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Aposyndesis in N

José del Carmen Alberto-Doḿınguez,

Gerardo Acosta, Maira Madriz-Mendoza

Abstract. We consider the Golomb and the Kirch topologies in the set of natural
numbers. Among other results, we show that while with the Kirch topology
every arithmetic progression is aposyndetic, in the Golomb topology only for
those arithmetic progressions P (a, b) with the property that every prime number
that divides a also divides b, it follows that being connected, being Brown, being
totally Brown, and being aposyndetic are all equivalent. This characterizes the
arithmetic progressions which are aposyndetic in the Golomb space.

Keywords: aposyndesis; arithmetic progression; Golomb topology; Kirch topol-
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1. Introduction

The following paper is a continuation of the work presented in [1] and [2]. We

denote by Z the set of integers, and by N the set of natural numbers. We define

N0 = N ∪ {0} and

Nb = {n ∈ N : n ≥ b} for every b ∈ N.

For each a, b ∈ N we define

P (a, b) = {b+ an : n ∈ N0} = b+ aN0.

If a ∈ N and b ∈ Z we also define

PF (a, b) = {b+ az : z ∈ Z} = b+ aZ and M(a) = {an : n ∈ N}.

Note that P (a, b) is the arithmetic progression in N whose initial term is b and

the common difference of successive members is a, while M(a) is the arithmetic

progression of all multiples of a in N. Hence P (a, b) ⊂ Nb,M(a) = P (a, a),

M(1) = N, and P (a, b) = PF (a, b) ∩ Nb. Moreover,

(1) P (a, b) = PF (a, b) ∩ N, if a ≥ b.
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The symbol P denotes the set of prime numbers. We consider that P ⊂ N.

For each a ∈ N we define

(2) Θ(a) = {p ∈ P : p|a}.

Note that Θ(a) = ∅ if and only if a = 1. In this paper we consider two topolo-

gies τG and τK on N and pursue two purposes. As the first one we present, in

the respective topological spaces (N, τG) and (N, τK), properties of the arithmetic

progressions P (a, b) with Θ(a) ⊂ Θ(b).

Let (X, τ) be a topological space and A ⊂ X . The symbols clX(A) and

intX(A) denote the closure and the interior of A in (X, τ), respectively. If we like

to specify the topology τ on X , we write cl(X,τ)(A) and int(X,τ)(A), respectively.

The following notions appear in [1].

Definition 1.1. Let (X, τ) be a topological space. We say that X is a

(1) Brown space if for every nonempty open subsets U and V of X we have

clX(U) ∩ clX(V ) 6= ∅;

(2) totally Brown space if for every n ∈ N2 and each nonempty open subsets

U1, U2, . . . , Un of X we have

clX(U1) ∩ clX(U2) ∩ · · · ∩ clX(Un) 6= ∅.

Definition 1.2. Let X be a topological space and a, b ∈ X with a 6= b. We say

that X is aposyndetic at a with respect to b if there exists a closed and connected

subset M of X such that a ∈ intX(M) and b /∈ M . If for each x ∈ X \ {a}, X is

aposyndetic at a with respect to x, we say that X is aposyndetic at a. Finally,

we say that X is aposyndetic if X has this property at each of its points.

Note that: totally Brown =⇒ Brown =⇒ connected.

In both [1, Section 3] and [2, Subsection 2.1] some properties of Brown and of

totally Brown spaces are presented. In [1] it is shown that connected spaces are

not necessarily Brown, and that Brown spaces are not necessarily totally Brown.

The next result is proved in [1, Theorem 3.6].

Theorem 1.3. If X is totally Brown (Brown, respectively) and T2, then X is

aposyndetic.

As our second purpose, in this paper we characterize the arithmetic progres-

sions in (N, τG) and in (N, τK) that are aposyndetic.

We divide this paper in four sections. After this one, in Section 2 we present

some notions and results that we use in the rest of the paper. In Section 3 we

consider the topological space (N, τG) and present new properties of it, mainly

concerning those arithmetic progressions P (a, b) with Θ(a) ⊂ Θ(b). It turns out
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that those are the only ones that are aposyndetic. In Section 4, we consider

the topological space (N, τK) and show that most of the properties presented in

Section 3 for the arithmetic progressions P (a, b) with Θ(a) ⊂ Θ(b), remain valid in

(N, τK). We also show that all arithmetic progressions are aposyndetic in (N, τK).

2. Notation and first results

Given nonzero integers a and b, the symbol 〈a, b〉 denotes the greatest com-

mon divisor of a and b. For nonzero integers a1, a2, . . . , ak ∈ N, the symbol

[a1, a2, . . . , ak] denotes the least common multiple of a1, a2, . . . , ak.

For a, b ∈ Z, the symbol a|b means that b = ac for some c ∈ Z. If a, b ∈ Z

and m ∈ N, the symbol a ≡ b(modm) means that m|(a− b). The next result is

proved in [2, Theorem 3.1].

Theorem 2.1. If a, b, c, d ∈ N, then

(3) P (c, d) ⊂ P (a, b) if and only if a|c and d ∈ P (a, b).

In particular, P (a, b) = P (c, d) if and only if a = c and b = d.

The following three results are proved in [1, Corollary 4.11, Theorem 4.12 and

Theorem 4.14].

Theorem 2.2. If b, a1, a2 . . . , ak ∈ N, then

(4) P ([a1, a2, . . . , ak], b) =

k
⋂

i=1

P (ai, b).

Theorem 2.3. For each i ∈ {1, 2, . . . , k} let ai, bi ∈ N be such that

k
⋂

i=1

P (ai, bi) 6= ∅.

If z ∈ N, then

(5) P ([a1, a2, . . . , ak], z) =

k
⋂

i=1

P (ai, bi)

if and only if z = min
(
⋂k

i=1 P (ai, bi)
)

.
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Theorem 2.4. If a ∈ N2 and a =
∏k

i=1 p
αi

i is the standard prime decomposition

of a, then

(6) M(a) =

k
⋂

i=1

M(pαi

i ).

In [1, Theorem 4.19] we decompose an arithmetic progression in N as the union

of pairwise disjoint arithmetic progressions in N. Such result, that we present here

as Corollary 2.6, can be generalized as follows.

Theorem 2.5. If a ∈ N2 and b ∈ N then for each c ∈ N2 such that a|c it follows

that

(7) P (a, b) =

c/a−1
⋃

k=0

P (c, ak + b).

Moreover, if c/a ∈ N2, then the members of the family

F =
{

P (c, ak + b) : k ∈
{

0, 1, . . . ,
c

a
− 1

}}

are pairwise disjoint.

Proof: Let c ∈ N2 be such that a|c, as well as d ∈ N so that c = ad. If d = 1,

then clearly (7) is satisfied, so assume that d ∈ N2. Define A = {0, 1, . . . , d− 1}.

Take x in the right side of (7). Hence there exist m ∈ N0 and k0 ∈ A so that

x = cm+ (ak0 + b). Note that dm+ k0 ∈ N0 and

x = cm+ (ak0 + b) = adm+ ak0 + b = a(dm+ k0) + b ∈ P (a, b).

This shows that the right side of (8) is a subset of its left side. Now assume that

x is in the left side of (7). Let l,m ∈ N0 and k ∈ A be such that x = al+ b and

l = dm+ k. Therefore

x = al + b = a(dm+ k) + b = (ad)m+ (ak + b) = cm+ (ak + b) ∈ P (c, ak + b).

Hence x is in the right side of (7) and such equality is satisfied.

To show the second part, let n1, n2 ∈ N0 and k1, k2 ∈ A be such that k1 6= k2
and cn1 + (ak1 + b) = cn2 + (ak2 + b). Then d(n1 − n2) = k2 − k1. Hence

k2 ≡ k1(mod d). Now, since k1 and k2 are distinct members of the set A, which

is a complete residue system modulo d, the integers k1 and k2 are not congruent

modulo d. From this contradiction, we infer that the members of F are pairwise

disjoint. �
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Corollary 2.6. If a ∈ N2 and b ∈ N then for each t ∈ N2

(8) P (a, b) =

at−1
−1

⋃

k=0

P (at, ak + b)

and the members of the family

F = {P (at, ak + b) : k ∈ {0, 1, . . . , at−1 − 1}}

are pairwise disjoint.

Proof: Take t ∈ N2 and define c = at. Note that c ∈ N2, a|c, and c/a =

at−1 ∈ N2. Hence the result follows from this and Theorem 2.5. �

We say that a ∈ N2 is square-free if it is not divided by the square p2 of any

p ∈ P. Equivalently a is square-free if its standard prime decomposition is of the

form
∏k

i=1 pi.

The topological space (X, τ) is said to be totally separated if for each x, y ∈ X

with x 6= y, there exist U, V ∈ τ so that x ∈ U , y ∈ V , X = U∪V and U∩V = ∅.

We say that X is hereditarily disconnected if X does not contain any connected

subset of cardinality larger than one. By [4, page 356, Theorem 6.1.22] totally

separated spaces are hereditarily disconnected. A space which is hereditarily

disconnected but not totally separated is presented in [8, page 91, Example 72].

3. The Golomb space

In both [5, page 663] and [6, page 179], S.W. Golomb showed that the family

BG = {P (a, b) : (a, b) ∈ N× N and 〈a, b〉 = 1}

is a base for a topology τG in N. In [8, page 82, Examples 60 and 61] this topology

is called the relatively prime integer topology. However as it is now more popular

in general topology, we call τG the Golomb topology and refer to the topological

space (N, τG) as the Golomb space. Clearly

τG = {∅} ∪ {U ⊂ N : for each b ∈ U there is a ∈ N

so that 〈a, b〉 = 1 and P (a, b) ⊂ U}.

In [5, Theorem 2] it is proved that (N, τG) is T2.

In this section we present new properties of (N, τG), that either generalize or

complement the ones presented in [1, Section 5]. In [1, page 205] it is proved, for

example that for each p ∈ P the arithmetic progressionM(p) is closed in (N, τG).

The following result is proved in [1, Theorem 5.8].
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Theorem 3.1. If b ∈ N and p ∈ P, then

(9) cl(N,τG)(P (pn, b)) = M(p) ∪ [PF (p
n, b) ∩ N] for each n ∈ N.

As an application of Theorem 3.1 we have the following.

Theorem 3.2. If p ∈ P, then

(10) cl(N,τG)(M(pn)) = M(p) for each n ∈ N.

Proof: By (1) and (9) we have

cl(N,τG)(M(pn)) = cl(N,τG)(P (pn, pn)) = M(p) ∪ [PF (p
n, pn) ∩ N]

= M(p) ∪ P (pn, pn) = M(p) ∪M(pn) = M(p).

This shows (10). �

Theorem 3.3. For each a ∈ N2, the set M(a) has empty interior in (N, τG).

Proof: Take a ∈ N2 and assume that int(N,τG)(M(a)) 6= ∅. Hence there exist

c, d ∈ N such that 〈c, d〉 = 1 and P (c, d) ⊂ M(a) = P (a, a). This implies, by (3),

that a|c and d ∈ P (a, a). Hence a|c and a|d, a contradiction with the fact that

〈c, d〉 = 1. This shows that int(N,τG)(M(a)) = ∅. �

The following result is proved in [1, Theorem 5.10]. It originally appears with

a different proof in [3, Lemma 2.2].

Theorem 3.4. Let a ∈ N2 and assume that a =
∏k

i=1 p
αi

i is the standard prime

decomposition of a. If b ∈ N, then

(11) cl(N,τG)(P (a, b)) = N ∩

( k
⋂

i=1

[M(pi) ∪ PF (p
αi

i , b)]

)

.

If a ∈ N2 and a =
∏k

i=1 p
αi

i is the standard prime decomposition of a then,

by (11) we have

cl(N,τG)(M(a)) = N∩

( k
⋂

i=1

[M(pi) ∪PF (p
αi

i , a)]

)

=

k
⋂

i=1

[M(pi) ∪ (PF (p
αi

i , a)∩N)].

Given a ∈ N we recall that in (2) we define the set Θ(a) of prime numbers that

divide a. In the following result we calculate the closure in (N, τG) of an arithmetic

progression P (a, b) with Θ(a) ⊂ Θ(b), as well as the closure in (N, τG) of M(a).

Theorem 3.5. Let a ∈ N2 and b ∈ N be such that Θ(a) ⊂ Θ(b). If a =
∏k

i=1 p
αi

i

is the standard prime decomposition of a and q = p1p2 · · · pk, then

(12) cl(N,τG)(P (a, b)) = M(q).
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In particular,

(13) cl(N,τG)(M(a)) = M(q).

Proof: Given i ∈ {1, 2, . . . , k} since pi|a and Θ(a) ⊂ Θ(b), it follows that pi|b.

Hence,

N ∩ PF (p
αi

i , b) ⊂ M(pi).

Using this and Theorem 3.4, we have

cl(N,τG)(P (a, b)) = N ∩

( k
⋂

i=1

[M(pi) ∪ PF (p
αi

i , b)]

)

=
k
⋂

i=1

[M(pi) ∪ (N ∩ PF (p
αi

i , b))] =
k
⋂

i=1

M(pi) = M(q).

This shows (12). Since Θ(a) ⊂ Θ(a), by (12) we have (13). �

Corollary 3.6. If a ∈ N2, then M(a) is closed in (N, τG) if and only if a is

square-free.

Proof: Let a =
∏k

i=1 p
αi

i be the standard prime decomposition of a and q =

p1p2 · · · pk. Clearly q is square-free. If M(a) is closed in (N, τG) then by (13),

P (a, a) = M(a) = cl(N,τG)(M(a)) = M(q) = P (q, q).

Hence, by the second part of Theorem 2.1, a = q. This shows that a is square-

free.

Now assume that a is square-free. Then a = q and by (13), cl(N,τG)(M(a)) =

M(q) = M(a). Hence, M(a) is closed in (N, τG). �

Since M(1) = P (1, 1) = N is closed in (N, τG), by this and Corollary 3.6, the

set M(a) is closed in (N, τG) if and only if either a = 1 or a is square-free.

A subsetA of a topological spaceX is nowhere dense in X if intX(clX(A)) = ∅.

Theorem 3.7. If a ∈ N2 and b ∈ N are such that Θ(a) ⊂ Θ(b), then P (a, b) and

M(a) are nowhere dense in N.

Proof: Let a =
∏k

i=1 p
αi

i be the standard prime decomposition of a, and q =

p1p2 · · · pk. Note that q ∈ N2. By (12) and Theorem 3.3 we have

int(N,τG)

(

cl(N,τG)(P (a, b))
)

= int(N,τG)(M(q)) = ∅.

This shows that P (a, b) is nowhere dense in N. The rest of the proof follows from

this and the fact that Θ(a) ⊂ Θ(a). �
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Question 3.8. Let a ∈ N2 and b ∈ N be such that P (a, b) is nowhere dense in N.

Does it follows that Θ(a) ⊂ Θ(b)?

The next theorem and its corollary are proved in [1, Theorem 5.12 and Corol-

lary 5.14]. The equivalence between assertions (3) and (4) of the next result was

first shown in [9, Theorem 3.3].

Theorem 3.9. For a, b ∈ N, the following assertions are equivalent:

(1) P (a, b) is totally Brown in (N, τG);

(2) P (a, b) is Brown in (N, τG);

(3) P (a, b) is connected in (N, τG);

(4) Θ(a) ⊂ Θ(b).

Corollary 3.10. If a, b ∈ N, then P (a, b) is totally separated if and only if

Θ(a) 6⊂ Θ(b).

Now, as the main theorem of this section, we characterize all the arithmetic

progressions in N which are aposyndetic in (N, τG). It turns out that those are

precisely the ones which are either connected, or Brown, or totally Brown.

Theorem 3.11. For every a, b ∈ N the arithmetic progression P (a, b) is aposyn-

detic if and only if Θ(a) ⊂ Θ(b).

Proof: Assume first that P (a, b) is aposyndetic. If Θ(a) 6⊂ Θ(b) then, by Corol-

lary 3.10, P (a, b) is totally separated in (N, τG). In particular, P (a, b) is hereditar-

ily disconnected, so it does not contain nondegenerate connected subsets. How-

ever, since P (a, b) is aposyndetic, there exists a closed and connected subset M

of P (a, b) such that b ∈ intP (a,b)(M) and a + b /∈ M . Take c ∈ N so that

〈b, c〉 = 1 and

b ∈ P (c, b) ∩ P (a, b) ⊂ intP (a,b)(M) ⊂ M ⊂ P (a, b).

By (4), P (c, b) ∩ P (a, b) = P ([c, a], b), so the connected set M is infinite. This

implies that P (a, b) contains a nondegenerate connected subset, a contradiction.

Hence, Θ(a) ⊂ Θ(b).

Now assume that Θ(a) ⊂ Θ(b). By the equivalence between (1) and (4) of

Theorem 3.9, P (a, b) is totally Brown in (N, τG). Since (N, τG) is T2 and this

property is hereditary, P (a, b) is totally Brown and T2 so, by Theorem 1.3,

P (a, b) is aposyndetic. �

The argument presented in the first part of the proof of Theorem 3.11, can be

used to show the following result.

Theorem 3.12. Let a, b ∈ N. If P (a, b) is aposyndetic, then it contains no

isolated points.
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Proof: Take c ∈ P (a, b). Since P (a, b) is infinite, there exists d ∈ P (a, b) with

c 6= d. Using that P (a, b) is aposyndetic, there is a closed and connected subsetM

of P (a, b) such that c ∈ intP (a,b)(M) and d /∈ M . Take e ∈ N so that 〈e, c〉 = 1

and

c ∈ P (e, c) ∩ P (a, b) ⊂ intP (a,b)(M).

By (5), P (e, c)∩ P (a, b) = P ([e, a], z) for z = min(P (e, c) ∩P (a, b)). This implies

that the open set P (e, c) ∩ P (a, b) in P (a, b) that contains c, is infinite. Hence c

is not an isolated point of P (a, b). �

By Theorems 3.9 and 3.11, for an arithmetic progression P (a, b) with

Θ(a) ⊂ Θ(b), being totally Brown, being Brown, being connected, and being

aposyndetic are all equivalent. Hence we have the following result, that general-

izes Theorem 3.9.

Theorem 3.13. For a, b ∈ N, the following assertions are equivalent:

(1) P (a, b) is totally Brown in (N, τG);

(2) P (a, b) is Brown in (N, τG);

(3) P (a, b) is connected in (N, τG);

(4) P (a, b) is aposyndetic in (N, τG);

(5) Θ(a) ⊂ Θ(b).

4. The Kirch space

In [7], A.M. Kirch considered the family

BK = {P (a, b) ∈ BG : a is square-free},

which is a base of a topology τK on N so that τK ⊂ τG, and showed that the

topological space (N, τK) is connected, locally connected and T2. In [8, page 82,

Examples 60 and 61] this topology is called the prime integer topology. However

we call τK the Kirch topology and refer to the topological space (N, τK) as the

Kirch space. Clearly

τK = {∅} ∪ {U ⊂ N : for each b ∈ U there exists a ∈ N2

such that P (a, b) ∈ BK and P (a, b) ⊂ U}.

In this section we present new properties of the Kirch space, that comple-

ment the ones presented in [1, Section 6]. The following result is proved in [1,

Theorem 6.2].
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Theorem 4.1. If b ∈ N and p ∈ P, then

(14) cl(N,τK)(P (pn, b)) = M(p) ∪ [PF (p, b) ∩ N] for each n ∈ N.

In particular,

(15) cl(N,τK)(P (pn, b)) = cl(N,τK)(P (p, b)) for every n ∈ N.

Recall that for each p ∈ P the set M(p) is closed in (N, τG). We show that in

(N, τK) this result as well as Theorem 3.3 remain true in (N, τK).

Theorem 4.2. For each p ∈ P the set M(p) is closed in (N, τK) and, for every

a ∈ N2, the set M(a) has empty interior in (N, τK).

Proof: Let p ∈ P and a ∈ N2. By (14) we have

cl(N,τK)(M(p)) = cl(N,τK)(P (p, p)) = M(p) ∪ [PF (p, p) ∩N]

= M(p) ∪ P (p, p) = M(p).

This shows that M(p) is closed in (N, τK). The same proof of Theorem 3.3 can

be applied to show that M(a) has empty interior in (N, τK). �

Now we show that (10) is valid in (N, τK).

Theorem 4.3. If p ∈ P, then

(16) cl(N,τK)(M(pn)) = M(p) for each n ∈ N.

Proof: Let p ∈ P and n ∈ N. By (14), (15) and the fact that M(p) is closed in

(N, τK), we have

cl(N,τK)(M(pn)) = cl(N,τK)(P (pn, pn)) = cl(N,τK)(P (p, p))

= cl(N,τK)(M(p)) = M(p).

�

The following result is proved in [1, Theorem 6.3].

Theorem 4.4. If a1, b1, a2, b2, . . . , ak, bk ∈ N satisfy that
⋂k

i=1 P (ai, bi) 6= ∅,

then

(17) cl(N,τK)

( k
⋂

i=1

P (ai, bi)

)

=
k
⋂

i=1

cl(N,τK)(P (ai, bi)).

Equality (17) also holds in (N, τG) as proved in [1, Theorem 5.9]. Now we show

that (13) is valid in (N, τK).
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Theorem 4.5. Let a ∈ N2 and assume that a =
∏k

i=1 p
αi

i is the standard prime

decomposition of a. If q = p1p2 · · · pk, then cl(N,τK)(M(a)) = M(q).

Proof: By (6), (16), and (17) we have

cl(N,τK)(M(a)) = cl(N,τK)

( k
⋂

i=1

M(pαi

i )

)

=

k
⋂

i=1

cl(N,τK)(M(pαi

i ))

=

k
⋂

i=1

M(pi) = M(q).

�

By Theorem 4.5 it follows that Corollary 3.6 is valid in (N, τK) and its proof

is the same. Hence we have the following result.

Corollary 4.6. If a ∈ N2, then M(a) is closed in (N, τK) if and only if a is

square-free.

Since M(1) = P (1, 1) = N is closed in (N, τK), by this and Corollary 4.6, the

set M(a) is closed in (N, τK) if and only if either a = 1 or a is square-free.

Now we show that Theorem 3.5 is valid in (N, τK).

Theorem 4.7. Let a ∈ N2 and b ∈ N be such that Θ(a) ⊂ Θ(b). If a =
∏k

i=1 p
αi

i

is the standard prime decomposition of a and q = p1p2 · · · pk, then

(18) cl(N,τK)(P (a, b)) = M(q).

Proof: Since q is square-free, by Corollary 4.6 the set M(q) is closed in (N, τK).

The inclusion Θ(a) ⊂ Θ(b) implies that q|a and q|b, so P (a, b) ⊂ M(q). Taking

closures in (N, τK), we have

cl(N,τK)(P (a, b)) ⊂ cl(N,τK)(M(q)) = M(q).

Now, by (12) and the fact that τK ⊂ τG, we have

M(q) = cl(N,τG)(P (a, b)) ⊂ cl(N,τK)(P (a, b)).

This shows (18). �

The same proof presented in Theorem 3.7 can be applied in (N, τK), to obtain

the following result.

Theorem 4.8. If a ∈ N2 and b ∈ N are such that Θ(a) ⊂ Θ(b), then P (a, b)

and M(a) are nowhere dense in N.

The next result is proved in [1, Theorem 6.9].
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Theorem 4.9. If a, b ∈ N, then P (a, b) is totally Brown in (N, τK).

We end this paper with the following theorem.

Theorem 4.10. If a, b ∈ N, then P (a, b) is aposyndetic in (N, τK).

Proof: By Theorem 4.9, P (a, b) is totally Brown in (N, τK). Since (N, τK) is T2

and this property is hereditary, P (a, b) is totally Brown and T2 so, by Theo-

rem 1.3, P (a, b) is aposyndetic. �

Since N = M(1) = P (1, 1), by Theorems 3.11 and 4.10 both (N, τG) and

(N, τK) are aposyndetic, as it was pointed in [1, Corollary 5.13] and [1, page 214],

respectively.
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