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Products of topological spaces and families of filters

PAOLO LIPPARINI

Abstract. We show that, under suitably general formulations, covering proper-
ties, accumulation properties and filter convergence are all equivalent notions.
This general correspondence is exemplified in the study of products.

We prove that a product is Lindel6f if and only if all subproducts by < wq
factors are Lindelof. Parallel results are obtained for final wy,-compactness, [A, u]-
compactness, the Menger and the Rothberger properties.

Keywords: filter convergence; ultrafilter; product; subproduct; sequential com-
pactness; sequencewise P-compactness; Lindeldf property; final A-compactness;
[, A]-compactness; Menger property; Rothberger property

Classification: 54A20, 54B10, 54D20

1. Introduction

All sections of the paper are mostly self-contained. The reader interested only
in products of Lindel6f spaces or, more generally, finally w,-compact or [u, A]-
compact spaces might skip to Section 4 and turn back when needed. Results about
the Menger and Rothberger properties are presented in Section 5. In Section 2
we provide a characterization theorem which shows that, under suitably general
formulations, covering properties, accumulation properties and filter convergence
are all sides of the same coin.

The main theme of the present note is the following: given a property P of
topological spaces, find some cardinal x such that a product satisfies P if and
only if all subproducts by < k factors satisfy P. We believe that the problem is
best seen in terms of the general context of compactness with respect to a set of
filters, as introduced in [15], [17], though in many particular cases we get better
results by direct means. We are going to briefly review the general notion here.

The notion of filter and ultrafilter convergence plays a key role in the study
of products of topological spaces; see the surveys by R.M. Stephenson in [24],
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J.E. Vaughan in [27], S. Garcia-Ferreira and L. Ko¢inac in [9], and further refer-
ences there and in [16], [17]. In [13] A.P. Kombarov introduced a local notion of
ultrafilter convergence, where, by “local”, we mean that the ultrafilter depends on
the sequence intended to converge, rather than being fixed in advance. A.P. Kom-
barov put in a general setting the idea by J. Ginsburg and V. Saks in [11] that
countable compactness has an equivalent formulation in this “local” fashion, but
cannot be defined by ultrafilter convergence in a “strict” sense (that is, in terms
of a single fixed ultrafilter).

In [17] we extended Kombarov notion to filters, and showed that this is a proper
generalization, since, for example, sequential compactness can be characterized in
terms of such a “local” filter convergence, but all the filters involved, in this case,
are necessarily not maximal, see [17, Section 5]. We called this general notion
sequencewise P-compactness (here and in what follows P is always a family of
filters over some set I') and in [17] we mentioned that sequencewise P-compactness
incorporates many compactness, covering and convergence properties, includ-
ing sequential compactness, countable compactness, initial xK-compactness, [\, p]-
compactness and the Menger and Rothberger properties.

In fact, the definition of sequencewise P-compactness already appeared hidden
and in different terminology in a remark contained in [15], together with equivalent
formulations. In Section 2, after recalling the relevant definitions together with
some examples, we state the result in full as a theorem, with some details of
the proof. Then in Section 3 we show that a product of topological spaces is
sequencewise P-compact if and only if so is any subproduct with < |P| factors
(Theorem 3.1). This unifies many former results by W. W. Comfort, J. Ginsburg,
V. Saks, C.T. Scarborough, A.H. Stone and possibly others.

In the subsequent sections we apply Theorem 3.1 to many particular cases,
usually getting better bounds by additional methods. In details, in Section 4 we
find optimal values in the case both of final w,-compactness and of [wy,, A]-com-
pactness for A singular strong limit of cofinality w,. See Theorems 4.1 and 4.3.
On the other hand, the values obtained for the general case of [, A]-compactness
are essentially those given by Theorem 3.1. See Corollary 4.10. There are obsta-
cles to extending, say, Theorem 4.1, which deals with final w,-compactness, to
cardinals > w,,; this is briefly hinted at the end of the section.

Section 5 is concerned with the Menger and Rothberger properties and their
versions for countable covers.

Throughout the paper we shall assume no separation axiom. In order to avoid
trivial exceptions, all topological spaces under consideration are assumed to be
nonempty. In all the theorems concerning products, if not otherwise mentioned,
repetitions are allowed, that is, the same space might occur multiple times as
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a factor (in other words, we are dealing with products of sequences, not with
products of sets).

2. Equivalents of sequencewise P-compactness

We first recall the basic definitions. We refer to [15], [17] for further motiva-
tions, examples and references.

If X is a topological space, I is a set, (x;);er is an I-indexed sequence of
elements of X and F is a filter over I, a point z € X is an F-limit point of
the sequence (z;)ier if {¢ € I:z; € U} € F for every open neighborhood U
of . If this is the case, we shall also say that (z;);c; F-converges to x. Notice
that, in general, unless the Hausdorff separation axiom is assumed, such an z is
not necessarily unique. Space X is F-compact if every I-indexed sequence of
elements of X F-converges to some point of X.

Definition 2.1. If P is a family of filters over the same set I, a topological
space X is sequencewise P-compact if for every I-indexed sequence of elements
of X, there is F' € P such that the sequence has an F-limit point.

As observed in [17], sequencewise P-compactness generalizes former notions
introduced by A.P. Kombarov in [13] and S. Garcia-Ferreira in [8] under different
names. Considering filters which are not necessarily ultra provides a substantial
generalization, as shown in the next remark.

Remark 2.2. A sequence (2,)ne, converges if and only if it has an F-limit
point for the Fréchet filter F' over w. This shows that sequential compactness
is equivalent to sequencewise P-compactness for an appropriate P. Just take
P={Fz: Z € [w]“}, where Fiz = {W Cw: Z\ W is finite} and [w]* denotes the
set of all infinite subsets of w. See [17] for more details.

We are now going to see that sequencewise P-compactness admits equivalent
formulations (a result implicit in [15]), but first we need some definitions.

Definition 2.3. Let A be a set, and B,G C P(A), where P(A) denotes the
set of all subsets of A. A topological space X is [B,G]-compact if, whenever
(Oa)aca is a sequence of open sets of X such that (O,).ck is a cover of X for
every K € G, then there is H € B such that (O,)acpy is a cover of X.

Covering properties like compactness and countable compactness, which in-
volve just one “starting” cover, can be expressed as particular cases of Defini-
tion 2.3 by taking G = {A}. For example, to get countable compactness take A
countable, G = {A} and B = [A]<%, the set of all finite subsets of A.

It is useful to consider the general case in which G contains more than one
set. The reason is that in this way we can also get covering properties which
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involve simultaneously many “starting” covers, as is the case for the Menger
and Rothberger properties. For example, take A = w, G a partition of w into
infinitely many infinite classes, and B the family of those sets that intersect each
member of G in a finite (one-element, respectively) set. In this case we get the
Menger (Rothberger, respectively) property for countable covers. More generally,
if A\, p are cardinals, take A = X -y, G a partition of A into A-many pieces of
cardinality u, and B the family of those sets that intersect each member of G in
a set of cardinality < k. Then we get the property that any A-sequence of open
covers of size < p admits a <k-selection, a property denoted by R(A, pu; <k)
in [16]. Clearly, the Menger and Rothberger properties can be obtained from
R(w, A\; <w), R(w, \; <2), respectively, by letting A be arbitrarily large.

Definition 2.4. Suppose that I is a set, E C P(I), £ is a set of subsets of P(I)
and X is a topological space.

If (z;)ier is a sequence of elements of X, we say that x € X is an E-accumula-
tion point of (x;);er if {i € I: x; € U} € E for every open neighborhood U of z
in X.

We say that « € X is an £-accumulation point of (x;);cr if and only if there
is E € £ such that z is an E-accumulation point of (z;)c;.

We say that X satisfies the E-accumulation property (the E-accumulation
property) if every I-indexed sequence of elements of X has some £-accumulation
point (some FE-accumulation point).

Remark 2.5. In the particular case when E is a filter, F-accumulation points
are exactly E-limit points; hence in this case F-compactness is the same as
the FE-accumulation property. So, if each member of & is a filter, then the &-
accumulation property is the same as sequencewise £-compactness.

Remark 2.6. Countable compactness is another motivating example for our def-
inition of the &-accumulation property. Indeed, a topological space is countably
compact if and only if it satisfies the E-accumulation property, with E being the
set of all infinite subsets of w. But countable compactness is also equivalent to
sequencewise P-compactness, for the family P of all uniform ultrafilters over w.
The equivalent formulations of countable compactness can be seen as a proto-
typical example of the general equivalence given by Theorem 2.7 below. See [15,
Remark 2.5] for a full discussion.

The next theorem is implicit in [15]. We give details for the reader’s conve-
nience.

Theorem 2.7. For every class K of topological spaces, the following conditions
are equivalent:
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(i) K is the class of all [B, G]-compact spaces for some set A and sets B,G C
P(A).

(ii) K is the class of all the spaces satisfying the E-accumulation property for
some set I and some family £ of subsets of P(I) such that each member
of & is closed under supersets.

(iii) K is the class of all sequencewise P-compact spaces for some P.

Given a class K and B, G satistying (i), there is £ such that |€| < |G| and (ii)
is satisfied. Conversely, if (ii) is satisfied for some K and £, there are B and G
such that (i) is satisfied and |G| < |€|. On the other hand, there are a class K
and some & such that (ii) holds, but for any P satistying (iii) we have |P| > |&]|.

Before proving Theorem 2.7 we need some lemmas which may be of indepen-
dent interest.

Lemma 2.8 ([15, page 300]). A space X is [B,G]-compact if and only if for
every sequence (Cq)aca of closed sets of X, if (),cy Ca # 0, for every H € B,
then there is K € G such that (,cx Ca # 0.

PROOF: By stating the implication in the definition of [B,G]-compactness in
contrapositive form and taking complements. O

Lemma 2.9. Given A, B, G as in the definition of [B, G]-compactness, let I = B
and £ = {Fk: K € G} where for K € G we set Ex = {Z C B: for every a € K,
there is H € Z such that a € H} ={Z C B: Uy, H 2 K}.

Under the above definitions, [B, G]-compactness is equivalent to the £-accumu-
lation property.

PrOOF: Assume that X satisfies the £-accumulation property, for £ as in the
statement of the lemma, and assume that (Cjy).ca is a sequence of closed sets
such that (,cy Ca # 0 for every H € B. For every H € B pick xy € (), Ca-
By the &-accumulation property, the sequence (zg)gep has an Ex-accumulation
point z for some K € G (recall that I = B). Thus, for every neighborhood U
of x, {H € B: g € U} € Ek, that is for every a € K, there is some H such
that zy € U and @« € H. If a € H, then zg € C,, by construction; thus
every neighborhood of z intersects C,, hence x € C,, since C, is closed. This
holds for every a € K, hence x € (,cx Ca, thus (,cx Ca # 0. This implies
[B, G]-compactness, by Lemma 2.8.

Conversely, assume that X is [B, G|-compact and let () gep be a sequence of
elements in X. For a € A, let C, = {xy:a € H}, thus vy € (,cpy Ca for every
H € B. In particular, (\,c 5 Ca # 0. By Lemma 2.8, (,cx Ca # 0 for some
K € G. Let € ,cx Ca- Since C, = {zg: a € H}, then for every a € K and
every neighborhood U of x, there is some H such that a € H and xy € U. This
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means that for every neighborhood U of z, | J{H: zg € U} D K, that is, x is an
Ex-accumulation point of (xp)gep, in particular, an £-accumulation point.
Compare the above proof with [15, Theorem 5.8 (1) = (5)]. O

If E CP(I), wesay that E is closed under supersets (in I) if whenever e € E
ande C f C1I,then f € E. Welet Ef ={a C I:ane# 0 for every e € E}.
Usually, the set I will be clear from the context and reference to it shall be
dropped. Notice that, in case E is a filter, then E is the complement in P([)
of the dual ideal of E. This observation justifies the notation. Symmetrically, if
P(I)\ E is an ideal, then E™T is the filter dual to this ideal.

Lemma 2.10. For every E C P(I), we have that E* is closed under supersets.
Moreover, EtT = E if and only if E is closed under supersets.

PROOF: The first statement is immediate from the definition. In particular,
E** is closed under supersets, hence if Ett = E, then E is closed under
supersets.

To prove the converse, ETT D FE is immediate from the definition. Suppose
by contradiction that ETT 2 E and FE is closed under supersets, thus there is
f € ETT\ E such that fNa # @ for every a € ET. Since E is closed under
supersets and f ¢ E, then for every e € E, there is some i, € e\ f. Then, by
construction, a = {i.: e € E} € ET, but an f = (), a contradiction. O

Lemma 2.11 ([15, Proposition 3.11]). Suppose that X is a topological space,
x € X, I is a set, and (x;);es is a sequence of elements of X. Suppose that
K CP(), E=KT', and for a € K, put D, = {z;: i € a}.

Then the following conditions are equivalent:

(1) x is an E-accumulation point of (z;)ier.
(2) U ﬂaEK Da‘

Proor: If (1) holds and a € K, then for every neighborhood U of z, ey =
{i € I: x; € U} € E, thus aNey # 0, by the definition of E. If i € aNey,
then x; € Dy NU, hence D, NU # (. Since D, is closed, and D, N U # () for
every neighborhood U of z, then x € D,. Since a was arbitrary in the above
argument, we have x € [,cx Da-

If (2) holds and U is a neighborhood of z, let ey = {i € I: x; € U}. For every
a € K, by (2), x € D, and, by the definition of D,, there is i € a such that
x; € U. By the definition of ey, i € ey, thus i € eyNa # 0. Thus ey € E = KT
for every neighborhood of x, and this means that x is an E-accumulation point
of (l‘i)iej. O



Products of topological spaces and families of filters 379

Lemma 2.12. Suppose that I is a set, £ is a set of subsets of P(I) and every
E € & is closed under supersets. Let A = P(I), G = {Et: E € £} and B =
{i<: i€}, wherefor i€ I,i~={a€c A: i€ a}.

Then, for every topological space X, the following conditions are equivalent:

(1) X satisfies the E-accumulation property.
(2) X is [B, G]-compact.

PRrROOF: (1) = (2) Using Lemma 2.8, suppose that (Cy)sca are closed sets and
Nucry Ca # O for every H € B. Because of the definition of B, this means
({Cou: i €a} #0 for every i € I. For each i € I, choose x; € (\{Cy: i € a}. By
the £-accumulation property, there are £ € £ and x € X such that = is an F-
accumulation point of (z;);e;. If K = ET, then E = EtT = K+ by Lemma 2.10
and since E is closed under supersets, by assumption. If D, = {x;: i € a} for
a € K, then by Lemma 2.11 2 € (,cx Da € ek Ca- Since K = E* € G, this
shows that X is [B, G]-compact.

(2) = (1) Suppose that (z;)ier is a sequence, and set C, = {x;: i € a} for
ac A If H € B,say, H=1<, then z; € ",y Ca, hence, by [B, G]-compactness
and Lemma 2.8, there is K € G such that (,c,Cs # 0. By the definition
of G, K = ET for some E € £, hence E = EtT = KT, by Lemma 2.10,
since E is closed under supersets. Then (x;);e; has an E-accumulation point, by
Lemma 2.11. This proves the £-accumulation property. (I

PROOF OF THEOREM 2.7: (i) = (ii) follows from Lemma 2.9, noticing that the
FExs defined there are closed under supersets.

(ii) = (i) follows from Lemma 2.12.

(i) = (iii) If E is closed under supersets, x is an E-accumulation point of
the sequence (z;);e;r and for every neighborhood U of x we set xy = {i € I:
x; € U}, then the family {zy: U a neighborhood of z} generates a filter E’
which is contained in F, and z is an E’-accumulation point of the sequence
(%i)ier-

Thus if each E € £ is closed under supersets, then the £-accumulation prop-
erty is equivalent to the &’-accumulation property, where &’ is the set of all
filters which are contained in some element of £. Then £’ contains only filters,
and the &’-accumulation property is the same as sequencewise &£'-compactness,
by Remark 2.5. The implication (iii) = (ii) is trivial from the same remark.

Again by Lemmas 2.9 and 2.12, the sets £ and G can be chosen to satisfy the
cardinality requirements. On the other hand, as mentioned, countable compact-
ness can be characterized as the £-accumulation property for some one-element &,
but countable compactness is not equivalent to sequencewise P-compactness for
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any one-element P. Indeed, this would mean F-compactness for the single fil-
ter F' belonging to P, but it is well known that F-compactness is preserved under
products, while countable compactness is not. Il

Corollary 2.13 ([15, Corollaries 3.5 and 3.10]). For every class K of topological
spaces, the following conditions are equivalent:

(i) K is the class of all [B,{A}]-compact spaces for some A and B C P(A).
(ii) K is the class of all the spaces satisfying the E-accumulation property
for some set I and some E C P(I) closed under supersets.

At first sight one could be tempted to believe that condition (iii) in Theorem 2.7
is always preferable to condition (ii), since P in (iii) contains only filters, which
are surely more manageable subsets of P(I) than the members of £ in (ii), which
are only supposed to be closed under supersets. However the last statement in
Theorem 2.7 shows that there are cases in which the £ in (ii) has the advantage
of having much smaller cardinality than P.

The proof of Theorem 2.7 gives explicit constructions, which are of some use
even in particular cases. For example, the proof of Theorem 2.7 (i) = (ii) can be
used to express the Menger properties as some kind of accumulation properties,
as we explicitly worked out in [16, Lemma 2.2 (3)]. See also [15, Corollary 5.13],
which, however, is stated in nonstandard terminology: there we used the expres-
sions “Menger property” (“Rothberger property”, respectively), in place of their
versions for countable covers, that is, R(w,w;<w) (R(w,w;<2), respectively).
Then in [16, Theorem 2.3] the Menger properties are explicitly described as se-
quencewise P-compactness for some appropriate P consisting only of ultrafilters.
That the Menger properties can be described as sequencewise P-compactness for
some P, follows directly from Theorem 2.7; the main point in [16] is that the
members of P can be chosen to be ultrafilters; this follows also abstractly from
[17, Corollary 5.3].

In the other direction, the proof of Theorem 2.7 (ii) = (i) can be used to
provide alternative formulations in terms of open covers both of D-compactness
[15, Proposition 1.3], stated here as Proposition 4.5, and of sequential compactness
[15, Corollary 5.12]. See [15, Corollaries 2.6, 3.14 and 5.15] for further results of
this kind and [15, Section 4 and Theorems 5.9 and 5.11] for further theorems
dealing with pseudocompact-like generalizations.

We do not know whether the technical assumption that the members of £
are closed under supersets is necessary in condition (ii) in Theorem 2.7, namely,
whether, for every &, there is some £’ such that the £-accumulation property
is equivalent to the &’-accumulation property and all members of &’ are closed
under supersets.
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3. Checking compactness by means of subproducts

Recall the definition of sequencewise P-compactness from Definition 2.1. If
H]—EJ X is a product of topological spaces, a subproduct is a space of the form
HjeK X; for some K C J. Formally, if K = (), the corresponding subproduct
is a one-element space (hence it satisfies all reasonable compactness properties).
Otherwise, the reader might always exclude the case of subproducts with respect
to an empty index set.

Theorem 3.1. Let P be a nonempty family of filters over some set I. A product
of topological spaces is sequencewise P-compact if and only if so is any subprod-
uct with < |P| factors.

PROOF: The only if part is immediate from the observation that sequencewise
P-compactness is preserved under continuous surjective images.

For the other direction, by contraposition, suppose that X = [] jed
sequencewise P-compact, thus there is a sequence (z;);cs of elements of X such

X; is not

that for no F' € P, (z;);c; F-converges in X. Notice that a sequence in a product
11 jeg X; of topological spaces F-converges if and only if for every j € J the
projection of the sequence into X; F-converges in X;. Hence, for every F' € P
there is some jp € J such that the projection of (x;);cr into X;, does not F-
converge in X;,. Choose one such jp for each F € P, and let K = {jp: F € P},
thus |K| < [P].

Let X' = [[,;c ¢ X, and let (z});er be the natural projection of (z;);er into X'.
We claim that the sequence (z});c; witnesses that X’ is not sequencewise P-
compact. Indeed, for every F' € P we have that (z}),c; does not F-converge in X’,
since the projection of (x});cr into Xj;, (which is the same as the projection of
(%i)ier into X, ) does not F-converge in X;,. Thus we have found a subproduct
with < |P| factors which is not sequencewise P-compact. (]

Remark 3.2. Notice that the particular case P = {F'} of Theorem 3.1 states
that a product is F-compact if and only if each factor is F-compact (however, this
does not follow from Theorem 3.1, since it is used in the proof). Thus Theorem 3.1
incorporates Tychonoff theorem, since a topological space is compact if and only
if it is D-compact for every ultrafilter D.

Apparently, besides Tychonoff theorem, the first result of the form of The-
orem 3.1 has been proved by C.T. Scarborough and A.H. Stone in [23, Theo-
rem 5.6], asserting that a product is countably compact, provided that all sub-
products by at most 22° factors are countably compact. C.T. Scarborough and
A.H. Stone in [23, Corollary 5.7] also obtained the improved value 22° for the
particular case of first countable factors. J. Ginsburg and V. Saks in [11, Theo-
rem 2.6] then obtained the improved bound 22" for powers of a single space, and
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W.W. Comfort in [6] and V. Saks in [22] observed that the methods from [11] give
the result for arbitrary factors, a result which is a particular case of Theorem 3.1,
by Remark 2.6 and since there are 22” nonprincipal ultrafilters over w.

V. Saks in [22, Theorem 2.3] also proved that a product satisfies CAP) if
and only if each subproduct by < 22" factors satisfies it; actually, he stated the
result in terms of an interval of cardinals and in different terminology. Recall
that a topological space is said to satisfy CAP, if every subset Y of cardinality A
has a complete accumulation point, that is, a point each neighborhood of which
intersects Y in a set of cardinality A. Saks’ result, too, can be obtained as
a consequence of Theorem 3.1, but some care should be taken of the case when A
is singular.

Concerning a related property, X. Caicedo in [5, Section 3] essentially gave, in
the present terminology, a characterization of [u, A\]-compactness as sequencewise
P-compactness for an appropriate P. This will be recalled in Theorem 4.4 below.
Theorem 3.1 can then be applied in order to provide a characterization of those
products which are [u, A]-compact. We shall work this out in Corollary 4.10.
In the particular cases of final w,-compactness and of [w,,, A]-compactness for A
singular strong limit, better results can be obtained using further arguments, as
we will show in Theorems 4.1 and 4.3.

Other possible examples of applications of Theorem 3.1 deal with the Menger,
the Rothberger and the related properties mentioned after Definition 2.3. How-
ever, in this case, too, best results about these properties are obtained by direct
means: see [16] and also Section 5 here. A similar situation occurs with regard to
sequential compactness. See [18] and Section 6 below.

Notice that the equivalence of conditions (i) and (ii) in [17, Theorem 2.1] can
be obtained as an immediate consequence of Theorem 3.1.

Let us remark that Theorem 3.1 stresses the importance of studying the prob-
lem when sequencewise P-compactness is equivalent to sequencewise P’-compact-
ness for various sets P and P’, as already mentioned in [17]. In particular,
given P, Theorem 3.1 implies that it is useful to characterize the minimal cardi-
nality of some P’ such that the above equivalence holds. The cardinality of such
a “minimal” P’ is also connected with some other invariants. See Section 7 in [19],
an unpublished manuscript from which the present work has been extracted.

Let F be the trivial filter over k, that is, F = {k}. Then a topological
space X is F-compact if and only if for every subset Y of X of cardinality < k,
there is © € X such that every neighborhood of x contains the whole of Y. Such
spaces are called xT-filtered. See [4] for further details and characterizations.
Trivially, if P is a nonempty family of filters over x, then any x*-filtered space
is sequencewise P-compact. The next lemma is trivial, but it has some use, see
the proof of Proposition 5.1.
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Lemma 3.3. If P is a family of filters over k and X is a kT -filtered topologi-
cal space, then a product X1 x X is sequencewise P-compact if and only if Xo
is sequencewise P-compact.

PROOF: The “only if” part is trivial.

For the other direction, suppose that X; is xt-filtered and X, is sequence-
wise P-compact. Let (24)aer be a sequence of elements of X; x X5. Since
X, is sequencewise P-compact, there is F' € P such that the second projection
of (#4)aex F-converges in X5. Since X is x'-filtered, the first projection of
(Zo)aer F-converges in Xi, hence (24 )ack F-converges in X; x Xs. O

A more significant result shall be proved in Corollary 4.7, where the assumption
of being xkt-filtered shall be replaced by initial 2%-compactness, provided that all
members of P are ultrafilters.

4. Final y-compactness and [u, \]-compactness

Final w,-compactness. In this section we present some generalizations of the
following theorem, which can be obtained as consequence of results from [14] (it
just needs a small elaboration besides [14, Corollary 33]). Recall that a topological
space is finally p-compact if every open cover has a subcover of cardinality < pu.

In what follows we shall freely use the categorical properties of products and, in
case there is no risk of confusion, we shall identify, say, Hj cs Yj with Hj cn Yj X
[jennY; for HCJ.

Theorem 4.1. If X is a product of topological spaces, then the following condi-
tions are equivalent:
(i) X is finally w,-compact.
(ii) All subproducts of X by < w, factors are finally w,-compact.
(iii) All but < w, factors of X are compact, and the product of the non
compact factors if any is finally w,-compact.
(iv) The product of the non compact factors (if any) is finally w,-compact.

PROOF: (i) = (ii) and (iii) = (iv) are trivial.

(ii) = (iii) If n = 0, this is immediate since compactness is final wy compact-
ness. If n > 0, suppose by contradiction that there are (at least) w, factors
which are not compact. Theorem 2 in [14] (in contrapositive form) asserts that
their product is not finally w,-compact, contradicting (ii). Hence all but < w,
factors of X are compact, and the product of the remaining factors is finally
wp-compact, by (ii).

(iv) = (i) Letting apart the trivial improper cases, group together the compact
factors, on one hand, and the non compact factors, on the other hand. Then we
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get by Tychonoff theorem that X is (homeomorphic to) a product of a compact
space with a finally w,-compact space, and a standard argument shows that any
such product is finally w,-compact (anyway, a more general result shall be proved
in Corollary 4.8 below). O

Since Lindelofness is the same as final wj-compactness, we get the following
corollary which might be known, though we know no reference for it.

Corollary 4.2. A product is (linearly) Lindeléf if and only if all subproducts by
< wy factors are (linearly) Lindelof if and only if all but countably many factors
are compact and the product of the non compact factors, if any, is (linearly)
Lindelé6f.

Recall that a topological space is linearly Lindeldf if every open cover which
is linearly ordered by inclusion has a countable subcover (some authors use the
term chain-Lindeldf). The linear Lindelof case of Corollary 4.2 follows from [14,
Theorem 3], arguing as in the proof of Theorem 4.1.

[wn, A]-compactness. We now combine the arguments in Theorem 4.1 with some
classical methods from R.M. Stephenson and J.E. Vaughan in [25] in order to
get a similar characterization of [w,, A]-compact products for A a singular strong
limit cardinal having cofinality > w,. Recall that a topological space X is [u, A]-
compact if every open cover by at most A sets has a subcover of cardinality < pu.
Initial \-compactness is [w, A]-compactness.

Theorem 4.3. Suppose that n € w, A is a singular strong limit cardinal, and
cf A > w,. If X is a product of topological spaces, then the following conditions
are equivalent:
(i) X is [wn, A]-compact.
(ii) Every subproduct of X by < w, factors is [wy,, A]-compact.
(iii) All but < wy, factors of X are initially A-compact, and the product of
the non initially A-compact factors (if any) is [wy, A\]-compact.
(iv) The product of the non initially A-compact factors (if any) is [wp, A]-
compact.

Some auxiliary results are needed before we can give the proof of Theorem 4.3.
By [A]<# we denote the set of all subsets of A of cardinality < p. This is now
a quite standard notation, but notice that some authors (including the present
one) sometimes used alternative notations for this, such as S, (\), P<,(A) and
other. We say that an ultrafilter D over [A]<# covers A in case {Z € [\]<H:
a € Z} e D for every a € .
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Theorem 4.4 (X. Caicedo [5]). A topological space is [u, A]-compact if and only
if it is sequencewise P-compact for the family P of the ultrafilters over [A\|<H
which cover A.

If X\ is regular, then a topological space is [\, A]-compact if and only if it is
sequencewise P-compact for the family P of the uniform ultrafilters over .

Theorem 4.4 is essentially proved in [5, Section 3]. Full details for the first
statement can be found in [16, Theorem 2.3], considering the particular case A = 1
therein: see the remark at the bottom of [16, page 2509]. The second statement
is much simpler; actually, it is a reformulation of some remarks from [22], in par-
ticular, (i) on pages 80-81 therein. Notice, that for A regular [\, \]-compactness
is equivalent to CAPy, C[\, A] in Saks’ notation.

Proposition 4.5. If D is an ultrafilter over I, then a topological space X is D-
compact if and only if for every open cover (Oz)zep of X, there is some i € T
such that (Oz)iczep is a cover of X.

See [15, Proposition 1.3 and Remark 3.12] for a proof of Proposition 4.5.

Corollary 4.6. If X is an initially A-compact topological space and 2% < ),
then X is D-compact for every ultrafilter D over some set of cardinality < k.

PROOF: We use Proposition 4.5. Let (Oz)zep be an open cover of X. Since
|D| < 2% < A, then by initial A-compactness (Oz)zep has a finite subcover,
say Oz,,...,0z . Since D is (in particular) a filter, Zy N --- N Z,, # 0. If
i € Zy NN Zpy, then (Oz)iczep is a cover of X. By Proposition 4.5, X is
D-compact. ([l

Corollary 4.6 can also be obtained as a consequence of implications (8) and (5)
in [24, Diagram 3.6], exchanging A and .

Corollary 4.7. Suppose that 2% < X\ and P is a family of ultrafilters over some
set I of cardinality < k. Then the product of an initially A-compact and of
a sequencewise P-compact topological space is sequencewise P-compact.

PROOF: Let X; be initially A-compact, Xo be sequencewise P-compact, and let
(x;)icr be a sequence in X7 x Xa. By the sequencewise P-compactness of Xo,
there is some D € P such that the second projection of (z;);c; D-converges
in Xo. Since 2% < A, the first projection of (x;);er D-converges in X7, by Corol-
lary 4.6. Hence (z;)ie; D-converges in X; x Xo, thus X; x X5 is sequencewise
P-compact. O

By v<# we denote sup,, ., v . Notice that [v]<# has cardinality v</.
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m

Corollary 4.8. If 2™ < ), then the product X; x X» of a [, V]-compact
space X1 and an initially A-compact space X is [u, v]-compact.

If the interval [u, v] consists only of regular cardinals, the assumption v <A
above can be relaxed to 2V < \.

PRrROOF: By Theorem 4.4, [u,v]-compactness is equivalent to sequencewise P-
compactness for a family P of ultrafilters over [v]<¥ a set of cardinality v</.
Hence the first statement is immediate from Corollary 4.7 with x = v<F.

To prove the last statement, recall that [u,v]-compactness is equivalent to
[/, 1']-compactness for every u' such that p < ' < v. From the second state-
ment in Theorem 4.4, and applying again Corollary 4.7, we get that X; x X5 is
[, p']-compact for every p' as above, since oH' < 2¥ < \. Hence X; x X» is
[, v]-compact. O

PROOF OF THEOREM 4.3: (i) = (ii) and (iii) = (iv) are trivial.

(ii) = (iii) The case n = 0 is immediate, since [wp, A]-compactness is the same
as initial A-compactness, hence, assuming (ii), all factors are initial A-compact.
If n > 0, suppose by contradiction that there are > w,, factors which are not
initially A-compact. By (ii), each such factor is |w,,, A]-compact, hence not initially
wpn—1-compact, otherwise it would be initially A-compact. Hence we have at least
wy, factors which are not initially w,_1-compact, and, by [14, Theorem 6], their
product is not [w,,,w,]-compact, hence not [w,, A]-compact, contradicting (ii).

Hence the set of factors which are not initially A-compact has cardinality < w,,
and their product is [wy,, A]-compact by (ii).

(iv) = (i) By Stephenson and Vaughan’s theorem, see [25, Theorem 1.1], the
product of the initially A-compact factors, if any, is still initially A-compact.
By (iv), the product of the non initially A-compact factors, if any, is [wy, Al-
compact. Hence, excluding the improper cases, X is (homeomorphic to) the
product of an initially A-compact space with an [w,, A]-compact one. By Corol-
lary 4.8, and since A is strong limit, then for every v < A, X is [wy,, V]-compact.
Since A > cf A > wy, then X is [cf A, cf A]-compact. Then X is [wy, A]-compact,
by the well-known fact that [w,, v]-compactness for every v < A, together with
[cf A, cf A]-compactness imply [wy,, A]-compactness. O

[, A]-compactness.

Remark 4.9. Certain values obtained in Theorems 4.1 and 4.3 are much better
than the values which could be obtained by a simple direct application of The-
orems 3.1 and 4.4. For example, if A is a singular strong limit cardinal, and
cf A > wy,, then there are Kk = 22" ultrafilters over A = A\*». Then Theorems 3.1
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and 4.4 imply that some product X is |w,,, A]-compact if and only if all subprod-
ucts of X by < k factors are finally [wy, A\]-compact. However, Theorem 4.3
shows that the value of k can be improved to w,. See the next subsection for
related comments.

In the more general case of arbitrary p and A, we have the following corol-
lary of Theorem 4.4, a corollary in which we essentially get the values given by
Theorem 3.1, sometimes with minor improvements.

Corollary 4.10. A product of topological spaces is [u, A]-compact if and only if
so is any subproduct by < 22" factors, where k = A<¥. The value of k can be
improved to kK = A in case the interval [u, \] contains only regular cardinals.

More generally, a product is [u, A\]-compact if and only if so is any subproduct
by < 6 factors, where 6 is the smallest cardinal such that both

(a) @ > 22" for every regular v such that p < v < )\, and
<
(b) 6 > 22 " for every singular v of cofinality < p such that p <wv <.

PRrROOF: The first two statements are immediate from Theorems 3.1 and 4.4,
since there are 22" ultrafilters over [\]<#, 22" respectively, ultrafilters over v.
Here v varies among the cardinals such that p < v < A, and we are using again
the mentioned fact that [u, A\]-compactness is equivalent to [v, v]-compactness for
every v such that p <v < A\

In order to prove the last statement, recall that for every v, [cf v, cf v]-compact-
ness implies [v, v]-compactness. Using this property, together with the fact men-
tioned at the end of the previous paragraph, it is easy to see that [, A\]-compact-
ness is equivalent to the conjunction of

(i) [v, v]-compactness for every regular v with u < v < A, and
(ii) [, v]-compactness for every singular v of cofinality < p and such that
pw<v< A\

Now we get the result by applying for each v, the corresponding (and already
proved) statements in the first paragraph of the corollary (with v in place of \).
([l

Remark 4.11. Corollary 4.10 complements [22, Theorem 2.3], which asserts
that a product satisfies CAP, for every v € [u, ] if and only if so does every
subproduct by < 22" factors. Notice that if the interval [, A] contains only
regular cardinals, then [22, Theorem 2.3] and Corollary 4.10 overlap, since it
is well-known that, if v is a regular infinite cardinal, then CAP, and [v,v]-
compactness are equivalent notions.

Short remarks about final y-compactness for arbitrary p. Under special
set-theoretical assumptions, we know improvements of all the results proved in
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the present section. However, we cannot go exceedingly far. Of course, the
equivalence of (i) and (iv) both in Theorem 4.1 and in Theorem 4.3 holds for
every infinite cardinal in place of w,. However, the other equivalences do not
necessarily remain true, when w, is replaced by some larger cardinal.

For example, if x is a strongly compact cardinal, then every power of w with
the discrete topology is finally k-compact. This is a consequence of a classical
result by I. Mycielski in [20], asserting that if x is strongly compact, then every
product of finally x-compact spaces is still finally x-compact. This can be obtained
also from Theorem 4.4 together with the ultrafilter characterization of strong
compactness. Thus if k is strongly compact, then the analogue of Theorem 4.1
(i) = (iil) with x in place of w, badly fails, since every power of w is finally
K-compact, but w is not compact.

Concerning condition 4.1 (ii), first define for every infinite cardinal u the car-
dinal s(P,) as the smallest cardinal, if it exists, such that some product is finally
p-compact if and only if so is every subproduct by < s(P,) factors. Here P, is
intended to be the property of being finally u-compact, as we want the notation
to be consistent with the general one we have introduced in [19, Section 7]. With
this terminology, clearly s(P,) = 2, as a reformulation of Tychonoff theorem.
Moreover, Theorem 4.1 (i) < (ii) implies that if n > 0, then s(P,,) = wpt1.

Wn—1
n—1

Indeed, w is finally w,-compact, but not every power of w,_1 is, hence the
value given by Theorem 4.1 cannot be improved. Contrary to the case of wy,
we know examples in which, under certain set theoretical constraints, s(P,) is far
larger than p. Full details shall be presented elsewhere, since they involve deep set
theoretical problems. On the other hand, Mycielski’s theorem mentioned above
implies that if k is a strongly compact cardinal, then s(P,) = 2.

We also remark that a characterization of Lindel6f products in terms of factors,
rather than subproducts must necessarily involve deep structural properties of
the factors. Even the product of two Lindel6f spaces may turn out to be very
incompact. Moreover, it is consistent that there are three regular Lindelof spaces
whose product has very large Lindel6f number, while every pairwise product of
two of them is still Lindelof, see [26]. On the other hand, under a weak set-
theoretical assumption, sequentially compact products can be characterized in
terms of factors, see Theorem 6.1 (ii) below.

Notice that, if we apply Theorem 4.4 to final y-compactness, we get a proper
class P, since final p-compactness is equivalent to [u, A]-compactness for every
A > u, alternatively, equivalent to [A, A]-compactness for every A\ > u. However,
we can take good advantage of the theorem by Mycielski mentioned above, in
order to find bounds for s(P,), when g is smaller than some strongly compact
cardinal.
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Proposition 4.12. Suppose that p is an infinite cardinal, p < 6 and 6 is
strongly compact. If X is a product of topological spaces, then the following
conditions are equivalent:

(i) X is finally u-compact.
(ii) All subproducts of X by < 6 factors are finally p-compact.

PROOF: Suppose that (ii) holds; in particular, all factors are finally 6-compact,
since p < 6. By Mycielski theorem, X is finally #-compact. By Corollary 4.10 for
every A with u < X\ <8, X is [\, A]-compact, since strongly compact cardinals
are inaccessible. Hence X is finally pu-compact. (I

5. Menger and Rothberger

Recall that a topological space X satisfies the Rothberger property (the Roth-
berger property for countable covers, respectively) if given a countable family of
open covers (of countable open covers, respectively) of X, one can obtain another
cover of X by selecting an open set from each one of the given covers. We get
the Menger property when we allow to select a finite number of open sets from
each cover. Recall that we are not assuming any separation axiom.

Recall that a topological space is k-filtered if for every subset Y of X of car-
dinality < k, there is x € X such that every neighborhood of x contains Y. In
the terminology from [4], a topological space is supercompact if it is x-filtered for
all k. Equivalently, a space X is supercompact if and only if there is a point
whose only neighborhood is the whole of X if and only if X is [2, oo]-compact.
Here [2, oo]-compact is a shorthand for [2, A]-compact for every cardinal .

Notice that if a product of T; spaces is Rothberger, then all but finitely many
spaces are one-element. Indeed, a T7 space with more than one element contains
a closed copy of the two-element discrete topological space 2, and 2“ is not Roth-
berger. Hence most results in the present section are significant only in the (quite
exotic) context of spaces satisfying little or no separation axiom. We present the
results since the proofs need very little special efforts and, on the other hand,
they might be of some interest due to renewed interest in spaces satisfying few
separation axioms, for example, in connection with the specialization (pre)order,
which becomes trivial for 77 spaces, and because of significant applications to
theoretical computer science. See, e.g., [10] and [12]. Compare also [28]. See [21]
for an interesting recent manifesto in support of the study of spaces satisfying
lower separation axioms from a purely topological point of view.

Proposition 5.1. If X is a product of topological spaces, then the following
conditions are equivalent:



390 P. Lipparini

(i) X satisfies the Rothberger property.
(ii) Every subproduct of X by countably many factors satisfies the Roth-
berger property.
(iii) All but a finite number of factors of X are supercompact, and the product
of the non supercompact factors (if any) satisfies the Rothberger property.
(iv) The product of the non supercompact factors of X (if any) satisfies the
Rothberger property.

PRrROOF: (i) = (ii) and (iii) = (iv) are trivial (as will be the case for all the
corresponding implications throughout the present section).

(ii) = (iii) If by contradiction there is an infinite number of factors which are
not supercompact, i.e., not [2, co]-compact, then their product is not Rothberger,
by [16, Proposition 3.1]. Hence the number of factors which are not supercompact
is finite, and their product is Rothberger by (ii).

(iv) = (i) As a particular case of Theorem 2.7 (i) < (iii) we have that for
every A the Rothberger property for covers of cardinality < A is equivalent to
sequencewise P-compactness for some P (an explicit description of such a P can
be found in [16, Proposition 4.1]). Thus, by Lemma 3.3, and since any product
of supercompact spaces is supercompact, we get for every A that X satisfies the
Rothberger property for covers of cardinality < A. This means exactly that X
satisfies the Rothberger property. (Il

Proposition 5.2. If X is a product of topological spaces, then the following
conditions are equivalent:

(i) X satisfies the Rothberger property for countable covers.

(ii) Every subproduct of X by countably many factors satisfies the Roth-
berger property for countable covers.

(iii) In every factor of X every sequence converges, except possibly for a finite
number of factors, and the product of such factors (if any) satisfies the
Rothberger property for countable covers.

(iv) The product of the factors of X (if any) in which there exists a noncon-
verging sequence satisfies the Rothberger property for countable covers.

PRrROOF: (ii) = (iii) It is enough to show that if we are given an infinite number of
topological spaces, each with a nonconverging sequence, then their product does
not satisfy the Rothberger property for countable covers. By [17, Lemma 4.1
(iv) = (i)], if some topological space Y has a nonconvergent sequence, then Y is
not [2,w]-compact, hence an infinite product of such spaces does not satisfy the
Rothberger property for countable covers, by [16, Proposition 3.1].

(iv) = (i) The property that every sequence converges is preserved under prod-
ucts. Hence X is the product of a space in which every sequence converges and of
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a space satisfying the Rothberger property for countable covers. By Theorem 2.7
(i) < (iii), the Rothberger property for countable covers can be characterized
as sequencewise P-compactness for some P, and P can be chosen to consist
of filters over w, by [16, Proposition 4.1], taking k = 2 and A = pu = w there.
On the other hand, a space is w;-filtered if and only if in it every sequence con-
verges. This is proved by S. Brandhorst in [3] or S. Brandhorst and M. Erné in
[4, Lemma 5.1], and can be also proved by P. Lipparini in [17, Lemma 4.1]. Since
X is the product of a space in which every sequence converges and of a space
satisfying the Rothberger property for countable covers, then Lemma 3.3 shows
that X satisfies the Rothberger property for countable covers. (I

Given any infinite cardinal A, Proposition 5.2 can be generalized to deal with
the Rothberger property for covers of cardinality < A. We leave the generalization
to the reader.

Corollary 5.3. If X is a product of topological spaces, then the following con-
ditions are equivalent:

(i) X satisfies the Menger property.
(ii) Every subproduct of X by countably many factors satisfies the Menger
property.
(iii) All but a finite number of factors of X are compact, and the product of
the non compact factors (if any) satisfies the Menger property.
(iv) The product of the non compact factors of X (if any) satisfies the Menger

property.

PRrROOF: (ii) = (iii) By [16, Proposition 3.1], a product of infinitely many non
compact spaces is not Menger, thus if (ii) holds, then there is only a finite number

of non compact spaces, and their product is Menger.
(iv) = (i) The product of the compact factors is compact, hence X is the
product of a compact space with a Menger space, and any such product is Menger.
O

Results related to the present section appear in [16], e.g., Proposition 3.3 and
Corollaries 2.5, 3.4 and 4.2 there. We do not know whether results similar to the
ones presented in this section can be proved for the Menger property for countable
covers. However, it follows from [16, Corollary 2.5] that a product satisfies the
Menger property for countable covers if and only if so does any subproduct by
< 22*" factors. Again, we do not know whether this is the best possible value.
Notice that a better value does work in the case of powers of a single space,
or, more generally, in case we consider all possible products of spaces in a given
family, see [16, Corollary 3.2].
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6. Further remarks

In [18] we give a proof of the following theorem.

Theorem 6.1.

(1) A product of topological spaces is sequentially compact if and only if all
subproducts by < s factors are sequentially compact.
(2) Assume that h = s. If X is a product of topological spaces, then the
following conditions are equivalent:
(i) X is sequentially compact.
(ii) All factors of X are sequentially compact, and the set of factors with
a nonconverging sequence has cardinality < s.
(iii) All factors of X are sequentially compact, and all but at most < s
factors are ultraconnected.

Recall that a space X is called ultraconnected if no pair of nonempty closed
sets of X is disjoint. Recall that s denotes the splitting number and b the
distributivity number, see [1].

The proof of Theorem 6.1 is direct and does not use Theorem 3.1. However, it
is interesting to discuss the connections between Theorems 6.1 and 3.1.

The value s in Theorem 6.1 (1) is the best possible value, since s is the smallest
cardinal such that 2° is not sequentially compact, see [2], [7]. Here 2 is the two-
element discrete space.

If in Theorem 6.1 (1) we replace s by the rougher estimate ¢, then the theorem
is indeed a consequence of Theorem 3.1, since, by Remark 2.2, there is some P
of cardinality ¢ such that sequential compactness is equivalent to sequencewise
P-compactness. As we mentioned in [17, Problem 4.4], we do not know the value
of the smallest cardinal ms such that sequential compactness is equivalent to
sequencewise P-compactness for some P with |P| = ms. Of course, if ms were
equal to s, then Theorem 6.1 (1) would be a direct consequence of Theorem 3.1.

It follows from Remark 2.2 that ms < ¢. Moreover, ms > s. If, to the contrary,
ms < s, then by Theorem 3.1 we could prove Theorem 6.1 (1) for the improved
value ms in place of s. However, as we mentioned above, s is the best possible
value. Also the comment after [17, Problem 4.4] shows, in different terminology,
that ms > s.

See [18], [19] for further comments and for the definitions of invariants re-
lated to s and h in such a general context as a partial infinitary semigroup with
a specified subclass.
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