroup from V and whenever

σ′ : Q′ → G is a homomorphism of a quasigroup Q′ from V into G then there is

at least one homomorphism ̺ : Q′ → Q such that σ′ = σ̺.
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By a coreflection of G in the class of quasigroups from V we mean a homomor-

phism σ : Q → G such that Q is a quasigroup from V and whenever σ′ : Q′ → G

is a homomorphism of a quasigroup Q′ from V into G then there is a unique

homomorphism ̺ : Q′ → Q such that σ′ = σ̺.

Lemma 4.2. Let π : Q → G be a surjective homomorphism of a quasigroup Q

onto a division groupoid G. Put s = coreQ(ker(π)) and denote by σ the natural

projection of Q onto Q/s. There is a unique homomorphism ̺ : Q/s → G with

π = ̺σ and ̺ : Q/s → G is a quasigroup cover of G.

Proof: The core exists by Proposition 3.3 and the rest is clear. �

Proposition 4.3. Let G be a division groupoid and let there exist a surjective

homomorphism π : Q → G, where Q is a quasigroup. Then G has a quasigroup

cover π1 : Q1 → G such that card(Q1) = card(Q) and Q1 is a homomorphic

image of a subquasigroup of Q.

Proof: If G is finite then G is a quasigroup and we can put Q1 = G. Let G be

infinite. There is a subset S of Q such that card(S) = card(G) and π(S) = G.

Denote by P the subquasigroup of Q generated by S. According to Lemma 4.2,

there is a congruence s of P such that ̺ : P/s → G is a quasigroup cover of G.

We have card(P/s) = card(G). �

Proposition 4.4. If π : Q → G is a minimal quasigroup cover of a division

groupoid G then card(Q) = card(G).

Proof: It is easy. �

Proposition 4.5. Let V be a variety of groupoids and let G ∈ V be a division

groupoid having a pseudo-coreflection σ : Q → G in the class of quasigroups

from V . Let π : P → G be a V-quasigroup cover of G. Then σ is surjective and

there is an injective homomorphism ̺ : P → Q such that π = σ̺. Consequently,

card(P ) ≤ card(Q). If σ : Q → G is a minimal quasigroup cover of G then ̺ is

an isomorphism of P onto Q.

Proof: Since σ is a pseudo-coreflection, there is a homomorphism ̺ : P → Q

with π = σ̺. We have ker(̺) ⊆ coreP (ker(π)) = idP , so that ̺ is injective. The

rest is clear. �

Proposition 4.6. Let V be a variety of groupoids and let G ∈ V be a division

groupoid having a pseudo-coreflection σ : Q → G in the class of quasigroups

from V . Put s = coreQ(ker(σ)) and denote by π : Q → Q/s the natural projec-

tion. There is a homomorphism ̺ : Q/s → G with σ = ̺π, and this homomor-

phism is also a pseudo-coreflection of G in the class of quasigroups from V . If σ

is surjective then ̺ is a quasigroup cover of G. If σ is a coreflection then s = idQ.
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Proof: Since σ is a pseudo-coreflection, there is a homomorphism τ : Q/s → Q

such that ̺ = στ . Clearly, τ is injective. We have σ idQ = σ = ̺π = στπ. So,

if σ is a coreflection then τπ = idQ, and hence s = idQ. The rest is clear. �

5. Quasigroup covers of large regular cardinalities

Let G be a division groupoid and let α be a regular cardinal number (i.e., no

set of cardinality less than α is the union of fewer than α sets for cardinality

less than α) such that α > card(G). In this section we are going to construct

a quasigroup cover of G of cardinality α.

Construction 5.1. Put Q = G×α. An element (a, i) ∈ Q will be denoted by ai.

We have card(Q) = α.

A partial binary operation f on Q is said to be small if card(f) < α. An

element ai ∈ Q is said to be f -unused if f(x, y) = z implies ai /∈ {x, y, z}. If f

is small then for every a ∈ G the set of f -unused elements in { ai : i ∈ α } is of

cardinality α.

Denote by Z the set of ordered quintuples (ai, bj, ak, bm, ε), where a, b ∈ G,

i, j, k,m ∈ α and ε ∈ {0, 1, 2, 3}.

Take a bijection B of α onto Z. We are going to define, by transfinite induc-

tion, a small partial binary operation fI on Q for any I ∈ α, in such a way that

I ≤ J implies fI ⊆ fJ . Let I ∈ α and suppose that fJ has been defined for all

J < I. Denote by f ′
I the union of all these fJ , J < I. Then f ′

I is a partial binary

operation on Q and f ′
I is small (since α is regular). Let B(I) = (ai, bj, ak, bm, ε).

We distinguish four cases.

Case 1: Let ε = 0. If f ′
I(ai, bj) is defined, put fI = f ′

I . Otherwise, put c = ab

(the product in G), choose p ∈ α in such a way that cp is f ′
I -unused, and left fI

be the extension of f ′
I by fI(ai, bj) = cp.

Case 2 : Let ε = 1. If there is an element x ∈ Q with f ′
I(ai, x) = bj , put

fI = f ′
I . Otherwise, choose c ∈ G such that ac = b (this is possible, since G is

a division groupoid), choose p ∈ α in such a way that cp is f ′
I -unused, and let fI

be the extension of f ′
I by fI(ai, cp) = bj .

Case 3 : Let ε = 2. If there is an element y ∈ Q with f ′
I(y, ai) = bj, put

fI = f ′
I . Otherwise, choose c ∈ G so that ca = b, choose p ∈ α in such a way that

cp is f ′
I -unused, and let fI be the extension of f ′

I by fI(cp, ai) = bj .

Case 4: Let ε = 3. Take elements c, d, e ∈ G such that ac = d and de = b

(the element c can be taken arbitrarily, and then the existence of e follows from

the fact that G is a division groupoid). Choose p, q, r, s ∈ α in such a way that

cp, dq, dr, es are pairwise different and f ′
I -unused, and let fI be the extension of f ′

I

by fI(ai, cp) = dq, fI(dq, es) = bj, fI(ak, cp) = dr, fI(dr, es) = bm.
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This completes the transfinite induction. Denote by f the union of all the

partial operations fI , I ∈ α. Clearly, f is a binary operation on Q and it is not

difficult to check that Q is a quasigroup with respect to f . The mapping ai 7→ a

is a homomorphism of Q onto G. Denote by κ its kernel, i.e., (ai, bj) ∈ κ if and

only if a = b.

Let θ be a groupoid congruence of Q such that θ ⊆ κ and θ 6= idQ. We are

going to prove that θ = κ. We have (ai, ak) ∈ θ for some a ∈ G and some i 6= j.

Consider any pair (bj , bm) ∈ κ with j 6= m. There is an I ∈ α with B(I) =

(ai, bj , ak, bm, 3). By Case 4, there are elements cp, dq, dr, es with f(ai, cp) = dq,

f(ak, cp) = dr (so that (dq, dr) ∈ θ) and f(dq, es) = bj, f(dr, es) = bm, so that

(bj , bm) ∈ θ. Hence θ = κ.

We have proved the following theorem.

Theorem 5.2. Let G be a division groupoid and α be a regular cardinal number

such that α > card(G). The mapping h, defined by h(ai) = a, is a homomor-

phism of the (above constructed) quasigroup Q of cardinality α onto G. There is

no groupoid congruence of Q contained in the kernel of h, other than the identity

on Q and the kernel of h. In particular, if G is not a quasigroup then h : Q → G

is a quasigroup cover of G.

Theorem 5.3. Let G be a division groupoid such that G is not a quasigroup.

Then G has no pseudo-coreflection in the class of quasigroups.

Proof: Suppose that G has a pseudo-coreflection σ : Q → G. Take an arbitrary

regular cardinal number α > card(G). By Theorem 5.2, there is a quasigroup

cover hα : Pα → G such that card(Pα) = α. According to Proposition 4.5,

α = card(Pα) ≤ card(Q). But there are arbitrarily large regular cardinal numbers,

so we get a contradiction. �

Theorem 5.4. Let V be any of the following three varieties:

(i) the variety of idempotent groupoids;

(ii) the variety of commutative groupoids;

(iii) the variety of idempotent commutative groupoids.

Let G ∈ V be a division groupoid such that G is not a quasigroup. Then for every

regular cardinal number α > card(G) there is a V -quasigroup cover h : Q → G

such that card(Q) = α. The groupoid G has no pseudo-coreflection in the class

of quasigroups from V .

Proof: Construction 5.1 can be slightly modified in an obvious individual way

to the needs of each of these three cases. Then we can proceed as in the proofs

of Theorems 5.2 and 5.3. �
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6. A simple construction of a quasigroup cover

Let G be a division groupoid (which is not a quasigroup). Then G has also

a quasigroup cover of cardinality card(G). This could be proved by the techniques

used in the proof of Construction 5.1 (cf. Proposition 4.3), at the cost of some

technical difficulties. We will give here a different, more simple proof. We first

need a construction of free quasigroups that can be traced back to T. Evans,

see [7].

Construction 6.1. Let X be a nonempty set. Denote by T the absolutely free

(term) algebra with three binary operations ·,�,� over X and let FQX be the

subset of T consisting of the terms that contain no subterm of any of the forms

(uv)�v, u�(uv), u(u�v), (v�u)u, v�(u�v), (v�u)�v (for any terms u and v).

Define three binary operations ◦,ր,տ on FQX as follows. If uv ∈ FQX , put

u ◦ v = uv; otherwise, if either v = u�w or u = w�v for a term w then put

u ◦ v = w. If u�v ∈ FQX , put u ր v = u�v; otherwise, if either u = wv or

v = w�u then put u ր v = w. If u�v ∈ FQX , put u տ v = u�v; otherwise, if

either v = uw or u = v�w then put u տ v = w. Then FQX is a free quasigroup

over X with respect to these operations ◦,ր,տ.

Construction 6.2. Now, let G be a division groupoid. For every t ∈ FQG

define h(t) ∈ G by induction on the length of the term t as follows. If t ∈ G, let

h(t) = t. If t = uv, let h(t) = h(u)h(v). If t = u�v, let h(t) be an arbitrarily

chosen element a ∈ G with ah(v) = h(u) (its existence follows from the fact that

G is a division groupoid). If t = u�v, let h(t) be an arbitrarily chosen element

a ∈ G with h(u)a = h(v).

Let us prove that h is a homomorphism of the quasigroup FQG onto G. Let

u, v ∈ FQG. We must prove h(u)h(v) = h(u ◦ v) in G. If u ◦ v = uv, it follows

from the definition. Let v = u�w, so that u ◦ v = w. Then h(v) was defined in

such a way that h(u)h(v) = h(w) = h(u ◦ v). In the remaining case u = w�v

the proof is similar.

Therefore for every division groupoid G we have constructed a quasigroup

FQG and a homomorphism h of FQG onto G. Clearly, if G is infinite then

card(FQG) = card(G). This need not to be a quasigroup cover, but according

to Lemma 4.2, we obtain a quasigroup cover of G if we take the factor of FQG

through the congruence coreFQG
(ker(h)).

Observe that this construction of quasigroup cover is canonical in some sense

(which we do not fully understand).
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