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1.

The theory of complex interpolation had a remarkable development due to
its usefulness in applications in mathematical analysis. For general literature on
complex interpolation we refer to [2], [36] and references therein. Let us recall
briefly the results of complex interpolation of some known function spaces. For
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Abstract. We present the complex interpolation of Besov and Triebel-Lizorkin
spaces with generalized smoothness. In some particular cases these function
spaces are just weighted Besov and Triebel-Lizorkin spaces. As a corollary of
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Introduction

Lebesgue spaces we have

[LPO (]Rn)v Lpl (Rn)]e = LP(Rn)a

see [2, Theorem 5.1.1], where

(1.1)

Let L,(R"™,w) denote the weighted Lebesgue space with weight w, see below. The

Po p1

1 1-6 0
0<6<1, 1 < po,p1 < 00, — = +
p

weighted version is given as follows:

(1.2)

[LPU (Rna UJO), L;l)l (Rna wl)]e = L;U(Rna wgw%_e)a
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see [2, Theorem 5.5.3] and [36, Theorem 1.18.5] with the same assumptions (1.1).
Clearly all the above results are given for Banach case, but in [34, Lemma 3.4] the
authors gave a generalization of (1.2) to the case 0 < pg,p1 < oo. For Sobolev
spaces
[Wio (R™), Wit (R)]g = W (R™),
with the same assumptions (1.1), 1 < po,p1 < 00, mg,m; € N and m =
(1 — 0)mg + Omq, see [36, Remark 2.4.2/2 |. The extension of the above results
to generalized scale of function spaces are given in [2] and [36]. For convenience
of the reader, we recall some known interpolation results on Besov and Triebel—-
Lizorkin spaces. Such function spaces cover many well-known classical function
spaces such as Holder—Zygmund spaces, Hardy spaces and Sobolev spaces. For
more details one can refer to Triebel’s books [37] and [38]. Let
1 1-6 0 1 1-6 0

(13) 0<9<1) O<p0,p1,q0,Q1<OO, - = +_a - = + —.
p Po 4! q do a1

Then we have
[Bpo.qo R"), Byt o, (R™)]g = B, (R™),

Po,qo P1,q1
provided that

(14) so,s1 €R, s=(1—-0)sp+0s1, 1 <po,p1 <00, 1 <qo <00, 1<q < oo,

see [36, Theorem 2.4.1 ]. We mention that in some cases complex interpolation of
pairs of Besov spaces does not result in a Besov space. More precisely,

(1.5) Byt (R"), Byl (R™)]o = By oo (R"),

see again [36, Theorem 2.4.1 |, with sg # s1 € R, s = (1 —0)sg+0s1, 1 < p < o0,
where By . (R") is the closure of the set of test functions in Bj  (R™). The
result (1.5) is in contradiction with [2, Theorem 6.4.5] in the case of sy # s1
and o = q1 = oo, because of B, . (R") is smaller than B} (R"). For Triebel-
Lizorkin spaces we have

[Fpoao R™), Fpl g, (R™)]g = F ((R™),
with the same assumptions (1.3) and (1.4) but with 1 < ¢g < 00, 1 < g1 < o0,
see [36, Theorem 2.4.2/1]. The quasi-Banach version of complex interpolation of
Besov and Triebel-Lizorkin spaces can be found in [19] and [27]. For weighted
Besov and Lizorkin—Triebel spaces M. Bownik in [6] and A. Wojciechowska in [43]
studied the problem
(1.6) [Fo . (R™ wo), Fiyt , (R™, wi)]e-

Po;qo0 P1,q1
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But both authors only deal with the case wg = w; = w. The general problem,
wo # wi, was completed in [34] but with py < co and p; < oo and the weights
wo, w1 being local Muckenhoupt weights in the sense of Rychkov, see [32].

In this direction we present the complex interpolation of function spaces of
general weights, introduced in [11] and [12], that are based on Tyulenev class
given in [40], [41] and [42]. As an application, we study (1.6), when p; = oo and
wo F wi.

These types of spaces of generalized smoothness have been introduced by sev-
eral authors. We refer, for instance, to references [5], [9], [22], [23], [25]; see also
[3], [4], [26], and [28].

Recently, O. Dominguez and S. Tikhonov in [10] gave a treatment of function
spaces with logarithmic smoothness (Besov, Sobolev, Triebel-Lizorkin), including
various new characterizations for Besov norms in terms of different, sharp esti-
mates for Besov norms of derivatives and potential operators (Riesz and Bessel po-
tentials) in terms of norms of functions themselves and sharp embeddings between
the Besov spaces defined by differences and by Fourier-analytical decompositions
as well as between Besov and Sobolev/Triebel-Lizorkin spaces.

The theory of these spaces had a remarkable development in part due to its
usefulness in applications. For instance, they appear in the study of trace spaces
on fractals, see [14] and [15], for which D. Edmunds and H. Triebel introduced
the spaces B;:;I’, where ¥ is a so-called admissible function, typically of log-type
near 0. For a complete treatment of these spaces we refer the reader to the
work [30]. More general function spaces of generalized smoothness can be found
in [16], and references therein.

The paper is organized as follows. First we recall some basic facts on the
Muckenhoupt classes and the weighted class of Tyulenev. Also we give some key
technical lemmas needed in the proofs of the main statements. In Section 3, we
present some properties of By, ,(R”, {tx}) and F, ,(R™, {t}) spaces. In Section 4
we shall apply a method which has been used in [34] where we calculate the
Calderdn products of associated sequence spaces. From an abstract theory on the
relation between the complex interpolation and the Calderén product of Banach
lattices obtained by A.P. Calderén in [8], we deduce the complex interpolation
theorems of these sequence spaces. Finally, the desired complex interpolation
theorem is lifted by the -transform characterization in the sense of Frazier and
Jawerth.

We will adopt the following convention throughout this paper. As usual, we
denote by R™ the n-dimensional real Euclidean space, while N is the collection
of all natural numbers and No = NU {0}. The letter Z stands for the set of all
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integer numbers. The expression f < g means that f < ¢g for some independent
constant ¢ (and nonnegative functions f and g), and f ~ ¢ means f < g < f.

By suppf we denote the support of the function f, i.e., the closure of its
nonzero set. If E C R™ is a measurable set, then |E| stands for the (Lebesgue)
measure of E and ypg denotes its characteristic function. By ¢ we denote generic
positive constants, which may have different values at different occurrences.

A weight is a nonnegative locally integrable function on R™ that takes values
in (0,00) almost everywhere. For measurable set E C R™ and a weight v, v(F)

/E'y(ac) dz.

Given a measurable set E C R™ and 0 < p < oo, we denote by L,(E) the space

denotes

of all functions f: EF — C equipped with the quasi-norm

1z = [ 1 dx)l/p < oo,

with 0 < p < 0o and
1f | Lo (E)| := eSS-S;plf(fr)l < 0.
xre

For a function f in LI°¢(R"™), we set

Ma(f) = ﬁ /A ()| de

for any A C R". Furthermore, we put

mastt) = (o | If(z)lpdx)l/p,

with 0 < p < oco. Further, given a measurable set £ C R” and a weight v, we
denote the space of all functions f: R™ — C with finite quasi-norm

I 1Lp(R™, V) = LA Lp(R™)
by Lp (Rna 7)'

If 1<p<ooandl/p+1/p’ =1, then p’ is called the conjugate exponent
of p.

The symbol S(R™) is used to denote the set of all Schwartz functions on R™.
In what follows, () will denote a cube in the space R™ with sides parallel to the
coordinate axes and [(Q) will denote the side length of the cube Q. For v € Z
and m € Z", denote by ), the dyadic cube,

Qum :=277([0,1)" +m).
For the collection of all such cubes we use Q :={Qu.m:v €Z, m € Z"}.
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2. Background tools

In this section we present some useful results.

2.1 Muckenhoupt weights. The purpose of this subsection is to review some
known properties of Muckenhoupt class.

Definition 2.1. Let 1 < p < co. We say that a weight v belongs to the Mucken-
houpt class A,(R™) if there exists a constant C' > 0 such that for every cube Q
the following inequality holds

(2.1) MoV Mgy /p(v1) < C.

The smallest constant C' for which inequality (2.1) holds is denoted by A, (7).
As an example, we can take
V(@) =lz|*, aeR

Then v € A,(R"), 1 < p < o0, if and only if —n < a < n(p —1).
For p = 1, we rewrite the above definition in the following way.

Definition 2.2. We say that a weight ~ belongs to the Muckenhoupt class
A1 (R™) if there exists a constant C' > 0 such that for every cube @ and for a.e.
y € @ the following inequality holds

(2.2) Mg (v) < C(y).

The smallest constant C' for which inequality (2.2) holds denoted by A1 (7). The
above classes have been first studied by B. Muckenhoupt in [31] and used to char-
acterize the boundedness of the Hardy-Littlewood maximal function on L,(7),
see the monographs [21] and [24] for a complete account on the theory of Muck-
enhoupt weights.

We recall a few basic properties of the class of A,(R™) weights, see [24, Chap-
ter 7].

Lemma 2.3. Let 1 < p < .
(i) If v € A,(R™), then for any 1 < p <gq, v € Ay(R™).
(ii) Let 1 < p < co. Then v € A,(R") if and only if 4'~7" € A, (R™).
(iii) Suppose that v € A,(R™) for some 1 < p < oo. Then there exists
a 1< p <p< oo such that v € Ay, (R™).

2.2 The weight class Xa,m,. Let 0 < p < oo. A weight sequence {t;} is called
p-admissible if ¢, € LIIDOC (R™) for all k € Z. We mention here that

/ th(z)de < c(k, E)
B
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for any k£ € Z and any compact set E C R™. For a p-admissible weight sequence
{tr} we set
Lkym,p = Htle;v(Qk,m)llv keZ, meZ".

A.L Tyulenev in [39] introduced the following new weighted class and used it
to study Besov spaces of variable smoothness.

Definition 2.4. Let a3,y € R, p,o1,02 € (0,00], @ = (a1,2) and let o =
(01,02). We let X, op = = X, o,p(R™) denote the set of p-admissible We1ght se-
quences {tj} satisfying the following conditions. There exist numbers C,C2 > 0
such that for any k£ < j and every cube @,

(2.3) Mg p(t) Mg, (t5) < Cr201 9,
(2.4) (Mg p(tr)) ™" Mq.o,(t;) < Cp20207H),

The constants Cy,Cs > 0 are independent of both the indexes k and j.

Remark 2.5.

(i) We would like to mention that if {¢;} satisfies inequality (2.3) with oy =
r(p/r) and 0 < r < p < oo, then t) € A, (R") for any k € Z with
0<r<p<oo and t," € A;(R") for any k € Z with p = oco.

(ii) We say that t € A,(R™), k € Z, 1 < p < 00, have the same Muckenhoupt

constant if
Ap(tk) =c, ke Z,

where c is independent of k.

(iii) Definition 2.4 is different from the one used in [39, Definition 2.1] and
Definition 2.7 in [40], because we used the boundedness of the maximal
function on weighted Lebesgue spaces.

Example 2.6. Let 0 < r < p < 00, a weight w?P € Ap/,( ™) and {sg} =
{2FwP Y rez, s € R. Clearly, {sp}rez lies in Xopp for a; = ag = 5, 0 =
(r(p/r)’,p)-
Remark 2.7. Let 0 < 6§ < p < co. Let a3, € R, 01,02 € (0,00], 02 > p,
a = (a1,a2) and let o = (01 = 0(p/0)’,02). Let a p-admissible weight sequence
{tr.} € Xa,gyp. Then

az z ai,
see [11].

As usual, we put

M(f)() == S‘Z;’Tclm /Q FW)ldy,  f e LR,
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where the supremum is taken over all cubes with sides parallel to the axis and
x € Q. Also we set

Mo (f) = (M(fI7NY7,  0<o<oo.

Recall the vector-valued maximal inequality of C. Fefferman and E. M. Stein
n [17].

Theorem 2.8. Let 0 < p < 00, 0< g < oo and 0 < o < min(p,q). Then

ey (X vt ) e < (5w e

— 00 k=—o0

holds for all sequence of functions {fr} € Ly(ly).
We state one of the main tools of this paper, see [12].

Lemma 2.9. Let 1 <0 <p<ooand 1< qg<oo. Let {tx} be a p-admissible
weight sequence such that t§ € A, p(R™), k € Z. Assume that t}, k € Z, have
the same Muckenhoupt constant, A,¢(t;) = ¢, k € Z. Then

(= (= NS

holds for all sequences of functions {fr} € Ly(ly). In particular

M) )Uq}Lp(R")

k=—o0

[MF) | Lp(R™, )| < el frl Lp(R™, £
holds for all sequences fi, € Ly(R™,t;), k € Z, where ¢ > 0 is independent of k.

Remark 2.10.

(i) We would like to mention that the result of this lemma is true if we assume
that t) € A,/9(R"), k € Z, 1 < p < oo with

Ap/@(t:l]:) < ¢, ke Z,

where ¢ > 0 is independent of k.
(ii) A proof of this result for ¢} = w, k € Z, may be found in [1] and [29].
(iii) In view of Lemma 2.3 (iii) we can assume that t} € A,(R"), k € Z,
1 < p < oo with
Ap(t) <, kelZ,

where ¢ > 0 is independent of k.
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3. Function spaces

In this section we present the Fourier analytical definition of Besov and Triebel—
Lizorkin spaces of variable smoothness and recall their basic properties. Select
a pair of Schwartz functions ¢ and 1 satisfying

(3.1) swpFe, Fy < {€: 5 <l <2,

(32) Fe@LIFs©Izc i S<ld<s

and

(3.3) Z Fo R Fy(27F) =1 if £ #0,
k=—o0

where ¢ > 0. Throughout the paper, for all k € Z and = € R™, we put oy (z) :=
2kn p(2kz) and §(z) := p(—z). Let ¢ € S(R™) be a function satisfying (3.1)
and (3.2). Recall that there exists a function ¢ € S(R™) satisfying (3.1)—(3.3),
see [20, Lemma (6.9)]. We set

Sxo(R") := {cp e S(R"): / 2P p(z)dz = 0 for all multi-indices 8 € NS}
Let S, (R™) be the topological dual of So(R™), namely, the set of all continuous
linear functionals on S (R™).

Now, we define the spaces under consideration.

Definition 3.1. Let 0 < p < oo and 0 < ¢ < oo. Let {tx} be a p-admissible
weight sequence, and ¢ € S(R™) satisfy (3.1) and (3.2).
(i) The Besov space B, ,(R", {tx}) is the collection of all f € S’_(R") such
that

1/q
1F1Bpa(B, ()] = < S ftaon* DLy (R")Ilq> <o

k=—o0

with the usual modifications if ¢ = oo
(ii) Let 0 < p < co. The Triebel-Lizorkin space F), ,(R™, {tx}) is the collec-
tion of all f € S, (R™) such that

1/q
a2 ttlons 1) [ < oo

k=—o0

with the usual modifications if ¢ = oo
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Remark 3.2. Some properties of these function spaces, such as the ¢-transform
characterization in the sense of Frazier and Jawerth, the smooth atomic and
molecular decomposition and the characterization of B, ,(R",{tx}) spaces in
terms of the difference relations are given in [11], [12] and [13].

Remark 3.3. We would like to mention that the elements of the above spaces are
not distributions but equivalence classes of distributions. Instead of B, ,(R™, {tx})
or F, ,(R™, {t;}) we will use the notation A, ,(R™, {t;}).

Using the system {oy }rez we can define the quasi-norms
1/q
1183, @0 = (3 2 lou s, @)
I 0 = (3

for constants s € R and 0 < p, ¢ < oo with 0 < p < co in the F-case. The Besov
space B;q(R”) consist of all distributions f € S (R") for which

and

1/q
T f|q) L,(R")

[£1Bp,q(R™)]| < o0.

The Triebel-Lizorkin space inq(R”) consist of all distributions f € S (R™) for
which .
[f1Epq(R™)]| < oo
Further details on the classical theory of these spaces can be found in [18], [19],
[20], [37] and [38].
One recognizes immediately that if {t;} = {2°*}, s € R, then

Bpq(R" {27%}) = B, ((R")  and  F(R",{2°}) = F} ,(R").

Moreover, for {t;} = {2°*w}, s € R, with a weight w we re-obtain the weighted
Besov and Triebel-Lizorkin spaces; we refer, in particular, to the papers [7], [32]
and [33] for a comprehensive treatment of the weighted function spaces.

Let ¢,¢ € S(R™) satisty (3.1) through (3.3). Recall that the ¢-transform S,
is defined by setting (S, f)k,m := (f, ¢r,m) where

Ohm () = 28D o2k — ), meZ", and k € Z.
The inverse 1-transform T, is defined by

T’l[))‘: Z Z )\k,nbwk,nu

k=—00 mezZ"

where A = {A\g m thez,mezn C C, see [19].
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Now we introduce the following sequence spaces.

Definition 3.4. Let 0 < p < oo and 0 < ¢ < oo. Let {tx} be a p-admissible
weight sequence. Then for all complex valued sequences A = {\g.m }rez,mezn C C

we define
bp,q(R™, {ti}) == {A: [|A[bp,o(R"™, {tx})|| < 0o},
where
. e K /2 a\1/q
I ()] = (3 2 o))
k=—o0 mezn
and

Foa R {te}) i= (s Al fp,gR™, {t})]| < 00}
with 0 < p < oo, where

l/q
JP q Hi tk 2 tk k,m Xk m

k——oo mez"

Lp(R"))).

Allowing the smoothness tx, k € Z, to vary from point to point will raise
extra difficulties to study these function spaces. But by the following lemma the
problem can be reduced to the case of fixed smoothness.

Proposition 3.5. Let 0 < p < oo and 0 < ¢ < oo. Let {t;} be a p-admissible
weight sequence.

(i) Then
e a/p\l/aq
||)‘|bp Q(]Rn {tk} ( Z 2 na/ ( Z |>\k m| tk 7er) >
k=—o0 mez"

is an equivalent quasi-norm in b, ,(R™, {t3}).
(ii) Let 0 < 0 < p < 00, 0 < ¢ < o0 and 0 < k < 1. Assume that {t}
satisfies (2.3) with o1 = 6(p/6)’ and j = k. Then

1M Fp. e (R™ {0 )"

1/q
H < 2knq(1/2+1/(ﬁp))tz . Kp|)\k7m|qu7m) ’LP(Rn)
k=—o0 mEZ"

is an equivalent quasi-norm in f, ,(R", {t}), where
tk,m,np = ||tk|an(Qk,m)||; ke Z, m e Z".

PROOF: We prove only (ii) since (i) is obvious. We will proceed in two steps.
Step 1. Let us prove that

(3.4) 1M Fog R At DIl S 1IN Fpog (R, {8 )]
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Let 0 <7 < min(d,q). By duality, ||\ fpq(R", {tx})||" is just
ap 3T 2, / @) gk(@) dz =sup 3 S,
k=—o00 mezZm m k=—o0

where the supremum is taking over all sequence of functions {gr} € L,/n) (I(q/n))
with

(3.5) 149k HL o ymy (Ugymy)Il < 1.

By Holder’s inequality,

1 B 1/h B
1= (m o tknh(:r) tzh(z) dIE) < MQk‘vm’Q(tkn)(MQk,m,np(tk))n
1 k,m

for any h > 0, with 1/h = 1/0+ n/(kp). Therefore,

/Q tp(@)|gr (@) dz < 1Quml(My mp (te) " Moy, 0ty "Mt gk))-
k,m
We set

fr(z) = Z 252 N | Q| ™ PVt e X (), re€R", ke

mez”

Take 0 < ¢ < min((p/n)’, (g/n)"), we find by Holder’s inequality that the sum
S Sk can be estimated from above by

k=—o00
/n Z FR @) M, (t " M(tigr)) (z) do S H( Z fk) ‘LM7 R™)
k=—o0
> 3 (/) 1/(a/n)
X ( Z (Mg(tkn/\/l(tzgk))) ) ‘L(p/n),(Rn)H
k=—o0

Observe that

th € Apjg C Ay, ke,
which yields that

t;n(p/n) S A(p/n)/’ ke,

by Lemma 2.3 (i)—(ii). By the vector-valued maximal inequality of Fefferman and
Stein (2.5), Lemma 2.9 and (3.5), we obtain that

i Sk§H< Z fk> |2 (R

k=—o0 k=—o0

n

?

which yields (3.4).

299
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Step 2. We prove the opposite inequality of (3.4). We can write

1
|)\k’m|u6 _

= Nem " Xe,m () dy, keZ, meZ"
|Qk’m| Qk,nL

Again by Holder’s inequality, since /01 +6/p =1,
k| < My ,vp(Aknt) M@y won ()

< Mup< Z )‘k,mthk,m) (x)MQk,mJl (tlzl)

mez”

for any = € Qg m with 0 < v < min(1, ¢/p). Observe that
MQk,m,Hp(tk) < MQk,m7p(tk)7 ke Z, mezZ".
Hence by (2.3), we find that

|>\k,m| 5 2_kn/(’€p)t];1n,,€p Mup< Z tkAk,ka,m) (1')

mez"

for any = € Qk,m. Therefore,

||A|fp,q,n<R”,{tk}>||*sH( 3 (M X 2k"/2thk,mxk,m)>q)l/q\LpaR")

k=—o0 mezZ"
S A fp.aR™, {tk 1)1,

where we used the vector-valued maximal inequality of Fefferman and Stein (2.5).
The proof is complete. (I

For simplicity in what follows, we use a, ,(R™, {t}}) instead of by, ,(R™, {t}}) or
fo.a(R™ {t}). Now we have the following result which is called the @-transform
characterization in the sense of Frazier and Jawerth. It will play an important
role in the rest of the paper. The proof is given in [11] and [12].

Theorem 3.6. Let a = (aj,a2) € R?, 0 < § < p<ooand 0 < q < oco. Let
{tx} € Xu.0.p be a p-admissible weight sequence with o = (o = 0(p/6)’, 02 = p).
Let ¢,1 € S(R™) satisfy (3.1) through (3.3). The operators

Spt Apq(R™, {tx}) = apq(R™, {tx})
and

Ty: pg(R™ {tr}) = Apq(R™, {tr})
are bounded. Furthermore, Ty, 0 S, is the identity on A, ,(R™, {tx}).

Remark 3.7. This theorem can then be exploited to obtain a variety of results
for the A, ,(R™, {tx}) spaces, where arguments can be equivalently transferred
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to the sequence space, which is often more convenient to handle. More precisely,
under the same hypothesis of the last theorem,

I{4Fs orm) bhezmezn lap g R™, {te DI 2 [1{f14p.q (R, {tx ]I

Corollary 3.8. Let a = (aj,a2) € R?, 0 < <p<ooand 0 < q < oo. Let
{tx} € Xu.0.p be a p-admissible weight sequence with o = (o = 0(p/6)’, 02 = p).
The definition of the spaces A, ,(R™, {t;}) is independent of the choices of ¢ €
S(R™) satisfying (3.1) and (3.2).

Theorem 3.9. Let a = (a1,a2) € R, 0 < § < p < oo and 0 < ¢ < co. Let
{tx} € Xu.0.p be a p-admissible weight sequence with o = (o, = 0(p/6)’, 02 = p).
Then Apyq(R”, {tr}) are quasi-Banach spaces. They are Banach spaces 1'f 1<
p<ooand 1< qg<oo.

Theorem 3.10. Let 0 < § < p < 0o and 0 < ¢ < co. Let {tx} € Xu0p
be a p-admissible weight sequence with o = (o1 = 6(p/0)',02 = p) and o =
(a1, a2) € R?. We have the embedding

Soc(R™) = Apg(R™, {t}) = S, (R™).
In addition S (R™) is dense in A, 4(R™, {t}.}).

The proof is given in [11] and [12]. Now we recall the following spaces, see [13]
and [35], when {t;} = {2°*w}, s € R, with a weight w.

Definition 3.11. Let 0 < ¢ < oo. Let {tx} be a g-admissible weight sequence
and ¢ € S(R") satisfy (3.1) and (3.2) and we put o5, = 2¥"p(2%.), k € Z. The
Triebel-Lizorkin space Fio o(R™, {tx}) is the collection of all f € S, (R™) such
that

. 1/q
I f|Foo,q R™, {ti})| := sup <|P| / Z th(z)|pn * f(x)|? daz) < oo.

—log, I(P)

We define foo 4(R™, {tx}), the sequence space corresponding to Fi, 4(R™, {t4}) as
follows.

Definition 3.12. Let 0 < ¢ < oo and {¢;} be a g-admissible sequence. Then
for all complex valued sequences A = { Ay m ez mezn C C we define

Fooa®" {tr}) = {A: |1\ foc,oR™, {tx})]| < 00},



302 D. Drihem

where

1M foo.q(R™, {t1})]

(3.6) - kna/2.a . 1/q
= sup |P| Z Z 2 th (@) | M [T Xeym () do )
P
k=

peQ ~log, [(P) mEZ™
The quasi-norm (3.6) can be rewritten as follows:

Proposition 3.13. Let 0 < § < g < co. Let {tx} be a g-admissible sequence.
Then

1M fooa (R, {t})]]

1/4q
= sup / 2knq 1/2+1/q k,m )\k m| Xk,m dl‘> )
( " DS aPhanlxem(@)

peQ =—log, [(P) mEZ"

where

thm,g = 1tk Le(Qrm)ll, K €Z, meZ"

PrOOF: Let Qrm C P € Q, k€ Z, m € Z". The claim is a simple consequence
of the fact that

/ S S @) A () o
Pk—

log, L(P) meZ™
> Y vl [ ()
k=—log, [(P) meZ" P

o0

2 D Ml

k=—log, I(P) mezZ™

Z Z |Qr,m |~ 1/ 212\ | E o

k=—log, l(P) meZ"

/ Z Z 2knq(1/2+1/‘1)tZ . q|)\k’m|qu7m(x) dx.

— log, I(P) mezZ™

The proof is complete. O

We have, see [19],
Fep2(R",{1}) = BMO(R").

Notice that Theorem 3.6 is true for the spaces Fao o(R™, {t}) and foo o(R”, {tx}),
see [13]. More precisely, we have
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Theorem 3.14. Let 0 < 6 < ¢ < oo. Let {tx} € Xa,qu be a g-admissible
weight sequence with o = (o1 = 0(q/0)',02 = q). Let ¢,¢ € S(R™) satisfy (3.1)
through (3.3). The operators

Spt Foog(R™ {tk}) = foo.q(R™, {ti})
and

Ty: fooq®R™ {tr}) = Foog(R™, {ti})
are bounded. Furthermore, Ty o S, is the identity on Fu, ,(R™, {tx}).

Corollary 3.15. Let 0 < 6 < ¢ < oo. Let {tx} € Xuﬂ,q be a g-admissible
weight sequence with o = (o1 = 6(q/0)’,02 > q). The definition of the spaces
Foo q(R™ {t}) is independent of the choices of ¢ € S(R") satisfying (3.1) and
inequalities (3.2).

As in [19], see also [13], we obtain the following statement.

Proposition 3.16. Let 0 < 8 < q < co. Let {tx} be a g-admissible weight
sequence satisfying (2.3) with o1 = 0(q/0)’, p = q and j = k. Then A\ =
{Ne,m Y kezmezn € fw7q(R’L, {tx}) if and only if for each dyadic cube Q. there
is a subset Eq, ,, C Qrm with |Eq, . | > |Qkml|/2 (or any other, fixed, number
0 < e < 1) such that

[e’s) 1/q
H( Z Z 2an(1/2+1/Q)tZ,m,q|>\k1m|qXEQkYm> ‘LOO(R”)

k=—00 mezZm

<.

Moreover, the infimum of this expression over all such collections {Eq, ,, }km is
equivalent to ||A| foo.q(R™, {tx})]-

4. Complex interpolation

In this section we study complex interpolation of the above function spaces us-
ing Calderén product method. We follow the approach of M. Frazier and B. Jaw-
erth in [19], see also [34]. We start by defining the Calderén product of two
quasi-Banach lattices. Let (A, S, ) be a o-finite measure space and let 9 be
the class of all complex-valued, p-measurable functions on A. Then a quasi-
Banach space X C 9 is called a quasi-Banach lattice of functions if for every
f € X and g € M with |g(x)| < |f(z)] for p-a.e. x € X one has g € X and
lgllx < NI fllx.

Definition 4.1. Let (A, S, 1) be a o-finite measure space and let 9t be the class
of all complex-valued, p-measurable functions on A. Suppose that Xy and X; are
quasi-Banach lattices on 9. Given 0 < 6 < 1, define the Calderén product
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Xéfe - XY as the collection of all functions f € 9t such that
1F 1l 20,0 := inf {lgl5 1%, = 171 < lgl'°In)’, p-ace., g € Xo, h € X1} < oc.

Remark 4.2. Calderén products have been introduced by A.P. Calderén in [8]
(in a little bit different form which coincides with the above one). For further
properties we refer to [19] and [44].

We need a few useful properties, see [44].

Lemma 4.3. Let (A, S, 1) be a o-finite measure space and let 9 be the class of
all complex-valued, p-measurable functions on A. Suppose that Xy and X, are
quasi-Banach lattices on 9. Let 0 < 6 < 1.

(i) Then the Calderén product X.=% - X? is a quasi-Banach space.

(ii) Define the Calderén product (X} =% - X?) as the collection of all functions
f € M such that there exist a positive real number M and g € Xy and
h € X3 satisfying

FI<Mlgl=n gllxe <1, lhllx <1
We put

171l =inf{M > 0: |f| < Mlg|"®Ihl’, |lglx, <1, [Allx, <1}

(x¢- "X@) ’

—~—

Then (X377 X%) = X377 X follows with equality of quasi-norms.
In the sequel we will need the following lemma:

Lemma 4.4. Let 0 <0 <1,0<1—-0<q <00,0<0<q < o0 and@
be a cube. Let {tx} C L©® and {wy} C Li°° be two weight sequences satisfy-
ing (2.3) with (o1, p, j) = ((1 0)(q0/(1 = 0))",p = qo, k) and (o1,p, j) = (6(q1/0)’,
p = q1, k), respectively. We put

1 1-6 0 0

= + — and wy:= t};ewk, keZ.
q d0 a1

< / wg(z)dx)l/qz < /| t%)dx)“)/%( [ ut@ dz>0/(h

for any E C Q) such that |E| > €|Q|, with 0 <e < 1.

Then

PROOF: First this lemma with £ = @ is given in [34, Proposition 3.14, Step 5].
Let 0 < 4, 4 < 1, and assume that gy < ¢. Since, 1/qo + 1/01 = 1/(1 —6),
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Holder’s inequality implies the following estimate

1 5(1—8), ~,—8(1—6) '/
1= AL (@), (z)dx

1 1 s (1_9)/5110 1 5 (1_9)/501
<——= [ 8% (x zd:r) (—/t‘”x xdz) )
(g1 [ @@ g L et

Since {tx} is a go-admissible sequence satisfying (2.3) with o1 = (qo/(1 — 0))’ x
(1 —0) and p = qo, we estimate the above expression by

c 1 5q (1-0)/(890) / . —(1-6)/q0
— | = [ t;"(x x)dx —/ ti(x x dz> ,
i (g1 L ety ac ) (161 | i

where the positive constant ¢ does not depend on k& and @. Similarly for wy,
k € Z. Therefore

(1-0)/q0 0/q1
o ([ wens@ar) ([ up @)
1 (1-0)/(6q0) 1 0/(pq1)
< (@/Qtiqo(l')XE(l')dl‘) (@/ngql(ac)xjg(ac)dx) )

Take 0 < pu < (1 —0)/q1. Using the fact that

0/(uar) 1/(1-6)
(rél/lel:ql(x)xE(x)dz> < <|7;|/sz(1—e>(x)m(x)dz>

S lee(wﬁxE)(y)

(4.1)

for any y € Q and taking 6 = (1 — 6)q/qo, we find that (4.1) can be estimated
from above by

1 \(1=0)/0q0 .
(i) 4= Ma g (i) Lago -0y (R™)]

= cQ| ||t~ Mg (wix )| Lq(R™)].

Observe that
ti € Agsi—0) C Agri—0), kK EL.

Therefore, since 0 < (1 — 0)gq/qo < 1, we obtain

t;cl_e)q S Aq/(lfg), ke Z.

305
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From Lemma 2.9 combined with Remark 2.10 (iii), it follows

1/q
A0 My g (wfx2)| La(R™)]| S (11wl x5 Lo (R™) | = ( /E w,zmdx) .

Then
(1-6)/q0 0/a1
( | @t a) [ k@) i)
(4.2) 1/
E
The opposite inequality in (4.2) follows from Holder’s inequality. O

Now we turn to the investigation of the Calderén products of the sequence
spaces ap o(R™, {tx}).

Theorem 4.5. Let 0 < 6 < 1,1 < po, p1 < o0 and 1 < qo,q1 < oco. Let
{tr} C L;f;c and {wg} C L;,Olc be two weight sequences satisfying (2.3) with
(Ulap7j) = ((1 - 9)(])0/(1 - 9))l7p = p07k) and (Ul7paj) = (9(p1/9)lap = plak)7
respectively. We put

1 1-60 0 1 1-60 6

(4.3) - + — —:= + —, wi = t,l;ewz, keZ.
p Po Y41 q do q1

Then
(apo,a0 (R, {86 1)) ™% (apy 0 (R™, {wic}))’ = .o (R™, {wi})

holds in the sense of equivalent norms.

PRroOF: Obviously we can assume that 1 < pg, p1,qo, g1 < co. Put

tkmopo = [tk Lpo (Qem)lls  Whm,py = [|wk|Lp, (Qr,m) ||
and

Wkm,p ‘= [|Wk|Lp k,m )|y , m .
l|wr| Lp (Qr,m) | keZ, meZ

Step 1. We deal with the case of f—spaces. To prove this we do it in two Sub-
steps 1.1 and 1.2.
Substep 1.1. We shall prove

(fpmqo (R™, {tk}))l_e(f.ph‘h (R™, {wk}))e — f'p,q(an {wi}).

We suppose that sequences A := (Agm )k m, A= ()‘z,m)knm i = 0,1, are given
and that
|)‘k77”| < |)‘2,m|176|)‘11€,7n|6
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holds for all £ € Z and m € Z"™. Let

[e%e] 1/q
( Z Z 2k(n/2)qwg|>\k7m|qu’m) )

k=—o00 meZn
Since we have

X8 N | X < 2FO D AL X ) T @52 0 [ A X ) 7
Holder’s inequality implies that g can be estimated from above by

(1-6)/q0
( Z S (@100 k) )

k=—o00 mezm™

o) 0/q1
X( Z Z (Qk(n/Q)wk|)‘llc,m|Xk,m)QI) .

k=—00 mezZm™

Applying Holder’s inequality again with conjugate indices po/(1 — 0) and p1/6,
we obtain

¢ n ¢ n 1-0 ¢ n
A fp.a(R™ {wr D]l < 1A fpo.ao R™ AL DT 1A fpa a0 (R {wne 1)1
Substep 1.2. Now we turn to the proof of

f%Q(Rn’ {wk}) — (fpo,qo (Rn’ {tk}))lie(fplalh (Rn’ {wk}))e

Substep 1.2.1. We consider the case v = p/po — q/qo > 0. Let the sequence
A € fp.q(R™ {wy}) be given. We have to find sequences A\® and A\' such that

|)‘k7ﬂ| M|)‘k7n|1 0|)‘llc,7n|6
for every k € Z, m € Z" and

(44) 1A o0 R A DI Iy (R, {wr I < el A fpg (R, {wi DI,

with some constant ¢ independent of A.
Preparation. We set

> 1/q
g < Z Z an(l/p+1/2)qwg’m7p|>\k’m|qXQML) )

k=—o00 meznr

We follow ideas of the proof of Theorem 8.2 in [19], see also [34]. Set

A= {z e R": g(x) >2'},
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with | € Z. Obviously A;41 C Ay, with [ € Z. Now we introduce a (partial)
decomposition of Z x Z™ by taking

|Qk,m|
2

|Qk,m| }7

C = {(kam) |Qk,mmAl|> 9

and |Qk,m n Al+1| < leZ.

The sets C; are pairwise disjoint, i.e., C; N C, = @ if | # v. Let us prove that
Ak;m = 0 holds for all tuples (k,m) ¢ (J,c;, Ci. Let us consider one such tuple
(ko,mo) and let us choose Iy € Z arbitrarily. First suppose that (ko,mg) ¢ Cj,,
then either

|Qko , Mo |

Qko,
(45) |Qk0,m0 N Alo| < % or |Qko,m0 N Alo+1| > 9

Let us assume for the moment that the second condition is satisfied. By induction
on [ it follows

(4.6) |Qkomo N Arg] > % for all 1 > lo.

Let D := ﬂl>l0 Qromo N Arr1. The family {Qrymo N Ai1}icz is a decreasing
family of sets, i.e., Qrymo N Ai+1 C Qky,mo N A Therefore, in view of (4.6), the
measure of the set D is larger than or equal to |Qk,,m|/2. Hence

Pl D2 </Q 9" () dx>1/p

> 2!\ Qrg,mo NAYP = 2![DVP, 1 > max(l, 0).

(4.7)

ko,moNAL

Since |D| = |Qkg,mol/2 > 0, the term on the right-hand side of (4.7) is strictly
greater than 0. Now the norm ||| f, o (R™, {wy })|| is finite since A € f, 4(R™, {wi}).
In (4.7) letting I tends to infinity we get a contradiction. Hence, we have to turn
in (4.5) to the situation where the first condition is satisfied. We claim that

|Qk0,7n0 N Al| < % forall [ € Z.
Obviously this yields
(48) |Qk0,7n0 N Acl| > % forall [ € Z,

again this claim follows by induction on I using (ko,mo) ¢ ;5 Ci- Set

E= m Qko,nbo N Ac_l = ﬂ hl-

{>max(0,—1o) 1>max(0,—1o)

The family {h;}; is a decreasing family of sets, i.e., h;y1 C h;. Therefore, in
view of (4.8), the measure of the set E is larger than or equal to |Qy.m|/2. By
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selecting a point x € E we obtain
(49) wkmmo')‘ko,mol < g(l‘) < 274

Now, in (4.9) if I tends to oo then the claim, namely Mg, m, = 0, follows.
The choices of A}, and A} If (k,m) ¢ UiezCy, then we define \) =

km:* k,m

Ahm = 0. If (k,m) € Cy, we put

. q 1 n/q . ..09/q0 ,—69/q
(410) u = n(ﬁ — p_o) + 5 (q_o — B), '19k77n =Wy m ;1 tk m pol
and
o q 1 n/q  (1=0)g/q1 | —(1-0)q/q
(411)  vi= ”(@ - p_l) 3 (q_1 N 1)’ Sem = tmpy  Wkmpy -

Let 6 = p/p1 — q/q1. We put

(4.12) A 1= Do 254217 | A |7/
Also, set
(4.13) Neom = Elm2F 21 | N [/

Some elementary calculations, based on (4.10), (4.11), (4.12) and (4.13), yield
(1-60)u+6v=0, (1-0)y+65=0

and
|)‘k,m| = ()‘g,m)l_e()‘llc,m)ev
which holds now for all pairs (k,m).
Proof of (4.4). It will be sufficient to establish the following two inequalities

(4.14) 1A o0 R, Lt < lIAfp.q(R™, {wi b [P/7,
(4.15) I o0 R, {wi ]| < ellA] g (R™, {wr })I[P/P.

Let us prove (4.14). Write

SN 2 e

k=—o00 mezZn

D D S I C T S
l=—00 (k,m)eC,;
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Obviously,

1
Xk () S 15— dy S 75— dy
(4.16) |Qrm N Al S, una, |Qr,m| Joumna,

S/ M(XQk,anAl)(z)ﬂ (ka m) €

where the implicit positive constant does not depend on x,l,m and k. We can
apply Theorem 2.5 and obtain that

17/90| Ly (R™)]
is bounded by

e 1/‘10
c ( Z Z (M(tk,m 9kn(1/po+1/2) \0 ) X, mmAl))qO>

l=—00 (k;m)eC,;

Ly, (R")

1/q0
H ( t, m,poan(l/po+1/2)qo ()‘ m) % XQk, mﬁAl) Ly, R™)].
l=—00 (k, m)ECl
We have 9
q
g — —qo = (1 —0)qg,
q1
hence by application of Lemma 4.4, we obtain
9 (1-0)q
ﬁzom iom 0o wk?m,]n k,m,pg ~ Z,m,p'
We see that
l - kn(1/p+1/2 "/
< (XX el )
l=—00 MEZL™
if z € A;. Therefore,
17/%| Ly, (R™)]|
(1 /o / 1/q p/Po
H( Z gknt/p4y/ )qwz,m,p|)\k77”|qXQk,m) Lp(Rn)
k=—00 mezZm™

Let us prove (4.15). We only make some comments concerning necessary modifi-
cations. Again, we write

S5 57 U O O

k=0 mez™

Z Z wk ,m,p1 2kn(1/pitl/2a ()‘ ) Xk,m-
l=—o00 (k,m)eC,
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Replacing tg m.py, 90,0, v and v by Wgmp,,q1,P1,v and 0, respectively, and
Qr,mN A by Qrm N ACL+17 this leads to the desired inequality in view that
d+q/q=p/p1.

Substep 1.2.2. We consider the case 7 < 0. We use an argument similar to
the above with Qg m N Ay, respectively, Qx m N A7, replaced by Q. m N A9, 1,
respectively, Qg m N A;.

Substep 1.2.3. We consider the case v = 0. Then § = 0. This case can be easily
solved.

Step 2. We deal with the case of b—spaces. We prove only the embedding

bp.a(R™, {wi}) = (bpo.q0 (R, {16 1))~ (bpy g0 (R, {wic}))?,

since the opposite embedding follows from Hoélder’s inequality. Assume that 1 <
q < q <oo. Let p=q/q0 —p/po, T =q/q1 — p/p1,

u::2<i—1), v::2<i—1), Vkm = ¢, OP/P1, 0P/ po

k,m,po ~k,m,p1’

2 \qo 2\q
and
. 4(1=0)p/p1  —(1-0)p/p
Ekam T tk,m,po 1’wk,rn,pl 0'
We put

u/p
W =2 Nl (3 WPl )

hezZm
if Ajm # 0 and
Mo =0 if Apm =0.

Also, set

. /P

1 ._ v P

)‘k,m = Ek1m2 |)\k,m|p/p1 ( E : |)‘k7h|pwk,hyp) ’
hez™

if Agm #0 and

Mo =0 if Agm =0.
Observe that

|)‘k77”| = ()\277”)1*9()\]1%7”)97

which holds now for all pairs (k,m). Lemma 4.4,

Po — G_ppo =(1-0p and p— (179)])]71 = Op,
b1 Po
imply
Ko Bompo = W s Ty =
and
P1 P1 Op t(lfe)in p

Ekom Wem,pr = Wkmpr Ykymapo ™ Ykeym,p
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Simple calculation gives
N Bps,g; R {tx DI S 1INy (R™, {4, i =0,1.
The proof is complete. O

Next we study the Calderén product of fp, 40 (R™, {tx}) and foo g (R™, {wy}).
For {ti} = {wr} = {1}, we refer to [19].

Theorem 4.6. Let 0 < 6 < 1,1 < py < oo and 1 < qo,q1 < oo. Let {ty} C
Lp¢ and {wy} C L©° be two weight sequences satisfying (2.3) with (o1,p,j) =
(1 =0)(po/(1 = 0)),p = po, k) and (01,p,j) = (6(q1/0)",p = q1, k), respectively.
We put

1 1-4 1 1-0 0

Z = , == + —,  wg:= t};"wﬁ, keZ.
p Po q qo Q1

(fpo,qo (R™, {tk}))lie(foo,ql (R™, {wk}))e = fp,q(an {wi})

holds in the sense of equivalent norms.

Then

PROOF: Obviously we can assume that 1 < pg,p1,qo, q1 < 00.
Step 1. In this step we prove the embedding

(fpmqo (R™, {tk}))lie(f'oo,ql (R™, {wk}))e — fp,q(an {wi}).

We suppose that sequences A := (Mg )km, A’ := (A};,m)k,m, i = 0,1, are given
and that
|)‘k77”| < |)‘2,m|176|)‘11€,7n|6
holds for all k € Z and m € Z". Let 0 < kK < 1 be such that
1 1—-6 6

+ —.
Kp Do q1

Let Qim, k € Z, m € Z™, be a dyadic cube. By Proposition 3.16 there exists
Eq,.,. C Qkm suchthat |Eq, |> |Qkm|/2. We set

[e%s} 1/q
(4.17) g;:( Z Z Qk”(l/”l/("p))qwz,m,,{p|)\k,m|qXEQk,m)

k=—00 mezn

and
Wr,moep = ||wk| Lisp(Qr,m) |, keZ, meZ".

The inequality xq,. S Mo(XEq, = nQw..) With 0 < ¢ <min(1,0,¢), Lemma 2.9
and Proposition 3.5 imply

1M Fog R {wi DI S gl Lp(R™)].
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Holder’s inequality yields

Wk, m,kp < tllc;s,po wzﬂﬂ,qﬂ ke Z, m € Zn,
with
thmapo := 1tk Lpo (Qr,m)|| and  wk m. g, = [[wi|Lg, (Qk,m) |, keZ, meZ".
Since
2kn(1/2+1/(np))qwz’mﬁp |)\k,m|qXEka (z)

< (2kn(1/2+1/p0)tk ))q(lff))

,m7;00|>‘k7m|XEQk,m (1‘

mn 1 ’
y (2k (1/241/q )wkym’qlp\k,meEQkym (x))q )

again, Holder’s inequality implies that g can be estimated from above by

00 (1-6)/q0
(5 swonamon, o, )

k=—0c0 mezZm
0 0q1
kn(1/2+1/q1)q1,,q1 q
x ( Z Z 2 wk,m7Q1|)\k’m| XEQk,m :

k=—00 mezZm™

We estimate the second factor by its L°°-norm. Again Proposition 3.16 guaran-
tees that

A fp.a (R {or DI < 1A Fpo g0 (R™ Ltk DI I foosan> {won DI
Step 2. We prove the embedding

Foa ™ {wr}) = (fpowgo R™ {t6 1) ™0 (foo,qn (R, {wrc}))”.

Let the sequence A € f, (R, {wy}) be given. We have to find sequences \°
and \! such that
k| < MIA M0 N ]

for every k € Z, m € Z™ and

(4.18) X% fpo.q0 R™ Atk DI N | Fooar R {wr DI < ell Al (R”, {wr})]]-

Let

’yzgfi and §=-1L
Po Qo q1

We have to subdivide Step 2 into two substeps:
Substep 2.1. We consider the case v > 0. Set

A= {z e R": g(x) >2'},
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with [ € Z and ¢ as in (4.17). Obviously A;41 C Ay, with | € Z. Now we
introduce a (partial) decomposition of Z x Z" by taking

|Qk ml

and |Qk,m n Al+1| < l €.

|Qk,7n| }
)

ol;:{( m): |Qum N Agl > :

The sets C; are pairwise disjoint, i.e., C;NC, = () if | # v. As in Theorem 4.6 we
can prove that A ., = 0 holds for all tuples (k,m) ¢ UiezCy. If (k,m) & U, Ci,
then we define A} |, = A, = 0. If (k,m) € C, we put

k,m

1
U= n(i _ _) + E(i _ 1)’ Oppom = tk9q/q1 w9q/q()

»m,po km,qa?

qokp Po 2 qo
and
= q 1 ni4 — (1=0)a/ar, ~(1=0)a/a0
v n(ql"ﬁp B q_l) + 5 (a N 1)7 Ehkym = tkv"hpo wk ,M,q1
We put
A= O 22 N |0 and AL = 280208 A |90

A simple calculation yields

1—0u+fv=0 (1—0)y+05=0
and
Al = )™ (M)
which holds now for all pairs (k,m). To prove (4.18), it will be sufficient to
establish the following two inequalities

(4.19) 1A o0 R, L) < €llA fp.q (R, fo}) [P,
(4.20) I foc,qn R {wn DIl < e

Proof of (4.19). Write

Z Z tlziom p02kn 1/2+1/p0)q0(A%M)qoxk’m

k=—o00 mezZn

o
— Z Z tzom pUan(l/QJrl/pU)qo()‘g,m)quk,m s
l=—o0 (k,m)eC,

Recall that,
Xem (#) S M(XQrmna)(@),  (k,m) € C,
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where the implicit positive constant does not depend on z,l, m and k, see (4.16).
We can apply Theorem 2.5 and obtain that

17/90| Ly (R™)]
is bounded by

e 1/q0
c ( Z Z (M(tk,mmo2kn(1/2+1/p0))‘2,mek,mﬂAl))qo)

l=—o0 (k,m)eC;

1/4q0
H ( tq?m7p02kn(1/2+1/100)% ()\gm)qUka’mmAl)
l=—00 (k,m)eC,

Ly, (R™)

Lo (R)]]-

We have qo — (0q/q1)q0 = (1 — 0)q, which together with Lemma 4.4 yields

9 190 0q (1-6)q
19]6 mtkmpg wkmqltkmpg wkmnp

In addition, we have

0 v/q
o < < Z Z w,‘imMZk"(l/QH/(“p))q|>\k,m|qXQk,m(z)>

l=—00 mezZ™

if x € A;. Therefore,

17790 | Ly, (R™)

1/q
H( Z Qk”(l/QH(”p))qwg,m,W|>\k,m|qXQk,m> Lp(]Rn)
k=—o00 meZn

SN Fp g R™, {wr IIP/P°.

P/Po

Proof of (4.20). By Proposition 3.16 with Ele = Qrm N A7, we obtain
1A foo,as (R™, {awr})|

/¢
kn(1/241 1
(X 3 ameramnag, b, )

I=—0c0 (k,m)eC,;

[e.°]

The special choice of A}, k,m mplies

1 q/q 15+k q/q kv, —
W A S W mlﬂpQ + v|>\k7m|q/q1 <w mlan vg a/a ($)|)\k,m|Q/q1

for any z € E! .., and
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Consequently, we get

A fooqn (R™, {wg D] < 1.

Substep 1.2.2. We consider the case v < 0. We use an argument similar to the
above with Q. ., N A, replaced by Q. m N A, ;.
Hence, we complete the proof. (I

There are nice connections between complex interpolation spaces and the corre-
sponding Calderén product, see the original paper of A.P. Calderén [8]. Suppose
that X and X; are Banach lattices on measure space (M, u1), and let

(4.21) X=x3"x?

for some 0 < € < 1. Suppose that X has the property

f € X, |fn($)| < |f(l')|, H-a.ce.,
and

lim o= f e, = lm [fullx = 1 fx.
A.P. Calderdn in [8, page 125] then shows that
(4.22) X377 X0 = [Xo, X1]p.

Let 1 < p < oo, 1< ¢q< o0, and {tx} be a p-admissible weight sequence. In
(4.21) assume that X = a, ,(R"™, {tx}) for some Banach lattices Xy and X;. By
dominated convergence theorem X satisfies the Calderdén’s result (4.22). Using
Theorem 4.5 and Calderén’s result we get the following theorem.

Theorem 4.7. Let 0 < < 1,1 < pg<oo,1 <p; <ooandl < qy,q1 < 0.
Let {t;} C Ly¢ and {wy} C LP° be two weight sequences satisfying (2.3) with
(01,p,7) = (1 = 0)(po/(1 = 0))',p = po, k) and (o1,p,j) = (0(p1/0)",p = p1,k),
respectively. We put
1 1-6 6

= + — and wy:= t};"wﬁ, keZ.
q do0 Q1

Let 1/p:=(1—0)/po+0/p1. Then

[apo.q0 (R {tk}); apy.qr (R™, {wi})]o = ap,q(R", {wr})

holds in the sense of equivalent norms.

By Theorems 3.6 and 4.7, we easily obtain the following result.

Theorem 4.8. Let o = (a1,a2) € R?, 8= (B1,52) e R%,0< 0 < 1,1 < py < o0,
1<p1<ooand 1< qyq <oo. Let {ty} € Xo,0p, be a po-admissible weight
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sequence with o = (1 —0)(po/(1 —0)),02 > po). Let {wx} € X5, be a pi-
admissible weight sequence with o = (0(p1/6)’',02 > p1). We put
1 1-6 6 1 1-6 6 0

: , : + — and wg:= t};ewk, keZ.
p Po b1 q q0 a1

Then ' . '
[Apo,q0 R™, {t}), Apy,a: (R™, {wi})]o = Apq(R™, {wi})

holds in the sense of equivalent norms.
From Theorem 4.6 and Calderén’s result we obtain the following statement.

Theorem 4.9. Let 0 < 0 < 1, 1 < pg < o0 and 1 < qo,q1 < oo. Let
{tr} C L;f:f and {wg} C L;f’lc be two weight sequences satisfying (2.3) with
(Ulap7j) = ((1 - 9)(]70/(1 - 9))’;]7 = pOak) and (Ulap7j) = (9(611/9)/,]) = qlak)7
respectively. We put

1 1-0 1 1-6 6
= ;= +—, wp=t ), kel

p Po q q0 q1

Then
[fpmqo (R, {tx}), foo,ql (R"™, {tr})]o = f'p,q(Rna {wi})

holds in the sense of equivalent norms.
Theorems 3.6, 3.14, 4.7 and 4.9 yield the following result.

Theorem 4.10. Let a = (aj,az) € R?, B = (B1,52) € R2, 0 <0 < 1,1 <
p1 < oo and 1 < qo,q1 < oo. Let {tp} € Xayg,po be a po-admissible weight
sequence with o = (1 — 0)(po/(1 —6)),02 = po). Let {wy} € X454, be a pi-
admissible weight sequence with o = (0(q1/0)',02 > ¢1). We put

1 1-0 0

1 1-0
Z = , = +—  and w:= t,l;ewz, keZ.
p Do q qo q1

Then

[Fpo,q0 R™, {ti}), Foo,tn (R™, {wx})]o = Fp,q(an {wi})

holds in the sense of equivalent norms.

Remark 4.11. The methods of [34] are capable of dealing with the spaces
B, o(R™ {tx}) and F, ,(R", {tx}) with the smoothness t; being independent
of k, k € Z, but they do not apply in the case of spaces of variable smoothness
as in this paper.
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Corollary 4.12. Let sp,s1 € R,0< 8 <1,1<pg<ooand 1< qyq < oo.
Let wg" c Apo/(l_g)(Rn) and w‘fl S Aql/g(Rn),

1 1—6 1 1-6 0
Z = ,  —= +— and s=(1—0)so+0s;.
p Do q qo q1

Then

[FSO (Rnaw())v FSI (Rnawl)]e - F;yq(Rn,Wé70W?)

Po,q0 00,491

holds in the sense of equivalent norms.

PrROOF: The proof easily follows Theorem 4.10. (]

Remark 4.13. All our results are easily generalized to the inhomogeneous Trie-

bel-Lizorkin spaces F,,(R™, {tx}) and the inhomogeneous Besov spaces
Bpq(R™, {tx}).
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