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Products of topological spaces and families of filters

Paolo Lipparini

Abstract. We show that, under suitably general formulations, covering proper-
ties, accumulation properties and filter convergence are all equivalent notions.
This general correspondence is exemplified in the study of products.

We prove that a product is Lindelöf if and only if all subproducts by ≤ ω1

factors are Lindelöf. Parallel results are obtained for final ωn-compactness, [λ, µ]-
compactness, the Menger and the Rothberger properties.

Keywords: filter convergence; ultrafilter; product; subproduct; sequential com-
pactness; sequencewise P-compactness; Lindelöf property; final λ-compactness;
[µ, λ]-compactness; Menger property; Rothberger property

Classification: 54A20, 54B10, 54D20

1. Introduction

All sections of the paper are mostly self-contained. The reader interested only

in products of Lindelöf spaces or, more generally, finally ωn-compact or [µ, λ]-

compact spaces might skip to Section 4 and turn back when needed. Results about

the Menger and Rothberger properties are presented in Section 5. In Section 2

we provide a characterization theorem which shows that, under suitably general

formulations, covering properties, accumulation properties and filter convergence

are all sides of the same coin.

The main theme of the present note is the following: given a property P of

topological spaces, find some cardinal κ such that a product satisfies P if and

only if all subproducts by ≤ κ factors satisfy P . We believe that the problem is

best seen in terms of the general context of compactness with respect to a set of

filters, as introduced in [15], [17], though in many particular cases we get better

results by direct means. We are going to briefly review the general notion here.

The notion of filter and ultrafilter convergence plays a key role in the study

of products of topological spaces; see the surveys by R.M. Stephenson in [24],
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J. E. Vaughan in [27], S. Garćıa-Ferreira and L. Kočinac in [9], and further refer-

ences there and in [16], [17]. In [13] A. P. Kombarov introduced a local notion of

ultrafilter convergence, where, by “local”, we mean that the ultrafilter depends on

the sequence intended to converge, rather than being fixed in advance. A. P. Kom-

barov put in a general setting the idea by J. Ginsburg and V. Saks in [11] that

countable compactness has an equivalent formulation in this “local” fashion, but

cannot be defined by ultrafilter convergence in a “strict” sense (that is, in terms

of a single fixed ultrafilter).

In [17] we extended Kombarov notion to filters, and showed that this is a proper

generalization, since, for example, sequential compactness can be characterized in

terms of such a “local” filter convergence, but all the filters involved, in this case,

are necessarily not maximal, see [17, Section 5]. We called this general notion

sequencewise P-compactness (here and in what follows P is always a family of

filters over some set I) and in [17] we mentioned that sequencewise P-compactness

incorporates many compactness, covering and convergence properties, includ-

ing sequential compactness, countable compactness, initial κ-compactness, [λ, µ]-

compactness and the Menger and Rothberger properties.

In fact, the definition of sequencewise P-compactness already appeared hidden

and in different terminology in a remark contained in [15], together with equivalent

formulations. In Section 2, after recalling the relevant definitions together with

some examples, we state the result in full as a theorem, with some details of

the proof. Then in Section 3 we show that a product of topological spaces is

sequencewise P-compact if and only if so is any subproduct with ≤ |P| factors

(Theorem 3.1). This unifies many former results by W.W. Comfort, J. Ginsburg,

V. Saks, C.T. Scarborough, A.H. Stone and possibly others.

In the subsequent sections we apply Theorem 3.1 to many particular cases,

usually getting better bounds by additional methods. In details, in Section 4 we

find optimal values in the case both of final ωn-compactness and of [ωn, λ]-com-

pactness for λ singular strong limit of cofinality ωn. See Theorems 4.1 and 4.3.

On the other hand, the values obtained for the general case of [µ, λ]-compactness

are essentially those given by Theorem 3.1. See Corollary 4.10. There are obsta-

cles to extending, say, Theorem 4.1, which deals with final ωn-compactness, to

cardinals ≥ ωω; this is briefly hinted at the end of the section.

Section 5 is concerned with the Menger and Rothberger properties and their

versions for countable covers.

Throughout the paper we shall assume no separation axiom. In order to avoid

trivial exceptions, all topological spaces under consideration are assumed to be

nonempty. In all the theorems concerning products, if not otherwise mentioned,

repetitions are allowed, that is, the same space might occur multiple times as
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a factor (in other words, we are dealing with products of sequences, not with

products of sets).

2. Equivalents of sequencewise P-compactness

We first recall the basic definitions. We refer to [15], [17] for further motiva-

tions, examples and references.

If X is a topological space, I is a set, (xi)i∈I is an I-indexed sequence of

elements of X and F is a filter over I, a point x ∈ X is an F -limit point of

the sequence (xi)i∈I if {i ∈ I : xi ∈ U} ∈ F for every open neighborhood U

of x. If this is the case, we shall also say that (xi)i∈I F -converges to x. Notice

that, in general, unless the Hausdorff separation axiom is assumed, such an x is

not necessarily unique. Space X is F -compact if every I-indexed sequence of

elements of X F -converges to some point of X .

Definition 2.1. If P is a family of filters over the same set I, a topological

space X is sequencewise P-compact if for every I-indexed sequence of elements

of X , there is F ∈ P such that the sequence has an F -limit point.

As observed in [17], sequencewise P-compactness generalizes former notions

introduced by A.P. Kombarov in [13] and S. Garćıa-Ferreira in [8] under different

names. Considering filters which are not necessarily ultra provides a substantial

generalization, as shown in the next remark.

Remark 2.2. A sequence (xn)n∈ω converges if and only if it has an F -limit

point for the Fréchet filter F over ω. This shows that sequential compactness

is equivalent to sequencewise P-compactness for an appropriate P . Just take

P = {FZ : Z ∈ [ω]ω}, where FZ = {W ⊆ ω : Z \W is finite} and [ω]ω denotes the

set of all infinite subsets of ω. See [17] for more details.

We are now going to see that sequencewise P-compactness admits equivalent

formulations (a result implicit in [15]), but first we need some definitions.

Definition 2.3. Let A be a set, and B,G ⊆ P(A), where P(A) denotes the

set of all subsets of A. A topological space X is [B,G]-compact if, whenever

(Oa)a∈A is a sequence of open sets of X such that (Oa)a∈K is a cover of X for

every K ∈ G, then there is H ∈ B such that (Oa)a∈H is a cover of X .

Covering properties like compactness and countable compactness, which in-

volve just one “starting” cover, can be expressed as particular cases of Defini-

tion 2.3 by taking G = {A}. For example, to get countable compactness take A

countable, G = {A} and B = [A]<ω , the set of all finite subsets of A.

It is useful to consider the general case in which G contains more than one

set. The reason is that in this way we can also get covering properties which
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involve simultaneously many “starting” covers, as is the case for the Menger

and Rothberger properties. For example, take A = ω, G a partition of ω into

infinitely many infinite classes, and B the family of those sets that intersect each

member of G in a finite (one-element, respectively) set. In this case we get the

Menger (Rothberger, respectively) property for countable covers. More generally,

if λ, µ are cardinals, take A = λ · µ, G a partition of A into λ-many pieces of

cardinality µ, and B the family of those sets that intersect each member of G in

a set of cardinality < κ. Then we get the property that any λ-sequence of open

covers of size ≤ µ admits a <κ-selection, a property denoted by R(λ, µ;<κ)

in [16]. Clearly, the Menger and Rothberger properties can be obtained from

R(ω, λ;<ω), R(ω, λ;<2), respectively, by letting λ be arbitrarily large.

Definition 2.4. Suppose that I is a set, E ⊆ P(I), E is a set of subsets of P(I)

and X is a topological space.

If (xi)i∈I is a sequence of elements of X , we say that x ∈ X is an E-accumula-

tion point of (xi)i∈I if {i ∈ I : xi ∈ U} ∈ E for every open neighborhood U of x

in X .

We say that x ∈ X is an E-accumulation point of (xi)i∈I if and only if there

is E ∈ E such that x is an E-accumulation point of (xi)i∈I .

We say that X satisfies the E-accumulation property (the E-accumulation

property) if every I-indexed sequence of elements of X has some E-accumulation

point (some E-accumulation point).

Remark 2.5. In the particular case when E is a filter, E-accumulation points

are exactly E-limit points; hence in this case E-compactness is the same as

the E-accumulation property. So, if each member of E is a filter, then the E-

accumulation property is the same as sequencewise E-compactness.

Remark 2.6. Countable compactness is another motivating example for our def-

inition of the E-accumulation property. Indeed, a topological space is countably

compact if and only if it satisfies the E-accumulation property, with E being the

set of all infinite subsets of ω. But countable compactness is also equivalent to

sequencewise P-compactness, for the family P of all uniform ultrafilters over ω.

The equivalent formulations of countable compactness can be seen as a proto-

typical example of the general equivalence given by Theorem 2.7 below. See [15,

Remark 2.5] for a full discussion.

The next theorem is implicit in [15]. We give details for the reader’s conve-

nience.

Theorem 2.7. For every class K of topological spaces, the following conditions

are equivalent:
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(i) K is the class of all [B,G]-compact spaces for some set A and sets B,G ⊆

P(A).

(ii) K is the class of all the spaces satisfying the E-accumulation property for

some set I and some family E of subsets of P(I) such that each member

of E is closed under supersets.

(iii) K is the class of all sequencewise P-compact spaces for some P .

Given a class K and B, G satisfying (i), there is E such that |E| ≤ |G| and (ii)

is satisfied. Conversely, if (ii) is satisfied for some K and E , there are B and G

such that (i) is satisfied and |G| ≤ |E|. On the other hand, there are a class K

and some E such that (ii) holds, but for any P satisfying (iii) we have |P| > |E|.

Before proving Theorem 2.7 we need some lemmas which may be of indepen-

dent interest.

Lemma 2.8 ([15, page 300]). A space X is [B,G]-compact if and only if for

every sequence (Ca)a∈A of closed sets of X , if
⋂

a∈H Ca 6= ∅, for every H ∈ B,

then there is K ∈ G such that
⋂

a∈K Ca 6= ∅.

Proof: By stating the implication in the definition of [B,G]-compactness in

contrapositive form and taking complements. �

Lemma 2.9. Given A,B,G as in the definition of [B,G]-compactness, let I = B

and E = {EK : K ∈ G} where for K ∈ G we set EK = {Z ⊆ B : for every a ∈ K,

there is H ∈ Z such that a ∈ H} = {Z ⊆ B :
⋃

H∈Z H ⊇ K}.

Under the above definitions, [B,G]-compactness is equivalent to the E-accumu-

lation property.

Proof: Assume that X satisfies the E-accumulation property, for E as in the

statement of the lemma, and assume that (Ca)a∈A is a sequence of closed sets

such that
⋂

a∈H Ca 6= ∅ for every H ∈ B. For every H ∈ B pick xH ∈
⋂

a∈H Ca.

By the E-accumulation property, the sequence (xH)H∈B has an EK -accumulation

point x for some K ∈ G (recall that I = B). Thus, for every neighborhood U

of x, {H ∈ B : xH ∈ U} ∈ EK , that is for every a ∈ K, there is some H such

that xH ∈ U and a ∈ H . If a ∈ H , then xH ∈ Ca, by construction; thus

every neighborhood of x intersects Ca, hence x ∈ Ca, since Ca is closed. This

holds for every a ∈ K, hence x ∈
⋂

a∈K Ca, thus
⋂

a∈K Ca 6= ∅. This implies

[B,G]-compactness, by Lemma 2.8.

Conversely, assume that X is [B,G]-compact and let (xH)H∈B be a sequence of

elements in X . For a ∈ A, let Ca = {xH : a ∈ H}, thus xH ∈
⋂

a∈H Ca for every

H ∈ B. In particular,
⋂

a∈H Ca 6= ∅. By Lemma 2.8,
⋂

a∈K Ca 6= ∅ for some

K ∈ G. Let x ∈
⋂

a∈K Ca. Since Ca = {xH : a ∈ H}, then for every a ∈ K and

every neighborhood U of x, there is some H such that a ∈ H and xH ∈ U . This
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means that for every neighborhood U of x,
⋃
{H : xH ∈ U} ⊇ K, that is, x is an

EK -accumulation point of (xH)H∈B , in particular, an E-accumulation point.

Compare the above proof with [15, Theorem 5.8 (1) ⇒ (5)]. �

If E ⊆ P(I), we say that E is closed under supersets (in I) if whenever e ∈ E

and e ⊆ f ⊆ I, then f ∈ E. We let E+

I = {a ⊆ I : a ∩ e 6= ∅ for every e ∈ E}.

Usually, the set I will be clear from the context and reference to it shall be

dropped. Notice that, in case E is a filter, then E+ is the complement in P(I)

of the dual ideal of E. This observation justifies the notation. Symmetrically, if

P(I) \ E is an ideal, then E+ is the filter dual to this ideal.

Lemma 2.10. For every E ⊆ P(I), we have that E+ is closed under supersets.

Moreover, E++ = E if and only if E is closed under supersets.

Proof: The first statement is immediate from the definition. In particular,

E++ is closed under supersets, hence if E++ = E, then E is closed under

supersets.

To prove the converse, E++ ⊇ E is immediate from the definition. Suppose

by contradiction that E++ ) E and E is closed under supersets, thus there is

f ∈ E++ \ E such that f ∩ a 6= ∅ for every a ∈ E+. Since E is closed under

supersets and f /∈ E, then for every e ∈ E, there is some ie ∈ e \ f . Then, by

construction, a = {ie : e ∈ E} ∈ E+, but a ∩ f = ∅, a contradiction. �

Lemma 2.11 ([15, Proposition 3.11]). Suppose that X is a topological space,

x ∈ X , I is a set, and (xi)i∈I is a sequence of elements of X . Suppose that

K ⊆ P(I), E = K+, and for a ∈ K, put Da = {xi : i ∈ a}.

Then the following conditions are equivalent:

(1) x is an E-accumulation point of (xi)i∈I .

(2) x ∈
⋂

a∈K Da.

Proof: If (1) holds and a ∈ K, then for every neighborhood U of x, eU =

{i ∈ I : xi ∈ U} ∈ E, thus a ∩ eU 6= ∅, by the definition of E. If i ∈ a ∩ eU ,

then xi ∈ Da ∩ U , hence Da ∩ U 6= ∅. Since Da is closed, and Da ∩ U 6= ∅ for

every neighborhood U of x, then x ∈ Da. Since a was arbitrary in the above

argument, we have x ∈
⋂

a∈K Da.

If (2) holds and U is a neighborhood of x, let eU = {i ∈ I : xi ∈ U}. For every

a ∈ K, by (2), x ∈ Da and, by the definition of Da, there is i ∈ a such that

xi ∈ U . By the definition of eU , i ∈ eU , thus i ∈ eU ∩a 6= ∅. Thus eU ∈ E = K+

for every neighborhood of x, and this means that x is an E-accumulation point

of (xi)i∈I . �
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Lemma 2.12. Suppose that I is a set, E is a set of subsets of P(I) and every

E ∈ E is closed under supersets. Let A = P(I), G = {E+ : E ∈ E} and B =

{i< : i ∈ I}, where for i ∈ I, i< = {a ∈ A : i ∈ a}.

Then, for every topological space X , the following conditions are equivalent:

(1) X satisfies the E-accumulation property.

(2) X is [B,G]-compact.

Proof: (1) ⇒ (2) Using Lemma 2.8, suppose that (Ca)a∈A are closed sets and
⋂

a∈H Ca 6= ∅ for every H ∈ B. Because of the definition of B, this means
⋂
{Ca : i ∈ a} 6= ∅ for every i ∈ I. For each i ∈ I, choose xi ∈

⋂
{Ca : i ∈ a}. By

the E-accumulation property, there are E ∈ E and x ∈ X such that x is an E-

accumulation point of (xi)i∈I . If K = E+, then E = E++ = K+, by Lemma 2.10

and since E is closed under supersets, by assumption. If Da = {xi : i ∈ a} for

a ∈ K, then by Lemma 2.11 x ∈
⋂

a∈K Da ⊆
⋂

a∈K Ca. Since K = E+ ∈ G, this

shows that X is [B,G]-compact.

(2) ⇒ (1) Suppose that (xi)i∈I is a sequence, and set Ca = {xi : i ∈ a} for

a ∈ A. If H ∈ B, say, H = i<, then xi ∈
⋂

a∈H Ca, hence, by [B,G]-compactness

and Lemma 2.8, there is K ∈ G such that
⋂

a∈K Ca 6= ∅. By the definition

of G, K = E+ for some E ∈ E , hence E = E++ = K+, by Lemma 2.10,

since E is closed under supersets. Then (xi)i∈I has an E-accumulation point, by

Lemma 2.11. This proves the E-accumulation property. �

Proof of Theorem 2.7: (i) ⇒ (ii) follows from Lemma 2.9, noticing that the

EKs defined there are closed under supersets.

(ii) ⇒ (i) follows from Lemma 2.12.

(ii) ⇒ (iii) If E is closed under supersets, x is an E-accumulation point of

the sequence (xi)i∈I and for every neighborhood U of x we set xU = {i ∈ I :

xi ∈ U}, then the family {xU : U a neighborhood of x} generates a filter E′

which is contained in E, and x is an E′-accumulation point of the sequence

(xi)i∈I .

Thus if each E ∈ E is closed under supersets, then the E-accumulation prop-

erty is equivalent to the E ′-accumulation property, where E ′ is the set of all

filters which are contained in some element of E . Then E ′ contains only filters,

and the E ′-accumulation property is the same as sequencewise E ′-compactness,

by Remark 2.5. The implication (iii) ⇒ (ii) is trivial from the same remark.

Again by Lemmas 2.9 and 2.12, the sets E and G can be chosen to satisfy the

cardinality requirements. On the other hand, as mentioned, countable compact-

ness can be characterized as the E-accumulation property for some one-element E ,

but countable compactness is not equivalent to sequencewise P-compactness for
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any one-element P . Indeed, this would mean F -compactness for the single fil-

ter F belonging to P , but it is well known that F -compactness is preserved under

products, while countable compactness is not. �

Corollary 2.13 ([15, Corollaries 3.5 and 3.10]). For every class K of topological

spaces, the following conditions are equivalent:

(i) K is the class of all [B, {A}]-compact spaces for some A and B ⊆ P(A).

(ii) K is the class of all the spaces satisfying the E-accumulation property

for some set I and some E ⊆ P(I) closed under supersets.

At first sight one could be tempted to believe that condition (iii) in Theorem 2.7

is always preferable to condition (ii), since P in (iii) contains only filters, which

are surely more manageable subsets of P(I) than the members of E in (ii), which

are only supposed to be closed under supersets. However the last statement in

Theorem 2.7 shows that there are cases in which the E in (ii) has the advantage

of having much smaller cardinality than P .

The proof of Theorem 2.7 gives explicit constructions, which are of some use

even in particular cases. For example, the proof of Theorem 2.7 (i) ⇒ (ii) can be

used to express the Menger properties as some kind of accumulation properties,

as we explicitly worked out in [16, Lemma 2.2 (3)]. See also [15, Corollary 5.13],

which, however, is stated in nonstandard terminology: there we used the expres-

sions “Menger property” (“Rothberger property”, respectively), in place of their

versions for countable covers, that is, R(ω, ω;<ω) (R(ω, ω;<2), respectively).

Then in [16, Theorem 2.3] the Menger properties are explicitly described as se-

quencewise P-compactness for some appropriate P consisting only of ultrafilters.

That the Menger properties can be described as sequencewise P-compactness for

some P , follows directly from Theorem 2.7; the main point in [16] is that the

members of P can be chosen to be ultrafilters; this follows also abstractly from

[17, Corollary 5.3].

In the other direction, the proof of Theorem 2.7 (ii) ⇒ (i) can be used to

provide alternative formulations in terms of open covers both of D-compactness

[15, Proposition 1.3], stated here as Proposition 4.5, and of sequential compactness

[15, Corollary 5.12]. See [15, Corollaries 2.6, 3.14 and 5.15] for further results of

this kind and [15, Section 4 and Theorems 5.9 and 5.11] for further theorems

dealing with pseudocompact-like generalizations.

We do not know whether the technical assumption that the members of E

are closed under supersets is necessary in condition (ii) in Theorem 2.7, namely,

whether, for every E , there is some E ′ such that the E-accumulation property

is equivalent to the E ′-accumulation property and all members of E ′ are closed

under supersets.
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3. Checking compactness by means of subproducts

Recall the definition of sequencewise P-compactness from Definition 2.1. If
∏

j∈J Xj is a product of topological spaces, a subproduct is a space of the form
∏

j∈K Xj for some K ⊆ J . Formally, if K = ∅, the corresponding subproduct

is a one-element space (hence it satisfies all reasonable compactness properties).

Otherwise, the reader might always exclude the case of subproducts with respect

to an empty index set.

Theorem 3.1. Let P be a nonempty family of filters over some set I. A product

of topological spaces is sequencewise P-compact if and only if so is any subprod-

uct with ≤ |P| factors.

Proof: The only if part is immediate from the observation that sequencewise

P-compactness is preserved under continuous surjective images.

For the other direction, by contraposition, suppose that X =
∏

j∈J Xj is not

sequencewise P-compact, thus there is a sequence (xi)i∈I of elements of X such

that for no F ∈ P , (xi)i∈I F -converges in X . Notice that a sequence in a product
∏

j∈J Xj of topological spaces F -converges if and only if for every j ∈ J the

projection of the sequence into Xj F -converges in Xj . Hence, for every F ∈ P

there is some jF ∈ J such that the projection of (xi)i∈I into XjF does not F -

converge in XjF . Choose one such jF for each F ∈ P , and let K = {jF : F ∈ P},

thus |K| ≤ |P|.

Let X ′ =
∏

j∈K Xj , and let (x′
i)i∈I be the natural projection of (xi)i∈I into X ′.

We claim that the sequence (x′
i)i∈I witnesses that X ′ is not sequencewise P-

compact. Indeed, for every F ∈ P we have that (x′
i)i∈I does not F -converge in X ′,

since the projection of (x′
i)i∈I into XjF (which is the same as the projection of

(xi)i∈I into XjF ) does not F -converge in XjF . Thus we have found a subproduct

with ≤ |P| factors which is not sequencewise P-compact. �

Remark 3.2. Notice that the particular case P = {F} of Theorem 3.1 states

that a product is F -compact if and only if each factor is F -compact (however, this

does not follow from Theorem 3.1, since it is used in the proof). Thus Theorem 3.1

incorporates Tychonoff theorem, since a topological space is compact if and only

if it is D-compact for every ultrafilter D.

Apparently, besides Tychonoff theorem, the first result of the form of The-

orem 3.1 has been proved by C.T. Scarborough and A.H. Stone in [23, Theo-

rem 5.6], asserting that a product is countably compact, provided that all sub-

products by at most 22
c

factors are countably compact. C.T. Scarborough and

A.H. Stone in [23, Corollary 5.7] also obtained the improved value 22
ω

for the

particular case of first countable factors. J. Ginsburg and V. Saks in [11, Theo-

rem 2.6] then obtained the improved bound 22
ω

for powers of a single space, and
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W.W. Comfort in [6] and V. Saks in [22] observed that the methods from [11] give

the result for arbitrary factors, a result which is a particular case of Theorem 3.1,

by Remark 2.6 and since there are 22
ω

nonprincipal ultrafilters over ω.

V. Saks in [22, Theorem 2.3] also proved that a product satisfies CAPλ if

and only if each subproduct by ≤ 22
λ

factors satisfies it; actually, he stated the

result in terms of an interval of cardinals and in different terminology. Recall

that a topological space is said to satisfy CAPλ if every subset Y of cardinality λ

has a complete accumulation point, that is, a point each neighborhood of which

intersects Y in a set of cardinality λ. Saks’ result, too, can be obtained as

a consequence of Theorem 3.1, but some care should be taken of the case when λ

is singular.

Concerning a related property, X. Caicedo in [5, Section 3] essentially gave, in

the present terminology, a characterization of [µ, λ]-compactness as sequencewise

P-compactness for an appropriate P . This will be recalled in Theorem 4.4 below.

Theorem 3.1 can then be applied in order to provide a characterization of those

products which are [µ, λ]-compact. We shall work this out in Corollary 4.10.

In the particular cases of final ωn-compactness and of [ωn, λ]-compactness for λ

singular strong limit, better results can be obtained using further arguments, as

we will show in Theorems 4.1 and 4.3.

Other possible examples of applications of Theorem 3.1 deal with the Menger,

the Rothberger and the related properties mentioned after Definition 2.3. How-

ever, in this case, too, best results about these properties are obtained by direct

means: see [16] and also Section 5 here. A similar situation occurs with regard to

sequential compactness. See [18] and Section 6 below.

Notice that the equivalence of conditions (i) and (ii) in [17, Theorem 2.1] can

be obtained as an immediate consequence of Theorem 3.1.

Let us remark that Theorem 3.1 stresses the importance of studying the prob-

lem when sequencewise P-compactness is equivalent to sequencewise P ′-compact-

ness for various sets P and P ′, as already mentioned in [17]. In particular,

given P , Theorem 3.1 implies that it is useful to characterize the minimal cardi-

nality of some P ′ such that the above equivalence holds. The cardinality of such

a “minimal” P ′ is also connected with some other invariants. See Section 7 in [19],

an unpublished manuscript from which the present work has been extracted.

Let F be the trivial filter over κ, that is, F = {κ}. Then a topological

space X is F -compact if and only if for every subset Y of X of cardinality ≤ κ,

there is x ∈ X such that every neighborhood of x contains the whole of Y . Such

spaces are called κ+-filtered. See [4] for further details and characterizations.

Trivially, if P is a nonempty family of filters over κ, then any κ+-filtered space

is sequencewise P-compact. The next lemma is trivial, but it has some use, see

the proof of Proposition 5.1.



Products of topological spaces and families of filters 383

Lemma 3.3. If P is a family of filters over κ and X1 is a κ+-filtered topologi-

cal space, then a product X1 ×X2 is sequencewise P-compact if and only if X2

is sequencewise P-compact.

Proof: The “only if ” part is trivial.

For the other direction, suppose that X1 is κ+-filtered and X2 is sequence-

wise P-compact. Let (xα)α∈κ be a sequence of elements of X1 × X2. Since

X2 is sequencewise P-compact, there is F ∈ P such that the second projection

of (xα)α∈κ F -converges in X2. Since X1 is κ+-filtered, the first projection of

(xα)α∈κ F -converges in X1, hence (xα)α∈κ F -converges in X1 ×X2. �

A more significant result shall be proved in Corollary 4.7, where the assumption

of being κ+-filtered shall be replaced by initial 2κ-compactness, provided that all

members of P are ultrafilters.

4. Final µ-compactness and [µ, λ]-compactness

Final ωn-compactness. In this section we present some generalizations of the

following theorem, which can be obtained as consequence of results from [14] (it

just needs a small elaboration besides [14, Corollary 33]). Recall that a topological

space is finally µ-compact if every open cover has a subcover of cardinality < µ.

In what follows we shall freely use the categorical properties of products and, in

case there is no risk of confusion, we shall identify, say,
∏

j∈J Yj with
∏

j∈H Yj ×∏
j∈J\H Yj for H ⊆ J .

Theorem 4.1. If X is a product of topological spaces, then the following condi-

tions are equivalent:

(i) X is finally ωn-compact.

(ii) All subproducts of X by ≤ ωn factors are finally ωn-compact.

(iii) All but < ωn factors of X are compact, and the product of the non

compact factors if any is finally ωn-compact.

(iv) The product of the non compact factors (if any) is finally ωn-compact.

Proof: (i) ⇒ (ii) and (iii) ⇒ (iv) are trivial.

(ii) ⇒ (iii) If n = 0, this is immediate since compactness is final ω0 compact-

ness. If n > 0, suppose by contradiction that there are (at least) ωn factors

which are not compact. Theorem 2 in [14] (in contrapositive form) asserts that

their product is not finally ωn-compact, contradicting (ii). Hence all but < ωn

factors of X are compact, and the product of the remaining factors is finally

ωn-compact, by (ii).

(iv) ⇒ (i) Letting apart the trivial improper cases, group together the compact

factors, on one hand, and the non compact factors, on the other hand. Then we
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get by Tychonoff theorem that X is (homeomorphic to) a product of a compact

space with a finally ωn-compact space, and a standard argument shows that any

such product is finally ωn-compact (anyway, a more general result shall be proved

in Corollary 4.8 below). �

Since Lindelöfness is the same as final ω1-compactness, we get the following

corollary which might be known, though we know no reference for it.

Corollary 4.2. A product is (linearly) Lindelöf if and only if all subproducts by

≤ ω1 factors are (linearly) Lindelöf if and only if all but countably many factors

are compact and the product of the non compact factors, if any, is (linearly)

Lindelöf.

Recall that a topological space is linearly Lindelöf if every open cover which

is linearly ordered by inclusion has a countable subcover (some authors use the

term chain-Lindelöf ). The linear Lindelöf case of Corollary 4.2 follows from [14,

Theorem 3], arguing as in the proof of Theorem 4.1.

[ωn, λ]-compactness. We now combine the arguments in Theorem 4.1 with some

classical methods from R.M. Stephenson and J. E. Vaughan in [25] in order to

get a similar characterization of [ωn, λ]-compact products for λ a singular strong

limit cardinal having cofinality ≥ ωn. Recall that a topological space X is [µ, λ]-

compact if every open cover by at most λ sets has a subcover of cardinality < µ.

Initial λ-compactness is [ω, λ]-compactness.

Theorem 4.3. Suppose that n ∈ ω, λ is a singular strong limit cardinal, and

cf λ ≥ ωn. If X is a product of topological spaces, then the following conditions

are equivalent:

(i) X is [ωn, λ]-compact.

(ii) Every subproduct of X by ≤ ωn factors is [ωn, λ]-compact.

(iii) All but < ωn factors of X are initially λ-compact, and the product of

the non initially λ-compact factors (if any) is [ωn, λ]-compact.

(iv) The product of the non initially λ-compact factors (if any) is [ωn, λ]-

compact.

Some auxiliary results are needed before we can give the proof of Theorem 4.3.

By [λ]<µ we denote the set of all subsets of λ of cardinality < µ. This is now

a quite standard notation, but notice that some authors (including the present

one) sometimes used alternative notations for this, such as Sµ(λ), P<µ(λ) and

other. We say that an ultrafilter D over [λ]<µ covers λ in case {Z ∈ [λ]<µ :

α ∈ Z} ∈ D for every α ∈ λ.
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Theorem 4.4 (X. Caicedo [5]). A topological space is [µ, λ]-compact if and only

if it is sequencewise P-compact for the family P of the ultrafilters over [λ]<µ

which cover λ.

If λ is regular, then a topological space is [λ, λ]-compact if and only if it is

sequencewise P-compact for the family P of the uniform ultrafilters over λ.

Theorem 4.4 is essentially proved in [5, Section 3]. Full details for the first

statement can be found in [16, Theorem 2.3], considering the particular case λ = 1

therein: see the remark at the bottom of [16, page 2509]. The second statement

is much simpler; actually, it is a reformulation of some remarks from [22], in par-

ticular, (i) on pages 80–81 therein. Notice, that for λ regular [λ, λ]-compactness

is equivalent to CAPλ, C[λ, λ] in Saks’ notation.

Proposition 4.5. If D is an ultrafilter over I, then a topological space X is D-

compact if and only if for every open cover (OZ)Z∈D of X , there is some i ∈ I

such that (OZ)i∈Z∈D is a cover of X .

See [15, Proposition 1.3 and Remark 3.12] for a proof of Proposition 4.5.

Corollary 4.6. If X is an initially λ-compact topological space and 2κ ≤ λ,

then X is D-compact for every ultrafilter D over some set of cardinality ≤ κ.

Proof: We use Proposition 4.5. Let (OZ)Z∈D be an open cover of X . Since

|D| ≤ 2κ ≤ λ, then by initial λ-compactness (OZ)Z∈D has a finite subcover,

say OZ1
, . . . , OZm

. Since D is (in particular) a filter, Z1 ∩ · · · ∩ Zm 6= ∅. If

i ∈ Z1 ∩ · · · ∩ Zm, then (OZ)i∈Z∈D is a cover of X . By Proposition 4.5, X is

D-compact. �

Corollary 4.6 can also be obtained as a consequence of implications (8) and (5)

in [24, Diagram 3.6], exchanging λ and κ.

Corollary 4.7. Suppose that 2κ ≤ λ and P is a family of ultrafilters over some

set I of cardinality ≤ κ. Then the product of an initially λ-compact and of

a sequencewise P-compact topological space is sequencewise P-compact.

Proof: Let X1 be initially λ-compact, X2 be sequencewise P-compact, and let

(xi)i∈I be a sequence in X1 ×X2. By the sequencewise P-compactness of X2,

there is some D ∈ P such that the second projection of (xi)i∈I D-converges

in X2. Since 2κ ≤ λ, the first projection of (xi)i∈I D-converges in X1, by Corol-

lary 4.6. Hence (xi)i∈I D-converges in X1 ×X2, thus X1 ×X2 is sequencewise

P-compact. �

By ν<µ we denote supµ′<µ ν
µ′

. Notice that [ν]<µ has cardinality ν<µ.



386 P. Lipparini

Corollary 4.8. If 2ν
<µ

≤ λ, then the product X1 × X2 of a [µ, ν]-compact

space X1 and an initially λ-compact space X2 is [µ, ν]-compact.

If the interval [µ, ν] consists only of regular cardinals, the assumption 2ν
<µ

≤ λ

above can be relaxed to 2ν ≤ λ.

Proof: By Theorem 4.4, [µ, ν]-compactness is equivalent to sequencewise P-

compactness for a family P of ultrafilters over [ν]<µ, a set of cardinality ν<µ.

Hence the first statement is immediate from Corollary 4.7 with κ = ν<µ.

To prove the last statement, recall that [µ, ν]-compactness is equivalent to

[µ′, µ′]-compactness for every µ′ such that µ ≤ µ′ ≤ ν. From the second state-

ment in Theorem 4.4, and applying again Corollary 4.7, we get that X1 ×X2 is

[µ′, µ′]-compact for every µ′ as above, since 2µ
′

≤ 2ν ≤ λ. Hence X1 × X2 is

[µ, ν]-compact. �

Proof of Theorem 4.3: (i) ⇒ (ii) and (iii) ⇒ (iv) are trivial.

(ii) ⇒ (iii) The case n = 0 is immediate, since [ω0, λ]-compactness is the same

as initial λ-compactness, hence, assuming (ii), all factors are initial λ-compact.

If n > 0, suppose by contradiction that there are ≥ ωn factors which are not

initially λ-compact. By (ii), each such factor is [ωn, λ]-compact, hence not initially

ωn−1-compact, otherwise it would be initially λ-compact. Hence we have at least

ωn factors which are not initially ωn−1-compact, and, by [14, Theorem 6], their

product is not [ωn, ωn]-compact, hence not [ωn, λ]-compact, contradicting (ii).

Hence the set of factors which are not initially λ-compact has cardinality < ωn,

and their product is [ωn, λ]-compact by (ii).

(iv) ⇒ (i) By Stephenson and Vaughan’s theorem, see [25, Theorem 1.1], the

product of the initially λ-compact factors, if any, is still initially λ-compact.

By (iv), the product of the non initially λ-compact factors, if any, is [ωn, λ]-

compact. Hence, excluding the improper cases, X is (homeomorphic to) the

product of an initially λ-compact space with an [ωn, λ]-compact one. By Corol-

lary 4.8, and since λ is strong limit, then for every ν < λ, X is [ωn, ν]-compact.

Since λ > cf λ ≥ ωn, then X is [cf λ, cf λ]-compact. Then X is [ωn, λ]-compact,

by the well-known fact that [ωn, ν]-compactness for every ν < λ, together with

[cf λ, cf λ]-compactness imply [ωn, λ]-compactness. �

[µ, λ]-compactness.

Remark 4.9. Certain values obtained in Theorems 4.1 and 4.3 are much better

than the values which could be obtained by a simple direct application of The-

orems 3.1 and 4.4. For example, if λ is a singular strong limit cardinal, and

cf λ ≥ ωn, then there are κ = 22
λ

ultrafilters over λ = λωn . Then Theorems 3.1
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and 4.4 imply that some product X is [ωn, λ]-compact if and only if all subprod-

ucts of X by ≤ κ factors are finally [ωn, λ]-compact. However, Theorem 4.3

shows that the value of κ can be improved to ωn. See the next subsection for

related comments.

In the more general case of arbitrary µ and λ, we have the following corol-

lary of Theorem 4.4, a corollary in which we essentially get the values given by

Theorem 3.1, sometimes with minor improvements.

Corollary 4.10. A product of topological spaces is [µ, λ]-compact if and only if

so is any subproduct by ≤ 22
κ

factors, where κ = λ<µ. The value of κ can be

improved to κ = λ in case the interval [µ, λ] contains only regular cardinals.

More generally, a product is [µ, λ]-compact if and only if so is any subproduct

by < θ factors, where θ is the smallest cardinal such that both

(a) θ > 22
ν

for every regular ν such that µ ≤ ν ≤ λ, and

(b) θ > 22
ν<µ

for every singular ν of cofinality < µ such that µ ≤ ν ≤ λ.

Proof: The first two statements are immediate from Theorems 3.1 and 4.4,

since there are 22
κ

ultrafilters over [λ]<µ, 22
ν

, respectively, ultrafilters over ν.

Here ν varies among the cardinals such that µ ≤ ν ≤ λ, and we are using again

the mentioned fact that [µ, λ]-compactness is equivalent to [ν, ν]-compactness for

every ν such that µ ≤ ν ≤ λ.

In order to prove the last statement, recall that for every ν, [cf ν, cf ν]-compact-

ness implies [ν, ν]-compactness. Using this property, together with the fact men-

tioned at the end of the previous paragraph, it is easy to see that [µ, λ]-compact-

ness is equivalent to the conjunction of

(i) [ν, ν]-compactness for every regular ν with µ ≤ ν ≤ λ, and

(ii) [µ, ν]-compactness for every singular ν of cofinality < µ and such that

µ ≤ ν ≤ λ.

Now we get the result by applying for each ν, the corresponding (and already

proved) statements in the first paragraph of the corollary (with ν in place of λ).

�

Remark 4.11. Corollary 4.10 complements [22, Theorem 2.3], which asserts

that a product satisfies CAPν for every ν ∈ [µ, λ] if and only if so does every

subproduct by ≤ 22
λ

factors. Notice that if the interval [µ, λ] contains only

regular cardinals, then [22, Theorem 2.3] and Corollary 4.10 overlap, since it

is well-known that, if ν is a regular infinite cardinal, then CAPν and [ν, ν]-

compactness are equivalent notions.

Short remarks about final µ-compactness for arbitrary µ. Under special

set-theoretical assumptions, we know improvements of all the results proved in
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the present section. However, we cannot go exceedingly far. Of course, the

equivalence of (i) and (iv) both in Theorem 4.1 and in Theorem 4.3 holds for

every infinite cardinal in place of ωn. However, the other equivalences do not

necessarily remain true, when ωn is replaced by some larger cardinal.

For example, if κ is a strongly compact cardinal, then every power of ω with

the discrete topology is finally κ-compact. This is a consequence of a classical

result by I. Mycielski in [20], asserting that if κ is strongly compact, then every

product of finally κ-compact spaces is still finally κ-compact. This can be obtained

also from Theorem 4.4 together with the ultrafilter characterization of strong

compactness. Thus if κ is strongly compact, then the analogue of Theorem 4.1

(i) ⇒ (iii) with κ in place of ωn badly fails, since every power of ω is finally

κ-compact, but ω is not compact.

Concerning condition 4.1 (ii), first define for every infinite cardinal µ the car-

dinal s(Pµ) as the smallest cardinal, if it exists, such that some product is finally

µ-compact if and only if so is every subproduct by < s(Pµ) factors. Here Pµ is

intended to be the property of being finally µ-compact, as we want the notation

to be consistent with the general one we have introduced in [19, Section 7]. With

this terminology, clearly s(Pω) = 2, as a reformulation of Tychonoff theorem.

Moreover, Theorem 4.1 (i) ⇔ (ii) implies that if n > 0, then s(Pωn
) = ωn+1.

Indeed, ω
ωn−1

n−1 is finally ωn-compact, but not every power of ωn−1 is, hence the

value given by Theorem 4.1 cannot be improved. Contrary to the case of ωn,

we know examples in which, under certain set theoretical constraints, s(Pµ) is far

larger than µ. Full details shall be presented elsewhere, since they involve deep set

theoretical problems. On the other hand, Mycielski’s theorem mentioned above

implies that if κ is a strongly compact cardinal, then s(Pκ) = 2.

We also remark that a characterization of Lindelöf products in terms of factors,

rather than subproducts must necessarily involve deep structural properties of

the factors. Even the product of two Lindelöf spaces may turn out to be very

incompact. Moreover, it is consistent that there are three regular Lindelöf spaces

whose product has very large Lindelöf number, while every pairwise product of

two of them is still Lindelöf, see [26]. On the other hand, under a weak set-

theoretical assumption, sequentially compact products can be characterized in

terms of factors, see Theorem 6.1 (ii) below.

Notice that, if we apply Theorem 4.4 to final µ-compactness, we get a proper

class P , since final µ-compactness is equivalent to [µ, λ]-compactness for every

λ ≥ µ, alternatively, equivalent to [λ, λ]-compactness for every λ ≥ µ. However,

we can take good advantage of the theorem by Mycielski mentioned above, in

order to find bounds for s(Pµ), when µ is smaller than some strongly compact

cardinal.
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Proposition 4.12. Suppose that µ is an infinite cardinal, µ ≤ θ and θ is

strongly compact. If X is a product of topological spaces, then the following

conditions are equivalent:

(i) X is finally µ-compact.

(ii) All subproducts of X by < θ factors are finally µ-compact.

Proof: Suppose that (ii) holds; in particular, all factors are finally θ-compact,

since µ ≤ θ. By Mycielski theorem, X is finally θ-compact. By Corollary 4.10 for

every λ with µ ≤ λ < θ, X is [λ, λ]-compact, since strongly compact cardinals

are inaccessible. Hence X is finally µ-compact. �

5. Menger and Rothberger

Recall that a topological space X satisfies the Rothberger property (the Roth-

berger property for countable covers, respectively) if given a countable family of

open covers (of countable open covers, respectively) of X , one can obtain another

cover of X by selecting an open set from each one of the given covers. We get

the Menger property when we allow to select a finite number of open sets from

each cover. Recall that we are not assuming any separation axiom.

Recall that a topological space is κ-filtered if for every subset Y of X of car-

dinality < κ, there is x ∈ X such that every neighborhood of x contains Y . In

the terminology from [4], a topological space is supercompact if it is κ-filtered for

all κ. Equivalently, a space X is supercompact if and only if there is a point

whose only neighborhood is the whole of X if and only if X is [2,∞]-compact.

Here [2,∞]-compact is a shorthand for [2, λ]-compact for every cardinal λ.

Notice that if a product of T1 spaces is Rothberger, then all but finitely many

spaces are one-element. Indeed, a T1 space with more than one element contains

a closed copy of the two-element discrete topological space 2, and 2ω is not Roth-

berger. Hence most results in the present section are significant only in the (quite

exotic) context of spaces satisfying little or no separation axiom. We present the

results since the proofs need very little special efforts and, on the other hand,

they might be of some interest due to renewed interest in spaces satisfying few

separation axioms, for example, in connection with the specialization (pre)order,

which becomes trivial for T1 spaces, and because of significant applications to

theoretical computer science. See, e.g., [10] and [12]. Compare also [28]. See [21]

for an interesting recent manifesto in support of the study of spaces satisfying

lower separation axioms from a purely topological point of view.

Proposition 5.1. If X is a product of topological spaces, then the following

conditions are equivalent:
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(i) X satisfies the Rothberger property.

(ii) Every subproduct of X by countably many factors satisfies the Roth-

berger property.

(iii) All but a finite number of factors of X are supercompact, and the product

of the non supercompact factors (if any) satisfies the Rothberger property.

(iv) The product of the non supercompact factors of X (if any) satisfies the

Rothberger property.

Proof: (i) ⇒ (ii) and (iii) ⇒ (iv) are trivial (as will be the case for all the

corresponding implications throughout the present section).

(ii) ⇒ (iii) If by contradiction there is an infinite number of factors which are

not supercompact, i.e., not [2,∞]-compact, then their product is not Rothberger,

by [16, Proposition 3.1]. Hence the number of factors which are not supercompact

is finite, and their product is Rothberger by (ii).

(iv) ⇒ (i) As a particular case of Theorem 2.7 (i) ⇔ (iii) we have that for

every λ the Rothberger property for covers of cardinality ≤ λ is equivalent to

sequencewise P-compactness for some P (an explicit description of such a P can

be found in [16, Proposition 4.1]). Thus, by Lemma 3.3, and since any product

of supercompact spaces is supercompact, we get for every λ that X satisfies the

Rothberger property for covers of cardinality ≤ λ. This means exactly that X

satisfies the Rothberger property. �

Proposition 5.2. If X is a product of topological spaces, then the following

conditions are equivalent:

(i) X satisfies the Rothberger property for countable covers.

(ii) Every subproduct of X by countably many factors satisfies the Roth-

berger property for countable covers.

(iii) In every factor of X every sequence converges, except possibly for a finite

number of factors, and the product of such factors (if any) satisfies the

Rothberger property for countable covers.

(iv) The product of the factors of X (if any) in which there exists a noncon-

verging sequence satisfies the Rothberger property for countable covers.

Proof: (ii) ⇒ (iii) It is enough to show that if we are given an infinite number of

topological spaces, each with a nonconverging sequence, then their product does

not satisfy the Rothberger property for countable covers. By [17, Lemma 4.1

(iv) ⇒ (i)], if some topological space Y has a nonconvergent sequence, then Y is

not [2, ω]-compact, hence an infinite product of such spaces does not satisfy the

Rothberger property for countable covers, by [16, Proposition 3.1].

(iv) ⇒ (i) The property that every sequence converges is preserved under prod-

ucts. Hence X is the product of a space in which every sequence converges and of
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a space satisfying the Rothberger property for countable covers. By Theorem 2.7

(i) ⇔ (iii), the Rothberger property for countable covers can be characterized

as sequencewise P-compactness for some P , and P can be chosen to consist

of filters over ω, by [16, Proposition 4.1], taking κ = 2 and λ = µ = ω there.

On the other hand, a space is ω1-filtered if and only if in it every sequence con-

verges. This is proved by S. Brandhorst in [3] or S. Brandhorst and M. Erné in

[4, Lemma 5.1], and can be also proved by P. Lipparini in [17, Lemma 4.1]. Since

X is the product of a space in which every sequence converges and of a space

satisfying the Rothberger property for countable covers, then Lemma 3.3 shows

that X satisfies the Rothberger property for countable covers. �

Given any infinite cardinal λ, Proposition 5.2 can be generalized to deal with

the Rothberger property for covers of cardinality ≤ λ. We leave the generalization

to the reader.

Corollary 5.3. If X is a product of topological spaces, then the following con-

ditions are equivalent:

(i) X satisfies the Menger property.

(ii) Every subproduct of X by countably many factors satisfies the Menger

property.

(iii) All but a finite number of factors of X are compact, and the product of

the non compact factors (if any) satisfies the Menger property.

(iv) The product of the non compact factors of X (if any) satisfies the Menger

property.

Proof: (ii) ⇒ (iii) By [16, Proposition 3.1], a product of infinitely many non

compact spaces is not Menger, thus if (ii) holds, then there is only a finite number

of non compact spaces, and their product is Menger.

(iv) ⇒ (i) The product of the compact factors is compact, hence X is the

product of a compact space with a Menger space, and any such product is Menger.

�

Results related to the present section appear in [16], e.g., Proposition 3.3 and

Corollaries 2.5, 3.4 and 4.2 there. We do not know whether results similar to the

ones presented in this section can be proved for the Menger property for countable

covers. However, it follows from [16, Corollary 2.5] that a product satisfies the

Menger property for countable covers if and only if so does any subproduct by

≤ 22
2
ω

factors. Again, we do not know whether this is the best possible value.

Notice that a better value does work in the case of powers of a single space,

or, more generally, in case we consider all possible products of spaces in a given

family, see [16, Corollary 3.2].
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6. Further remarks

In [18] we give a proof of the following theorem.

Theorem 6.1.

(1) A product of topological spaces is sequentially compact if and only if all

subproducts by ≤ s factors are sequentially compact.

(2) Assume that h = s. If X is a product of topological spaces, then the

following conditions are equivalent:

(i) X is sequentially compact.

(ii) All factors of X are sequentially compact, and the set of factors with

a nonconverging sequence has cardinality < s.

(iii) All factors of X are sequentially compact, and all but at most < s

factors are ultraconnected.

Recall that a space X is called ultraconnected if no pair of nonempty closed

sets of X is disjoint. Recall that s denotes the splitting number and h the

distributivity number, see [1].

The proof of Theorem 6.1 is direct and does not use Theorem 3.1. However, it

is interesting to discuss the connections between Theorems 6.1 and 3.1.

The value s in Theorem 6.1 (1) is the best possible value, since s is the smallest

cardinal such that 2s is not sequentially compact, see [2], [7]. Here 2 is the two-

element discrete space.

If in Theorem 6.1 (1) we replace s by the rougher estimate c, then the theorem

is indeed a consequence of Theorem 3.1, since, by Remark 2.2, there is some P

of cardinality c such that sequential compactness is equivalent to sequencewise

P-compactness. As we mentioned in [17, Problem 4.4], we do not know the value

of the smallest cardinal ms such that sequential compactness is equivalent to

sequencewise P-compactness for some P with |P| = ms. Of course, if ms were

equal to s, then Theorem 6.1 (1) would be a direct consequence of Theorem 3.1.

It follows from Remark 2.2 that ms ≤ c. Moreover, ms ≥ s. If, to the contrary,

ms < s, then by Theorem 3.1 we could prove Theorem 6.1 (1) for the improved

value ms in place of s. However, as we mentioned above, s is the best possible

value. Also the comment after [17, Problem 4.4] shows, in different terminology,

that ms ≥ s.

See [18], [19] for further comments and for the definitions of invariants re-

lated to s and h in such a general context as a partial infinitary semigroup with

a specified subclass.
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