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On special Rees matrix semigroups over semigroups

Attila Nagy, Csaba Tóth

Abstract. We study the right regular representation of special Rees matrix semi-
groups over semigroups, and discuss their embedding in idempotent-free left
simple semigroups.
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1. Introduction

The concept of the Rees matrix semigroup is one of the tools that can be ef-

fectively applied in the study of the structure of semigroups. The Rees matrix

construction was first used by D. Rees in [27] to give a description of completely

simple (and completely 0-simple) semigroups in terms of their maximal subgroups.

Completely simple semigroups are simple semigroups containing a primitive idem-

potent. By an other characterization, they are simple semigroups containing

both a minimal left ideal and a minimal right ideal. By the Rees theorem, see,

for example, [4, Theorem 3.5], a semigroup is completely simple if and only

if it is isomorphic with a Rees matrix semigroup over a group. The group in

the construction of a Rees matrix semigroup can be replaced with a semigroup,

see, for example, [1], [8], [10], [12], [13], [26]. If S is a semigroup, I and Λ

are nonempty sets, and P is a Λ × I matrix with entries P (λ, i), then the set

M(S; I,Λ;P ) of all triples (i, s, λ) ∈ I × S × Λ is a semigroup under the mul-

tiplication (i, s, λ)(j, t, µ) = (i, sP (λ, j)t, µ), which is called a Rees I × Λ ma-

trix semigroup over the semigroup S with Λ × I sandwich matrix P . Some

studies have focused on Rees I × Λ matrix semigroups over semigroups satis-

fying |I| = 1. In this case the entries of P can be denoted by P (λ), the ele-

ments of M(S; I,Λ;P ) can be considered in the form (s, λ), and the operation

on M(S; I,Λ;P ) is modified as follows: (s, λ)(t, µ) = (sP (λ)t, µ). We denote

this Rees matrix semigroups as M(S; Λ;P ). By [4, Theorem 8.14], a simple

semigroup containing a minimal left ideal (or a minimal right ideal) contains an
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idempotent element if and only if it is completely simple. This result focuses

attention on idempotent-free simple semigroups containing minimal left (but not

minimal right) ideals, studied by M. Teissier in [28] and R. Croisot in [7]. Rees

I × Λ matrix semigroups over semigroups satisfying |I| = 1 are suitable for con-

structing such semigroups. If S is an idempotent-free left simple semigroup and

P is an arbitrary mapping of a nonempty set Λ into S, then the Rees matrix

semigroupM(S; Λ;P ) is an idempotent-free simple semigroup containing a min-

imal left ideal, see, for example, the dual of [5, Exercise 6 for Section 8.2]. The

above role of Rees I × Λ matrix semigroups over semigroups satisfying |I| = 1

motivated us to examine them and investigate their usefulness in other areas of

the theory of semigroups. In our present paper we focus on Rees matrix semi-

groupsM(S;S/θS;P ), where θS is the kernel of the right regular representation

of S and P is a choice function on the collection of all θS-classes of S (i.e.,

P ([s]θS ) ∈ [s]θS for every θS-class [s]θS of S). These Rees matrix semigroups

seem interesting because they show how far the right regular representation of

semigroups is from being faithful. In Section 2 we investigate the right regular

representation of Rees matrix semigroups M(S;S/θS;P ). We show that the right

regular representation of a Rees matrix semigroup M(S;S/θS;P ) is isomorphic

to the Rees matrix semigroup M(S/θ∗S ;S/θS;P
′) of the same type, where θ∗S

is the colon congruence of θS and P ′ is the mapping of S/θS onto S/θ∗S de-

fined by the following way: for every s ∈ S, P ′ : [s]θS 7→ [s]θ∗

S
. In Section 3 we

discuss the embedding of Rees matrix semigroupsM(S;S/θS;P ) in idempotent-

free left simple semigroups. The modern semigroup theory tends to focus more

on semigroups with at least one idempotent (especially finite semigroups) than

on the more mysterious idempotent-free situation; hence whenever we can say

something interesting about the idempotent-free case, it is worth considering. We

show that if P is an arbitrary choice function on the collection of all θS-classes of

a semigroup S, then the Rees matrix semigroupM(S;S/θS ;P ) can be embedded

in an idempotent-free left simple semigroup if and only if S is idempotent-free

and the right colon congruence θ∗S is left cancellative.

2. Right regular representation

A transformation ̺ of a semigroup S is called a right translation of S if

(xy)̺ = x(y̺) is satisfied for every x, y ∈ S. For an arbitrary element a of

a semigroup S, ̺a : x 7→ xa, x ∈ S, is a right translation of S which is called

an inner right translation of S corresponding to the element a. For an arbitrary

semigroup S, the mapping ΦS : a 7→ ̺a is a homomorphism of S into the semi-

group of all right translations of S. The homomorphism ΦS is called the right

regular representation of S. We mention that there is a distinction between the
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notion of the right regular representation of a semigroup S and the representation

induced in S by the right regular representation of S1, where S1 denotes S if S

has an identity element and otherwise denotes the semigroup S ∪ {1} which can

be obtained from S by the adjunction of an identity element to S. This latter

representation (called the extended right regular representation of S) is always

faithful. Using the terminology of [2], the semigroup ΦS(S) is also called the

right regular representation of S. The right regular representation of semigroups

plays an important role in the investigation of the structure of semigroups. We

refer to papers [2], [3], [20], [21], [23], [22], [24] in which the structure of semi-

groups S are examined by the help of the right regular representation ΦS(S)

of S. For an arbitrary semigroup S, let θS denote the kernel of ΦS . It is clear

that (a, b) ∈ θS for elements a, b ∈ S if and only if xa = xb for all x ∈ S. In this

section we focus on the right regular representation of Rees matrix semigroups

M(S;S/θS;P ), where S is an arbitrary semigroup and P is an arbitrary choice

function on the collection of all θS-classes of S.

First we prove a lemma, which will be used in the proof of Theorem 2.2.

Lemma 2.1. For arbitrary congruences α, β on a semigroup S with α ⊆ β and

an arbitrary choice function P on the collection of all α-classes of S, the map-

ping Fα,β : (a, [s]α) 7→ ([a]β , [s]α) is a surjective homomorphism of the Rees ma-

trix semigroup M(S;S/α;P ) onto the Rees matrix semigroup M(S/β;S/α;P ′),

where P ′ is the mapping of S/α onto S/β defined by P ′([s]α) = [s]β for every

[s]α ∈ S/α.

Proof: It is clear that Fα,β is surjective. We show that Fα,β is a homomor-

phism. Let (a, [s]α) and (b, [t]α) be arbitrary elements of M(S;S/α;P ). Then

Fα,β((a, [s]α)(b, [t]α)) = Fα,β((aP ([s]α)b, [t]α)) = ([aP ([s]α)b]β , [t]α)

= ([a]β [P ([s]α)]β [b]β , [t]α).

Since P is a choice function on the collection of all α-classes of S, we have

P ([s]α) ∈ [s]α. Since α ⊆ β, we have [P ([s]α)]β = [s]β for every s ∈ S. Thus

([a]β [P ([s]α)]β [b]β, [t]α) = ([a]β [s]β [b]β, [t]α) = ([a]βP
′([s]α)[b]β , [t]α)

= ([a]β , [s]α)([b]β , [t]α) = Fα,β((a, [s]α))Fα,β((b, [t]α)).

Hence Fα,β is a homomorphism. �

If ̺ is a congruence on a semigroup S, then the congruence

̺∗ = {(a, b) ∈ S × S : (∀ s ∈ S)(sa, sb) ∈ ̺}
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on S (defined in [19]) will be called the right colon congruence of ̺. This name

comes from ring theory: if ̺J denotes the congruence on a ring R defined by

an ideal J of R, then the congruence on R defined by the right colon ideal of J

is the right colon congruence of ̺J . It is clear that ̺ ⊆ ̺∗ for an arbitrary

congruence ̺ on a semigroup S, and hence we can consider the Rees matrix

semigroup M(S/̺∗;S/̺;P ′), where P ′ is the mapping of S/̺ onto S/̺∗ defined

by the following way: for every a ∈ S, P ′ : [a]̺ 7→ [a]̺∗ .

Theorem 2.2. For an arbitrary semigroup S and an arbitrary choice function P

on the collection of all θS-classes of S, the right regular representation of the

Rees matrix semigroup M(S;S/θS;P ) is isomorphic to the Rees matrix semi-

groupM(S/θ∗S ;S/θS;P
′), where θ∗S is the right colon congruence of θS and P ′

is the mapping of S/θS onto S/θ∗S defined by the following way: for every s ∈ S,

P ′ : [s]θS 7→ [s]θ∗

S
.

Proof: By Lemma 2.1, it is sufficient to show that θM(S;S/θS;P ) equals the

kernel of FθS,θ∗

S
. For elements (a, [s]θS) and (b, [t]θS) of the Rees matrix semi-

group M(S;S/θS;P ), we have ((a, [s]θS ), (b, [t]θS )) ∈ kerFθS,θ∗

S
if and only if

([a]θ∗

S
, [s]θS ) = ([b]θ∗

S
, [t]θS ), that is,

(1) (∀x, y ∈ S) xya = xyb and [s]θS = [t]θS .

We show that (1) and ((a, [s]θS ), (b, [t]θS )) ∈ θM(S;S/θS:P ) are equivalent. Since P

is a choice function on the collection of all θS-classes of S, (P ([y]θS ), y) ∈ θS for

every y ∈ S, and hence xP ([y]θS ) = xy for every x, y ∈ S. This fact will be used

in the proof several times.

Assume (1). Then, for every (x, [y]θS ) ∈ M(S;S/θS;P ), we have

(x, [y]θS )(a, [s]θS ) = (xP ([y]θS )a, [s]θS) = (xya, [s]θS ) = (xyb, [s]θS )

= (xP ([y]θS )b, [s]θS) = (x, [y]θS )(b, [t]θS ),

and hence

((a, [s]θS ), (b, [t]θS)) ∈ θM(S;S/θS;P ).

Conversely, assume that ((a, [s]θS ), (b, [t]θS)) ∈ θM(S;S/θS;P ). Then, for every

x, y ∈ S,

(x, [y]θS )(a, [s]θS ) = (x, [y]θS )(b, [t]θS ),

and hence

(xya, [s]θS ) = (xP ([y]θS )a, [s]θS ) = (x, [y]θS )(a, [s]θS ) = (x, [y]θS )(b, [t]θS )

= (xP ([y]θS )b, [t]θS ) = (xyb, [t]θS),

which implies (1). Consequently θM(S;S/θS;P ) equals the kernel of the homomor-

phism FθS,θ∗

S
. �
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By the proof of Theorem 2.2, if β is a congruence on a semigroup S such that

β = θ∗S and P is a choice function on the collection of all θS-classes of S, then

θM(S;S/θS;P ) equals the kernel of FθS,β . The next proposition shows that the

converse assertion is also true.

Proposition 2.3. Let P be a choice function on the collection of all θS-classes

of a semigroup S. If β is a congruence on S such that θS ⊆ β and θM(S;S/θS;P )

equals the kernel of FθS,β , then β = θ∗S .

Proof: Let β be a congruence on a semigroup S with conditions that θS ⊆ β

and θM(S;S/θS;P ) equals the kernel of FθS,β , where P is a choice function on

the collection of all θS-classes of S. For elements a, b ∈ S, we have (a, b) ∈ β if

and only if for arbitrary [s]θS ∈ S/θS, FθS,β((a, [s]θS )) = FθS,β((b, [s]θS)). Since

the kernel of FθS,β equals θM(S;S/θS;P ), this last condition is equivalent to the

condition that for every x, y ∈ S, (x, [y]θS )(a, [s]θS ) = (x, [y]θS )(b, [s]θS). Since P

is a choice function on the collection of all θS-classes of S, P ([y]θS ) ∈ [y]θS and

hence xP ([y]θS ) = xy. Thus the equation (x, [y]θS )(a, [s]θS ) = (x, [y]θS )(b, [s]θS )

has the form (xya, [s]θS ) = (xyb, [s]θS). Thus (a, b) ∈ β if and only if, for every

x, y ∈ S, we have xya = xyb, that is, (a, b) ∈ θ∗. Hence β = θ∗. �

By the result of Theorem 2.2, a triple S, S/θS, S/θ
∗
S of semigroups has the

property: there are mappings S
P
←− S/θS

P ′

−→ S/θ∗S such that the right regular

representation of the Rees matrix semigroup M(S;S/θS;P ) is isomorphic to the

Rees matrix semigroup M(S/θ∗S ;S/θS;P
′). For brevity, this property will be

called right regularity.

Definition 2.4. We say that a triple A,B,C of semigroups is right regular, if

there are mappings A
P
←− B

P ′

−→ C such that the right regular representation of

the Rees matrix semigroup M(A;B;P ) is isomorphic to the Rees matrix semi-

group M(C;B;P ′), that is, M(A;B;P )/θM(A;B;P )
∼=M(C;B;P ′).

By [9, Theorem 5.6 on page 24], if ̺ is a congruence on a semigroup S,

then ̺∗/̺ is a congruence on the factor semigroup S/̺, and (S/̺)/(̺∗/̺) ∼=

S/̺∗. Recall that ̺∗/̺ is defined by the following way: for elements a, b ∈ S,

([a]̺, [b]̺) ∈ ̺∗/̺ if and only if (a, b) ∈ ̺∗. It is a matter of checking to see that

̺∗/̺ = θS/̺. Thus (S/̺)/θS/̺ ∼= S/̺∗. This implies the following proposition.

Proposition 2.5. For an arbitrary congruence ̺ on an arbitrary semigroup S,

the triple S/̺, S/̺∗, S/(̺∗)∗ of factor semigroups is right regular.

By Theorem 2.2, if A,B,C are semigroups with A/θA ∼= B and B/θB ∼= C,

then the triple A,B,C is right regular. The following example shows that condi-

tions A/θA ∼= B, B/θB ∼= C are not necessary for a triple A,B,C of semigroups

to be right regular.



284 A. Nagy, C. Tóth

Example 2.6. Let A be a left zero semigroup, B be a right zero semigroup with

|B| ≥ 2, and C = {e} be a one-element semigroup. Recall that a semigroup is

a left (or right) zero semigroup if it satisfies the identity ab = a (ab = b, respec-

tively). It is easy to see that θA is the universal relation on A, and θB is the iden-

tity relation on B. Then A/θ 6∼= B and B/θ 6∼= C. We show that the triple A,B,C

is right regular. Let P : B → A be an arbitrary mapping. For every elements

(a1, b1) and (a2, b2) of M(A;B;P ), (a1, b1)(a2, b2) = (a1P (b1)a2, b2) = (a1, b2).

Thus M(A;B;P ) is isomorphic to the direct product of the left zero semi-

group A and the right zero semigroup B. Then the right regular representation

of M(A;B;P ) is isomorphic to the semigroup B. Let P ′ denote the (only pos-

sible) mapping of B onto the one-element semigroup C = {e}. In the semigroup

M(C;B;P ′), we have (e, b1)(e, b2) = (eP ′(b1)e, b2) = (e, b2) for every b1, b2 ∈ B

from which it follows that b 7→ (e, b) is an isomorphism of B onto M(C;B;P ′).

Thus B ∼= M(C;B;P ′). Consequently the right regular representation of the

Rees matrix semigroupM(A;B;P ) is isomorphic to the Rees matrix semigroup

M(C;B;P ′). Consequently the triple A,B,C is right regular.

Further results on right regular triples of semigroups can be found in [29], in

which the connection between the structure of semigroups belonging to a right

regular triples of semigroups are examined, and examples of right regular triples

of semigroups are presented.

3. Embedding theorems

Let C be a class of semigroups. A congruence ̺ on a semigroup S is called

a C-congruence if the factor semigroup S/̺ belongs to C. According to this

definition, a congruence ̺ on a semigroup S is called a left cancellative congru-

ence if the factor semigroup S/̺ is left cancellative, that is, (xa, xb) ∈ ̺ implies

(a, b) ∈ ̺ for every x, a, b ∈ S. In [6, Theorem 1], P.M. Cohn gave necessary and

sufficient conditions for a semigroup to be embedded in a left simple semigroup.

The conditions differ essentially according to whether or not the semigroup con-

tains an idempotent element. He proved that a semigroup S is embedded in

an idempotent-free left simple semigroup if and only if S is idempotent-free and

satisfies the condition: for all a, b, x, y ∈ S, xa = xb implies ya = yb. Using

the terminology of [21], a semigroup S satisfying this last condition is called

a left equalizer simple semigroup. In other words, a semigroup S is left equal-

izer simple if for arbitrary elements a, b ∈ S, the assumption that xa = xb is

satisfied for some x ∈ S implies that ya = yb is satisfied for all y ∈ S. By

[21, Theorem 2.1], a semigroup S is left equalizer simple if and only if θS is

a left cancellative congruence (i.e., the right regular representation of S is left
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cancellative). Thus a semigroup S is embedded in an idempotent-free left simple

semigroup if and only if S is idempotent-free and θS is a left cancellative con-

gruence. The next theorem gives necessary and sufficient conditions for a Rees

matrix semigroup M(S;S/θS;P ) to be embedded in an idempotent-free left sim-

ple semigroup, where P is a choice function on the collection of all θS-classes

of S. The right colon congruence of θS plays an important role.

Theorem 3.1. Let S be a semigroup and P be a choice function on the col-

lection of all θS-classes of S. Then the Rees matrix semigroup M(S;S/θS;P )

can be embedded in an idempotent-free left simple semigroup if and only if S is

idempotent-free and the right colon congruence θ∗S is left cancellative.

Proof: By [22, Corollary 2.4], a semigroup S is idempotent-free if and only if the

right regular representation of S (i.e., the factor semigroup S/θS) is idempotent-

free. This fact will be used in the proof several times.

Assume that S is an idempotent-free semigroup such that the right colon

congruence θ∗S is left cancellative. Then the factor semigroup S/θ∗S is left can-

cellative. Since (S/θS)/θS/θS
∼= S/θ∗S , it follows from [22, Corollary 2.4] that

S/θ∗S is idempotent-free. Thus S/θ∗S is left cancellative and idempotent-free. We

show that the Rees matrix semigroupM(S/θ∗S ;S/θS ;P
′) is also left cancellative

and idempotent-free, where P ′ : S/θS 7→ S/θ∗S is defined by P ′([s]θS ) = [s]θ∗

S
. Let

([x]θ∗

S
, [y]θS), ([a]θ∗

S
, [s]θS ), ([b]θ∗

S
, [t]θS) be arbitrary elements of the Rees matrix

semigroup M(S/θ∗S ;S/θS ;P
′). Assume

([x]θ∗

S
, [y]θS )([a]θ∗

S
, [s]θS) = ([x]θ∗

S
, [y]θS)([b]θ∗

S
, [t]θS).

Then

([xya]θ∗

S
, [s]θS) = ([x]θ∗

S
[y]θ∗

S
[a]θ∗

S
, [s]θS) = ([x]θ∗

S
P ′([y]θS)[a]θ∗

S
, [s]θS )

= ([x]θ∗

S
, [y]θS)([a]θ∗

S
, [s]θS) = ([x]θ∗

S
, [y]θS)([b]θ∗

S
, [t]θS )

= ([x]θ∗

S
P ′([y]θS)[b]θ∗

S
, [t]θS ) = ([x]θ∗

S
[y]θ∗

S
[b]θ∗

S
, [t]θS)

= ([xyb]θ∗

S
, [t]θS),

and hence (xya, xyb) ∈ θ∗S and [s]θS = [t]θS . Since θ∗S is a left cancellative

congruence on S, we have (a, b) ∈ θ∗S . Thus ([a]θ∗

S
, [s]θS) = ([b]θ∗

S
, [t]θS), and

hence the Rees matrix semigroup M(S/θ∗S ;S/θS ;P
′) is left cancellative. Sup-

pose, indirectly, that the Rees matrix semigroup M(S/θ∗S;S/θS ;P
′) contains an

idempotent element ([e]θ∗

S
, [f ]θS). Then

([e]θ∗

S
, [f ]θS) = ([e]θ∗

S
, [f ]θS)([e]θ∗

S
, [f ]θS) = ([e]θ∗

S
[f ]θ∗

S
[e]θ∗

S
, [f ]θS),

and hence [e]θ∗

S
is a regular element of the semigroup S/θ∗. Thus S/θ∗S contains

an idempotent element. This is a contradiction. Consequently the Rees matrix
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semigroup M(S/θ∗S;S/θS ;P
′) is an idempotent-free left cancellative semigroup.

By Theorem 2.2, the right regular representation of the Rees matrix semigroup

M(S;S/θS;P ) is isomorphic to the Rees matrix semigroup M(S/θ∗S;S/θS ;P
′).

Thus θM(S;S/θS;P ) is a left cancellative congruence, and henceM(S;S/θS ;P ) is

left equalizer simple by [21, Theorem 2.1]. Since M(S/θ∗S ;S/θS;P
′) is idempo-

tent-free, it also follows from [22, Corollary 2.4] that M(S;S/θS;P ) is idempo-

tent-free. Thus M(S;S/θS ;P ) is an idempotent-free left equalizer simple semi-

group. By [6, Theorem 1],M(S;S/θS;P ) can be embedded in an idempotent-free

left simple semigroup.

Conversely, assume that the Rees matrix semigroup M(S;S/θS;P ) can be

embedded in an idempotent-free left simple semigroup. Then M(S;S/θS;P )

is an idempotent-free left equalizer simple semigroup by [6, Theorem 1]. Since

the right regular representation of the Rees matrix semigroup M(S;S/θS;P ) is

isomorphic to the Rees matrix semigroup M(S/θ∗S ;S/θS ;P
′), [22, Corollary 2.4]

and [21, Theorem 2.1] imply that M(S/θ∗S ;S/θS ;P
′) is an idempotent-free left

cancellative semigroup. If e is an idempotent element of S, then

([e]θ∗

S
, [e]θS)([e]θ∗

S
, [e]θS) = (([e]θ∗

S
)3, [e]θS) = ([e3]θ∗

S
, [e]θS) = ([e]θ∗

S
, [e]θS),

that is, ([e]θ∗

S
, [e]θS ) is an idempotent element of M(S/θ∗S;S/θS ;P

′). This im-

plies that S is idempotent-free, because M(S/θ∗S ;S/θS ;P
′) is idempotent-free.

It remains to show that θ∗S is a left cancellative congruence on S. Assume

(xa, xb) ∈ θ∗S for elements x, a, b ∈ S. Then, for arbitrary y, s ∈ S, we have

([y]θ∗

S
, [x]θS )([a]θ∗

S
, [s]θS ) = ([y]θ∗

S
P ′([x]θS )[a]θ∗

S
, [s]θS) = ([yxa]θ∗

S
, [s]θS )

= ([yxb]θ∗

S
, [s]θS) = ([y]θ∗

S
P ′([x]θS )[b]θ∗

S
, [s]θS)

= ([y]θ∗

S
, [x]θS )([b]θ∗

S
, [s]θS ),

from which we get ([a]θ∗

S
, [s]θS) = ([b]θ∗

S
, [s]θS), because M(S/θ∗S;S/θS;P

′) is

left cancellative. Thus (a, b) ∈ θ∗S . Consequently θ∗S is a left cancellative congru-

ence. �

A semigroup satisfying the identity axy = ayx is called a right commutative

semigroup. Right commutative semigroups are investigated in many papers, see,

for example, [11], [14], [15], [17], [18], [22], and in books [16], [25]. It is clear

that every left zero semigroup is right commutative. A semigroup is called a left

abelian group if it is a direct product of a left zero semigroup and an abelian

group. It is known, see the dual of [25, III. 5. 7. Exercise 6]) that a semigroup

is embeddable into a left abelian group if and only if it is right commutative and

right cancellative. The next lemma is on the congruence θ∗S , where S is a right

commutative right cancellative semigroup.
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Lemma 3.2. If S is a right commutative right cancellative semigroup, then the

congruence θ∗S is left cancellative.

Proof: Let S be a right commutative right cancellative semigroup. Assume

(xa, xb) ∈ θ∗S for elements x, a, b ∈ S. Then, for every s, t ∈ S, stxa = stxb, and

hence stax = stbx by right commutativity of S. Since S is right cancellative,

sta = stb (for every s, t ∈ S), and hence (a, b) ∈ θ∗S . Consequently θ∗S is a left

cancellative congruence on S. �

Corollary 3.3. Let S be an idempotent-free right commutative right cancellative

semigroup and P be a choice function on the collection of all θS-classes of S.

Then the Rees matrix semigroup M(S;S/θS;P ) is embedded in an idempotent-

free left simple semigroup.

Proof: By Lemma 3.2 and Theorem 3.1, it is obvious. �
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