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On special Rees matrix semigroups over semigroups

ATTILA NAGY, CsABA TOTH

Abstract. We study the right regular representation of special Rees matrix semi-
groups over semigroups, and discuss their embedding in idempotent-free left
simple semigroups.
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1. Introduction

The concept of the Rees matrix semigroup is one of the tools that can be ef-
fectively applied in the study of the structure of semigroups. The Rees matrix
construction was first used by D. Rees in [27] to give a description of completely
simple (and completely 0-simple) semigroups in terms of their maximal subgroups.
Completely simple semigroups are simple semigroups containing a primitive idem-
potent. By an other characterization, they are simple semigroups containing
both a minimal left ideal and a minimal right ideal. By the Rees theorem, see,
for example, [4, Theorem 3.5], a semigroup is completely simple if and only
if it is isomorphic with a Rees matrix semigroup over a group. The group in
the construction of a Rees matrix semigroup can be replaced with a semigroup,
see, for example, [1], [8], [10], [12], [13], [26]. If S is a semigroup, I and A
are nonempty sets, and P is a A x I matrix with entries P(\,4), then the set
M(S;I,A; P) of all triples (i,s,A) € I x S x A is a semigroup under the mul-
tiplication (i, s, A)(j,t,u) = (i, sP(X,J)t, u), which is called a Rees I x A ma-
triz semigroup over the semigroup S with A x I sandwich matriz P. Some
studies have focused on Rees I x A matrix semigroups over semigroups satis-
fying |I| = 1. In this case the entries of P can be denoted by P(\), the ele-
ments of M(S;I,A; P) can be considered in the form (s, A), and the operation
on M(S;I,A; P) is modified as follows: (s, A)(t,u) = (sP(N\)t,u). We denote
this Rees matrix semigroups as M(S;A; P). By [4, Theorem 8.14], a simple
semigroup containing a minimal left ideal (or a minimal right ideal) contains an
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idempotent element if and only if it is completely simple. This result focuses
attention on idempotent-free simple semigroups containing minimal left (but not
minimal right) ideals, studied by M. Teissier in [28] and R. Croisot in [7]. Rees
I x A matrix semigroups over semigroups satisfying |I| = 1 are suitable for con-
structing such semigroups. If S is an idempotent-free left simple semigroup and
P is an arbitrary mapping of a nonempty set A into S, then the Rees matrix
semigroup M(S; A; P) is an idempotent-free simple semigroup containing a min-
imal left ideal, see, for example, the dual of [5, Exercise 6 for Section 8.2]. The
above role of Rees I x A matrix semigroups over semigroups satisfying |I| = 1
motivated us to examine them and investigate their usefulness in other areas of
the theory of semigroups. In our present paper we focus on Rees matrix semi-
groups M(S; S/0s; P), where 6g is the kernel of the right regular representation
of S and P is a choice function on the collection of all fg-classes of S (i.e.,
P([slos) € [s]os for every fg-class [s]py of S). These Rees matrix semigroups
seem interesting because they show how far the right regular representation of
semigroups is from being faithful. In Section 2 we investigate the right regular
representation of Rees matrix semigroups M(.S;.S/0g; P). We show that the right
regular representation of a Rees matrix semigroup M (S;S/0g; P) is isomorphic
to the Rees matrix semigroup M(S/0%;S/6s; P’) of the same type, where 6%
is the colon congruence of g and P’ is the mapping of S/fs onto S/0% de-
fined by the following way: for every s € S, P': [s]g5 > [s]ez. In Section 3 we
discuss the embedding of Rees matrix semigroups M(S;S/0g; P) in idempotent-
free left simple semigroups. The modern semigroup theory tends to focus more
on semigroups with at least one idempotent (especially finite semigroups) than
on the more mysterious idempotent-free situation; hence whenever we can say
something interesting about the idempotent-free case, it is worth considering. We
show that if P is an arbitrary choice function on the collection of all #g-classes of
a semigroup S, then the Rees matrix semigroup M(S; S/0g; P) can be embedded
in an idempotent-free left simple semigroup if and only if S is idempotent-free
and the right colon congruence 6% is left cancellative.

2. Right regular representation

A transformation ¢ of a semigroup S is called a right translation of S if
(xy)o = z(yp) is satisfied for every z,y € S. For an arbitrary element a of
a semigroup S, g,: ¢ — za, x € S, is a right translation of S which is called
an inner right translation of S corresponding to the element a. For an arbitrary
semigroup S, the mapping ®g: a — g, is a homomorphism of S into the semi-
group of all right translations of S. The homomorphism ®g is called the right
reqular representation of S. We mention that there is a distinction between the
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notion of the right regular representation of a semigroup S and the representation
induced in S by the right regular representation of S!, where S' denotes S if S
has an identity element and otherwise denotes the semigroup S U {1} which can
be obtained from S by the adjunction of an identity element to .S. This latter
representation (called the extended right regular representation of S) is always
faithful. Using the terminology of [2], the semigroup ®g(S) is also called the
right regular representation of S. The right regular representation of semigroups
plays an important role in the investigation of the structure of semigroups. We
refer to papers [2], [3], [20], [21], [23], [22], [24] in which the structure of semi-
groups S are examined by the help of the right regular representation ®g(S)
of S. For an arbitrary semigroup S, let 85 denote the kernel of ®g. It is clear
that (a,b) € Og for elements a,b € S if and only if za = b for all € S. In this
section we focus on the right regular representation of Rees matrix semigroups
M(S;5/0s; P), where S is an arbitrary semigroup and P is an arbitrary choice
function on the collection of all 6g-classes of S.

First we prove a lemma, which will be used in the proof of Theorem 2.2.
Lemma 2.1. For arbitrary congruences «, 3 on a semigroup S with a C 8 and
an arbitrary choice function P on the collection of all a-classes of S, the map-
ping Fo. 3: (a,[s]a) — ([a]s,[s]a) is a surjective homomorphism of the Rees ma-
trix semigroup M (S;S/a; P) onto the Rees matrix semigroup M(S/f; S/a; P'),
where P’ is the mapping of S/« onto S/ defined by P’'([s]n) = [s]|s for every
[s]a € S/a.

PRroOOF: It is clear that F, g is surjective. We show that F, g is a homomor-
phism. Let (a,[s]) and (b, [t],) be arbitrary elements of M(S;S/a; P). Then

Fo5((a; [s]a) (b, [tla)) = Fo,p((aP([s]a)b, [tla)) = ([aP([s]a)b]s, [t]a)
= (lals[P([sla)]s[0]s, [t]a)-

Since P is a choice function on the collection of all a-classes of S, we have
P([s]a) € [S]a- Since a C B, we have [P([s]a)]s = [s]g for every s € S. Thus

([als[P([sla)]s[b], [t]a) = (lals[s]s[b]s, [tla) = (lals P’ ([s]a)[b]s, [t]a)
= (lalg; [s]a) (D], [tla) = Fa,p((a; [s]a)) Fa,ps (b, [t]a))-

Hence F, g is a homomorphism. d

If o is a congruence on a semigroup S, then the congruence

0" ={(a,b) € S x S: (Vs € S)(sa, sb) € o}
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on S (defined in [19]) will be called the right colon congruence of p. This name
comes from ring theory: if o; denotes the congruence on a ring R defined by
an ideal J of R, then the congruence on R defined by the right colon ideal of J
is the right colon congruence of p;. It is clear that ¢ C p* for an arbitrary
congruence g on a semigroup S, and hence we can consider the Rees matrix
semigroup M(S/o*; S/o; P’), where P’ is the mapping of S/p onto S/¢* defined
by the following way: for every a € S, P’: [a], — [a]o+-

Theorem 2.2. For an arbitrary semigroup S and an arbitrary choice function P
on the collection of all fg-classes of S, the right regular representation of the
Rees matrix semigroup M(S;S/0g; P) is isomorphic to the Rees matrix semi-
group M(S/6%;S/0g; P'), where 0% is the right colon congruence of 6g and P’
is the mapping of S/0g onto S/6% defined by the following way: for every s € S,
P’ [8]93 — [8]92

PrROOF: By Lemma 2.1, it is sufficient to show that 6aq(s,s/64;p) equals the
kernel of Fy, gx. For elements (a,[s]ps) and (b, [t]es) of the Rees matrix semi-
group M(S;S5/0s; P), we have ((a, [slos), (b, [t]os)) € ker Foq gz if and only if
([a]9§’ [3]95) = ([b]9§’ [t]9s)a that is,

(1) (Vx,y € 5) zya = zyb and [s]os = [t]os-

We show that (1) and ((a, [s]es), (b, [tlos)) € Orq(s;5/65:p) are equivalent. Since P
is a choice function on the collection of all fg-classes of S, (P([yles),y) € 05 for
every y € S, and hence zP([ylp) = zy for every x,y € S. This fact will be used
in the proof several times.

Assume (1). Then, for every (z, [ylos) € M(S;S/0s; P), we have

(@, [ylos)(a, [s]os) = (@P([ylos)a, [s]es) = (zya, [s]os) = (xyb, [s]os)
= (xP([ylos)b: [slos) = (=, [ylos) (b [t]os),
and hence

((a, [s]os) (b, [tles)) € GM(S;S/QS;p).

Conversely, assume that ((a,[s]es), (b, [tlos)) € Or(s;5/65;p)- Then, for every
T,y €85,
(ma [9]95)(a’ [3]95) = (.Z', [y]Bs)(ba [t]Gs)’
and hence
(cha, [3]95) = (.Z'P([y]gs)a, [5]95) = (ma [9]95)(a’ [3]95) = (.Z', [y]Bs)(ba [t]Gs)
= (mP([y]Gs)b’ [t]9s) = (be, [t]9s)a

which implies (1). Consequently 6 x4(s.5/65;p) equals the kernel of the homomor-
phism ]:95,9;. O
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By the proof of Theorem 2.2, if [ is a congruence on a semigroup S such that
B = 0% and P is a choice function on the collection of all fg-classes of S, then
Or(s;5/05:p) equals the kernel of Fyg 5. The next proposition shows that the
converse assertion is also true.

Proposition 2.3. Let P be a choice function on the collection of all 0g-classes
of a semigroup S. If (3 is a congruence on S such that s C 8 and 0x(s;5/65;P)
equals the kernel of Fyg 5, then 8 = 0%.

PROOF: Let 8 be a congruence on a semigroup .S with conditions that s C 8
and O((s;5/05;p) €quals the kernel of Fy, 5, where P is a choice function on
the collection of all g-classes of S. For elements a,b € S, we have (a,b) € 8 if
and only if for arbitrary [slgs € S/0s, Fosp((a,[sles)) = Fos,8((b, [s]os)). Since
the kernel of Fy, 5 equals O(s;5/05;p), this last condition is equivalent to the
condition that for every x,y € S, (z, [y]os)(a, [s]os) = (2, [y]og) (D, [s]og). Since P
is a choice function on the collection of all fg-classes of S, P([y]gs) € [y]os and
hence zP([ylos) = zy. Thus the equation (z, [y]os)(a, [s]os) = (2, [yles) (b, [slos)
has the form (zya,[s]p) = (zybd, [s]es). Thus (a,b) € S if and only if, for every
x,y € S, we have zya = xyb, that is, (a,b) € 6*. Hence = 6*. O

By the result of Theorem 2.2, a triple S, S/fg, S/0% of semigroups has the

property: there are mappings S L5 /05 i/> S/6% such that the right regular
representation of the Rees matrix semigroup M(S;S/0g; P) is isomorphic to the
Rees matrix semigroup M(S/0%;S/0g; P’). For brevity, this property will be
called right regularity.

Definition 2.4. We say that a triple A, B,C of semigroups is right regular, if

there are mappings A LB i) C such that the right regular representation of
the Rees matrix semigroup M (A4; B; P) is isomorphic to the Rees matrix semi-
group M(C; B; P'), that is, M(A; B; P)/0ra;8,p) = M(C; B; P').

By [9, Theorem 5.6 on page 24|, if o is a congruence on a semigroup S,
then ¢*/p is a congruence on the factor semigroup S/p, and (S/0)/(0*/0) =
S/o*. Recall that o*/p is defined by the following way: for elements a,b € S,
([alos [blo) € 0 /0 if and only if (a,b) € ¢*. It is a matter of checking to see that
0" /o= 0g/,- Thus (S/0)/0s/, = S/0*. This implies the following proposition.
Proposition 2.5. For an arbitrary congruence ¢ on an arbitrary semigroup S,
the triple S/o, S/0*, S/(0*)* of factor semigroups is right regular.

By Theorem 2.2, if A, B,C are semigroups with A/04 = B and B/fp = C,
then the triple A, B, C' is right regular. The following example shows that condi-

tions A/04 = B, B/0p = C are not necessary for a triple A, B, C of semigroups
to be right regular.
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Example 2.6. Let A be a left zero semigroup, B be a right zero semigroup with
|B| > 2, and C = {e} be a one-element semigroup. Recall that a semigroup is
a left (or right) zero semigroup if it satisfies the identity ab = a (ab = b, respec-
tively). It is easy to see that 64 is the universal relation on A, and 0p is the iden-
tity relation on B. Then A/0 % B and B/ % C. We show that the triple A, B, C
is right regular. Let P: B — A be an arbitrary mapping. For every elements
(al,bl) and (ag,bg) of M(A;B;P), (al,bl)(ag,bg) = (alP(bl)ag,bg) = (al,bg).
Thus M(A; B; P) is isomorphic to the direct product of the left zero semi-
group A and the right zero semigroup B. Then the right regular representation
of M(A; B; P) is isomorphic to the semigroup B. Let P’ denote the (only pos-
sible) mapping of B onto the one-element semigroup C' = {e}. In the semigroup
M(C; B; P"), we have (e, b1)(e,b2) = (eP’'(b1)e,b2) = (e,ba) for every by,bs € B
from which it follows that b — (e,b) is an isomorphism of B onto M(C; B; P’).
Thus B =2 M(C; B; P’'). Consequently the right regular representation of the
Rees matrix semigroup M(A; B; P) is isomorphic to the Rees matrix semigroup
M(C; B; P"). Consequently the triple A, B, C' is right regular.

Further results on right regular triples of semigroups can be found in [29], in
which the connection between the structure of semigroups belonging to a right
regular triples of semigroups are examined, and examples of right regular triples
of semigroups are presented.

3. Embedding theorems

Let C be a class of semigroups. A congruence p on a semigroup S is called
a C-congruence if the factor semigroup S/p belongs to C. According to this
definition, a congruence ¢ on a semigroup S is called a left cancellative congru-
ence if the factor semigroup S/p is left cancellative, that is, (xa,zb) € ¢ implies
(a,b) € o for every z,a,b € S. In [6, Theorem 1], P. M. Cohn gave necessary and
sufficient conditions for a semigroup to be embedded in a left simple semigroup.
The conditions differ essentially according to whether or not the semigroup con-
tains an idempotent element. He proved that a semigroup S is embedded in
an idempotent-free left simple semigroup if and only if S is idempotent-free and
satisfies the condition: for all a,b,z,y € S, ra = xb implies ya = yb. Using
the terminology of [21], a semigroup S satisfying this last condition is called
a left equalizer simple semigroup. In other words, a semigroup S is left equal-
izer simple if for arbitrary elements a,b € S, the assumption that za = zb is
satisfied for some = € S implies that ya = yb is satisfied for all y € S. By
[21, Theorem 2.1], a semigroup S is left equalizer simple if and only if fg is
a left cancellative congruence (i.e., the right regular representation of S is left
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cancellative). Thus a semigroup S is embedded in an idempotent-free left simple
semigroup if and only if S is idempotent-free and 6g is a left cancellative con-
gruence. The next theorem gives necessary and sufficient conditions for a Rees
matrix semigroup M(S;S/0s; P) to be embedded in an idempotent-free left sim-
ple semigroup, where P is a choice function on the collection of all #g-classes
of S. The right colon congruence of fg plays an important role.

Theorem 3.1. Let S be a semigroup and P be a choice function on the col-
lection of all 0g-classes of S. Then the Rees matrix semigroup M(S;S/0g; P)
can be embedded in an idempotent-free left simple semigroup if and only if S is
idempotent-free and the right colon congruence 0% is left cancellative.

PROOF: By [22, Corollary 2.4], a semigroup S is idempotent-free if and only if the
right regular representation of S (i.e., the factor semigroup S/60g) is idempotent-
free. This fact will be used in the proof several times.

Assume that S is an idempotent-free semigroup such that the right colon
congruence 6§ is left cancellative. Then the factor semigroup S/0% is left can-
cellative. Since (5/0s)/0s/0, = S/0%, it follows from [22, Corollary 2.4] that
S/0% is idempotent-free. Thus S/6% is left cancellative and idempotent-free. We
show that the Rees matrix semigroup M (S/6%;S/0s; P’) is also left cancellative
and idempotent-free, where P': S/0s — S/0% is defined by P'([s]gs) = [s]ez. Let
([zlox, [Yles)s ([aloy, [sles), ([Dlez, [tlos) be arbitrary elements of the Rees matrix
semigroup M(S/0%;S/0s; P'). Assume

([z)oz, [Wlos ) ([alos, [sles) = ([2loz [ylos ) ([log, [Elos)-

Then
([zyales, [slos) = ([z]ox [Yloz[alox. [slos) = ([lex P ([ylos)lalex, [s]os)
= ([0, [Ylos)([aloy, [slos) = ([2]oz, [v]es)([Dlos [tlos)
= ([z]ox P'([y]os)blox, [tlos) = ([Zlox [y]ex[Dlox [t]es)
= ([myb]va [t]os),
and hence (zya,zyb) € 05 and [s|lps = [t]ss. Since 6% is a left cancellative

congruence on S, we have (a,b) € 05. Thus ([a]es, [sles) = ([bley, [tles), and
hence the Rees matrix semigroup M(S/6%;S/0s; P’') is left cancellative. Sup-
pose, indirectly, that the Rees matrix semigroup M(S/0%;S/8s; P') contains an
idempotent element ([e]gs, [f]os). Then

(leloz, [flos) = ([eloz, [flos)([eloz, [flos) = ([eloz[floz [y [flos)

and hence [e]g: is a regular element of the semigroup S/6*. Thus S/0§ contains
an idempotent element. This is a contradiction. Consequently the Rees matrix

285
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semigroup M(S/6%;S/0g; P') is an idempotent-free left cancellative semigroup.
By Theorem 2.2, the right regular representation of the Rees matrix semigroup
M(S;5/0s; P) is isomorphic to the Rees matrix semigroup M(S/0%;S/0s; P’).
Thus 0r(s;5/05;p) is a left cancellative congruence, and hence M(S; S/0s; P) is
left equalizer simple by [21, Theorem 2.1]. Since M(S/6%;S/05; P’) is idempo-
tent-free, it also follows from [22, Corollary 2.4] that M(S;S/0s; P) is idempo-
tent-free. Thus M(S;S/fs; P) is an idempotent-free left equalizer simple semi-
group. By [6, Theorem 1], M(S;S/0s; P) can be embedded in an idempotent-free
left simple semigroup.

Conversely, assume that the Rees matrix semigroup M(S;S/0s; P) can be
embedded in an idempotent-free left simple semigroup. Then M(S;S/0s; P)
is an idempotent-free left equalizer simple semigroup by [6, Theorem 1]. Since
the right regular representation of the Rees matrix semigroup M(S;S/0g; P) is
isomorphic to the Rees matrix semigroup M (S/6%;S/0s; P’'), 22, Corollary 2.4]
and [21, Theorem 2.1] imply that M(S/6%;S/0g; P') is an idempotent-free left
cancellative semigroup. If e is an idempotent element of S, then

([elog [elos)([elo [elos) = (([eloz)* [elos) = ([€°]og [elos) = ([elos [elos),

that is, ([e]ox, [e]os) is an idempotent element of M(S/0%;S/0s; P'). This im-
plies that S is idempotent-free, because M(S/0%;S/0s; P') is idempotent-free.
It remains to show that 6% is a left cancellative congruence on S. Assume
(za,xzb) € 0% for elements x,a,b € S. Then, for arbitrary y,s € S, we have

([Wloz [2]os ) (alos, [slos) = ([Wlos P’ ([#los)aleg [slos) = ([yzalay, [slos)
= (lyzbloz, [slos) = ([Wloz P'([xlos) Dlog [sles)
= ([9ley [#]os) ([Vlos [sles ),

from which we get ([aloz, [s]os) = ([bloz, [s]os), because M(S/0*S;S5/0s; P') is
left cancellative. Thus ( b) € 0%. Consequently 0% is a left cancellative congru-
ence. O

A semigroup satisfying the identity axy = ayx is called a right commutative
semigroup. Right commutative semigroups are investigated in many papers, see,
for example, [11], [14], [15], [17], [18], [22], and in books [16], [25]. It is clear
that every left zero semigroup is right commutative. A semigroup is called a left
abelian group if it is a direct product of a left zero semigroup and an abelian
group. It is known, see the dual of [25, III. 5. 7. Exercise 6]) that a semigroup
is embeddable into a left abelian group if and only if it is right commutative and
right cancellative. The next lemma is on the congruence 6%, where S is a right
commutative right cancellative semigroup.
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Lemma 3.2. If S is a right commutative right cancellative semigroup, then the
congruence 0% is left cancellative.

PrOOF: Let S be a right commutative right cancellative semigroup. Assume
(za,xb) € 0% for elements x,a,b € S. Then, for every s,t € S, stxa = stxb, and
hence stax = stbr by right commutativity of S. Since S is right cancellative,
sta = stb (for every s,t € S), and hence (a,b) € 0%. Consequently 0% is a left
cancellative congruence on S. O

Corollary 3.3. Let S be an idempotent-free right commutative right cancellative
semigroup and P be a choice function on the collection of all fg-classes of S.
Then the Rees matrix semigroup M(S;S/0g; P) is embedded in an idempotent-
free left simple semigroup.

PrOOF: By Lemma 3.2 and Theorem 3.1, it is obvious. O

Acknowledgement. The authors are grateful to the referee for useful comments
and suggestions.
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