
Commentationes Mathematicae Universitatis Carolinae

Douadi Drihem
Complex interpolation of function spaces with general weights

Commentationes Mathematicae Universitatis Carolinae, Vol. 64 (2023), No. 3, 289–320

Persistent URL: http://dml.cz/dmlcz/152300

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2023

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/152300
http://dml.cz


Comment.Math.Univ.Carolin. 64,3 (2023) 289–320 289

Complex interpolation of function

spaces with general weights

Douadi Drihem

Abstract. We present the complex interpolation of Besov and Triebel–Lizorkin
spaces with generalized smoothness. In some particular cases these function
spaces are just weighted Besov and Triebel–Lizorkin spaces. As a corollary of
our results, we obtain the complex interpolation between the weighted Triebel–
Lizorkin spaces Ḟ

s0
p0,q0

(ω0) and Ḟ
s1
∞,q1

(ω1) with suitable assumptions on the pa-
rameters s0, s1, p0, q0 and q1, and the pair of weights (ω0, ω1).

Keywords: Besov space; Triebel–Lizorkin space; complex interpolation; Mucken-
houpt class

Classification: 42B25, 42B35, 26B35, 46E35

1. Introduction

The theory of complex interpolation had a remarkable development due to

its usefulness in applications in mathematical analysis. For general literature on

complex interpolation we refer to [2], [36] and references therein. Let us recall

briefly the results of complex interpolation of some known function spaces. For

Lebesgue spaces we have

[Lp0(R
n), Lp1(R

n)]θ = Lp(R
n),

see [2, Theorem 5.1.1], where

(1.1) 0 < θ < 1, 1 6 p0, p1 <∞,
1

p
:=

1− θ

p0
+

θ

p1
.

Let Lp(R
n, ω) denote the weighted Lebesgue space with weight ω, see below. The

weighted version is given as follows:

(1.2) [Lp0(R
n, ω0), Lp1(R

n, ω1)]θ = Lp(R
n, ωθ0ω

1−θ
1 ),
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see [2, Theorem 5.5.3] and [36, Theorem 1.18.5] with the same assumptions (1.1).

Clearly all the above results are given for Banach case, but in [34, Lemma 3.4] the

authors gave a generalization of (1.2) to the case 0 < p0, p1 < ∞. For Sobolev

spaces

[Wm0

p0 (Rn),Wm1

p1 (Rn)]θ =Wm
p (Rn),

with the same assumptions (1.1), 1 < p0, p1 < ∞, m0,m1 ∈ N and m =

(1 − θ)m0 + θm1, see [36, Remark 2.4.2/2 ]. The extension of the above results

to generalized scale of function spaces are given in [2] and [36]. For convenience

of the reader, we recall some known interpolation results on Besov and Triebel–

Lizorkin spaces. Such function spaces cover many well-known classical function

spaces such as Hölder–Zygmund spaces, Hardy spaces and Sobolev spaces. For

more details one can refer to Triebel’s books [37] and [38]. Let

(1.3) 0 < θ < 1, 0 < p0, p1, q0, q1 6 ∞,
1

p
:=

1− θ

p0
+

θ

p1
,

1

q
:=

1− θ

q0
+
θ

q1
.

Then we have

[Bs0p0,q0(R
n), Bs1p1,q1(R

n)]θ = Bsp,q(R
n),

provided that

(1.4) s0, s1 ∈ R, s = (1−θ)s0+θs1, 1 < p0, p1 <∞, 1 6 q0 <∞, 1 6 q1 6 ∞,

see [36, Theorem 2.4.1 ]. We mention that in some cases complex interpolation of

pairs of Besov spaces does not result in a Besov space. More precisely,

(1.5) [Bs0p,∞(Rn), Bs1p,∞(Rn)]θ = B̊sp,∞(Rn),

see again [36, Theorem 2.4.1 ], with s0 6= s1 ∈ R, s = (1− θ)s0 + θs1, 1 < p <∞,

where B̊sp,∞(Rn) is the closure of the set of test functions in Bsp,∞(Rn). The

result (1.5) is in contradiction with [2, Theorem 6.4.5] in the case of s0 6= s1
and q0 = q1 = ∞, because of B̊sp,∞(Rn) is smaller than Bsp,∞(Rn). For Triebel–

Lizorkin spaces we have

[F s0p0,q0(R
n), F s1p1,q1(R

n)]θ = F sp,q(R
n),

with the same assumptions (1.3) and (1.4) but with 1 < q0 < ∞, 1 < q1 < ∞,

see [36, Theorem 2.4.2/1]. The quasi-Banach version of complex interpolation of

Besov and Triebel–Lizorkin spaces can be found in [19] and [27]. For weighted

Besov and Lizorkin–Triebel spaces M. Bownik in [6] and A. Wojciechowska in [43]

studied the problem

(1.6) [F s0p0,q0(R
n, ω0), F

s1
p1,q1(R

n, ω1)]θ.
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But both authors only deal with the case ω0 = ω1 = ω. The general problem,

ω0 6= ω1, was completed in [34] but with p0 < ∞ and p1 < ∞ and the weights

ω0, ω1 being local Muckenhoupt weights in the sense of Rychkov, see [32].

In this direction we present the complex interpolation of function spaces of

general weights, introduced in [11] and [12], that are based on Tyulenev class

given in [40], [41] and [42]. As an application, we study (1.6), when p1 = ∞ and

ω0 6= ω1.

These types of spaces of generalized smoothness have been introduced by sev-

eral authors. We refer, for instance, to references [5], [9], [22], [23], [25]; see also

[3], [4], [26], and [28].

Recently, O. Dominguez and S. Tikhonov in [10] gave a treatment of function

spaces with logarithmic smoothness (Besov, Sobolev, Triebel–Lizorkin), including

various new characterizations for Besov norms in terms of different, sharp esti-

mates for Besov norms of derivatives and potential operators (Riesz and Bessel po-

tentials) in terms of norms of functions themselves and sharp embeddings between

the Besov spaces defined by differences and by Fourier-analytical decompositions

as well as between Besov and Sobolev/Triebel–Lizorkin spaces.

The theory of these spaces had a remarkable development in part due to its

usefulness in applications. For instance, they appear in the study of trace spaces

on fractals, see [14] and [15], for which D. Edmunds and H. Triebel introduced

the spaces Bs,Ψp,q , where Ψ is a so-called admissible function, typically of log-type

near 0. For a complete treatment of these spaces we refer the reader to the

work [30]. More general function spaces of generalized smoothness can be found

in [16], and references therein.

The paper is organized as follows. First we recall some basic facts on the

Muckenhoupt classes and the weighted class of Tyulenev. Also we give some key

technical lemmas needed in the proofs of the main statements. In Section 3, we

present some properties of Ḃp,q(R
n, {tk}) and Ḟp,q(Rn, {tk}) spaces. In Section 4

we shall apply a method which has been used in [34] where we calculate the

Calderón products of associated sequence spaces. From an abstract theory on the

relation between the complex interpolation and the Calderón product of Banach

lattices obtained by A.P. Calderón in [8], we deduce the complex interpolation

theorems of these sequence spaces. Finally, the desired complex interpolation

theorem is lifted by the ϕ-transform characterization in the sense of Frazier and

Jawerth.

We will adopt the following convention throughout this paper. As usual, we

denote by Rn the n-dimensional real Euclidean space, while N is the collection

of all natural numbers and N0 = N ∪ {0}. The letter Z stands for the set of all
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integer numbers. The expression f . g means that f 6 c g for some independent

constant c (and nonnegative functions f and g), and f ≈ g means f . g . f .

By suppf we denote the support of the function f , i.e., the closure of its

nonzero set. If E ⊂ Rn is a measurable set, then |E| stands for the (Lebesgue)

measure of E and χE denotes its characteristic function. By c we denote generic

positive constants, which may have different values at different occurrences.

A weight is a nonnegative locally integrable function on Rn that takes values

in (0,∞) almost everywhere. For measurable set E ⊂ Rn and a weight γ, γ(E)

denotes ∫

E

γ(x) dx.

Given a measurable set E ⊂ Rn and 0 < p 6 ∞, we denote by Lp(E) the space

of all functions f : E → C equipped with the quasi-norm

‖f |Lp(E)‖ :=

(∫

E

|f(x)|p dx

)1/p
<∞,

with 0 < p <∞ and

‖f |L∞(E)‖ := ess-sup
x∈E

|f(x)| <∞.

For a function f in Lloc
1 (Rn), we set

MA(f) :=
1

|A|

∫

A

|f(x)| dx

for any A ⊂ Rn. Furthermore, we put

MA,p(f) :=

(
1

|A|

∫

A

|f(x)|p dx

)1/p
,

with 0 < p < ∞. Further, given a measurable set E ⊂ Rn and a weight γ, we

denote the space of all functions f : Rn → C with finite quasi-norm

‖f |Lp(R
n, γ)‖ := ‖fγ|Lp(R

n)‖

by Lp(R
n, γ).

If 1 6 p 6 ∞ and 1/p + 1/p′ = 1, then p′ is called the conjugate exponent

of p.

The symbol S(Rn) is used to denote the set of all Schwartz functions on Rn.

In what follows, Q will denote a cube in the space Rn with sides parallel to the

coordinate axes and l(Q) will denote the side length of the cube Q. For v ∈ Z

and m ∈ Zn, denote by Qv,m the dyadic cube,

Qv,m := 2−v([0, 1)n +m).

For the collection of all such cubes we use Q := {Qv,m : v ∈ Z, m ∈ Zn}.
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2. Background tools

In this section we present some useful results.

2.1 Muckenhoupt weights. The purpose of this subsection is to review some

known properties of Muckenhoupt class.

Definition 2.1. Let 1 < p <∞. We say that a weight γ belongs to the Mucken-

houpt class Ap(R
n) if there exists a constant C > 0 such that for every cube Q

the following inequality holds

(2.1) MQ(γ)MQ,p′/p(γ
−1) 6 C.

The smallest constant C for which inequality (2.1) holds is denoted by Ap(γ).

As an example, we can take

γ(x) = |x|α, α ∈ R.

Then γ ∈ Ap(R
n), 1 < p <∞, if and only if −n < α < n(p− 1).

For p = 1, we rewrite the above definition in the following way.

Definition 2.2. We say that a weight γ belongs to the Muckenhoupt class

A1(R
n) if there exists a constant C > 0 such that for every cube Q and for a.e.

y ∈ Q the following inequality holds

(2.2) MQ(γ) 6 Cγ(y).

The smallest constant C for which inequality (2.2) holds denoted by A1(γ). The

above classes have been first studied by B. Muckenhoupt in [31] and used to char-

acterize the boundedness of the Hardy–Littlewood maximal function on Lp(γ),

see the monographs [21] and [24] for a complete account on the theory of Muck-

enhoupt weights.

We recall a few basic properties of the class of Ap(R
n) weights, see [24, Chap-

ter 7].

Lemma 2.3. Let 1 6 p <∞.

(i) If γ ∈ Ap(R
n), then for any 1 6 p < q, γ ∈ Aq(R

n).

(ii) Let 1 < p <∞. Then γ ∈ Ap(R
n) if and only if γ1−p

′

∈ Ap′(R
n).

(iii) Suppose that γ ∈ Ap(R
n) for some 1 < p < ∞. Then there exists

a 1 < p1 < p <∞ such that γ ∈ Ap1(R
n).

2.2 The weight class Ẋα,σ,p. Let 0 < p 6 ∞. A weight sequence {tk} is called

p-admissible if tk ∈ Lloc
p (Rn) for all k ∈ Z. We mention here that

∫

E

tpk(x) dx < c(k,E)
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for any k ∈ Z and any compact set E ⊂ Rn. For a p-admissible weight sequence

{tk} we set

tk,m,p := ‖tk|Lp(Qk,m)‖, k ∈ Z, m ∈ Zn.

A. I. Tyulenev in [39] introduced the following new weighted class and used it

to study Besov spaces of variable smoothness.

Definition 2.4. Let α1, α2 ∈ R, p, σ1, σ2 ∈ (0,∞], α = (α1, α2) and let σ =

(σ1, σ2). We let Ẋα,σ,p = Ẋα,σ,p(R
n) denote the set of p-admissible weight se-

quences {tk} satisfying the following conditions. There exist numbers C1, C2 > 0

such that for any k 6 j and every cube Q,

MQ,p(tk)MQ,σ1
(t−1
j ) 6 C12

α1(k−j),(2.3)

(MQ,p(tk))
−1MQ,σ2

(tj) 6 C22
α2(j−k).(2.4)

The constants C1, C2 > 0 are independent of both the indexes k and j.

Remark 2.5.

(i) We would like to mention that if {tk} satisfies inequality (2.3) with σ1 =

r(p/r)′ and 0 < r < p 6 ∞, then tpk ∈ Ap/r(R
n) for any k ∈ Z with

0 < r < p <∞ and t−rk ∈ A1(R
n) for any k ∈ Z with p = ∞.

(ii) We say that tk ∈ Ap(R
n), k ∈ Z, 1 < p <∞, have the same Muckenhoupt

constant if

Ap(tk) = c, k ∈ Z,

where c is independent of k.

(iii) Definition 2.4 is different from the one used in [39, Definition 2.1] and

Definition 2.7 in [40], because we used the boundedness of the maximal

function on weighted Lebesgue spaces.

Example 2.6. Let 0 < r < p < ∞, a weight ωp ∈ Ap/r(R
n) and {sk} =

{2ksωp}k∈Z, s ∈ R. Clearly, {sk}k∈Z lies in Ẋα,σ,p for α1 = α2 = s, σ =

(r(p/r)′, p).

Remark 2.7. Let 0 < θ 6 p 6 ∞. Let α1, α2 ∈ R, σ1, σ2 ∈ (0,∞], σ2 > p,

α = (α1, α2) and let σ = (σ1 = θ(p/θ)′, σ2). Let a p-admissible weight sequence

{tk} ∈ Ẋα,σ,p. Then

α2 > α1,

see [11].

As usual, we put

M(f)(x) := sup
Q

1

|Q|

∫

Q

|f(y)| dy, f ∈ Lloc
1 (Rn),
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where the supremum is taken over all cubes with sides parallel to the axis and

x ∈ Q. Also we set

Mσ(f) := (M(|f |σ))1/σ, 0 < σ <∞.

Recall the vector-valued maximal inequality of C. Fefferman and E.M. Stein

in [17].

Theorem 2.8. Let 0 < p <∞, 0 < q 6 ∞ and 0 < σ < min(p, q). Then

(2.5)

∥∥∥∥
( ∞∑

k=−∞

(Mσ(fk))
q

)1/q∣∣∣Lp(Rn)
∥∥∥∥ .

∥∥∥∥
( ∞∑

k=−∞

|fk|
q

)1/q∣∣∣Lp(Rn)
∥∥∥∥

holds for all sequence of functions {fk} ∈ Lp(lq).

We state one of the main tools of this paper, see [12].

Lemma 2.9. Let 1 < θ 6 p < ∞ and 1 < q < ∞. Let {tk} be a p-admissible

weight sequence such that tpk ∈ Ap/θ(R
n), k ∈ Z. Assume that tpk, k ∈ Z, have

the same Muckenhoupt constant, Ap/θ(t
p
k) = c, k ∈ Z. Then

∥∥∥∥
( ∞∑

k=−∞

tqk(M(fk))
q

)1/q∣∣∣Lp(Rn)
∥∥∥∥ .

∥∥∥∥
( ∞∑

k=−∞

tqk|fk|
q

)1/q∣∣∣Lp(Rn)
∥∥∥∥

holds for all sequences of functions {fk} ∈ Lp(lq). In particular

‖M(fk)|Lp(R
n, tk)‖ 6 c‖fk|Lp(R

n, tk)‖

holds for all sequences fk ∈ Lp(R
n, tk), k ∈ Z, where c > 0 is independent of k.

Remark 2.10.

(i) We would like to mention that the result of this lemma is true if we assume

that tpk ∈ Ap/θ(R
n), k ∈ Z, 1 < p <∞ with

Ap/θ(t
p
k) 6 c, k ∈ Z,

where c > 0 is independent of k.

(ii) A proof of this result for tpk = ω, k ∈ Z, may be found in [1] and [29].

(iii) In view of Lemma 2.3 (iii) we can assume that tpk ∈ Ap(R
n), k ∈ Z,

1 < p <∞ with

Ap(t
p
k) 6 c, k ∈ Z,

where c > 0 is independent of k.
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3. Function spaces

In this section we present the Fourier analytical definition of Besov and Triebel–

Lizorkin spaces of variable smoothness and recall their basic properties. Select

a pair of Schwartz functions ϕ and ψ satisfying

suppFϕ,Fψ ⊂
{
ξ :

1

2
6 |ξ| 6 2

}
,(3.1)

|Fϕ(ξ)|, |Fψ(ξ)| > c if
3

5
6 |ξ| 6

5

3
(3.2)

and

(3.3)
∞∑

k=−∞

Fϕ(2−kξ)Fψ(2−kξ) = 1 if ξ 6= 0,

where c > 0. Throughout the paper, for all k ∈ Z and x ∈ Rn, we put ϕk(x) :=

2knϕ(2kx) and ϕ̃(x) := ϕ(−x). Let ϕ ∈ S(Rn) be a function satisfying (3.1)

and (3.2). Recall that there exists a function ψ ∈ S(Rn) satisfying (3.1)–(3.3),

see [20, Lemma (6.9)]. We set

S∞(Rn) :=

{
ϕ ∈ S(Rn) :

∫

Rn

xβϕ(x) dx = 0 for all multi-indices β ∈ Nn0

}
.

Let S ′
∞(Rn) be the topological dual of S∞(Rn), namely, the set of all continuous

linear functionals on S∞(Rn).

Now, we define the spaces under consideration.

Definition 3.1. Let 0 < p 6 ∞ and 0 < q 6 ∞. Let {tk} be a p-admissible

weight sequence, and ϕ ∈ S(Rn) satisfy (3.1) and (3.2).

(i) The Besov space Ḃp,q(R
n, {tk}) is the collection of all f ∈ S ′

∞(Rn) such

that

‖f |Ḃp,q(R
n, {tk})‖ :=

( ∞∑

k=−∞

‖tk(ϕk ∗ f)|Lp(R
n)‖q

)1/q
<∞

with the usual modifications if q = ∞.

(ii) Let 0 < p < ∞. The Triebel–Lizorkin space Ḟp,q(R
n, {tk}) is the collec-

tion of all f ∈ S ′
∞(Rn) such that

‖f |Ḟp,q(R
n, {tk})‖ :=

∥∥∥∥
( ∞∑

k=−∞

tqk|ϕk ∗ f |
q

)1/q∣∣∣Lp(Rn)
∥∥∥∥ <∞

with the usual modifications if q = ∞.
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Remark 3.2. Some properties of these function spaces, such as the ϕ-transform

characterization in the sense of Frazier and Jawerth, the smooth atomic and

molecular decomposition and the characterization of Ḃp,q(R
n, {tk}) spaces in

terms of the difference relations are given in [11], [12] and [13].

Remark 3.3. We would like to mention that the elements of the above spaces are

not distributions but equivalence classes of distributions. Instead of Ḃp,q(R
n, {tk})

or Ḟp,q(R
n, {tk}) we will use the notation Ȧp,q(R

n, {tk}).

Using the system {ϕk}k∈Z we can define the quasi-norms

‖f |Ḃsp,q(R
n)‖ :=

( ∞∑

k=−∞

2ksq‖ϕk ∗ f |Lp(R
n)‖q

)1/q

and

‖f |Ḟ sp,q(R
n)‖ :=

∥∥∥∥
( ∞∑

k=−∞

2ksq |ϕk ∗ f |
q

)1/q∣∣∣Lp(Rn)
∥∥∥∥

for constants s ∈ R and 0 < p, q 6 ∞ with 0 < p <∞ in the Ḟ -case. The Besov

space Ḃsp,q(R
n) consist of all distributions f ∈ S ′

∞(Rn) for which

‖f |Ḃsp,q(R
n)‖ <∞.

The Triebel–Lizorkin space Ḟ sp,q(R
n) consist of all distributions f ∈ S ′

∞(Rn) for

which
‖f |Ḟ sp,q(R

n)‖ <∞.

Further details on the classical theory of these spaces can be found in [18], [19],

[20], [37] and [38].

One recognizes immediately that if {tk} = {2sk}, s ∈ R, then

Ḃp,q(R
n, {2sk}) = Ḃsp,q(R

n) and Ḟp,q(R
n, {2sk}) = Ḟ sp,q(R

n).

Moreover, for {tk} = {2skw}, s ∈ R, with a weight w we re-obtain the weighted

Besov and Triebel–Lizorkin spaces; we refer, in particular, to the papers [7], [32]

and [33] for a comprehensive treatment of the weighted function spaces.

Let ϕ, ψ ∈ S(Rn) satisfy (3.1) through (3.3). Recall that the ϕ-transform Sϕ
is defined by setting (Sϕf)k,m := 〈f, ϕk,m〉 where

ϕk,m(x) = 2k(n/2)ϕ(2kx−m), m ∈ Zn, and k ∈ Z.

The inverse ψ-transform Tψ is defined by

Tψλ :=

∞∑

k=−∞

∑

m∈Zn

λk,mψk,m,

where λ = {λk,m}k∈Z,m∈Zn ⊂ C, see [19].
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Now we introduce the following sequence spaces.

Definition 3.4. Let 0 < p 6 ∞ and 0 < q 6 ∞. Let {tk} be a p-admissible

weight sequence. Then for all complex valued sequences λ = {λk,m}k∈Z,m∈Zn ⊂ C

we define

ḃp,q(R
n, {tk}) := {λ : ‖λ|ḃp,q(R

n, {tk})‖ <∞},

where

‖λ|ḃp,q(R
n, {tk})‖ :=

( ∞∑

k=−∞

2knq/2
∥∥∥∥

∑

m∈Zn

tkλk,mχk,m

∣∣∣Lp(Rn)
∥∥∥∥
q )1/q

and

ḟp,q(R
n, {tk}) := {λ : ‖λ|ḟp,q(R

n, {tk})‖ <∞}

with 0 < p <∞, where

‖λ|ḟp,q(R
n, {tk})‖ :=

∥∥∥∥
( ∞∑

k=−∞

∑

m∈Zn

2knq/2tqk|λk,m|qχk,m

)1/q∣∣∣Lp(Rn)
∥∥∥∥.

Allowing the smoothness tk, k ∈ Z, to vary from point to point will raise

extra difficulties to study these function spaces. But by the following lemma the

problem can be reduced to the case of fixed smoothness.

Proposition 3.5. Let 0 < p 6 ∞ and 0 < q 6 ∞. Let {tk} be a p-admissible

weight sequence.

(i) Then

‖λ|ḃp,q(R
n, {tk})‖

∗ :=

( ∞∑

k=−∞

2knq/2
( ∑

m∈Zn

|λk,m|ptpk,m,p

)q/p)1/q

is an equivalent quasi-norm in ḃp,q(R
n, {tk}).

(ii) Let 0 < θ 6 p < ∞, 0 < q < ∞ and 0 < κ 6 1. Assume that {tk}

satisfies (2.3) with σ1 = θ(p/θ)′ and j = k. Then

‖λ|ḟp,q,κ(R
n,{tk})‖

∗

:=

∥∥∥∥
( ∞∑

k=−∞

∑

m∈Zn

2knq(1/2+1/(κp))tqk,m,κp|λk,m|qχk,m

)1/q∣∣∣Lp(Rn)
∥∥∥∥

is an equivalent quasi-norm in ḟp,q(R
n, {tk}), where

tk,m,κp := ‖tk|Lκp(Qk,m)‖, k ∈ Z, m ∈ Zn.

Proof: We prove only (ii) since (i) is obvious. We will proceed in two steps.

Step 1. Let us prove that

(3.4) ‖λ|ḟp,q(R
n, {tk})‖ . ‖λ|ḟp,q,κ(R

n, {tk})‖
∗.
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Let 0 < η < min(θ, q). By duality, ‖λ|ḟp,q(Rn, {tk})‖η is just

sup

∞∑

k=−∞

∑

m∈Zn

2(nη/2)k|λk,m|η
∫

Qk,m

tηk(x)|gk(x)| dx = sup

∞∑

k=−∞

Sk,

where the supremum is taking over all sequence of functions {gk} ∈ L(p/η)′(l(q/η)′)

with

(3.5) ‖{gk}|L(p/η)′(l(q/η)′)‖ 6 1.

By Hölder’s inequality,

1 =

(
1

|Qk,m|

∫

Qk,m

t−ηhk (x) tηhk (x) dx

)1/h
6MQk,m,̺(t

−η
k )(MQk,m,κp(tk))

η

for any h > 0, with 1/h = 1/̺+ η/(κp). Therefore,
∫

Qk,m

tηk(x)|gk(x)| dx . |Qk,m|(MQk,m,κp(tk))
ηMQk,m,̺(t

−η
k M(tηkgk)).

We set

fk(x) :=
∑

m∈Zn

2kn/2|λk,m||Qk,m|−1/(κp)tk,m,κpχk,m(x), x ∈ Rn, k ∈ Z.

Take 0 < ̺ < min((p/η)′, (q/η)′), we find by Hölder’s inequality that the sum∑∞

k=−∞
Sk can be estimated from above by

c

∫

Rn

∞∑

k=−∞

fηk (x)M̺(t
−η
k M(tηkgk))(x) dx .

∥∥∥∥
( ∞∑

k=−∞

f qk

)η/q∣∣∣Lp/η(Rn)
∥∥∥∥

×

∥∥∥∥
( ∞∑

k=−∞

(
M̺(t

−η
k M(tηkgk))

)(q/η)′
)1/(q/η)′ ∣∣∣L(p/η)′(R

n)

∥∥∥∥.

Observe that

tpk ∈ Ap/θ ⊂ Ap/η, k ∈ Z,

which yields that

t
−η(p/η)′

k ∈ A(p/η)′ , k ∈ Z,

by Lemma 2.3 (i)–(ii). By the vector-valued maximal inequality of Fefferman and

Stein (2.5), Lemma 2.9 and (3.5), we obtain that

∞∑

k=−∞

Sk .

∥∥∥∥
( ∞∑

k=−∞

f qk

)1/q∣∣∣Lp(Rn)
∥∥∥∥
η

,

which yields (3.4).



300 D. Drihem

Step 2. We prove the opposite inequality of (3.4). We can write

|λk,m|νθ =
1

|Qk,m|

∫

Qk,m

|λk,m|νθχk,m(y) dy, k ∈ Z, m ∈ Zn.

Again by Hölder’s inequality, since θ/σ1 + θ/p = 1,

|λk,m| 6MQk,m,νp(λk,mtk)MQk,m,νσ1
(t−1
k )

. Mνp

( ∑

m∈Zn

λk,mtkχk,m

)
(x)MQk,m,σ1

(t−1
k )

for any x ∈ Qk,m with 0 < ν < min(1, q/p). Observe that

MQk,m,κp(tk) 6MQk,m,p(tk), k ∈ Z, m ∈ Zn.

Hence by (2.3), we find that

|λk,m| . 2−kn/(κp)t−1
k,m,κpMνp

( ∑

m∈Zn

tkλk,mχk,m

)
(x)

for any x ∈ Qk,m. Therefore,

‖λ|ḟp,q,κ(R
n, {tk})‖

∗ .

∥∥∥∥
( ∞∑

k=−∞

(
Mνp

( ∑

m∈Zn

2kn/2tkλk,mχk,m

))q )1/q∣∣∣Lp(Rn)
∥∥∥∥

. ‖λ|ḟp,q(R
n, {tk})‖,

where we used the vector-valued maximal inequality of Fefferman and Stein (2.5).

The proof is complete. �

For simplicity in what follows, we use ȧp,q(R
n, {tk}) instead of ḃp,q(R

n, {tk}) or

ḟp,q(R
n, {tk}). Now we have the following result which is called the ϕ-transform

characterization in the sense of Frazier and Jawerth. It will play an important

role in the rest of the paper. The proof is given in [11] and [12].

Theorem 3.6. Let α = (α1, α2) ∈ R2, 0 < θ 6 p < ∞ and 0 < q < ∞. Let

{tk} ∈ Ẋα,σ,p be a p-admissible weight sequence with σ = (σ1 = θ(p/θ)′, σ2 > p).

Let ϕ, ψ ∈ S(Rn) satisfy (3.1) through (3.3). The operators

Sϕ : Ȧp,q(R
n, {tk}) → ȧp,q(R

n, {tk})

and

Tψ : ȧp,q(R
n, {tk}) → Ȧp,q(R

n, {tk})

are bounded. Furthermore, Tψ ◦ Sϕ is the identity on Ȧp,q(R
n, {tk}).

Remark 3.7. This theorem can then be exploited to obtain a variety of results

for the Ȧp,q(R
n, {tk}) spaces, where arguments can be equivalently transferred
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to the sequence space, which is often more convenient to handle. More precisely,

under the same hypothesis of the last theorem,

‖{〈f, ϕk,m〉}k∈Z,m∈Zn |ȧp,q(R
n, {tk})‖ ≈ ‖{f |Ȧp,q(R

n, {tk})‖.

Corollary 3.8. Let α = (α1, α2) ∈ R2, 0 < θ 6 p < ∞ and 0 < q < ∞. Let

{tk} ∈ Ẋα,σ,p be a p-admissible weight sequence with σ = (σ1 = θ(p/θ)′, σ2 > p).

The definition of the spaces Ȧp,q(R
n, {tk}) is independent of the choices of ϕ ∈

S(Rn) satisfying (3.1) and (3.2).

Theorem 3.9. Let α = (α1, α2) ∈ R2, 0 < θ 6 p < ∞ and 0 < q < ∞. Let

{tk} ∈ Ẋα,σ,p be a p-admissible weight sequence with σ = (σ1 = θ(p/θ)′, σ2 > p).

Then Ȧp,q(R
n, {tk}) are quasi-Banach spaces. They are Banach spaces if 1 6

p <∞ and 1 6 q <∞.

Theorem 3.10. Let 0 < θ 6 p < ∞ and 0 < q < ∞. Let {tk} ∈ Ẋα,σ,p

be a p-admissible weight sequence with σ = (σ1 = θ(p/θ)′, σ2 > p) and α =

(α1, α2) ∈ R2. We have the embedding

S∞(Rn) →֒ Ȧp,q(R
n, {tk}) →֒ S ′

∞(Rn).

In addition S∞(Rn) is dense in Ȧp,q(R
n, {tk}).

The proof is given in [11] and [12]. Now we recall the following spaces, see [13]

and [35], when {tk} = {2skw}, s ∈ R, with a weight w.

Definition 3.11. Let 0 < q < ∞. Let {tk} be a q-admissible weight sequence

and ϕ ∈ S(Rn) satisfy (3.1) and (3.2) and we put ϕk = 2knϕ(2k·), k ∈ Z. The

Triebel–Lizorkin space Ḟ∞,q(R
n, {tk}) is the collection of all f ∈ S ′

∞(Rn) such

that

‖f |Ḟ∞,q(R
n, {tk})‖ := sup

P∈Q

(
1

|P |

∫

P

∞∑

k=− log
2
l(P )

tqk(x)|ϕk ∗ f(x)|
q dx

)1/q
<∞.

We define ḟ∞,q(R
n, {tk}), the sequence space corresponding to Ḟ∞,q(R

n, {tk}) as

follows.

Definition 3.12. Let 0 < q < ∞ and {tk} be a q-admissible sequence. Then

for all complex valued sequences λ = {λk,m}k∈Z,m∈Zn ⊂ C we define

ḟ∞,q(R
n, {tk}) := {λ : ‖λ|ḟ∞,q(R

n, {tk})‖ <∞},
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where

(3.6)

‖λ|ḟ∞,q(R
n, {tk})‖

:= sup
P∈Q

(
1

|P |

∫

P

∞∑

k=− log
2
l(P )

∑

m∈Zn

2knq/2tqk(x)|λk,m|q χk,m(x) dx

)1/q
.

The quasi-norm (3.6) can be rewritten as follows:

Proposition 3.13. Let 0 < θ 6 q < ∞. Let {tk} be a q-admissible sequence.

Then

‖λ|ḟ∞,q(R
n, {tk})‖

= sup
P∈Q

(
1

|P |

∫

P

∞∑

k=− log
2
l(P )

∑

m∈Zn

2knq(1/2+1/q)tqk,m,q|λk,m|qχk,m(x) dx

)1/q
,

where

tk,m,q := ‖tk|Lq(Qk,m)‖, k ∈ Z, m ∈ Zn.

Proof: Let Qk,m ⊂ P ∈ Q, k ∈ Z, m ∈ Zn. The claim is a simple consequence

of the fact that

∫

P

∞∑

k=− log
2
l(P )

∑

m∈Zn

2knq/2tqk(x)|λk,m|qχk,m(x) dx

=

∞∑

k=− log
2
l(P )

∑

m∈Zn

2knq/2|λk,m|q
∫

P

tqk(x)χk,m(x) dx

=

∞∑

k=− log
2
l(P )

∑

m∈Zn

2knq/2|λk,m|qtqk,m,q

=

∞∑

k=− log
2
l(P )

∑

m∈Zn

|Qk,m|−1

∫

Qk,m

2knq/2|λk,m|qtqk,m,q dx

=

∫

P

∞∑

k=− log
2
l(P )

∑

m∈Zn

2knq(1/2+1/q)tqk,m,q|λk,m|qχk,m(x) dx.

The proof is complete. �

We have, see [19],

Ḟ∞,2(R
n, {1}) = BMO(Rn).

Notice that Theorem 3.6 is true for the spaces Ḟ∞,q(R
n, {tk}) and ḟ∞,q(R

n, {tk}),

see [13]. More precisely, we have
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Theorem 3.14. Let 0 < θ 6 q < ∞. Let {tk} ∈ Ẋα,σ,q be a q-admissible

weight sequence with σ = (σ1 = θ(q/θ)′, σ2 > q). Let ϕ, ψ ∈ S(Rn) satisfy (3.1)

through (3.3). The operators

Sϕ : Ḟ∞,q(R
n, {tk}) → ḟ∞,q(R

n, {tk})

and

Tψ : ḟ∞,q(R
n, {tk}) → Ḟ∞,q(R

n, {tk})

are bounded. Furthermore, Tψ ◦ Sϕ is the identity on Ḟ∞,q(R
n, {tk}).

Corollary 3.15. Let 0 < θ 6 q < ∞. Let {tk} ∈ Ẋα,σ,q be a q-admissible

weight sequence with σ = (σ1 = θ(q/θ)′, σ2 > q). The definition of the spaces

Ḟ∞,q(R
n, {tk}) is independent of the choices of ϕ ∈ S(Rn) satisfying (3.1) and

inequalities (3.2).

As in [19], see also [13], we obtain the following statement.

Proposition 3.16. Let 0 < θ 6 q < ∞. Let {tk} be a q-admissible weight

sequence satisfying (2.3) with σ1 = θ(q/θ)′, p = q and j = k. Then λ =

{λk,m}k∈Z,m∈Zn ∈ ḟ∞,q(R
n, {tk}) if and only if for each dyadic cube Qk,m there

is a subset EQk,m
⊂ Qk,m with |EQk,m

| > |Qk,m|/2 (or any other, fixed, number

0 < ε < 1) such that

∥∥∥∥
( ∞∑

k=−∞

∑

m∈Zn

2knq(1/2+1/q)tqk,m,q|λk,m|qχEQk,m

)1/q∣∣∣L∞(Rn)

∥∥∥∥ <∞.

Moreover, the infimum of this expression over all such collections {EQk,m
}k,m is

equivalent to ‖λ|ḟ∞,q(R
n, {tk})‖.

4. Complex interpolation

In this section we study complex interpolation of the above function spaces us-

ing Calderón product method. We follow the approach of M. Frazier and B. Jaw-

erth in [19], see also [34]. We start by defining the Calderón product of two

quasi-Banach lattices. Let (A, S, µ) be a σ-finite measure space and let M be

the class of all complex-valued, µ-measurable functions on A. Then a quasi-

Banach space X ⊂ M is called a quasi-Banach lattice of functions if for every

f ∈ X and g ∈ M with |g(x)| 6 |f(x)| for µ-a.e. x ∈ X one has g ∈ X and

‖g‖X 6 ‖f‖X.

Definition 4.1. Let (A, S, µ) be a σ-finite measure space and let M be the class

of all complex-valued, µ-measurable functions on A. Suppose that X0 and X1 are

quasi-Banach lattices on M. Given 0 < θ < 1, define the Calderón product
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X1−θ
0 ·Xθ

1 as the collection of all functions f ∈ M such that

‖f‖X1−θ
0

·Xθ
1

:= inf
{
‖g‖1−θX0

‖h‖θX1
: |f | 6 |g|1−θ|h|θ, µ-a.e., g ∈ X0, h ∈ X1

}
<∞.

Remark 4.2. Calderón products have been introduced by A.P. Calderón in [8]

(in a little bit different form which coincides with the above one). For further

properties we refer to [19] and [44].

We need a few useful properties, see [44].

Lemma 4.3. Let (A, S, µ) be a σ-finite measure space and let M be the class of

all complex-valued, µ-measurable functions on A. Suppose that X0 and X1 are

quasi-Banach lattices on M. Let 0 < θ < 1.

(i) Then the Calderón product X1−θ
0 ·Xθ

1 is a quasi-Banach space.

(ii) Define the Calderón product ( ˜X1−θ
0 ·Xθ

1 ) as the collection of all functions

f ∈ M such that there exist a positive real number M and g ∈ X0 and

h ∈ X1 satisfying

|f | 6M |g|1−θ|h|θ, ‖g‖X0
6 1, ‖h‖X1

6 1.

We put

‖f‖
( ˜X1−θ

0
·Xθ

1
)
:= inf{M > 0: |f | 6M |g|1−θ|h|θ, ‖g‖X0

6 1, ‖h‖X1
6 1}.

Then ( ˜X1−θ
0 ·Xθ

1 ) = X1−θ
0 ·Xθ

1 follows with equality of quasi-norms.

In the sequel we will need the following lemma:

Lemma 4.4. Let 0 < θ < 1, 0 < 1 − θ < q0 < ∞, 0 < θ < q1 < ∞ and Q

be a cube. Let {tk} ⊂ Lloc
q0 and {wk} ⊂ Lloc

q1 be two weight sequences satisfy-

ing (2.3) with (σ1, p, j) = ((1−θ)(q0/(1− θ))′, p = q0, k) and (σ1, p, j) = (θ(q1/θ)
′,

p = q1, k), respectively. We put

1

q
:=

1− θ

q0
+

θ

q1
and ωk := t1−θk wθk, k ∈ Z.

Then (∫

E

ωqk(x) dx

)1/q
≈

(∫

E

tq0k (x) dx

)(1−θ)/q0(∫

E

wq1k (x) dx

)θ/q1

for any E ⊂ Q such that |E| > ε|Q|, with 0 < ε < 1.

Proof: First this lemma with E = Q is given in [34, Proposition 3.14, Step 5].

Let 0 < δ, µ < 1, and assume that q0 < q. Since, 1/q0 + 1/σ1 = 1/(1− θ),
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Hölder’s inequality implies the following estimate

1 =

(
1

|E|

∫

E

t
δ(1−θ)
k (x)t

−δ(1−θ)
k (x) dx

)1/δ

6
1

ε1/δ

(
1

|Q|

∫

Q

tδq0k (x)χE(x) dx

)(1−θ)/δq0( 1

|Q|

∫

Q

t−δσ1

k (x)χE(x) dx

)(1−θ)/δσ1

.

Since {tk} is a q0-admissible sequence satisfying (2.3) with σ1 = (q0/(1− θ))′ ×

(1− θ) and p = q0, we estimate the above expression by

c

ε1/δ

(
1

|Q|

∫

Q

tδq0k (x)χE(x) dx

)(1−θ)/(δq0)( 1

|Q|

∫

Q

tq0k (x)χE(x) dx

)−(1−θ)/q0

,

where the positive constant c does not depend on k and Q. Similarly for wk,

k ∈ Z. Therefore

(4.1)

|Q|−1/q

(∫

Q

tq0k (x)χE(x) dx

)(1−θ)/q0(∫

Q

wq1k (x)χE(x) dx

)θ/q1

.

(
1

|Q|

∫

Q

tδq0k (x)χE(x) dx

)(1−θ)/(δq0)( 1

|Q|

∫

Q

wµq1k (x)χE(x) dx

)θ/(µq1)
.

Take 0 < µ < θ(1− θ)/q1. Using the fact that

(
1

|Q|

∫

Q

wµq1k (x)χE(x) dx

)θ/(µq1)
6

(
1

|Q|

∫

Q

w
θ(1−θ)
k (x)χE(x) dx

)1/(1−θ)

. M1−θ(w
θ
kχE)(y)

for any y ∈ Q and taking δ = (1 − θ)q/q0, we find that (4.1) can be estimated

from above by

c
( 1

|Q|

)(1−θ)/δq0
‖t1−θk M1−θ(w

θ
kχE)|Lδq0/(1−θ)(R

n)‖

= c|Q|−1/q‖t1−θk M1−θ(w
θ
kχE)|Lq(R

n)‖.

Observe that

tq0k ∈ Aq0/(1−θ) ⊂ Aq/(1−θ), k ∈ Z.

Therefore, since 0 < (1− θ)q/q0 < 1, we obtain

t
(1−θ)q
k ∈ Aq/(1−θ), k ∈ Z.
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From Lemma 2.9 combined with Remark 2.10 (iii), it follows

‖t1−θk M1−θ(w
θ
kχE)|Lq(R

n)‖ . ‖t1−θk wθkχE |Lq(R
n)‖ = c

(∫

E

ωqk(x) dx

)1/q
.

Then

(4.2)

(∫

Q

tq0k (x)χE(x) dx

)(1−θ)/q0(∫

Q

wq1k (x)χE(x) dx

)θ/q1

.

(∫

E

ωqk(x) dx

)1/q
.

The opposite inequality in (4.2) follows from Hölder’s inequality. �

Now we turn to the investigation of the Calderón products of the sequence

spaces ȧp,q(R
n, {tk}).

Theorem 4.5. Let 0 < θ < 1, 1 6 p0, p1 < ∞ and 1 6 q0, q1 < ∞. Let

{tk} ⊂ Lloc
p0 and {wk} ⊂ Lloc

p1 be two weight sequences satisfying (2.3) with

(σ1, p, j) = ((1 − θ)(p0/(1− θ))′, p = p0, k) and (σ1, p, j) = (θ(p1/θ)
′, p = p1, k),

respectively. We put

(4.3)
1

p
:=

1− θ

p0
+

θ

p1
,

1

q
:=

1− θ

q0
+

θ

q1
, ωk := t1−θk wθk, k ∈ Z.

Then

(ȧp0,q0(R
n, {tk}))

1−θ(ȧp1,q1(R
n, {wk}))

θ = ȧp,q(R
n, {ωk})

holds in the sense of equivalent norms.

Proof: Obviously we can assume that 1 < p0, p1, q0, q1 <∞. Put

tk,m,p0 := ‖tk|Lp0(Qk,m)‖, wk,m,p1 := ‖wk|Lp1(Qk,m)‖

and

ωk,m,p := ‖ωk|Lp(Qk,m)‖, k ∈ Z, m ∈ Zn.

Step 1. We deal with the case of ḟ -spaces. To prove this we do it in two Sub-

steps 1.1 and 1.2.

Substep 1.1. We shall prove

(ḟp0,q0(R
n, {tk}))

1−θ(ḟp1,q1(R
n, {wk}))

θ →֒ ḟp,q(R
n, {ωk}).

We suppose that sequences λ := (λk,m)k,m, λi := (λik,m)k,m, i = 0, 1, are given

and that

|λk,m| 6 |λ0k,m|1−θ|λ1k,m|θ
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holds for all k ∈ Z and m ∈ Zn. Let

g :=

( ∞∑

k=−∞

∑

m∈Zn

2k(n/2)qωqk|λk,m|qχk,m

)1/q
.

Since we have

2k(n/2)qωqk|λk,m|qχk,m 6 (2k(n/2)tk|λ
0
k,m|χk,m)q(1−θ)(2k(n/2)wk|λ

1
k,m|χk,m)qθ,

Hölder’s inequality implies that g can be estimated from above by

( ∞∑

k=−∞

∑

m∈Zn

(
2k(n/2)tk|λ

0
k,m|χk,m

)q0
)(1−θ)/q0

×

( ∞∑

k=−∞

∑

m∈Zn

(
2k(n/2)wk|λ

1
k,m|χk,m

)q1
)θ/q1

.

Applying Hölder’s inequality again with conjugate indices p0/(1− θ) and p1/θ,

we obtain

‖λ|ḟp,q(R
n, {ωk})

∥∥ 6 ‖λ0|ḟp0,q0(R
n, {tk})

∥∥1−θ‖λ1|ḟp1,q1(Rn, {wk})‖θ.

Substep 1.2. Now we turn to the proof of

ḟp,q(R
n, {ωk}) →֒ (ḟp0,q0(R

n, {tk}))
1−θ(ḟp1,q1(R

n, {wk}))
θ.

Substep 1.2.1. We consider the case γ = p/p0 − q/q0 > 0. Let the sequence

λ ∈ ḟp,q(R
n, {ωk}) be given. We have to find sequences λ0 and λ1 such that

|λk,m| 6M |λ0k,m|1−θ|λ1k,m|θ

for every k ∈ Z, m ∈ Zn and

(4.4) ‖λ0|ḟp0,q0(R
n, {tk})‖

1−θ‖λ1|ḟp1,q1(R
n, {wk})‖

θ 6 c‖λ|ḟp,q(R
n, {ωk})‖,

with some constant c independent of λ.

Preparation. We set

g :=

( ∞∑

k=−∞

∑

m∈Zn

2kn(1/p+1/2)qωqk,m,p|λk,m|qχQk,m

)1/q
.

We follow ideas of the proof of Theorem 8.2 in [19], see also [34]. Set

A l := {x ∈ Rn : g(x) > 2 l},
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with l ∈ Z. Obviously A l+1 ⊂ A l, with l ∈ Z. Now we introduce a (partial)

decomposition of Z× Zn by taking

Cl :=
{
(k,m) : |Qk,m ∩A l| >

|Qk,m|

2
and |Qk,m ∩ A l+1| 6

|Qk,m|

2

}
, l ∈ Z.

The sets Cl are pairwise disjoint, i.e., Cl ∩ Cv = ∅ if l 6= v. Let us prove that

λk,m = 0 holds for all tuples (k,m) /∈
⋃
l∈Z Cl. Let us consider one such tuple

(k0,m0) and let us choose l0 ∈ Z arbitrarily. First suppose that (k0,m0) /∈ Cl0 ,

then either

(4.5) |Qk0,m0
∩ A l0 | 6

|Qk0,m0
|

2
or |Qk0,m0

∩A l0+1| >
|Qk0,m0

|

2
.

Let us assume for the moment that the second condition is satisfied. By induction

on l it follows

(4.6) |Qk0,m0
∩ A l+1| >

|Qk0,m0
|

2
for all l > l0.

Let D :=
⋂
l>l0

Qk0,m0
∩ A l+1. The family {Qk0,m0

∩ A l}l∈Z is a decreasing

family of sets, i.e., Qk0,m0
∩A l+1 ⊂ Qk0,m0

∩A l. Therefore, in view of (4.6), the

measure of the set D is larger than or equal to |Qk0,m0
|/2. Hence

(4.7)
‖λ|fp,q(R

n, {ωk})‖ >

(∫

Qk0 ,m0
∩A l

gp(x) dx

)1/p

> 2 l|Qk0,m0
∩ A l|

1/p > 2 l|D|1/p, l > max(l0, 0).

Since |D| > |Qk0,m0
|/2 > 0, the term on the right-hand side of (4.7) is strictly

greater than 0. Now the norm ‖λ|ḟp,q(Rn, {ωk})‖ is finite since λ ∈ ḟp,q(R
n, {ωk}).

In (4.7) letting l tends to infinity we get a contradiction. Hence, we have to turn

in (4.5) to the situation where the first condition is satisfied. We claim that

|Qk0,m0
∩ A l| 6

|Qk0,m0
|

2
for all l ∈ Z.

Obviously this yields

(4.8) |Qk0,m0
∩ Acl| >

|Qk0,m0
|

2
for all l ∈ Z,

again this claim follows by induction on l using (k0,m0) /∈
⋃
l∈Z Cl. Set

E =
⋂

l>max(0,−l0)

Qk0,m0
∩ Ac−l =

⋂

l>max(0,−l0)

h l.

The family {h l}l is a decreasing family of sets, i.e., h l+1 ⊂ h l. Therefore, in

view of (4.8), the measure of the set E is larger than or equal to |Qk0,m0
|/2. By
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selecting a point x ∈ E we obtain

(4.9) ωk0,m0
|λk0,m0

| 6 g(x) 6 2−l.

Now, in (4.9) if l tends to ∞ then the claim, namely λk0,m0
= 0, follows.

The choices of λ0k,m and λ1k,m. If (k,m) /∈ ∪l∈ZCl, then we define λ0k,m =

λ1k,m = 0. If (k,m) ∈ Cl, we put

(4.10) u := n
( q

q0p
−

1

p0

)
+
n

2

( q
q0

−B
)
, ϑk,m := w

θq/q0
k,m,p1

t
−θq/q1
k,m,p0

,

and

(4.11) v := n
( q

q1p
−

1

p1

)
+
n

2

( q
q1

− 1
)
, εk,m := t

(1−θ)q/q1
k,m,p0

w
−(1−θ)q/q0
k,m,p1

.

Let δ = p/p1 − q/q1. We put

(4.12) λ0k,m := ϑk,m2ku2 lγ |λk,m|q/q0 .

Also, set

(4.13) λ1k,m := εk,m2kv2 lδ|λk,m|q/q1 .

Some elementary calculations, based on (4.10), (4.11), (4.12) and (4.13), yield

(1 − θ)u+ θv = 0, (1− θ)γ + θδ = 0

and

|λk,m| = (λ0k,m)1−θ(λ1k,m)θ,

which holds now for all pairs (k,m).

Proof of (4.4). It will be sufficient to establish the following two inequalities

‖λ0|ḟp0,q0(R
n, {tk})‖ 6 c‖λ|ḟp,q(R

n, {ωk})‖
p/p0 ,(4.14)

‖λ1|ḟp1,q1(R
n, {wk})‖ 6 c‖λ|ḟp,q(R

n, {ωk})‖
p/p1 .(4.15)

Let us prove (4.14). Write

∞∑

k=−∞

∑

m∈Zn

tq0k,m,p02
kn(1/p0+1/2)q0 (λ0k,m)q0χk,m

=

∞∑

l=−∞

∑

(k,m)∈Cl

tq0k,m,p02
kn(1/p0+1/2)q0 (λ0k,m)q0χk,m = I.
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Obviously,

(4.16)
χk,m(x) .

1

|Qk,m ∩ A l|

∫

Qk,m∩A l

dy .
1

|Qk,m|

∫

Qk,m∩A l

dy

. M(χQk,m∩A l
)(x), (k,m) ∈ Cl,

where the implicit positive constant does not depend on x, l,m and k. We can

apply Theorem 2.5 and obtain that

‖I1/q0 |Lp0(R
n)‖

is bounded by

c

∥∥∥∥
( ∞∑

l=−∞

∑

(k,m)∈Cl

(
M(tk,m,p02

kn(1/p0+1/2)λ0k,mχQk,m∩A l
)
)q0

)1/q0 ∣∣∣Lp0(Rn)
∥∥∥∥

.

∥∥∥∥
( ∞∑

l=−∞

∑

(k,m)∈Cl

tq0k,m,p02
kn(1/p0+1/2)q0(λ0k,m)q0χQk,m∩A l

)1/q0 ∣∣∣Lp0(Rn)
∥∥∥∥.

We have

q0 −
θq

q1
q0 = (1− θ)q,

hence by application of Lemma 4.4, we obtain

ϑq0k,mt
q0
k,m,p0

= wθqk,m,p1t
(1−θ)q
k,m,p0

≈ ωqk,m,p.

We see that

2 lγ 6

( ∞∑

l=−∞

∑

m∈Zn

ωqk,m,p2
kn(1/p+1/2)q|λk,m|qχQk,m

(x)

)γ/q
,

if x ∈ A l. Therefore,

‖I1/q0 |Lp0(R
n)‖

.

∥∥∥∥
( ∞∑

k=−∞

∑

m∈Zn

2kn(1/p+1/2)qωqk,m,p|λk,m|qχQk,m

)1/q∣∣∣Lp(Rn)
∥∥∥∥
p/p0

.

Let us prove (4.15). We only make some comments concerning necessary modifi-

cations. Again, we write

∞∑

k=0

∑

m∈Zn

wq1k,m,p12
kn(1/p1+1/2)q1(λ1k,m)q1χk,m

=

∞∑

l=−∞

∑

(k,m)∈Cl

wq1k,m,p12
kn(1/p1+1/2)q1(λ1k,m)q1χk,m.
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Replacing tk,m,p0 , q0, p0, u and γ by wk,m,p1 , q1, p1, v and δ, respectively, and

Qk,m∩ A l by Qk,m ∩ Acl+1, this leads to the desired inequality in view that

δ + q/q1 = p/p1.

Substep 1.2.2. We consider the case γ < 0. We use an argument similar to

the above with Qk,m ∩ A l, respectively, Qk,m ∩ Acl+1, replaced by Qk,m ∩ Acl+1,

respectively, Qk,m ∩A l.

Substep 1.2.3. We consider the case γ = 0. Then δ = 0. This case can be easily

solved.

Step 2. We deal with the case of ḃ-spaces. We prove only the embedding

ḃp,q(R
n, {ωk}) →֒ (ḃp0,q0(R

n, {tk}))
1−θ(ḃp1,q1(R

n, {wk}))
θ,

since the opposite embedding follows from Hölder’s inequality. Assume that 1 6

q0 < q1 <∞. Let µ = q/q0 − p/p0, τ = q/q1 − p/p1,

u :=
n

2

( q
q0

− 1
)
, v :=

n

2

( q
q1

− 1
)
, ϑk,m := t

−θp/p1
k,m,p0

w
θp/p0
k,m,p1

,

and

εk,m := t
(1−θ)p/p1
k,m,p0

w
−(1−θ)p/p0
k,m,p1

.

We put

λ0k,m := ϑk,m2ku|λk,m|p/p0
( ∑

h∈Zn

|λk,h|
pωpk,h,p

)µ/p
,

if λk,m 6= 0 and

λ0k,m := 0 if λk,m = 0.

Also, set

λ1k,m := εk,m2kv|λk,m|p/p1
( ∑

h∈Zn

|λk,h|
pωpk,h,p

)τ/p
,

if λk,m 6= 0 and

λ1k,m := 0 if λk,m = 0.

Observe that

|λk,m| = (λ0k,m)1−θ(λ1k,m)θ,

which holds now for all pairs (k,m). Lemma 4.4,

p0 −
θp

p1
p0 = (1− θ)p and p1 −

(1− θ)p

p0
p1 = θp,

imply

ϑp0k,m t
p0
k,m,p0

= wθpk,m,p1 t
(1−θ)p
k,m,p0

≈ ωpk,m,p
and

εp1k,m w
p1
k,m,p1

= wθpk,m,p1 t
(1−θ)p
k,m,p0

≈ ωpk,m,p.
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Simple calculation gives

‖λi|ḃpi,qi(R
n, {tk})‖ . ‖λ|ḃp,q(R

n, {ωk})‖
q/qi , i = 0, 1.

The proof is complete. �

Next we study the Calderón product of ḟp0,q0(R
n, {tk}) and ḟ∞,q1(R

n, {wk}).

For {tk} = {wk} = {1}, we refer to [19].

Theorem 4.6. Let 0 < θ < 1, 1 6 p0 < ∞ and 1 6 q0, q1 < ∞. Let {tk} ⊂

Lloc
p0 and {wk} ⊂ Lloc

q1 be two weight sequences satisfying (2.3) with (σ1, p, j) =

((1 − θ)(p0/(1− θ))′, p = p0, k) and (σ1, p, j) = (θ(q1/θ)
′, p = q1, k), respectively.

We put
1

p
:=

1− θ

p0
,

1

q
:=

1− θ

q0
+

θ

q1
, ωk := t1−θk wθk, k ∈ Z.

Then

(ḟp0,q0(R
n, {tk}))

1−θ(ḟ∞,q1(R
n, {wk}))

θ = ḟp,q(R
n, {ωk})

holds in the sense of equivalent norms.

Proof: Obviously we can assume that 1 < p0, p1, q0, q1 <∞.

Step 1. In this step we prove the embedding

(ḟp0,q0(R
n, {tk}))

1−θ(ḟ∞,q1(R
n, {wk}))

θ →֒ ḟp,q(R
n, {ωk}).

We suppose that sequences λ := (λk,m)k,m, λi := (λik,m)k,m, i = 0, 1, are given

and that

|λk,m| 6 |λ0k,m|1−θ|λ1k,m|θ

holds for all k ∈ Z and m ∈ Zn. Let 0 < κ < 1 be such that

1

κp
=

1− θ

p0
+

θ

q1
.

Let Qk,m, k ∈ Z, m ∈ Zn, be a dyadic cube. By Proposition 3.16 there exists

EQk,m
⊂ Qk,m such that |EQk,m

| > |Qk,m|/2. We set

(4.17) g :=

( ∞∑

k=−∞

∑

m∈Zn

2kn(1/2+1/(κp))qωqk,m,κp|λk,m|qχEQk,m

)1/q

and

ωk,m,κp = ‖ωk|Lκp(Qk,m)‖, k ∈ Z, m ∈ Zn.

The inequality χQk,m
. M̺(χEQk,m

∩Qk,m
) with 0 < ̺ < min(1, θ, q), Lemma 2.9

and Proposition 3.5 imply

‖λ|ḟp,q(R
n, {ωk})‖ . ‖g|Lp(R

n)‖.
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Hölder’s inequality yields

ωk,m,κp 6 t1−θk,m,p0
wθk,m,q1 , k ∈ Z, m ∈ Zn,

with

tk,m,p0 := ‖tk|Lp0(Qk,m)‖ and wk,m,q1 = ‖wk|Lq1(Qk,m)‖, k ∈ Z, m ∈ Zn.

Since

2kn(1/2+1/(κp))qωqk,m,κp |λk,m|qχEQk,m
(x)

6
(
2kn(1/2+1/p0)tk,m,p0 |λk,m|χEQk,m

(x)
)q(1−θ)

×
(
2kn(1/2+1/q1)wk,m,q1 |λk,m|χEQk,m

(x)
)qθ

,

again, Hölder’s inequality implies that g can be estimated from above by

( ∞∑

k=−∞

∑

m∈Zn

2kn(1/2+1/p0)q0tq0k,m,p0 |λk,m|q0χEQk,m

)(1−θ)/q0

×

( ∞∑

k=−∞

∑

m∈Zn

2kn(1/2+1/q1)q1wq1k,m,q1 |λk,m|q1χEQk,m

)θq1
.

We estimate the second factor by its L∞-norm. Again Proposition 3.16 guaran-

tees that

‖λ|ḟp,q(R
n, {ωk})‖ 6 ‖λ0|ḟp0,q0(R

n, {tk})‖
1−θ‖λ1|ḟ∞,q1 , {wk})‖

θ.

Step 2. We prove the embedding

ḟp,q(R
n, {ωk}) →֒ (ḟp0,q0(R

n, {tk}))
1−θ(ḟ∞,q1(R

n, {wk}))
θ.

Let the sequence λ ∈ ḟp,q(R
n, {ωk}) be given. We have to find sequences λ0

and λ1 such that

|λk,m| 6M |λ0k,m|1−θ|λ1k,m|θ

for every k ∈ Z, m ∈ Zn and

(4.18) ‖λ0|ḟp0,q0(R
n, {tk})‖

1−θ‖λ1|ḟ∞,q1(R
n, {wk})‖

θ 6 c‖λ|ḟp,q(R
n, {ωk})‖.

Let

γ =
p

p0
−

q

q0
and δ = −

q

q1
.

We have to subdivide Step 2 into two substeps:

Substep 2.1. We consider the case γ > 0. Set

A l := {x ∈ Rn : g(x) > 2 l},
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with l ∈ Z and g as in (4.17). Obviously A l+1 ⊂ A l, with l ∈ Z. Now we

introduce a (partial) decomposition of Z× Zn by taking

Cl :=
{
(k,m) : |Qk,m ∩ A l| >

|Qk,m|

2
and |Qk,m ∩ A l+1| 6

|Qk,m|

2

}
, l ∈ Z.

The sets Cl are pairwise disjoint, i.e., Cl ∩Cv = ∅ if l 6= v. As in Theorem 4.6 we

can prove that λk,m = 0 holds for all tuples (k,m) /∈ ∪l∈ZCl. If (k,m) /∈
⋃
l∈ZCl,

then we define λ0k,m = λ1k,m = 0. If (k,m) ∈ Cl, we put

u := n
( q

q0κp
−

1

p0

)
+
n

2

( q
q0

− 1
)
, ϑk,m := t

−θq/q1
k,m,p0

w
θq/q0
k,m,q1

,

and

v := n
( q

q1κp
−

1

q1

)
+
n

2

( q
q1

− 1
)
, εk,m := t

(1−θ)q/q1
k,m,p0

w
−(1−θ)q/q0
k,m,q1

.

We put

λ0k,m := ϑk,m2ku2 lγ |λk,m|q/q0 and λ1k,m := εk,m2kv2 lδ|λk,m|q/q1 .

A simple calculation yields

(1 − θ)u+ θv = 0, (1− θ)γ + θδ = 0

and

|λk,m| = (λ0k,m
)1−θ(

λ1k,m)θ,

which holds now for all pairs (k,m). To prove (4.18), it will be sufficient to

establish the following two inequalities

‖λ0|ḟp0,q0(R
n, {tk})‖ 6 c‖λ|ḟp,q(R

n, {ωk})‖
p/p0 ,(4.19)

‖λ1|ḟ∞,q1(R
n, {wk})‖ 6 c.(4.20)

Proof of (4.19). Write

∞∑

k=−∞

∑

m∈Zn

tq0k,m,p02
kn(1/2+1/p0)q0(λ0k,m)q0χk,m

=

∞∑

l=−∞

∑

(k,m)∈Cl

tq0k,m,p02
kn(1/2+1/p0)q0(λ0k,m)q0χk,m = I.

Recall that,

χk,m(x) . M(χQk,m∩A l
)(x), (k,m) ∈ Cl,



Complex interpolation of function spaces with general weights 315

where the implicit positive constant does not depend on x, l,m and k, see (4.16).

We can apply Theorem 2.5 and obtain that

‖I1/q0 |Lp0(R
n)‖

is bounded by

c

∥∥∥∥
( ∞∑

l=−∞

∑

(k,m)∈Cl

(
M(tk,m,p02

kn(1/2+1/p0)λ0k,mχQk,m∩A l
)
)q0

)1/q0 ∣∣∣Lp0(Rn)
∥∥∥∥

.

∥∥∥∥
( ∞∑

l=−∞

∑

(k,m)∈Cl

tq0k,m,p02
kn(1/2+1/p0)q0(λ0k,m)q0χQk,m∩A l

)1/q0 ∣∣∣Lp0(Rn)
∥∥∥∥.

We have q0 − (θq/q1)q0 = (1− θ)q, which together with Lemma 4.4 yields

ϑq0k,mt
q0
k,m,p0

= wθqk,m,q1 t
(1−θ)q
k,m,p0

≈ ωqk,m,κp.

In addition, we have

2 lγ 6

( ∞∑

l=−∞

∑

m∈Zn

ωqk,m,κp2
kn(1/2+1/(κp))q|λk,m|qχQk,m

(x)

)γ/q

if x ∈ A l. Therefore,

‖I1/q0 |Lp0(R
n)‖

.

∥∥∥∥
( ∞∑

k=−∞

∑

m∈Zn

2kn(1/2+1(κp))qωqk,m,κp|λk,m|qχQk,m

)1/q∣∣∣Lp(Rn)
∥∥∥∥
p/p0

. ‖λ|ḟp,q(R
n, {ωk})‖

p/p0 .

Proof of (4.20). By Proposition 3.16 with ElQk,m
= Qk,m ∩ Acl+1, we obtain

‖λ1|ḟ∞,q1(R
n, {wk})‖

.

∥∥∥∥
( ∞∑

l=−∞

∑

(k,m)∈Cl

2kn(1/2+1/q1)q1wq1k,m,q1 |λ
1
k,m|q1χEl

Qk,m

)1/q1∥∥∥∥
∞

.

The special choice of λ1k,m implies

wk,m,q1λ
1
k,m . ω

q/q1
k,m,κp2

lδ+kv |λk,m|q/q1 6 ω
q/q1
k,m,κp2

kvg−q/q1(x)|λk,m|q/q1

for any x ∈ ElQk,m
and

v +
n

q1
+
n

2
=
nq

q1

( 1

κp
+

1

2

)
.
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Consequently, we get

‖λ1|ḟ∞,q1(R
n, {wk})‖ . 1.

Substep 1.2.2. We consider the case γ < 0. We use an argument similar to the

above with Qk,m ∩ A l replaced by Qk,m ∩ Acl+1.

Hence, we complete the proof. �

There are nice connections between complex interpolation spaces and the corre-

sponding Calderón product, see the original paper of A. P. Calderón [8]. Suppose

that X0 and X1 are Banach lattices on measure space (M, µ), and let

(4.21) X = X1−θ
0 ·Xθ

1

for some 0 < θ < 1. Suppose that X has the property

f ∈ X, |fn(x)| 6 |f(x)|, µ-a.e.,

and

lim
n→∞

fn = f, µ-a.e. =⇒ lim
n→∞

‖fn‖X = ‖f‖X,

A.P. Calderón in [8, page 125] then shows that

(4.22) X1−θ
0 ·Xθ

1 = [X0, X1]θ.

Let 1 6 p < ∞, 1 6 q < ∞, and {tk} be a p-admissible weight sequence. In

(4.21) assume that X = ȧp,q(R
n, {tk}) for some Banach lattices X0 and X1. By

dominated convergence theorem X satisfies the Calderón’s result (4.22). Using

Theorem 4.5 and Calderón’s result we get the following theorem.

Theorem 4.7. Let 0 < θ < 1, 1 6 p0 < ∞, 1 6 p1 < ∞ and 1 6 q0, q1 < ∞.

Let {tk} ⊂ Lloc
p0 and {wk} ⊂ Lloc

p1 be two weight sequences satisfying (2.3) with

(σ1, p, j) = ((1 − θ)(p0/(1− θ))′, p = p0, k) and (σ1, p, j) = (θ(p1/θ)
′, p = p1, k),

respectively. We put

1

q
:=

1− θ

q0
+

θ

q1
and ωk := t1−θk wθk, k ∈ Z.

Let 1/p := (1 − θ)/p0 + θ/p1. Then

[ȧp0,q0(R
n, {tk}), ȧp1,q1(R

n, {wk})]θ = ȧp,q(R
n, {ωk})

holds in the sense of equivalent norms.

By Theorems 3.6 and 4.7, we easily obtain the following result.

Theorem 4.8. Let α = (α1, α2) ∈ R2, β = (β1, β2) ∈ R2, 0 < θ < 1, 1 6 p0 <∞,

1 6 p1 < ∞ and 1 6 q0, q1 < ∞. Let {tk} ∈ Ẋα,σ,p0 be a p0-admissible weight
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sequence with σ = ((1 − θ)(p0/(1− θ))′, σ2 > p0). Let {wk} ∈ Ẋβ,σ,p1 be a p1-

admissible weight sequence with σ = (θ(p1/θ)
′, σ2 > p1). We put

1

p
:=

1− θ

p0
+

θ

p1
,

1

q
:=

1− θ

q0
+

θ

q1
and ωk := t1−θk wθk, k ∈ Z.

Then

[Ȧp0,q0(R
n, {tk}), Ȧp1,q1(R

n, {wk})]θ = Ȧp,q(R
n, {ωk})

holds in the sense of equivalent norms.

From Theorem 4.6 and Calderón’s result we obtain the following statement.

Theorem 4.9. Let 0 < θ < 1, 1 6 p0 < ∞ and 1 6 q0, q1 < ∞. Let

{tk} ⊂ Lloc
p0 and {wk} ⊂ Lloc

p1 be two weight sequences satisfying (2.3) with

(σ1, p, j) = ((1 − θ)(p0/(1− θ))′, p = p0, k) and (σ1, p, j) = (θ(q1/θ)
′, p = q1, k),

respectively. We put

1

p
:=

1− θ

p0
,

1

q
:=

1− θ

q0
+

θ

q1
, ωk := t1−θk wθk, k ∈ Z.

Then

[ḟp0,q0(R
n, {tk}), ḟ∞,q1(R

n, {tk})]θ = ḟp,q(R
n, {ωk})

holds in the sense of equivalent norms.

Theorems 3.6, 3.14, 4.7 and 4.9 yield the following result.

Theorem 4.10. Let α = (α1, α2) ∈ R2, β = (β1, β2) ∈ R2, 0 < θ < 1, 1 6

p1 < ∞ and 1 6 q0, q1 < ∞. Let {tk} ∈ Ẋα,σ,p0 be a p0-admissible weight

sequence with σ = ((1 − θ)(p0/(1− θ))′, σ2 > p0). Let {wk} ∈ Ẋβ,σ,q1 be a p1-

admissible weight sequence with σ = (θ(q1/θ)
′, σ2 > q1). We put

1

p
:=

1− θ

p0
,

1

q
:=

1− θ

q0
+

θ

q1
and ωk := t1−θk wθk, k ∈ Z.

Then

[Ḟp0,q0(R
n, {tk}), Ḟ∞,q1(R

n, {wk})]θ = Ḟp,q(R
n, {ωk})

holds in the sense of equivalent norms.

Remark 4.11. The methods of [34] are capable of dealing with the spaces

Ḃp,q(R
n, {tk}) and Ḟp,q(R

n, {tk}) with the smoothness tk being independent

of k, k ∈ Z, but they do not apply in the case of spaces of variable smoothness

as in this paper.
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Corollary 4.12. Let s0, s1 ∈ R, 0 < θ < 1, 1 6 p0 < ∞ and 1 6 q0, q1 < ∞.

Let ωp00 ∈ Ap0/(1−θ)(R
n) and ωq11 ∈ Aq1/θ(R

n),

1

p
:=

1− θ

p0
,

1

q
:=

1− θ

q0
+

θ

q1
and s = (1− θ)s0 + θs1.

Then

[Ḟ s0p0,q0(R
n, ω0), Ḟ

s1
∞,q1 (R

n, ω1)]θ = Ḟ sp,q(R
n, ω1−θ

0 ωθ1)

holds in the sense of equivalent norms.

Proof: The proof easily follows Theorem 4.10. �

Remark 4.13. All our results are easily generalized to the inhomogeneous Trie-

bel–Lizorkin spaces Fp,q(R
n, {tk}) and the inhomogeneous Besov spaces

Bp,q(R
n, {tk}).
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