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Eventually positive elements in ordered Banach algebras

Gerd Herzog, Peer C. Kunstmann

Abstract. In ordered Banach algebras, we introduce eventually and asymptoti-
cally positive elements. We give conditions for the following spectral properties:
the spectral radius belongs to the spectrum (Perron–Frobenius property); the
spectral radius is the only element in the peripheral spectrum; there are positive
(approximate) eigenvectors for the spectral radius. Recently such types of results
have been shown for operators on Banach lattices. Our results can be viewed as
a complement, since our structural assumptions on the ordered Banach algebra
are much weaker.

Keywords: ordered Banach algebra; eventually positive element; spectral prop-
erty; Perron–Frobenius property

Classification: 46B40, 46H05

1. Introduction

Let A be a complex Banach algebra with unit 1. A set ∅ 6= K ⊆ A is called

a cone if K is closed, K +K ⊆ K, λK ⊆ K, λ ≥ 0, and K ∩ (−K) = {0}. By

setting a ≤ b :⇔ b−a ∈ K we obtain partial order on A. Following the notation

in [6] we call A an ordered Banach algebra if K is an algebra cone, that is if K

satisfies in addition 1 ∈ K and

a, b ∈ K ⇒ ab ∈ K.

In the following we always assume that A is an ordered Banach algebra, and

that K is a normal cone, that is

∃ γ ≥ 1 ∀ a, b, c ∈ A : a ≤ b ≤ c ⇒ ‖b‖ ≤ γ(‖a‖+ ‖c‖).

It is well known [6, Theorem 4.1] that then the spectral radius r is increasing

on K, that is

∀ a, b ∈ A : 0 ≤ a ≤ b ⇒ r(a) ≤ r(b).
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We call the elements of K positive. Moreover a ∈ A is called eventually positive

if

∃m ∈ N0 ∀n ≥ m+ 1: an ≥ 0,

and it is called asymptotically positive if r(a) > 0 and

lim
n→∞

dn(a) = 0 where dn(a) := dist
( an

r(a)n
,K

)

, n ∈ N0.

Let σ(a) denote the spectrum of a ∈ A. The Perron–Frobenius property “r(a) ∈
σ(a) for a ∈ K” was proved by R. Raubenheimer and S. Rode in [6, Theorem 5.2].

For eventually positive and asymptotically positive elements various results for

matrices and operators in ordered Banach spaces are known. Recently J. Glück

in [3] investigated the Perron–Frobenius property under several asymptotic pos-

itivity conditions for operators in Banach lattices. For the matrix case we refer

to [7] and the references given there.

In this paper we will prove that the Perron–Frobenius property holds for a ∈ A
with r(a) > 0 if

√
n dn(a) → 0, n → ∞. In particular, one has r(a) ∈ σ(a) if a

is eventually positive. Theorem 4.1 in [3] applied to the operator x 7→ Tx = ax

shows that the weaker condition dn(a) → 0, n → ∞, is sufficient for r(a) ∈ σ(a)

if A is in addition a Banach lattice with respect to the order given by K. It

might be that this weaker condition is also sufficient in the non-lattice case. We

leave this here as an open question.

Moreover we will give some results on the peripheral spectrum and the existence

of eigenvectors and approximative eigenvectors of eventually positive elements.

The following lemma from elementary number theory will turn out to be useful

for the construction of examples.

Lemma 1. Let n1, n2 ∈ N with gcd(n1, n2) = 1. Then to each n > n1n2 there

exist j1, j2 ∈ N such that n = j1n1 + j2n2.

Note that an1 , an2 ≥ 0 and n = j1n1 + j2n2 yields

an = (an1)j1(an2)j2 ≥ 0.

Thus, we get from Lemma 1 that a ∈ A is eventually positive if and only if there

exist n1, n2 ∈ N with gcd(n1, n2) = 1 and an1 , an2 ≥ 0. As an example consider

A = C3×3 ordered by the cone of nonnegative matrices and

A =





−2 3 −1

1 2 1

2 3 −1



 .
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Here

A7 =





851 891 478

762 3434 452

439 2751 838



 , A9 =





4603 10659 6062

9322 36122 5476

5183 33735 4310





and gcd(7, 9) = 1. Thus A is eventually positive.

For a second example consider the Wiener algebra

A = A(T) =

{

f : f(t) =
∑

k∈Z

cke
ikt,

∑

k∈Z

|ck| < ∞
}

with norm ‖f‖ =
∑

k∈Z
|ck| and ordered by the normal algebra cone

K = {f : ck ≥ 0, k ∈ Z}.

The trigonometric polynomial

t 7→ f(t) = exp(−i2t) + exp(−it)− 3

4
+ exp(it) + exp(i2t).

is an eventually positive element of A since f10, f11 ∈ K (whereas fk /∈ K,

k = 1, . . . , 9).

2. The Perron–Frobenius property

Theorem 1. Let a ∈ A with r(a) > 0 be such that

lim
n→∞

√
n dn(a) = 0.

Then r(a) ∈ σ(a).

Proof: We assume without lost of generality that r(a) = 1. Then dn(a) =

dist(an,K) and by assumption there is a sequence (bn)n∈N0
with b0 = 0 such that

an + bn ≥ 0, n ∈ N0, and βn :=
√
n ‖bn‖ → 0, n → ∞.

Assume by contradiction that 1 /∈ σ(a). Then we can choose α ∈ (0, 1) such that

max{ℜλ : λ ∈ σ(a)} < α.

Since

max{ℜλ : λ ∈ σ(a)} = lim
t→∞

1

t
log(‖eta‖),

see [1, Section 3], there is some constant δ ≥ 1 such that

‖eta‖ ≤ δetα, t ≥ 0.
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For each n ∈ N0 and t > 0 we have

0 ≤ tn

n!
(an + bn) ≤

∞
∑

k=0

tk

k!
(ak + bk) = eta +

∞
∑

k=0

tk

k!
bk,

hence

− tn

n!
bn ≤ tn

n!
an ≤ eta +

∞
∑

n6=k=0

tk

k!
bk,

and since K is normal, r(an) = 1 ≤ ‖an‖, and b0 = 0, we get the inequality

tn

n!
≤ tn

n!
‖an‖ ≤ γ

(∥

∥

∥

∥

eta +

∞
∑

n6=k=0

tk

k!
bk

∥

∥

∥

∥

+
∥

∥

∥

tn

n!
bn

∥

∥

∥

)

≤ γ

(

δetα +

∞
∑

k=0

tk

k!
‖bk‖

)

= γ

(

δetα +
∞
∑

k=1

tk

k!

βk√
k

)

≤ q

(

etα +
∞
∑

k=1

tk

k!

βk√
k

)

,

with q := γδ. Multiplication with
√
t e−t and inserting t = n yields

1

q

nn+1/2e−n

n!
≤ √

n e(α−1)n +
√
n e−n

∞
∑

k=1

nk

k!

βk√
k
.

By Stirling’s formula the left hand side tends to 1/(q
√
2 π), n → ∞, and by

α ∈ (0, 1) we have
√
n e(α−1)n → 0, n → ∞. Thus we obtain a contradiction by

showing that

hn :=
√
n e−n

∞
∑

k=1

nk

k!

βk√
k
→ 0, n → ∞.

To see this, consider

hn = e−n
∞
∑

k=1

nk+1/2

k!

βk√
k
= e−n

∞
∑

k=1

√

nk

k!

√

nk+1

k!k
β2
k

≤ e−n

( ∞
∑

k=1

nk

k!

)1/2( ∞
∑

k=1

nk+1

(k + 1)!

k + 1

k
β2
k

)1/2

≤ e−n en/2
( ∞
∑

k=1

nk+1

(k + 1)!

k + 1

k
β2
k

)1/2

=

(

e−n
∞
∑

k=1

nk+1

(k + 1)!

k + 1

k
β2
k

)1/2

.

Since
k + 1

k
β2
k → 0, k → ∞,
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we have

e−n
∞
∑

k=1

nk+1

(k + 1)!

k + 1

k
β2
k → 0, n → ∞,

which finishes the proof. �

Corollary 1. Let B be a Banach algebra, a ∈ B with r(a) = 1 and assume that

there exists a multiplicative linear functional ϕ : B → C and a sequence (bn) in B
with

‖bn‖ = ϕ(bn) = 1, n ∈ N, lim
n→∞

√
n ‖an − bn‖ = 0.

Then 1 ∈ σ(a).

Proof: Let A be the Banach algebra B ordered by the cone

K := {b ∈ B : ‖b‖ ≤ ϕ(b)}.

Note that a multiplicative linear functional is nontrivial by definition and that

ϕ(1) = 1 and ‖ϕ‖ = 1. As a consequence K is a normal algebra cone with γ = 1.

Now bn ≥ 0, n ∈ N, thus

√
ndn(a) ≤

√
n ‖an − bn‖ → 0, n → ∞.

Application of Theorem 1 proves 1 ∈ σ(a). �

To cherish the following result we consider two examples which show that

“eventually positive” is badly compatible with addition:

1. Let

A =











2 2 1 1

2 2 1 1

2 −2 1 1

−2 2 1 1











.

Then A is eventually positive, but A+ λI fails to be eventually positive for each

λ > 0, see [2, Exercise 3.13].

2. Let

A =

(

1 0

0 2

)

, B =

(

1 −1

1 −1

)

.

The A is positive, B is eventually positive (even nilpotent) but r(A + B) /∈
σ(A +B), see [7, Lemma 3.3].

As an application of Theorem 1 we can prove the following result.

Theorem 2. Let a, b ∈ A be eventually positive, ab = ba and

max{r(a), r(b)} < r(a + b).

Then r(a+ b) ∈ σ(a+ b).
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Proof: Choose m ∈ N such that an, bn ≥ 0, n ≥ m + 1, and let c := (a + b)/

r(a + b). For n ≥ 2(m+ 1) we get

r(a+ b)ncn = (a+ b)n =

n
∑

k=0

(

n

k

)

akbn−k

=

m
∑

k=0

(

n

k

)

akbn−k +

n−m−1
∑

k=m+1

(

n

k

)

akbn−k +

n
∑

k=n−m

(

n

k

)

akbn−k,

with
n−m−1
∑

k=m+1

(

n

k

)

akbn−k ≥ 0.

Hence

dn((a+ b)n) = dist(cn,K)

≤ 1

r(a+ b)n

( m
∑

k=0

(

n

k

)

‖ak‖ ‖bn−k‖+
n
∑

k=n−m

(

n

k

)

‖ak‖ ‖bn−k‖
)

=
1

r(a+ b)n

( m
∑

k=0

(

n

k

)

‖ak‖ ‖bn−k‖+
m
∑

k=0

(

n

k

)

‖an−k‖ ‖bk‖
)

.

Let ε > 0 be such that

r(a) + ε

r(a+ b)
< 1 and

r(b) + ε

r(a + b)
< 1

and choose n0 ≥ 2(m+ 1) such that for each j ≥ n0 −m

‖aj‖1/j ≤ r(a) + ε and ‖bj‖1/j ≤ r(b) + ε.

Then, for n ≥ n0, we have

√
n dn((a+b)n) ≤

m
∑

k=0

√
n

(

n

k

)

‖ak‖ (r(b) + ε)n−k

r(a+ b)n
+

m
∑

k=0

√
n

(

n

k

)

‖bk‖ (r(a) + ε)n−k

r(a+ b)n
.

Now, if µ ∈ (0, 1) then
√
n

(

n

k

)

µn → 0, n → ∞,

for each k = 0, . . . ,m. Thus
√
n dn((a + b)n) → 0, n → ∞, and Theorem 1

applies. �
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3. The peripheral spectrum

Let σper(a) denote the peripheral spectrum of a, i.e.

σper(a) := {λ ∈ σ(a) : |λ| = r(a)}.

Theorem 3. Let a ∈ A. If there exist n1, n2 ∈ N with gcd(n1, n2) = 1 and

α > 0 such that

an1 ≥ α1, an2 ≥ α1,

then σper(a) = {r(a)}.

Proof: Since r(an1) ≥ r(α1) = α > 0 we have r(a) > 0. According to [4,

Theorem 4.25]

σper(a
n1) = {r(a)n1}, σper(a

n2) = {r(a)n2}.
Let λ ∈ σper(a). Then λnk ∈ σper(a

nk), hence λnk = r(a)nk , k = 1, 2. Let

j1, j2 ∈ Z be such that 1 = j1n1 + j2n2. Then

λ = λj1n1+j2n2 = (λn1 )j1(λn2)j2 = (r(a)n1 )j1 (r(a)n2 )j2 = r(a).

Thus σper(a) = {r(a)}. �

Example 1. Consider the ordered Wiener algebra from the introduction. Note

that σ(f) = f([0, 2π]), f ∈ A(T). Let f ∈ A(T) be eventually positive and

let m ∈ N0 be such that fn ∈ K, n ≥ m + 1. Then for n ≥ m + 1 we have

fn(0) = r(fn), hence |f(0)| = r(f). So, if f(0) = 0 then σ(f) = {0} and f = 0.

If f(0) 6= 0 choose n1, n2 ≥ m+1 with gcd(n1, n2) = 1 and let j1, j2 ∈ Z satisfy

j1n1 + j2n2 = 1. Then

f(0) = (f(0)n1)j1(f(0)n2)j2 > 0.

In particular r(f) = f(0). For

f(t) = exp(−i2t) + exp(−it)− 3

4
+ exp(it) + exp(i2t)

we have

f10 ≥ 18535 · 1, f11 ≥ 2038 · 1,
hence, by Theorem 3,

σper(f) = {r(f)} = {f(0)} =
{13

4

}

.

4. Krein–Rutman type theorems

If r(a) is a pole of the resolvent we obtain the following variant of the Krein–

Rutman theorem for eventually positive elements. For various versions of this

theorem for positive elements in ordered Banach algebras, see [5, Section 3].
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Theorem 4. Let a ∈ A be eventually positive. Moreover let r(a) > 0 be a pole

of the resolvent:

(∗) (λ1 − a)−1 =

∞
∑

n=−q

bn(λ− r(a))n where q ∈ N, b−q 6= 0.

Then b−q > 0 and ab−q = b−qa = r(a)b−q.

Proof: Choose m ∈ N0 such that an ≥ 0, n ≥ m+ 1. Note that

(λ1 − a)−1 =

∞
∑

n=0

an

λn+1
, |λ| > r(a).

We have

(∗∗) (λ− r(a))q(λ1 − a)−1 → b−q, λ → r(a).

For λ > r(a) we have

(λ− r(a))q(λ1 − a)−1 = (λ− r(a))q
∞
∑

n=0

an

λn+1

≥ (λ− r(a))q
m
∑

n=0

an

λn+1
→ 0, λ → r(a) + .

Thus b−q > 0. By

a(λ1 − a)−1 = (a− λ1 + λ1)(λ1 − a)−1 = λ(λ1 − a)−1 − 1

and by (∗∗) we have

(λ − r(a))q(λ(λ1 − a)−1 − 1) → r(a)b−q , λ → r(a),

(λ− r(a))qa(λ1 − a)−1 → ab−q = b−qa, λ → r(a).

Therefore ab−q = b−qa = r(a)b−q. �

Concerning the case r(a) = 0 note that a is nilpotent if 0 is a pole of the

resolvent as in (∗). In this case aq = 0 and b−q = aq−1, so b−q > 0 does

not follow from a being eventually positive, as each nilpotent element shares this

property.

If r(a) is not a pole of the resolvent we at least get an approximative version

of Theorem 4. Let σap(a) denote the approximative point spectrum of a. As

∂σ(a) ⊆ σap(a), a ∈ A, we have r(a) ∈ σap(a) if a is eventually positive. The

next result shows that in this case the almost eigenvectors of x 7→ ax can be

chosen in K.
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Theorem 5. Let a ∈ A be eventually positive and r(a) > 0. Then there exists

a sequence (bn) in K with ‖bn‖ = 1, bna = abn, n ∈ N, and

(r(a)1 − a)bn → 0, n → ∞.

Proof: Let m ∈ N0 be such that an ≥ 0, n ≥ m+ 1, and let λn := r(a) + 1/n,

n ∈ N. Since r(a) ∈ σ(a) we have

‖(λn1 − a)−1‖ → ∞, n → ∞.

Note that (λn1 − a)−1 =
∑∞

k=0 a
k/λk+1

n . Set

xn := (λn1 − a)−1 −
m
∑

k=0

ak

λk+1
n

=

∞
∑

k=m+1

ak

λk+1
n

, n ∈ N.

Then xn ≥ 0 and (as r(a) > 0)

‖xn‖ ≥ ‖(λn1 − a)−1‖ −
∥

∥

∥

∥

m
∑

k=0

ak

λk+1
n

∥

∥

∥

∥

→ ∞, n → ∞.

Set bn = xn/‖xn‖, n ∈ N. Clearly bna = abn, ‖bn‖ = 1 and bn ≥ 0, n ∈ N.

Moreover

(r(a)1 − a)bn =
1

‖xn‖

(

(r(a)1 − a)(λn1 − a)−1 − (r(a)1 − a)

m
∑

k=0

ak

λk+1
n

)

=
1

‖xn‖

(

(r(a) − λn)(λn1 − a)−1 + 1 − (r(a)1 − a)
m
∑

k=0

ak

λk+1
n

)

= − (λn1 − a)−1

n‖xn‖
+

1

‖xn‖

(

1 − (r(a)1 − a)

m
∑

k=0

ak

λk+1
n

)

→ 0, n → ∞.

�

Concerning the case r(a) = 0 assume that there is some ε > 0 such that a+t1

is eventually positive for each 0 ≤ t < ε. Then the assertion of Theorem 5 still

holds: For n ∈ N, n > 1/ε , set an := a+ (1/n)1. Then r(an) = 1/n > 0, so by

Theorem 5 there exists bn ≥ 0 with ‖bn‖ = 1, bna = abn and ‖(r(an)1−an)bn‖ ≤
1/n. Thus

‖(r(a)1 − a)bn‖ =
∥

∥

∥

( 1

n
1 − a− 1

n
1

)

bn

∥

∥

∥ = ‖(r(an)1 − an)bn‖ → 0, n → ∞.
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