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On a probabilistic problem on finite semigroups

Attila Nagy, Csaba Tóth

Abstract. We deal with the following problem: how does the structure of a finite
semigroup S depend on the probability that two elements selected at random
from S, with replacement, define the same inner right translation of S. We
solve a subcase of this problem. As the main result of the paper, we show how
to construct not necessarily finite medial semigroups in which the index of the
kernel of the right regular representation equals two.
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1. Introduction and motivation

There are many papers in the mathematical literature which use probabilistic

methods to study special algebraic structures [3], [4], [5], [6], [8], [11], [12], [13],

[20], [21], [23]. In [20], the following problem is examined. If two elements, a and b,

are selected at random from a finite semigroup S, with replacement, what is the

probability PθS (S) that a and b define the same inner right translations of S, i.e.,

(a, b) ∈ θS , where θS denotes the kernel of the right regular representation of S.

It is also investigated how does the structure of a finite semigroup S depend on the

probability PθS (S). It is shown that, for an arbitrary finite semigroup S, PθS(S) ≥

1/|S/θS|, where |S/θS | is the index of θS . Equality is satisfied if and only if each

θS-class of S contains the same number of elements. In two cases, a solution

is given to the problem of how to construct finite semigroups S satisfying the

condition PθS (S) = 1/|S/θS|. These two cases are: S is an arbitrary semigroup

and the index of θS is 1; S is a commutative semigroup and the index of θS
is 2. In our present paper we answer the problem in that case when S is a finite

medial semigroup and the index of θS is 2. We actually deal with a more general

problem. Our main result is Theorem 3.5, in which we show how to construct

not necessarily finite medial semigroups S in which the index of θS equals 2

(not necessarily fulfilling that each θS-class of S contains the same number of

elements). We construct four medial semigroups and show that a semigroup S is
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a medial semigroup such that the index of θS is 2 if and only if S is isomorphic

to one of these four semigroups.

2. Preliminaries

By a semigroup we mean a multiplicative semigroup, that is, a nonempty set

together with an associative multiplication. A transformation of a semigroup S

(acting from the right) is called a right translation of S, if (xy)̺ = x(y̺) for all

x, y ∈ S. The set of all right translations of a semigroup S is a subsemigroup in

the semigroup of all transformations of S. For an arbitrary element a of a semi-

group S, let ̺a denote the inner right translation x 7→ xa of S. It is known

that ΦS : a 7→ ̺a is a homomorphism of the semigroup S into the semigroup of

all right translations of S. The homomorphism ΦS is called the (right) regular

representation of a semigroup S. Let θS denote the kernel of the right regular

representation of a semigroup S. It is obvious that (a, b) ∈ θS for elements

a, b ∈ S if and only if sa = sb for all s ∈ S.

Remark 2.1. If A is a θS-class of a semigroup S, then |sA| = 1 for every s ∈ S,

because sa1 = sa2 for every a1, a2 ∈ A.

A nonempty subset I of a semigroup S is called an ideal of S if as, sa ∈ I for

every a ∈ I and s ∈ S. If I is an ideal of a semigroup S, then the relation ̺I on S

defined by (a, b) ∈ ̺I if and only if a = b or a, b ∈ I is a congruence on S which

is called the Rees congruence on S determined by I. The equivalence classes of S

mod ̺I are I itself and every one-element set {a} with a ∈ S \ I. The factor

semigroup S/̺I is called the Rees factor semigroup of S modulo I. We shall

write S/I instead of S/̺I . We may describe S/I as the result of collapsing I

into a single (zero) element, while the elements of S outside of I retain their

identity.

A homomorphism ϕ of a semigroup S onto an ideal I ⊆ S is called a retract

homomorphism if ϕ leaves the elements of I fixed. An ideal I of a semigroup S

is called a retract ideal if there is a retract homomorphism of S onto I. In this

case, we say that S is a retract (ideal) extension of I by the Rees factor semi-

group S/I.

An element e of a semigroup is called an idempotent element if e2 = e. If every

element of a semigroup S is idempotent, then S is called a band. A semigroup

satisfying the identity ab = a (ab = b, respectively) is called a left zero (right

zero, respectively) semigroup. It is clear that every left (right, respectively) zero

semigroup is a band. A commutative band is called a semilattice. A semigroup

with a zero element 0 is called a zero semigroup if it satisfies the identity ab = 0.
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For a semigroup S, let ωS denote the universal relation on S. The next lemma

is a characterization of semigroups in which θS = ωS.

Lemma 2.2 ([20, Theorem 3.2]). Semigroup S is a semigroup with θS = ωS

if and only if S is a retract ideal extension of a left zero semigroup by a zero

semigroup.

Remark 2.3. If A is a θS-class of a semigroup S such that A is a subsemigroup

of S, then aa1 = aa2 for every a, a1, a2 ∈ A, and hence θA = ωA. Then, using

Lemma 2.2, A is a retract ideal extension of a left zero semigroup by a zero

semigroup.

Remark 2.4. If a semigroup A is a retract ideal extension of a left zero semi-

group EA by a zero semigroup, then A2 = EA and the set of all idempotent

elements of A is EA. If ϕA is a retract homomorphism of A onto EA (act-

ing from the left), then a1a2 = ϕA(a1a2) = ϕA(a1)ϕA(a2) = ϕA(a1) for every

a1, a2 ∈ A.

A semigroup S is called a left, (right, respectively) commutative semigroup if

it satisfies the identity xya = yxa (axy = ayx, respectively). A semigroup is

said to be a medial semigroup if it satisfies the identity axyb = ayxb. It is clear

that every left commutative semigroup and every right commutative semigroup is

medial. Left commutative, right commutative and medial semigroups are studied

in many papers, see, for example, [1], [7], [9], [10], [14], [15], [17], [18], [19], [25],

[24], and the books [16], [22]. In this paper we also focus on them. The next lemma

characterizes medial semigroups S with the help of the factor semigroup S/θS.

Lemma 2.5 ([19, Lemma 3.1]). A semigroup S is a medial semigroup if and

only if the factor semigroup S/θS is left commutative.

Remark 2.6. It is easy to see that a left zero semigroup containing at least two

elements is not left commutative. Thus a left commutative semigroup has two

elements if and only if it is either a two-element semilattice, a two-element zero

semigroup, a two-element group or a two-element right zero semigroup.

For notions not defined but used in this paper, we refer the reader to books

[2], [16], [22].

3. Results

At the beginning of this section we construct four medial semigroups which

play an important role in the proof of our main theorem. All mappings in this

section act from the left.
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Construction 3.1. Let A be a semigroup which is a retract ideal extension of

a left zero semigroup EA by a zero semigroup. Let ϕA denote a retract homo-

morphism of A onto EA. By Remark 2.4, the ideal EA of A is the set of all

idempotent elements of A, A2 = EA, and a1a2 = ϕA(a1) for every a1, a2 ∈ A.

Let B be a semigroup such that A ∩ B = ∅. Assume that B is also a retract

ideal extension of a left zero semigroup EB by a zero semigroup. Let ϕB denote

a retract homomorphism of B onto EB . By Remark 2.4, the ideal EB of B is

the set of all idempotent elements of B, B2 = EB, and b1b2 = ϕB(b1) for every

b1, b2 ∈ B. Let α be a homomorphism of A into EB and β be a homomorphism of

B into itself which leaves the elements of EB fixed. Assume that the equations

α ◦ ϕA = α,(1)

β ◦ β = β,(2)

ϕB ◦ β = ϕB(3)

are satisfied. Since α maps A into EB , and the mappings ϕB and β leave the

elements of EB fixed, we have

ϕB ◦ α = α = β ◦ α,(4)

β ◦ ϕB = ϕB.(5)

Let S = A ∪B. We define an operation “ · ” on S. For every x, y ∈ S, let

x · y =



















ϕA(x) if x, y ∈ A,

α(x) if x ∈ A, y ∈ B,

β(x) if x ∈ B, y ∈ A,

ϕB(x) if x, y ∈ B.

We show that the operation “ · ” is associative. Let a ∈ A and x, y ∈ S be

arbitrary elements. Using equations (1) and (4), we have

(a · x) · y =

{

ϕA(a) if x, y ∈ A,

α(a) otherwise.

By the definition of the operation “ · ”, we have

a · (x · y) =

{

ϕA(a) if x, y ∈ A,

α(a) otherwise.

Thus

(a · x) · y = a · (x · y).
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Let b ∈ B and x, y ∈ S be arbitrary elements. Using (2), (3) and (5), we have

(b · x) · y =

{

β(b) if x, y ∈ A,

ϕB(b) otherwise.

By the definition of the operation “ · ”, we have

b · (x · y) =

{

β(b) if x, y ∈ A,

ϕB(b) otherwise.
Thus

(b · x) · y = b · (x · y).

Consequently the operation “ · ” is associative, and hence the algebraic structure

(S; ·) is a semigroup. It is clear that (S; ·) is a right commutative semigroup, and

hence a medial semigroup. It follows from the definition of the operation “ · ” that

(a1, a2) ∈ θS and (b1, b2) ∈ θS for every a1, a2 ∈ A and b1, b2 ∈ B. For every

a ∈ A, b ∈ B, we have a · a ∈ A and a · b ∈ B, and hence (a, b) /∈ θS . Thus the

θS-classes of S are A and B. Since A2 ⊆ A, B2 ⊆ B, A ·B, B ·A ⊆ B, the factor

semigroup S/θS is a two-element semilattice.

To illustrate Construction 3.1, consider the following example. Let A = {a, 0}

be a two-element zero semigroup (0 is the zero of A, and so EA = {0}) and

B = {e, f} be a two-element left zero semigroup (and hence ϕB is the identity

mapping of B). Let α be a mapping of A into B such that α(x) = e for every

x ∈ A. It is clear that α is a homomorphism. Let β be the identity mapping

of B (that is, β = ϕB). Then β leaves the elements of EB fixed. The equations

(1), (2), and (3) are satisfied. The Cayley-table of the semigroup (S; ·) is Table 1.

· a 0 e f

a 0 0 e e

0 0 0 e e

e e e e e

f f f f f

Table 1.

Construction 3.2. Let B be a semigroup which is a retract ideal extension of

a left zero semigroup EB by a zero semigroup. Let ϕB denote a retract homo-

morphism of B onto EB . By Remark 2.4, the ideal EB of B is the set of all

idempotent elements of B, B2 = EB, and b1b2 = ϕB(b1) for every b1, b2 ∈ B. Let

A be a nonempty set such that A ∩ B = ∅. Let α be a mapping of A into B,

β be a mapping of A into EB and γ be a homomorphism of B into itself which

leaves the elements of EB fixed. Assume α 6= β or γ 6= ϕB , and
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ϕB ◦ α = β = γ ◦ α,(6)

ϕB ◦ γ = ϕB = γ ◦ γ.(7)

Since β(A) ⊆ EB and γ leaves the element of EB fixed, we have

ϕB ◦ β = β = γ ◦ β,(8)

γ ◦ ϕB = ϕB.(9)

Let S = A ∪B. We define an operation “•” on S. For every x, y ∈ S, let

x • y =



















α(x) if x, y ∈ A,

β(x) if x ∈ A and y ∈ B,

γ(x) if x ∈ B, y ∈ A,

ϕB(x) if x, y ∈ B.

We show that the operation “•” is associative. Let a ∈ A and x, y ∈ S be

arbitrary elements. Using (6) and (8), we have

(a • x) • y = β(a).

By the definition of the operation “•”, we have

a • (x • y) = β(a).

Thus

(a • x) • y = a • (x • y).

Let b ∈ B and x, y ∈ S be an arbitrary elements. Using (7), (9) and the fact

that ϕB is a retract homomorphism, we have

(b • x) • y = ϕB(b).

By the definition of the operation “•”, we have

b • (x • y) = ϕB(b).

Thus

(b • x) • y = b • (x • y).

Consequently the operation “•” is associative, and hence the algebraic structure

(S; •) is a semigroup. It is clear that (S; •) is a right commutative semigroup, and

hence a medial semigroup. It follows from the definition of the operation “•” that

(a1, a2) ∈ θS and (b1, b2) ∈ θS for every a1, a2 ∈ A and b1, b2 ∈ B. Let a ∈ A and

b ∈ B be arbitrary elements. Assume (a, b) ∈ θS . Then, for every a′ ∈ A and

every b′ ∈ B, we have α(a′) = a′ • a = a′ • b = β(a′) and γ(b′) = b′ • a = b′ • b =

ϕB(b
′). Thus α = β and γ = ϕB . This contradicts the assumption that α 6= β or
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γ 6= ϕB. Consequently the θS-classes of S are A and B. Since A2 ⊆ B, B2 ⊆ B,

A •B, B •A ⊆ B, the factor semigroup S/θS is a two-element zero semigroup.

To illustrate Construction 3.2, consider the following example. Let B = {b, 0}

be a two-element zero semigroup (0 is the zero of B) and A = {a} be a singleton.

Let α(a) = b, β(a) = 0, and γ = ϕB. Then β(A) = {0} = EB, and γ leaves the

elements of EB fixed. Since b 6= 0, we have α 6= β. Equations (6) and (7) are

also satisfied. The Cayley-table of the semigroup (S; •) is Table 2.

• a b 0

a b 0 0

b 0 0 0

0 0 0 0

Table 2.

Construction 3.3. Let A be a semigroup which is a retract ideal extension of

a left zero semigroup EA by a zero semigroup. Let ϕA denote a retract homo-

morphism of A onto EA. By Remark 2.4, the ideal EA of A is the set of all

idempotent elements of A, A2 = EA, and a1a2 = ϕA(a1) for every a1, a2 ∈ A. Let

B be a nonempty set. Let α be a mapping of A into B and γ be a mapping

of B into EA such that the equations

α = α ◦ ϕA,(10)

γ ◦ α = ϕA,(11)

are satisfied. Let

(12) β = α ◦ γ.

From equations (10) and (11), it follows that

β ◦ β = β,(13)

β ◦ α = α ◦ γ ◦ α = α ◦ ϕA = α.(14)

Using the fact that γ(b) ∈ EA and ϕA leaves the elements of EA fixed, the

equations (12) and (11) imply

(15) γ ◦ β = γ ◦ α ◦ γ = ϕA ◦ γ = γ.
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Let S = A ∪B. We define an operation “∗” on S. For every x, y ∈ S, let

x ∗ y =



















ϕA(x) if x, y ∈ A,

α(x) if x ∈ A and y ∈ B,

β(x) if x ∈ B, y ∈ A,

γ(x) if x, y ∈ B.

We show that the operation “∗” is associative. Let a ∈ A and x, y ∈ S be

arbitrary elements. Using equations (10) and (14), we have

(a ∗ x) ∗ y =

{

ϕA(a) if x, y ∈ A or x, y ∈ B,

α(a) otherwise.

By the definition of the operation “∗”, we have

a ∗ (x ∗ y) =

{

ϕA(a) if x, y ∈ A or x, y ∈ B,

α(a) otherwise.
Thus

(a ∗ x) ∗ y = a ∗ (x ∗ y).

Let b ∈ B and x, y ∈ S be an arbitrary elements. Using the equations (12) and

(15), we have

(b ∗ x) ∗ y =

{

β(b) if x, y ∈ A or x, y ∈ B,

γ(b) otherwise.

By the definition of the operation “∗”, we have

b ∗ (x ∗ y) =

{

β(b) if x, y ∈ A or x, y ∈ B,

γ(b) otherwise.
Thus

(b ∗ x) ∗ y = b ∗ (x ∗ y).

Consequently the operation “∗” is associative, and hence the algebraic structure

(S; ∗) is a semigroup. It is clear that (S; ∗) is a right commutative semigroup, and

hence a medial semigroup. It follows from the definition of the operation “∗” that

(a1, a2) ∈ θS and (b1, b2) ∈ θS for every a1, a2 ∈ A and b1, b2 ∈ B. Let a ∈ A

and b ∈ B be arbitrary elements. Assume (a, b) ∈ θS . Then, for every a′ ∈ A, we

have

A ∋ a′ ∗ a = a′ ∗ b ∈ B

which is a contradiction. Thus the θS-classes of S are A and B. Since A2 ⊆ A,

A ∗ B, B ∗ A ⊆ B and B2 ⊆ A, the factor semigroup S/θS is a two-element

group.

To illustrate Construction 3.3, consider the following example. Let A = {e}

be a one-element semigroup and B = {x, y} be a two-element set. Let α be the
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mapping of A onto the subset {x}. Let γ be the only possible mapping of B

onto A. We note that β(b) = x for every b ∈ B. It is easy to see that the above

conditions for α and γ are satisfied. The Cayley-table of the semigroup (S; ∗) is

Table 3.
∗ e x y

e e x x

x x e e

y x e e

Table 3.

Construction 3.4. Let A be a semigroup which is a retract ideal extension of

a left zero semigroup EA by a zero semigroup. Let B be a semigroup such that

A∩B = ∅, and B is also a retract ideal extension of a left zero semigroup EB by

a zero semigroup. Let ϕA and ϕB denote a retract homomorphism of A onto EA

and B onto EB, respectively. By Remark 2.4, the ideal EA of A is the set of all

idempotent elements of A, A2 = EA, and a1a2 = ϕA(a1) for every a1, a2 ∈ A.

Similarly, the ideal EB of B is the set of all idempotent elements of B, B2 = EB,

and b1b2 = ϕB(b1) for every b1, b2 ∈ B. Let α be a homomorphism of A into EB

and β be a homomorphism of B into EA. Assume that the equations

α ◦ ϕA = α = ϕB ◦ α,(16)

β ◦ ϕB = β = ϕA ◦ β,(17)

α ◦ β = ϕB ,(18)

β ◦ α = ϕA(19)

are satisfied. Let S = A∪B. We define an operation “⋆” on S. For every x, y ∈ S,

let

x ⋆ y =



















ϕA(x) if x, y ∈ A,

α(x) if x ∈ A, y ∈ B,

β(x) if x ∈ B, y ∈ A,

ϕB(x) if x, y ∈ B.

We show that the operation “⋆” is associative. Let a ∈ A and x, y ∈ S be

arbitrary elements. Using equations (16) and (19), we have

(a ⋆ x) ⋆ y =

{

ϕA(a) if y ∈ A,

α(a) otherwise.

By the definition of the operation “·”, we have

a ⋆ (x ⋆ y) =

{

ϕA(a) if y ∈ A,

α(a) otherwise.
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Thus

(a ⋆ x) ⋆ y = a ⋆ (x ⋆ y).

Let b ∈ B and x, y ∈ S be arbitrary elements. Using (17) and (18), we have

(b ⋆ x) ⋆ y =

{

β(b) if y ∈ A,

ϕB(b) if y ∈ B.

By the definition of the operation “⋆”, we have

b ⋆ (x ⋆ y) =

{

β(b) if y ∈ A,

ϕB(b) if y ∈ B.
Thus

(b ⋆ x) ⋆ y = b ⋆ (x ⋆ y).

Consequently the operation “⋆” is associative. It is clear that the semigroup (S; ⋆)

is a medial semigroup. It follows from the definition of the operation “⋆” that

(a1, a2) ∈ θS and (b1, b2) ∈ θS for every a1, a2 ∈ A and b1, b2 ∈ B. For every

a ∈ A, b ∈ B, we have a ⋆ a ∈ A and a ⋆ b ∈ B, and hence (a, b) /∈ θS . Thus the

θS-classes of S are A and B. Since A2 ⊆ A, B2 ⊆ B, A ⋆B ⊆ B, B ⋆A ⊆ A, the

factor semigroup S/θS is a two-element right zero semigroup.

To illustrate Construction 3.4, consider the following example. Let A = {e, f}

and B = {g, h} be disjoint two-element left zero semigroups. Let α be a mapping

of A into B such that α(e) = g and α(f) = h. Let β be the mapping of B into A

such that β(g) = e and β(h) = f (that is, β and α are inverses of each other).

Since A and B are left zero semigroups, both of α and β are homomorphisms.

Since EA = A and EB = B, α maps A into EB and β maps B into EA. In

this example, ϕA and ϕB are the identities on the sets A and B, respectively,

which fact together with the note that the mappings α and β are mutually

inverse, readily yields the validity of equations (16)–(19). The Cayley-table of the

semigroup (S; ⋆) is Table 4.

⋆ e f g h

e e e g g

f f f h h

g e e g g

h f f h h

Table 4.

Theorem 3.5. A semigroup S is a medial semigroup such that the index of θS
is 2 if and only if S is isomorphic to one of the semigroups defined in Construc-

tions 3.1– 3.4.
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Proof: Semigroups S defined in Constructions 3.1– 3.4 are medial semigroups

such that the index of θS is 2.

Conversely, let S be a medial semigroup such that the index of θS is 2. By

Lemma 2.5 and Remark 2.6, S/θS is either a two-element semilattice, a two-

element zero semigroup, a two-element group or a two-element right zero semi-

group.

First consider the case when S/θS is a two-element semilattice. Let A and B

denote the θS-classes of S. Then A and B are subsemigroups of S such that

one of them is an ideal of S. Assume that B is an ideal of S. By Remark 2.3,

θA = ωA and θB = ωB. Thus, by Lemma 2.2 and Remark 2.4, A is a retract

ideal extension of the set EA of all idempotent elements of A by a zero semigroup,

and B is a retract ideal extension of the set of all idempotent elements EB of B by

a zero semigroup. Let ϕA denote a retract homomorphism of A onto EA and ϕB

denote a retract homomorphism of B onto EB . By Remark 2.4, a1a2 = ϕA(a1)

for every a1, a2 ∈ A, and b1b2 = ϕB(b1) for every b1, b2 ∈ B. By Remark 2.1,

|aB| = 1 for every a ∈ A. Let α be a mapping of A into B defined by

α(a) = aB, a ∈ A.

For every a1, a2 ∈ A, we have

α(a1a2) = a1a2B = a1Ba2B = α(a1)α(a2),

because B is a θS-class, a2B,Ba2B ⊆ B, and hence a1a2B = a1Ba2B. Thus α

is a homomorphism. For every a ∈ A, we have

α(a)α(a) = aBaB = aB = α(a),

because BaB ⊆ B, and hence aBaB = aB. Thus α maps A into the set EB of

all idempotent elements of B.

By Remark 2.1, |bA| = 1 for every b ∈ B. Let β be a mapping of B into itself

defined by

β(b) = bA, b ∈ B.

Let e be an idempotent element of A. Since S is a medial semigroup, we have,

for every b1, b2 ∈ B,

β(b1b2) = b1b2A = b1b2e = b1b2ee = b1eb2e = (b1A)(b2A) = β(b1)β(b2),

that is, β is a homomorphism. If f ∈ EB, then

β(f) = fA = ffA = ff = f,



406 A. Nagy, C. Tóth

because B is a θS-class of S and fA ⊆ B. Thus β leaves the elements of EB

fixed. For every a, a∗ ∈ A and b ∈ B, we have

(α ◦ ϕA)(a) = α(ϕA(a)) = α(aa∗) = (aa∗)b = a(a∗b) = α(a),

and hence (1) is satisfied. For every a, a∗ ∈ A and b ∈ B, we have

(β ◦ β)(b) = β(β(b)) = β(b)a = (ba∗)a = b(a∗a) = β(b).

Thus (2) is satisfied. For every b, b∗ ∈ B and a ∈ A, we have

(ϕB ◦ β)(b) = ϕB(β(b)) = β(b)b∗ = (ba)b∗ = b(ab∗) = ϕB(b),

and hence (3) is satisfied. We can consider the semigroup (S; ·) defined in Con-

struction 3.1. It is clear that the semigroup S is isomorphic to the semigroup

(S; ·).

In the second step of the proof, suppose that S/θS is a two-element zero semi-

group. Let A and B denote the θS-classes of S. We can suppose that B is an

ideal of S. Then A2 ⊆ B. By Remark 2.3, θB = ωB. Then, by Lemma 2.2 and

Remark 2.4, B is a retract ideal extension of a left zero semigroup EB by a zero

semigroup, where EB is the set of all idempotent elements of B. Moreover, for ar-

bitrary b1, b2 ∈ B, we have b1b2 = ϕB(b1). By Remark 2.1, |aA| = |aB| = |bA| = 1

for every a ∈ A and b ∈ B. For arbitrary a ∈ A and b ∈ B, let

α(a) = aA, β(a) = aB, γ(b) = bA.

Since bab ∈ B for every a ∈ A and b ∈ B (and hence (bab, b) ∈ θS), we have

(ab)2 = a(bab) = ab.

Thus β(a) ∈ EB for every a ∈ A. For every b1, b2 ∈ B, we have

γ(b1b2) = (b1b2)A = b1(b2A) = b1(Ab2A) = (b1A)(b2A) = γ(b1)γ(b2),

because b2A,Ab2A ⊆ B and, by Remark 2.1, |b1B| = 1. Thus γ is a homomor-

phism. For every f ∈ EB and a ∈ A, we have (fa, f) ∈ θS , and hence

fa = f(fa) = ff = f.

Thus

γ(f) = fA = f,

that is, γ leaves the elements of EB fixed.

Since AB,AA ⊆ B, we have

a(AB) = aB = a(AA)
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for every a ∈ A. Then

ϕB ◦ α = β = γ ◦ α,

that is, (6) is satisfied. Using also the inclusions AB,AA ⊆ B, we get

bAB = bB = b(AA)

for every b ∈ B. Then

ϕB ◦ γ = ϕB = γ ◦ γ,

that is, (7) is satisfied. Thus we can consider the semigroup (S; •) defined in

Construction 3.2. It is clear that S is isomorphic to (S; •).

In the third step of the proof, suppose that S/θS is a two-element group. Let

A and B denote the θS-classes of S. We can suppose that A is the identity

element of S/θS . Then A is a subsemigroup of S, AB,BA ⊆ B, and B2 ⊆ A.

By Remark 2.3, θA = ωA. Then, by Lemma 2.2 and Remark 2.4, A is a retract

extension of a left zero semigroup EA by a zero semigroup where EA is the set

of all idempotent elements of A. Moreover, for arbitrary a1, a2 ∈ A, we have

a1a2 = ϕA(a1). By Remark 2.1, |aB| = |bA| = |bB| = 1 for every a ∈ A and

b ∈ B. For arbitrary a ∈ A and b ∈ B, let

α(a) = aB, β(b) = bA, γ(b) = bB.

Since b2b1b2 ∈ B for every b1, b2 ∈ B (and so (b2b1b2, b2) ∈ θS), we have

(b1b2)
2 = b1(b2b1b2) = b1b2.

Thus γ maps B into EA.

Let b ∈ B be an arbitrary element. Since B2 ⊆ A, we have

β(b) = bA = bB2 = (bB)B = γ(b)B = α(γ(b)) = (α ◦ γ)(b).

Thus

β = α ◦ γ,

and hence (12) is satisfied. For arbitrary a ∈ A, we have

(α ◦ ϕA)(a) = α(ϕA(a)) = ϕA(a)B = (aa)B = a(aB) = α(a)

and

(γ ◦ α)(a) = γ(α(a)) = α(a)B = (aB)B = a(BB) = ϕA(a).

Thus conditions (10) and (11) are satisfied. Hence we can consider the semigroup

(S; ∗) defined in Construction 3.3. It is clear that S is isomorphic to (S; ∗).

In the fourth step of the proof, suppose that S/θS is a two-element right

zero semigroup. Let A and B denote the θS-classes of S. Then A and B are

subsemigroups of S such that AB ⊆ B and BA ⊆ A. By Remark 2.3, θA = ωA

and θB = ωB. Thus, by Lemma 2.2 and Remark 2.4, A is a retract ideal
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extension of a left zero semigroup EA by a zero semigroup, where EA is the set

of all idempotent elements of A. Moreover, for arbitrary a1, a2 ∈ A, we have

a1a2 = ϕA(a1). Similarly, B is a retract ideal extension of a left zero semi-

group EB by a zero semigroup, where EB is the set of all idempotent elements

of B. Moreover, for arbitrary b1, b2 ∈ B, we have b1b2 = ϕB(b1).

For every a ∈ A and b ∈ B, |aB| = |bA| = 1 by Remark 2.1. Let α be

a mapping of A into B defined by

α(a) = aB, a ∈ A,

and β be a mapping of B into A defined by

β(b) = bA, b ∈ B.

For every a1, a2 ∈ A, we have a2B,Ba2B ⊆ B, and hence a1a2B = a1Ba2B,

because |a1B| = 1 by Remark 2.1. Then

α(a1a2) = a1a2B = a1Ba2B = α(a1)α(a2).

Thus α is a homomorphism. For every a ∈ A, we have BaB ⊆ B, and hence

a(BaB) = aB, because |aB| = 1 by Remark 2.1. Then

(α(a))2 = α(a)α(a) = aBaB = aB = α(a),

and hence α maps A into EB. It can be similarly proved that β is a homomor-

phism which maps B into EA.

For arbitrary a ∈ A and b ∈ B,

(α ◦ ϕA)(a) = α(ϕA(a)) = ϕA(a)b = (aa)b = a(ab) = α(a)

and

(ϕB ◦ α)(a) = ϕB(α(a)) = α(a)b = (ab)b = a(bb) = α(a).

Thus (16) is satisfied. We can prove in a similar way that (17) is satisfied. For

arbitrary a ∈ A and b ∈ B,

(α ◦ β)(b) = α(β(b)) = β(b)b = (ba)b = b(ab) = ϕB(b).

Thus (18) is satisfied and (19) can be similarly proved. Consider the semigroup

(S; ⋆) defined as in Construction 3.4. It is clear that S is isomorphic to (S; ⋆). �

By [19, Dual of Lemma 3.2], a semigroup S is right commutative if and only

if the factor semigroup S/θS is commutative. This result and the proof of Theo-

rem 3.5 together imply the following corollary.
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Corollary 3.6. A semigroup S is a right commutative semigroup such that the

index of θS is 2 if and only if S is isomorphic to one of the semigroups defined

in Constructions 3.1–3.3.

By [20], in a finite semigroup S both of the conditions that the index of θS
is m and PθS(S) = 1/m are satisfied if and only if each θS-class contains the

same number of elements. Thus the following result is a consequence of Theo-

rem 3.5.

Theorem 3.7. A semigroup S is a finite medial semigroup such that the index

of θS is 2 and PθS (S) = 1/2 if and only if S is isomorphic to one of the semi-

groups defined in Constructions 3.1–3.4 satisfying the condition |A| = |B| < ∞

in each of the four cases.

Corollary 3.6 and Theorem 3.7 imply the following corollary.

Corollary 3.8. A semigroup S is a finite right commutative semigroup such

that the index of θS equals 2 and PθS (S) = 1/2 if and only if S is isomorphic

to one of the semigroups defined in Constructions 3.1–3.3 satisfying the condition

|A| = |B| < ∞ in each of the three cases.
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