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On the bounding, splitting, and distributivity numbers

ALAN DOW, SAHARON SHELAH

Abstract. The cardinal invariants b, b,s of P(w) are known to satisfy that wy <
h < min{b,s}. We prove that all inequalities can be strict. We also introduce
a new upper bound for ) and show that it can be less than s. The key method is
to utilize finite support matrix iterations of ccc posets following paper Ultrafilters
with small generating sets by A. Blass and S. Shelah (1989).

Keywords: cardinal invariants of the continuum; matrix forcing

Classification: 03E15

1. Introduction

Of course the cardinal invariants of the continuum discussed in this article are
very well known, see [15, page 111], so we just give a brief reminder. They deal
with the mod finite ordering of the infinite subsets of the integers. We follow
convention and let [w]*“ (or [w]¥°) denote the family of infinite subsets of w.
A set A is a pseudo-intersection of a family Y C [w]* if A is infinite and A\Y
is finite for all Y € ). The family ) has the strong finite intersection property
(sfip) if every finite subset has infinite intersection and p is the minimum cardinal
for which there is such a family with no pseudointersection. A family Z C P(w)
is an ideal if it is closed under finite unions and mod finite subsets. An ideal
Z C P(w) is dense if every Y € [w]¥ contains an infinite member of Z. A set
S C w is unsplit by a family Y C [w]¥ if S is mod finite contained in one member
of {Y,w\ Y} for each Y € Y. The splitting number s is the minimum cardinal
of a family Y for which there is no infinite set unsplit by ) (i.e. every S € [w]¥
is split by some member of Y and Y is called a splitting family). The bounding
number b can easily be defined in these same terms, but it is best defined by
the mod finite ordering “<*” on the family of functions w®. The cardinal b is
the minimum cardinal for which there is a <*-unbounded family B C w* with
|B| = b.
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The finite support iteration of the standard Hechler poset was shown in [2]
to produce models of N; = 5 < b. The consistency of ¥y = b < 5 = Ny was
established in [17] with a countable support iteration of a special poset we now
call Opoula. It is shown in [11] that one can use Cohen forcing to select countable
chain condition (ccc) subposets of Qpouia and finite support iterations to obtain
models of ®; < b < s = b". This result was improved in [5] to show that the
gap between b and s can be made arbitrarily large. The papers [4], [5] and [6] are
able to use ccc versions of the well-known Mathias forcing in their iterations in
place of those discovered in [11]. The paper [5] also nicely expands on the method
of matrix iterated forcing first introduced in [4], as do a number of more recent
papers, see [9], [16] and [10] using template forcing. The distributivity number
(degree) b was first studied in [1]. It equals the minimum number of dense ideals
whose intersection is simply the Fréchet ideal [w]<*¥. It was shown in [1], that
p < b < min{b,s}. Our goal is to separate all these cardinals. We succeed but
confront a new problem since we use the result, also from [1], that h < cof(c).

2. A new bound on §

In [1], a family 2 of maximal almost disjoint families of infinite subsets of w is
called a matrix. A matrix 2 is shattering if the entire collection | J2 is splitting.
Evidently, if {s,: o < k} is a splitting family, then the family A = {{sq,w\ sq}:
a < K} is a shattering matrix. A shattering matrix 2 = {A,: a < k} is refining,
if for all & < 8 < k, Ap refines A, in the natural sense that each member of Ag
is mod finite contained in some member of A,. Finally, a base matriz is a refining
shattering matrix 2 satisfying that (J2( is dense in (P(w)/ fin, C*) (i.e. a m-base
for w*).

We add condition (6) to the following result from [1].

Lemma 2.1. The value of b is the least cardinal « such that any of the following

holds:

(1) the Boolean algebra P(w)/fin is not k-distributive;

(2) there is a shattering matrix of cardinality k;

(3) there is a shattering and refining matrix indexed by k;

(4) there is a base matrix of cardinality k;

(5) there is a family of k many nowhere dense subsets of w* whose union is

dense;

(6) there is a sequence {S,: o < K} of splitting families satisfying that no
1-to-1 selection (s : o € k) € II{S,: « € £} has a pseudo-intersection.

PROOF: Since (1)—(5) are proven in [1], it is sufficient to prove that for a cardinal &
(3) and (6) are equivalent. First suppose that 2 = {A,: a < x} is a refining and
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shattering matrix. Since the matrix is refining, it follows easily that {Ag: a <
B < k} is a shattering matrix for each o < k. Therefore, So, = |J{Ag: o < B} is
a splitting family for each « < k. Similarly, the refining property ensures that if
(aq: a € k) € II{S,: a € K}, then {an: a € k} has no pseudo-intersection.

Now assume that {S,: o < k} is a sequence of splitting families as in (6).
By [1], it is sufficient to prove that h < k, so let us assume that & < h. We
now make an observation about x: for each infinite b C w, @ < k and family
S’ C [w]¥ of cardinality less than k, there is an infinite a C b and an s € S, \ &’
such that @ C s and s splits b. We prove this claim. We may ignore all members
of &’ that are mod finite disjoint, or mod finite include, b. Since the family
{{s'Nb,b\ s'}: s’ € §'} is not shattering (as a family of subsets of b) there is an
infinite b’ C b that is not split by &’. Choose any s € S, that splits b’ and let
a = sNb. Evidently, s also splits b. Since the ideal generated by a splitting family
is dense, we may choose a maximal almost disjoint family Ay contained in the
ideal generated by Sy. Let sg denote any mapping from A into Sy satisfying that
a C so(a) for all @ € Ag. Suppose that o < k and that we have chosen a refining
sequence {A,: v < a} of maximal almost disjoint families together with mappings
{sy: v < a} so that for each a € A,, a C sy(a) € Sy. The extra induction
assumption is that for all a € A, s,(a) is not an element of {sg(a’): 8 < v and
a C* a € Ag}. The existence of the family A, and the mapping s, satisfying
the induction conditions easily follows from the above observation. Now we verify
that A = {A,: a < k} satisfies that (J2 is splitting. Fix any infinite b C w
and choose a, € A, for each a € k so that bN a, is infinite. By construction,
{sa(an): a € K} is a 1-to-1 selection from II{S,: @ € k}. Since b is therefore
not a pseudo-intersection, there is an o < k such that b\ sq(ae) C b\ an is
infinite. (I

The following is an immediate corollary to condition (6) in Lemma 2.1 and
provide two approaches to bounding the value of b.

Corollary 2.2 ([1], [3]). (1) If ¢ is singular, then b < cf(c).
(2) A poset P forces that h < k if P preserves x and can be written as an
increasing chain {P,: o < k} of completely embedded posets satisfying
that each P, adds a real not added by P,.

PRrROOF: For the statement in (1), let {xq: o < cf(c)} be increasing and cofinal
in ¢. Let {z¢: € € ¢} be an enumeration of [w]¥. To apply (6) from Lemma 2.1,
let So = {z¢: (Vn < Ka)xy ¢* x¢}. For the statement in (2), let G be a P-
generic filter and for each a € k, let G, = G NP,. To apply (6), let S, be the
set of x € [w]™ that contain no infinite y € V[G4]. To see that S, is splitting
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in either case, given any infinite  C w, consider an enumeration {z;: t € 2<“}.
Then, for all a € k, there is an f, € 2¥ so that {zf,n: n € w} € Sa. O

Our introduction of condition (6) in Lemma 2.1 is motivated by the fact that
it provides us with a new approach to bounding . We introduce the following
variant of condition (6) in Lemma 2.1 and note that a shattering refining matrix
will fail to satisfy the second condition.

Definition 2.3. Let x < A be cardinals and say that a family {z,: a < A} of
infinite subsets of w is (k, \)-shattering if for all infinite b C w

(1) the set {a < A: b C* x4} has cardinality less than x; and

(2) the set {a& < A\: bNz, =* 0} has cardinality less than .
Say that {z4: a < A} is strongly (k, A)-shattering if it contains no splitting family
of size less than A.

Needless to say a (k, A)-shattering family is strongly (k, A)-shattering if A = s
and this is the kind of families we are interested in. However it seems likely that
producing strongly (x, A)-shattering families would be interesting (and as difficult)
even without requiring that A = 5. Nevertheless s is necessarily less than A as we
show next.

Proposition 2.4. If there is a (k, \)-shattering family, then h < k and s < \.

PROOF: Let § = {z,: a < A} be a (k, A)-shattering family. Given any infinite
b C w, there is a 8 < X such that each of b C* zg and bNaxzg =* § fail.
This means that S is splitting. By condition (1) in Definition 2.3 and applying
condition (6) of Lemma 2.1 with S, = S for all « < k, it follows that h < x. O

For any index set I the standard poset for adding Cohen reals, Cy, is the set
of all finite functions into 2 with domain a subset of I where p < ¢ providing
p D gq. If I =X\ is an ordinal, then we may use z, to be the canonical Cy-name
{(n,{{a+n,1)}: n € w} (i.e, for s €Cy, sl n € &, providing s(ac +n) =1).

It is routine to verify that, for any regular cardinal A > Ny, forcing with C, will
naturally add an (N, A)-shattering family but it is clear that this family would
not be strongly (Xq, \)-shattering. Nevertheless, it may be possible with further
forcing, to have it become strongly (k, A)-shattering for some ¥; < k < s.

In Theorem 5.9 we will prove that it is consistent with Ny < kT < ¢ that there
is a strongly (k, kT )-shattering family.

Question 2.1. Assume that k < A are regular cardinals and that there is
a strongly (k, A)-shattering family. We pose the following questions.

(1) Is it consistent that kT < A?
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(2) Is it consistent that A < b?
(3) Is it consistent that Kk < b < A\?

3. Matrix forcing and distinguishing bh,s,b

In this section we recall the forcing methods for distinguishing b and s and
apply them to prove the main results. We denote by D the standard (Hechler)

<@ xw* where

poset for adding a dominating real. The poset D is an ordering on w
(s, f) < (t,g) providing g < f and s extends t by values that are coordinatewise
above ¢g. Given a sfip family F of subsets of w, there are two main posets
for adding a pseudo-intersection. The Mathias—Prikry style poset is M(F) and
consists of pairs (a, A) where A is in the filter base generated by F, a C min(A),
and M(F) is ordered by (a1, A1) < (az2, A2) providing as C a1 C az U Az and
A; C A;. When the context is clear, we will let £ denote the canonical name,
{(7, (a,w\n+1)):n € a Cn+ 1}, which is forced to be the desired pseudo-
intersection. When U is a free ultrafilter on w, M(U) was the poset used in [4]
and [5] and, in this case, 4y, is unsplit by the set of ground model subsets of w.
When mixed with matrix iteration methods, the ultrafilter ¢4 can be constructed
so as to not add a dominating real.

The Laver style poset, L(F), is also very useful in matrix iterations and is
defined as follows. The members of L(F) are subtrees T' of w<“ with a root or
stem, root(7T'), and for all root(T) C ¢t € T, the set Br(T,t) ={j ew:t7j €T}
is an element of the filter generated by F. This poset is ordered by “C”. For each
T € L(F) and ¢ € T, the subtree T; = {¢ € T: tU¢ € w<“} is also a condition.
The generic function, f]L( 7), added by LL(F) can be described by the name of the
union of the branch of w<“ named by {(f, (w<¥);): t € w<*}. This poset forces
that f]L( 7) dominates the ground model reals and the range of f]L( F) is a pseudo-
intersection of F. Again, if F is an ultrafilter, this pseudo-intersection is not
split by any ground model set.

For each sfip family ¢ on w, each of the posets D, M(i/), and L(U) is o-cen-
tered. We just need this for the fact that this ensures that they are upwards ccc.

For a poset P and a set X, a canonical P-name for a subset of X will be
a name of the form (J{ZxA,: © € X} where for each 2 € X, A, is an antichain
of P. Of course if Y is any P-name of a subset of X, there is a canonical name
that is forced to equal it. When we say that a poset P forces a statement, we
intend the meaning that every element (i.e. 1p) of P forces that statement. We
write P <- () to mean that P is a complete suborder of Q).

The terminology “matrix iterations” is used in [5], see also forthcoming preprint
(F1222) from the second author.
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Definition 3.1. For an infinite cardinal x with uncountable cofinality, and an
ordinal {, a kx(-matrix iteration is a family

((Pa,§: OKSK; €§C>5<Qa,§ O‘S’iv £<C>>

where for eacha < 8 <k and £ <n < (:

(1
2

)
(2)
(3)
(4)
(5)

Pg.¢ is a ccc poset;
]P)ayg < ]P)gyg < ]P)gm;
P, ¢ is the union of the chain {P,¢: v < K};

4) Qq¢ is a Py ¢-name of a ccc poset and Pq ¢y1 = P ¢ * QQ,E;
5) if n is a limit, then Pg, = U{Ps,: v < n}.

One constructs xx(-matrices by recursion on ¢ and, for successor steps, by
careful choice of the component sequence {Qayg: a < k}. An important obser-
vation is that all the work is in the successor steps. The following is from [5,
Lemma 3.10]

Lemma 3.2. If ( is a limit then a family

<<]P)a,§: a <K, €§<>ﬂ<QO¢,E: a < K, §<<>>

is a kX(-matrix iteration provided that for all n < { and 8 < k:
(1) ((Page: a<r, £<n), (Que: a <k, £€<n)) isarxn-matrix iteration;
and
(2) Poc=U{Pse: £ <(}

The following is well-known, see for example [16, Section 5] and [13].

Proposition 3.3. For any ( and kXx(-matrix iteration

<<]P)a,§: a <K, §§<>ﬂ<QO¢,E: a < K, §<<>>

the extension
<<Pa,§: a <K, £§C+1>7<Qa,£: a <R, £<C+1>>
is a kX (¢ + 1)-matrix iteration if either the following holds:
(1)q for all a < Kk, Qq. is the Py ¢-name for D;

(2)q there is an a < x such that Qg is the trivial poset for f < a, Q. is
a Py ¢-name of a o-centered poset, and Qg ¢ = Qq ¢ for all a < < k.

Notice that if we define the extension as in (1)g then we will be adding a dom-
inating real, but even if Qa,( is forced to equal D in (2)g, the real added will
only dominate the reals added by P ¢.

Proposition 3.4 ([4]). Let M be a model of (a sufficient amount of) set-theory
and P € M be a poset that is also contained in M. Then for any f € w* that is
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not dominated by any g € M Nw*, P forces that f £ ¢ for all P-names g € M
of elements of w*.

PROOF: Let p € P and n € w. It suffices to prove that there is a ¢ < p in P
and a k > n and m < f(k) such that ¢ IF g(k) = m. Since p € M, we can
work in M and define a function A € w® by the rule that, for all k¥ € w, there is
a g < p such that g IF g(k) = h(k). Choose any k > n so that h(k) < f(k).
Then g IF g(k) < f(k) and proves that p I f < g. O

An analogous result, with the same proof, holds for splitting.

Proposition 3.5. Let M be a model of (a sufficient amount of) set-theory and
P € M be a poset that is also contained in M. If x € [w]* satisfies that y ¢ x for
all y € M N [w]¥, then P forces that y ¢ x for all P-names y € M for elements
of [w]v.

We also use the main construction from [4].

Proposition 3.6. Suppose that

((Pa,£: OKSK; €§C>5<Qa,§ O‘S’iv £<C>>

is a k x ( -matrix iteration and that {fa: a < Kk} Is a sequence satisfying that
for all a < K:

(1) fa is a Py c-name that is forced to be in w*;
(2) for all B < «a and Pg¢-name ¢ of a member of w*, P, forces that
fo %4
Then there is a sequence {Uy, ¢: o < x} such that for all a < k:

(3) Ua,c is a Py c-name of an ultrafilter on w;

(4) for B < a, Us ¢ is a subset of Uy ¢;

(5) for each B < « and each Pg ¢ * M(Up ¢ )-name § of an element of w®,
Pu.c % M(Uy ) forces that f, ¢ g; and

(6) ((Pag: a <k, £E<CH1),(Qae: a <k, &€<CH1))isarx(C+1)-matrix
iteration, where for each a < K, Py c41 = Pqo ¢ * Qa,g and ng is the

Py, c-name for MUy, ¢)-
We record two more well-known preparatory preservation results.

Proposition 3.7 ([2]). Suppose that M C N are models of (a sufficient amount
of) set-theory and that G is D-generic over N. If x € N N [w]*¥ does not include
any y € M N [w]¥, it will not include any y € M[G] N [w]“.

Proposition 3.8. Assume that {P,: a < ¢} is a <--increasing chain of ccc
posets with Ps = |J{Ps: a < ¢}. Let G5 be Ps-generic. Let z € [w]* and
f € w¥. Then each of the following holds:
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(1) If f £ g for each g € V[G,] and for all « < ¢, then f £ g for each
g € VI[Gs].

(2) If = does not contain any y € [w]* N V[G,] for all o < k, then = does
not contain any y € [w]¥ N V[Gs].

PROOF: We prove only (1) since the proof of (2) is similar. If § has uncount-
able cofinality, then there is nothing to prove since V[Gs] N w* would then
equal | J{V[Ga] Nw¥: o < §}. Otherwise, consider any Ps-name ¢ and con-
dition p € Ps forcing that ¢ € w®. We prove that p does not force that
g(n) > f(n) for all k < n. We may assume that ¢ is a canonical name, so let
g=U{(m;m)xApm: n,m € wxw}. Choose any o < § so that p € P, and work
in V[G,]. We define a function h € w*NV[G,]. For each n € w, we set h(n) to be
the minimum m such that there is gy m € Ay, having a Py-reduct py, m € Ga.
Since Ay, = J{An,m: m € w} is predense in P,;, the set of P,-reducts of members
of A, is predense in P,. By hypothesis, there is a k < n such that h(n) < f(n).
Since gy, p(m) is compatible with p, this prove that p I g(n) > f(n). O

4. Building the models to distinguish b, b, s

For simplicity we assume GCH. Let 8; < y < kK < A be regular cardinals
and assume that # > X\ is a cardinal with cofinality p. We will need to enu-
merate names in order to force that p > pu. For each ccc poset P € H(A1) let
{YV(P,€): £ <6} be an enumeration of the set of all canonical P-names of sub-
sets of w. Also let {S¢: € < 0} be an enumeration of all subsets of 6 that have
cardinality less than p. For each n < A, let (;, denote the ordinal product ¢ - .

Theorem 4.1. There is a ccc poset that forces p = h = pu, b = k, § = X\ and
c=90.

PROOF: The poset will be obtained by constructing a xx(-matrix iteration where
¢ is the ordinal product -\ (the lexicographic ordering on Ax8). We begin with
the kX k-matrix iteration

<<Pa,6: a <K, §§K>a<Qa,E: a < K, §<’i>>

where, for each a < &, P, o forces that Qaa is D, for 8 < a, QB@ is the trivial
poset, and for a < 8 < K, nga equals Qa,a. By Proposition 3.3, there is such
a matrix. For each a < k, let fa be the canonical name for the dominating real
added by P, o+1. By Propositions 3.4 and 3.8, it follows that for all § < a < &,
P, . forces that fo £ g for all Pg .-names ¢ of elements of w*.

We omit the routine enumeration details involved in the recursive construction
and state the properties we require of our kx( -matrix iteration. Each step of the
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construction uses either (2) of Proposition 3.3 or Proposition 3.6 to choose the
next sequence {Qq¢: @ < k}. In the case of Proposition 3.3 (2), the preservation
of inductive condition (1) follows from Proposition 3.4. The preservation through
limit steps follows from Proposition 3.8.

There is a matrix-iteration sequence

((Pa,£: OKSK; €§C>5<Qa,§ O‘S’iv £<C>>

satisfying each of the following for each & < (:

(1) for each 8 < a < k and each Pg¢-name ¢ for an element of w®,
P, ¢ forces that fo £ 4

(2) for each § < A with (41 < £ and each n < 0, if P, ¢, forces that the
family Fp ., = {Y (Px,cs,7): 7 € Sy } has the sfip, then thereis a 7 < (541
and an a < & such that Qg5 equals the P, z-name for M(Fp ) for all
a<fB <k

(3) for each § < A such that (5 < &, P ;11 equals Py ¢, * M(Us,c,) and
Uy ¢, 18 a Py ¢,-name of an ultrafilter on w;

(4) for each n < A and each @ < k such that ¢, < &, then Qa7<n+a is the

Py, ¢, +o-name for D, and QB,CUJFQ = QQ,CUJFQ for all a < g < k.

Now we verify that P = P, ¢ has the desired properties. Since P is ccc, it pre-
serves cardinals and clearly forces that ¢ = . It thus follows from Corollary 2.2
that p < bh < p = cf(c). If Y is a family of fewer than p many canonical P-names
of subsets of w, then there is an @ < k and < A such that ) is a family
of Py ,-names. It follows that there is a 3 < 6 such that ) is equal to the
set {Y(Pﬁ,gﬁ,fy): v € Sy} If Pe, forces that ) has the sfip, then inductive
condition 2 ensures that there is a P-name for a pseudo-intersection for ). This
shows that P forces that p > pu. It is clear that inductive condition 1 ensures that
b < k. We check that condition 4 ensure that b > k. Suppose that G is a family
of fewer than x many canonical P-names of members of w*. We again find n < A
and « < k such that G is a family of P, ¢, -names. Condition 4 forces there is
a function that dominates G. Finally we verify that condition 3 ensures that P
forces that s = A\. If S is any family of fewer than A-many canonical P-names
of subsets of w, then there is an n < A such that § is a family of P, ¢, -names.
Evidently, P, ¢, +1 adds a subset of w that is not split by S. There are a number
of ways to observe that for each n <A, P, ¢, ., adds a real that is Cohen over the
extension by Py ¢,. This ensures that P forces that s < \. O

In the next result we proceed similarly except that we first add x many Cohen
reals and preserve that they are splitting. We then cofinally add dominating reals
with Hechler’s D and again use small posets to ensure p > pu.
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Theorem 4.2. There is a ccc poset that forces p = = pu, s = k, b = X\ and
c=0.

PrROOF: We begin with the kX k-matrix iteration
<<Pa,6: a <K, g < K’>ﬂ <Qa,£5 a < K, f < ’i>>

where Py forces that Qaa is C,, for 8 < a, QB@ is the trivial poset, and
for a < B < &, nga equals Qa,a. We let &, denote the canonical Cohen real
added by Py o41. Of course Py, 41 forces that neither &, nor its complement
include any infinite subsets of w that have, for any 8 < a, a Pgo41-name. By
Proposition 3.8, the inductive condition 4 below holds for £ = k.

Then, proceeding as in the proof of Theorem 4.1, we just assert the existence
of a kx(-matrix iteration

((Pa,§: OKSK; €§C>5<Qa,§ O‘S’iv £<C>>

satisfying each of the following for each k < & < (:

(1) for each B < a < K, Py ¢ forces that neither &, nor w \ %, include any
infinite subset of w that has a Pg ¢ -name;

(2) for each n < A with (41 < ¢ and each 6 < 0, if P, ¢, forces that the
family 7y, 5 = {Y(]P’,{ygn,'y): 7 € S5} has the sfip, then thereis a § < (41
and an o < k such that Qﬁ’g equals the P, 5-name for M(F, ;) for all
a< <K

(3) for each n < X and each a < & such that ¢, < &, then Qa7<n+a is the
P ¢, +o-name for M(Z/'la,gﬁ) where Z/'la,cﬁ is a Py ¢,-name of an ultrafilter
on w, and @B,Cnﬂv = Qa,gﬁ_a for all a < 8 < k;

(4) for each n < A such that ¢, < &, Px ¢, 1 equals Py ¢, * D.

Evidently conditions (2) and (3) are similar and can be achieved while preserving
condition (1) by Proposition 3.3 (2). The fact that P, ¢, * D preserves condi-
tion (1) follows from Proposition 3.7. Condition (1) ensures that s < k, and by
arguments similar to those in Theorem 4.1, condition (3) ensures that s > . The
fact that b = A (in fact @ = X) follows easily from condition (4). The facts that
¢=06,p>pand h = p are proven exactly as in Theorem 4.1. O

5. On (k, \)-shattering

In this section we prove, see Theorem 5.9, that it is consistent that strongly
(k, kT)-shattering families exist. The method used in this section is the following
generalization of matrix iterations used in [8]. A chain {P,: a < d} is continuous
if for every limit o < 9, P, = J{Ps: 8 < a}.
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Definition 5.1. Let x > w; be a regular cardinal. For an ordinal (, a xx(-
matrix of posets is a family {P,¢: a < k, § < (} of ccc posets satisfying for each
a<k,and £ <n<(:

(1) P%g < Pﬂ,g for all a < 8 < k;
(2) Pse=U{Pye:n<p}for B <k with ¢f(5) > w; and
(3) for some v < K, Pg ¢ < Pg, for all v < <k;
(4) if n is a limit ordinal, there is a cub C' C  and a v < & such that, for
all vy < B <k, {Pss: § € CU{n}} is a continuous <--increasing chain.

One must be careful with a x X ¢ -matrix since there is no natural extension or
definition of P, ¢ for o < k. However, when cf({) > w;y the matrix can be viewed
as a matrix type construction of a ccc poset P ¢.

Lemma 5.2. If {Py¢: o < K, £ < (} is a kx(-matrix of posets with k > w
regular and cf(¢) > wi, then the poset P, = |J{Pu¢e: & < (} is ccc and satisfies
that P, ¢ <- P, forall a <k and £ < (.

PROOF: Let a < k and € < (. Tt follows from property (1) in Definition 5.1 that
P, ¢ < P.¢. By (3) of Definition 5.1, we have that {P.,: £ <n < (}isa <--
chain. This implies that P ¢ <- P, ¢. Now we check that P, ¢ is ccc. Assume that
A C P, ¢ has cardinality N;. Choose any vy < £ so that A C J{Ps,e: 8 < 0,
& < (}. Similarly choose n < ¢ minimal so that A C [J{Ps,¢: 8 < 7, £ < n}.
By property (2) of Definition 5.1, there is a 79 <1 < & such that A C J{P;, ¢:
¢ < n}. Now choose a cub C C 7 as in condition (4) of Definition 5.1, and,
using conditions (2) and (3) of Definition 5.1, we can choose (1 < (> < & so that
A C HPeps: 6 € C} C P,y Since P, ., is cec, it follows that A is not an
antichain. [l

We will use the method of matrix of posets from Definition 5.1 in which our
main component posets to raise the value of s will be the Laver style posets. Be-
fore proceeding it may be helpful to summarize the rough idea of how we generalize
the fundamental preservation technique of a matrix iteration. In a & x xT-matrix
iteration, one may introduce a sequence {a,: « < K} of P, ;-names that have no
infinite pseudointersection. With this fixed enumeration, one then ensures that
no P, ,-name will be forced to be a subset of ag for any o < 3 < k. In the
construction introduced in [8], we instead continually add to the list a Py y41-na-
me a, and at stage p < kT, we adopt a new enumeration of {an: a < u} in
order-type k (coherent with previous listings) and again ensure that no Py ,41-
name is a subset of any ag for 5 not listed before o in this new pth listing. We
utilize a [J-principle to make these enumerations sufficiently coherent and to use
as the required cub’s in condition (4) of Definition 5.1. The greater flexibility in
the definition of x x x*-matrix of posets makes this possible.

341
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We recall some notions and results about these studied in [7], [8].

Proposition 5.3. If P<- P’ are ccc posets, and D C & are, respectively, a P-

name and a P’-name of ultrafilters on w, then P «L(D) <- P' «L(E).

Definition 5.4. A family A C [w]“ is thin over a model M if for every I in
the ideal generated by A and every infinite family F € M consisting of pairwise
disjoint finite sets of bounded size, I is disjoint from some member of F.

It is routine to prove that for each limit ordinal ¢, Cs forces that the family
{Zq: a € 6}, as defined above, is thin over the ground model. In fact if A is thin
over some model M, then Cs forces that AU{Zs: « € §} is also thin over M. This
is the notion we use to control that property (1) of the definition of a (x,x™)-
shattering sequence will be preserved while at the same time raising the value
of s.

We first note that Proposition 3.5 extends to include this concept.

Proposition 5.5. Suppose that M is a model of a sufficient amount of set-theory
and that A C [w]¥ is thin over M. Then for any poset P such that P € M and
P C M, A is thin over the forcing extension by P.

PROOF: Let {Fl I € w} be P-names and suppose that p € P forces that {Fl
| € w} are pairwise disjoint subsets of [w]*, k € w. Also let I be any member
of the ideal generated by A. Working in M, recursively choose ¢; < p, j € w,
and Hj,l; so that ¢; |- Flj = H; and H; N J{H;: i < j} = 0. The sequence
{H;: j € w}is a family in M of pairwise disjoint sets of cardinality k. Therefore
there is a j with H; NI = ). This proves that p does not force that I meets every
member of {F}: 1€ w}. O

Lemma 5.6 ([8, 3.8]). Let x be a regular uncountable cardinal and let {Pg:
B < k} be a <--increasing chain of ccc posets with P, = |J{P,: « < k}. Assume
that, for each B < k, AB is a Pgyq1-name of a subset of [w]* that is forced to be
thin over the forcing extension by Pgz. Also let Dy be a Py x C{0}x-name that is
forced to be a Ramsey ultrafilter on w. Then there is a sequence (bg: 0< B <k)
such that for all a < 8 < k:
1) Dﬂ is a Pp * C(gy1)x.-name;
) Do is a subset of Dpg;

) Pp * C(g41)x. forces that bg is a Ramsey ultrafilter;
4) Py % Clapiyxc * L(_Da) < Py #Cgynyxe * L(Dg); and

) PpxC(g41)xc *IL(Dg) forces that Ag is thin over the forcing extension by

Po % Ciag1yxc ¥ L(Da).

Lemma 5.7 ([8, 2.7]). Assume that Pyo<- Py and that A is a P, g-name of
a subset of [w]¥. Assume that (Py¢: § < 6) and (Py¢: £ < §) are <--chains such
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that Py ¢ <- Py ¢ for all £ < 6, and that Py ¢ forces that A is thin over the forcing
extension by Py ¢ for all £ < 6. Then Py s =|J{P1,¢: £ < 0} forces that A is thin
over the forcing extension by Py s = |J{Fo,¢e: § < ¢}.

Before proving the next result we recall the notion of a [,-sequence. For
a set C of ordinals, let sup(C) be the supremum, (JC, of C and let C’ denote
the set of limit ordinals « < sup(C) such that C' N« is cofinal in «. For a limit
ordinal o, a set C' is a cub in a if C' C aw = sup(C) and €’ C C.

Definition 5.8 ([14]). For a cardinal s, the family {C,: « € (k7)'} is a O,-
sequence if for each a € (k)"

(1) Cyisacubin o

(2) if cf(@) < K, then |Cy| < K;

(3) it B e Cl, then Cg =C,NB.
If there is a O,-sequence, then [J,; is said to hold.

Theorem 5.9. It is consistent with Ry < §h < s < cf(¢c) = ¢ that there is an
(b, s)-shattering family.

PrROOF: We start in a model of GCH satisfying [J,; for some regular cardinal
k > Nj. Choose any regular A > k. Fix a Oy-sequence {Cy: a € (k1) }. We
may assume that C, = a for all @ € x’. For each a € (k1), let o(C,) denote
the order-type of Co. When C’ is bounded in a with n = max(CY), then let
{¢f: | € w} enumerate C, \ n in increasing order.

We will construct a £xrx*-matrix of posets, (Po¢: a <k, £ < k') € H(AT)
and prove that the poset P, .+ as in Lemma 5.2 has the desired properties. For
each £ < ni < k*, we will also choose an «(£,n) < & satisfying, as in (3) of
the definition of kX (£ + 1)-matrix that P, ¢ <- Pa, for all ¢(§,n7) < a < k. We
construct this family by constructing (P ¢: o < k, £ < {) by recursion on limit
¢ < k™.

We will recursively define two other families. For each o < x and ¢ < kT, we
will define a set supp(Pan.¢) C £ that can be viewed as the union of the supports
of the elements of P, and will satisfy that {supp(Pa,¢): o < k} is increasing
and covers £. For each limit n < k% of cofinality less than x and each n € w,
we will select a canonical Py ;4pn41-name, a,4, of a subset w that is forced to be

Cohen over the forcing extension by Py ,. While this condition looks awkward,

o
we simply want to avoid this task at limits of cofinality x. Needing notation for
this, let £ =%\ U{[n,n +w): cf(n) = k}.

For each o < k and & < n < s, we define Ay, to be the family {a.:
v € E N n\supp(Pae)}t. The intention is that for all o < & < n, Aney is
a family of P, ,-names which is forced by the poset P , to be thin over the forcing

extension by P,¢. Let us note that if @ < § and & < n, then Ay ¢ \ Agnn
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should then be a set of Pg,-names. By ensuring that supp(Pa.¢) has cardinality
less than k for all & < k and & < k™, this will ensure that the family {a,: n € E}
is (k, kT)-shattering. For each n < k™ with cofinality x we will ensure that P, ;11
has the form P, , * Cxx and that P, = Pepy1 * L(D,{m) for a Py y41-na-
me Dn,n of an ultrafilter on w. This will ensure that ¢ > A and s = k7. The
sequence defining P ,+3 will be devoted to ensuring that p > &.

We start the recursion in a rather trivial fashion. For each o < k, Py o = Cy,
and for each n € w, Pypnt1 = Pan *Co. We may also let ¢(n,m) = 0 for all
n < m < w. For each n € w, let a, be the canonical name of the Cohen real
added by the second coordinate of P, n41 = Py * C,. For each o < x and
n € w, define supp(Py,,) to be n.

It should be clear that P ,, forces that for each o < kK and n € w, the family
{@m: n < m € w} is thin over the forcing extension by P, ,. Assume that P is
a poset whose elements are functions with domain a subset of an ordinal £. We
adopt the notational convention that for a P-name Q for a poset, P *g Q will
denote the representation of P @ whose elements have the form p U {(¢, ¢)} for
(p,4) € P*Q.

We will prove, by induction on limit ¢ < ™, there is a kX (¢ +1)-matrix { Py ¢:
a < k, £ < (} and families {Aq¢n: o < k, £ < n < (} satistying conditions
(1)-(10).

(1) Forall @« < 8 <k and £ < n < (, if Py¢<- Pg,, then the poset Pz,
forces that the family Aq ¢, \ Agn» is thin over the forcing extension by P, ¢;

(2) for all @ < k and £ < (, the elements p of the poset P, ¢ are functions
that have a finite domain, dom(p), contained in &;

(3) if Cf is cub in ¢ and 5 € Cf, then

(a) Py is the trivial poset and supp(P,¢) =0 for n € w;
(b) Pa,c = Payy and supp(Pa,¢) = supp(Pa,,) for all o(Cy) < a < o(C)) + w;
and
(¢) P = U{Pay:n € C;} and supp(Pac) = U{supp(Pu,y): n € C{} for
all o(C¢) < o < k;
also, let ¢(n, () = o(Cy) for all n € Cf and for all v < ¢\ Cf let «(v,¢) = ¢(v,n)
where 7 = min(C¢ \ 7);
(4) if max(C{)<( then let

1 = max(o(C¢), sup{e(ps, 05 +n): 1 <1 < n <w})
and

(a) set Py = P, s¢ and supp(Py,¢) = supp(P «pg) for all a < u¢;

a’

(b) set, for ¢ < a < K, Pa¢ = U{Pa,ga§+n: I,n € w} and supp(Pac) =
U{supp(Panngn): I,n € w};
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(c) for each v € cpg let ¢(7,¢) = (7, gag), let L(cpg,C) = o(C,), and for each
cpg <7y <, u(y,¢) is the maximum of ¢ and min{s(vy, cpf +n): ,bn€w
and v < cpf +n};

(5) if o(C¢) < Kk, then for all & < k and n € w:

(a) Pactnt1 = Poctn *¢in Cus

(b) Gc¢yn in the canonical Py ¢yrn *¢4n Co-name for the Cohen real added by
the second coordinate copy of Cy;

(¢) supp(Pac+n+1) = supp(Pa,¢) U [¢, ¢ + n]; and

(d) «(C+k,(+n+1)=0 forall k<n,and forall v <, t(y,(+n+1)=

(7, €);

(6) if o(C¢) = K, then for all o < K, Pac+1 = Pa¢ *¢ Catixr;

(7) if o(C¢) = K, then for all n € w and all & < K, Py ¢c+3+n = Pa,c+3;

(8) if o(C¢) = k, then there is an ¢ < k such that Pg¢io = Pg ¢4 for all
< 1¢, and there is a sequence (Dy ¢ : 1 < o < k) such that for each 1 < o < &

(a) Do, is a Py ny1-name of a Ramsey ultrafilter on w;
(b) for each ¢ < < a, bg,g C D
(¢) Pacrz = Pacr1*¢t1 L(Dax);
(9) if o(C¢) = K, then for ¢ chosen as in (8)
(a) for each o < t¢, Pa ki3 = Paxt2;
(b) Pcys = P2 *ci2 QL(,C+2 for some P, ¢ -name, QLC1C+2 in H(AT) of
a finite support product of o-centered posets;
(c) for each t¢ < o < K, Pacys = Pacy2 *ct2 QLC1C+2;
(10) if o(C¢) = K, then for all @ < k, n € w, and v < {, supp(Pa,¢c4nt1) =
supp(Pu,c)U[C, C+nl, t(y, C+n) = u(7,(), and o((+k,(+n) =t forallk < n € w.

It should be clear from the properties, and by induction on (, that for all a < &
and ¢ < ¢, each p € P, ¢ is a function with finite domain contained in supp(Pa.¢).
Similarly, it is immediate from the hypotheses that supp(Pa,¢) has cardinality less
than  for all (o, &) € kxrT.

Before verifying the construction, we first prove, by induction on (, that the
conditions (2)—(10) ensure that for all { < ( and n € C{:

Claim (a): Py, < Pag for all o(Cy) +w < a € k.

Claim (b): Pu, = Pa¢ for all a < o(Cy) +w.

If o(C¢) < «, then P, , <- P, follows immediately from clause 2 (c) and, by
induction, clauses 3 (a). Now assume o < o(C¢) +w. If C{ is not cofinal in &,
then, by induction, P, = Pcwpﬁ and, by clause 3 (a), Pa,«ﬂg = Pye If Cé is
cofinal in , then choose 7 € C¢ so that o(Cy) < o < 0(Cy) + w. By clause 2 (b),
P,¢ = P, 5. By the inductive assumption, F,, = P, 5 since one of n = 17,
n € Cf or 7 € C; must hold.
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The second thing we check is that the conditions (2)—(10) also ensure that for
each ¢ < k™, (Pay: a <k, n <()is akx(-matrix. We assume, by induction on
limit ¢, that for v <n < (, {Ps: a <k} isa <--chain and that P, , <- P, , for
all n with ¢(y,n) < a < k. Note that clauses 3 (c¢) and 4 (b) of the construction
ensure that condition (4) of Definition 5.1 holds. We check the details for ¢ + 1
and skip the easy subsequent verification for ( +n, n € w. Suppose first that
C’é is cofinal in ¢ and let ¢(v,() < a < k for some v < (. Of course we may
assume that v ¢ Cé. Since Cé is cofinal in (, let n = min(C’é \ 7). By induction,
Poy < Poy < Pa¢. Now assume that C{ is not cofinal in ¢. If v < <p8, then
1(7,¢) = u(y,¢5), and so we have that P, ., <- P < Pag I @5 < 7, then

choose any [ € w so that v < cplg. By construction, ¢(7,¢) > (v, cpf) and so for
U7,¢) La<k, Poy< Pa,%q < Py

Now we consider the values of A, ¢, for a <k and w <& < n by examining
the names a for v € E.

By clause (5), @, is a Py y+1-name and + is in the domain of each p € Py 41
appearing in the name. One direction of this next claim is then obvious given
that the domain of every element of P, ¢ is a subset of supp(Pa ).

Claim (c): @, is a P, ¢ -name if and only if v € supp(Pa.¢).

Assume that v € supp(Pa,e). We prove this by induction on §. If £ is a limit,
then supp(Pa¢) is defined as a union, hence there is an n < & such that v €
supp(Pa,y) and P, , <- Ph¢. If & = n+ n for some limit  and n € w, then
Pyy < Pye and so we may assume that n < v = n+k < n+n and that
o(Cy) < k. Since Py pir < Panti < Papntn = Pag, it follows that a is a Pa¢-
name.

We prove by induction on &, £ a limit, that for all v < &:
Claim (d): for all & < ¢(y + 1,&), v is not in supp(Pa ).

First consider the case that C’é is cofinal in & and let 1 be the minimum element
of C¢\ (v +1). By definition ¢(y + 1,€) is equal to ¢(y + 1,7) and the claim
follows since we have that supp(P,(y+1,¢),c) = SUpPP(P,(y+1,¢),y). Now assume
that Cf is not cofinal in § and assume that a < «(y + 1,§). We break into
cases: vy < gag and cpg < v < & In the first case (v,£) = L("}/,cpg) and the
claim follows by induction and the fact that supp(Pwpg ) = supp(Pa,) for all

a < u(v,€). Now consider <p8 <vy<& If a<ug, then Pye =P . and, since

@00

te < u(y+1,€), v is not in supp(PWpS). Otherwise, choose I,n € w so that

te < a<uy+1,8 =y+ 1,<,ol5 + n) as in the definition of ¢(v,£). By the

minimality in the choice of gof + n, it follows that ~ is not in supp(P, ot ) for
) l/



On the bounding, splitting, and distributivity numbers 347

all /,n € w. Since supp(Ps¢) is the union of all such sets, it follows that ~ is
not in supp(Pa¢).

Next we prove, by induction on (, that the matrix so chosen will additionally
satisfy condition (1). We first find a reformulation of condition (1). Note that by
Claim (c), Aaen ={ay: v € ENn\supp(Pae)}

Claim (e): For each o < k and £ < n < ¢ and finite subset {v;: i < m} of
Enn\supp(Pu,¢) thereisa f < & such that ¢(§,n) < B, {y:: i <m} C supp(Ps,y)
and Pg, forces that {a-,: ¢ < m} is thin over the forcing extension by P, ¢.

Let us verify that Claim (e) follows from condition (1). Let a,&,n and {v;:
i < m} be as in the statement of Claim (e). Choose 5 < & so that ¢(¢,n) and each
t(vi +1,7m) is less than 8. Then P, ¢ < Ps, and {a,: i <m} C Aaen \ Agpn-
This value of 8 satisfies the conclusion of Claim (e).

Now assume that Claim (e) holds and we prove that condition (1) holds.
Assume that P,¢<- FP5,. To prove that A,¢n, \ Asny is forced by Ps, to
be thin over the forcing extension by P,., it suffices to prove this for any fi-
nite subset of As ¢ \ Aspyn. Thus, let {7;: ¢ < m} be any finite subset of
supp(Ps.,) N E N1\ supp(Pa,e). Choose 8 as in the conclusion of the claim.
If <6, then Ps, forces that {a,,: i < m} is thin over the forcing extension
because P3,, <- Ps,, does. Similarly, if § < /3, then Ps, being completely embed-
ded in Pg, cannot force that {a.,: ¢ < m} is not thin over the forcing extension
by Pa,E-

We assume that w < ¢ < " is a limit and that (Pa¢: o < k, £ < () have
been chosen so that conditions (1)—(10) are satisfied. We prove, by induction on
n € w, that there is an extension (P, ¢: o < k, £ < ¢+ n) that also satisfies
conditions (1)—(10).

For n = 1, we define the sequence (P, ¢: « < k) according to the requirement
of (3) or (4) as appropriate. It follows from Lemma 5.7 that (2) will hold for
the extension (P, ¢: a < k, & < ¢+ 1). Conditions (3)—(10) hold since there
are no new requirements. We must verify that the condition in Claim (e) holds
for n = ¢. Let o, & and {7;: ¢ < m} be as in the statement of Claim (e) with
n=¢. Let Cc = {ng: B < o(C¢)} be an order-preserving enumeration. We first
deal with case that C’é is cofinal in (. Choose any [y < k large enough so that
vi € supp(Pg, ¢) for all i < m. Choose Sy < B so that «(§,ns,) < 8. Now we
have that Py ¢ < Py, and Pg,, < Pg¢. Applying Claim (e) to ng,, we have
that Pg,, forces that {a,,: i < m} is thin over the forcing extension by Py .
As in the proof of Claim (e), this implies that Pg ¢ forces the same thing.
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Now the case that C{ is not cofinal in (. If a < i, then apply Claim (e) to
choose 8 so that Pg,. forces that {a,,: ¢ < m} is not thin over the extension
by Pu.e. Since Pg, <- Pg holds for all 8, Ps also forces that {a.,: i < m} is
not thin over the extension by P, ¢. If ¢ < «, first choose § < k large enough
so that (&, ¢) and each ¢(y; + 1, ¢) is less than 0. Since {7;: ¢ < m} is a subset of
supp(Ps,¢), we can choose | < w large enough so that {7;: i <w} C supp(P(ng).

Applying Claim (e) to n = gaf, we choose  as in the claim. As we have seen,
there is no loss to assuming that 6 < § and, since PBW? < P3¢, this completes
the proof.

If o(C¢) < K, then the construction of (Py ¢4n: 7 € w, a < k) is canonical
so that conditions (2)—(10) hold. We again verify that Claim (e) holds for all
values of n with ( < < (4 w. Let o, & and {v;: i < m} be as in Claim (e)
for n = ¢ +n. We may assume that {v;: i < m}N¢ = {v;: i« <m} for some
m<m. If €< let &€=¢, otherwise, choose any & < ¢ so that Poc=P,¢
Note that {v;: m < i < m} is disjoint from the interval [(,£). Choose 8 < k to
be greater than «(£, () and each t(v; + 1,(), i <M, and so that Pg ¢ forces that
{a~,: i <7} is thin over the extension by P, ¢ If @ = m we are done by the
fact that Py ¢ is isomorphic to P, g*C,,. In fact, we similarly have that Pg ¢ forces
that {a~,: ¢ <} is thin over the forcing extension by P, ¢. Since Pg ¢4y forces
that [ J{a, : ™ < i < m} is a Cohen real over the forcing extension by P3¢ it also
follows that Pg ¢, forces that {a,,: ¢ < m} is thin over the extension by P, ¢.

Now we come to the final case where o(C;) = k and the main step to the
proof. The fact that Claim (e) will hold for n = { 4+ 1 is proven as above for the
case when o(C¢) < k and Cé is cofinal in (. For values of n > 3, there is nothing
to prove since Pu ¢34k = Pa,c43 for all k € w. We also note that ( +n ¢ E for
all n e w.

At step n = ¢ + 2 we must take great care to preserve Claim (e) and at step
¢ + 3 we make a strategic choice towards ensuring that p will equal k. Indeed,
we begin by choosing the lexicographic minimal pair, (§¢, a¢), in {(xx with the

property that there is a family of fewer than x many canonical P,, ¢.-names of

N3
subsets of w and a p € P, ¢ that forces over Py that there i; IiO pseudo-
intersection. If there is no such pair, then let (o, &) = (w, ¢+ 1). Choose ¢¢ so
that Pao& < PL<7C+1'

Assume that o, &, {v;: ¢ < m} are as in Claim (e). We first check that if
& < (+2, then there is nothing new to prove. Indeed, simply choose § < x large
enough so that Pg ¢41 has the properties required in Claim (e) for P, ¢. Of course
it follows that Pg ¢4o forces that {a.,: i < m} is thin over the extension by P, ¢

since Pg ¢4+1 already forces this.
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This means that we need only consider instances of Claim (e) in which £ = (+2.
The analogous statement also holds when we move to ( + 3. For each g < &, let

T = ENsupp(Ps1,¢) \ supp(Ps¢)

and note that Pgi ¢4+1 forces that {a,: v € Tg} is thin over the extension by
Pg¢+1. Most of the work has been done for us in Lemma 5.6. Except for some
minor re-indexing, we can assume that the sequence {Ps: 8 < k} in the statement
of Lemma 5.6 is the sequence {Ps ¢: B < x}. We also have that Pg ¢ * Cig41)xc
is isomorphic to Pg ¢y1. We can choose any Py ¢4 1-name Dy ¢c-name of a Ramsey
ultrafilter on w. The family {a.: v € T} will play the role of Az in the statement
of Lemma 5.6, and we let {bg,cz 0 < 8 < Kk} be the sequence as supplied in
Lemma 5.6.

Now assume that o < x and that {v;: i <m} C EN(\ supp(Pa,c+1). Let
{F;: | € w} be any sequence of P, ¢ o-names of pairwise disjoint elements of [w]”
for some k € w. We must find a sufficiently large 8 < & so that Pg 4o forces
that a,, U--- U d,,,_, is disjoint from Fj for some | € w. Let {8;: j < m}
be the set (listed in increasing order) of 8 < k such that T N {v;: i < m}
is not empty and let 3,, = Bm_1 + 1. By re-indexing we can assume there is
a sequence {m;: j <m} C m+1so that v; € T, for m; < i < mj;1. Although
Ps.¢12 = Pg ¢y for values of 8 < 1¢, we will let Pg oo = Pgcq1%c411L(Dg,¢) for
B < t¢, and for consistent notation, let ﬁ57<+2 = Pg ¢4 for 1o < B < k. We note
that {F}: | € w} is also sequence of P, ¢io-names of pairwise disjoint elements
of [w]*.

For each j < m, let Lj+1 be the ngﬂ,gﬂ—name of those [ such that Fl
is disjoint from (J{a~,: ¢ < mj;y1}. It follows, by induction on j < 7, that
ﬁﬂﬂ_l,“_g forces that Lj+1 is infinite since ﬁﬂj+17<+2 forces that {a,,: m; <
i < myy1} is thin over the forcing extension by Ppg; ¢c12. It now follows Pg,  ¢i2
forces that {a.,: i < m} is thin over the forcing extension by Pq c12. If B, < tc,
let B = i, otherwise, let 8 = (,,. It follows that Pg 4o forces that {a., :
i < m} is thin over the forcing extension by Py ¢42 < FQ,CH. This completes
the verification of Claim (e) for the case n = (4 2 and we now turn to the final
case of n =(+ 3.

We have chosen the pair (a¢, &) when choosing ¢¢. Let QL<7<+2 be the P, ¢yo-
name of the finite support product of all posets of the form M(F) where F is
a family of fewer than x canonical P, ¢ .-names of subsets of w that is forced to
.éc € H(AT) the set of all such families F is an element of
H(AT). This is our value of Q’LC,CJ,_Q as in condition (9) for the definition of Pg ¢43
for all B < k. The fact that Claim (e) holds in this case follows immediately
from the induction hypothesis and Proposition 5.5. We also note that P, 13

have the sfip. Since P,
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forces that every family of fewer than x many canonical P, ¢ -names that is
forced to have the sfip is also forced by P ¢4+3 to have a pseudo-intersection.
This means that for values of ¢ > ¢ with o(C¢) = &, the pair (a¢, &) will be
lexicographically strictly smaller than the choice for ¢’. In other words, the family
{(&c,ac): ¢ <k, cf(¢) = K} is strictly increasing in the lexicographic ordering.

Now we can verify that P, .+ forces that p > k. If it does not, then there is
a 0 < x and a family, {¢,: v < ¢} of canonical P, ,.+ -names of subsets of w with
some p € P, .+ forcing that the family has sfip but has no pseudo-intersection. By
an easy modification of the names, we can assume that every condition in P, ,.+
forces that the family {g,: v < ¢} is forced to have sfip. Choose any & < k™ so
that p € P, ¢ and every g, is a P, ¢-name. Choose a < s large enough so that
P € Pag, t(C,€), and each ., v < J, is less than a. It follows that ¢, is a Py ¢ -
name for all v < 4. Since the family {(,a¢): ¢ < kT, cf(¢) = K} is strictly
increasing in the lexicographic ordering, and this ordering on x*xx has order
type kT, there is a minimal ¢ < k™ (with ¢f(¢) = k) such that (§,a) < (&, ae).
By the assumption on (o, &), (&, ae) will be chosen to equal (£, ). One of the
factors of the poset @, ¢+2 will be chosen to be M({g,: 7 < §}). This proves
that Py ¢y3 forces {y,: v < ¢} does have a pseudo-intersection.

It should be clear from condition (8) in the construction that P, ,.+ forces that
s > k. To finish the proof we must show that P, .+ forces that {a,: v € E}
is (k,kT)-shattering. Since a. is forced to be a Cohen real over the extension
by Py, condition (2) in Definition 2.3 of (x, k™ )-shattering holds. Finally, we
verify condition (1) of Definition 2.3. Choose any P, ,.+-name b of an infinite
subset of w. Choose any (o, &) € kxkt so that b is a P,¢-name. The set
E N supp(Pa,e) has cardinality less than x. For any v € E \ supp(Pa,), there
is a (8,¢) € kxk™ such that {a.} is thin over the forcing extension by P,¢. It
follows trivially that Ps ¢ forces that b is not a (mod finite) subset of a.,. O

6. Questions

(1) Is it consistent to have wy < h < b < s and ¢ regular?
(2) Is it consistent to have w1 < h < s < b and ¢ regular?

Question (2) has been answered in [12].
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