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On a probabilistic problem on finite semigroups

ATTILA NAGY, CsABA TOTH

Abstract. We deal with the following problem: how does the structure of a finite
semigroup S depend on the probability that two elements selected at random
from S, with replacement, define the same inner right translation of S. We
solve a subcase of this problem. As the main result of the paper, we show how
to construct not necessarily finite medial semigroups in which the index of the
kernel of the right regular representation equals two.

Keywords: semigroup; regular representation of semigroups; medial semigroup

Classification: 20M10, 20M15

1. Introduction and motivation

There are many papers in the mathematical literature which use probabilistic
methods to study special algebraic structures [3], [4], [5], [6], [8], [11], [12], [13],
[20], [21], [23]. In [20], the following problem is examined. If two elements, a and b,
are selected at random from a finite semigroup S, with replacement, what is the
probability Py, (S) that a and b define the same inner right translations of 9, i.e.,
(a,b) € O, where s denotes the kernel of the right regular representation of S.
It is also investigated how does the structure of a finite semigroup S depend on the
probability Py, (S). It is shown that, for an arbitrary finite semigroup S, Py, (S) >
1/1S/0s|, where |S/0s| is the index of 0g. Equality is satisfied if and only if each
fs-class of S contains the same number of elements. In two cases, a solution
is given to the problem of how to construct finite semigroups S satisfying the
condition Py (S) = 1/]5/0s|. These two cases are: S is an arbitrary semigroup
and the index of fg is 1; S is a commutative semigroup and the index of g
is 2. In our present paper we answer the problem in that case when S is a finite
medial semigroup and the index of g is 2. We actually deal with a more general
problem. Our main result is Theorem 3.5, in which we show how to construct
not necessarily finite medial semigroups S in which the index of g equals 2
(not necessarily fulfilling that each fg-class of S contains the same number of
elements). We construct four medial semigroups and show that a semigroup S is
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a medial semigroup such that the index of g is 2 if and only if S is isomorphic
to one of these four semigroups.

2. Preliminaries

By a semigroup we mean a multiplicative semigroup, that is, a nonempty set
together with an associative multiplication. A transformation of a semigroup S
(acting from the right) is called a right translation of S, if (zy)o = z(yp) for all
xz,y € S. The set of all right translations of a semigroup S is a subsemigroup in
the semigroup of all transformations of S. For an arbitrary element a of a semi-
group S, let g, denote the inner right translation x — xa of S. It is known
that ®5: a — o, is a homomorphism of the semigroup S into the semigroup of
all right translations of S. The homomorphism ®g is called the (right) regular
representation of a semigroup S. Let 6 denote the kernel of the right regular
representation of a semigroup S. It is obvious that (a,b) € 0g for elements
a,b € S if and only if sa = sb for all s € S.

Remark 2.1. If A is a fg-class of a semigroup S, then |sA| =1 for every s € S,
because sa; = sas for every aq,as € A.

A nonempty subset I of a semigroup S is called an ideal of S if as,sa € I for
everya € I and s € S. If I is an ideal of a semigroup S, then the relation oy on S
defined by (a,b) € oy if and only if a =b or a,b € I is a congruence on S which
is called the Rees congruence on S determined by I. The equivalence classes of S
mod gy are I itself and every one-element set {a} with a € S\ I. The factor
semigroup S/py is called the Rees factor semigroup of S modulo I. We shall
write S/I instead of S/p;. We may describe S/I as the result of collapsing I
into a single (zero) element, while the elements of S outside of I retain their
identity.

A homomorphism ¢ of a semigroup S onto an ideal I C S is called a retract
homomorphism if ¢ leaves the elements of I fixed. An ideal I of a semigroup S
is called a retract ideal if there is a retract homomorphism of S onto /. In this
case, we say that S is a retract (ideal) extension of I by the Rees factor semi-
group S/I.

An element e of a semigroup is called an idempotent element if ¢ = e. If every
element of a semigroup S is idempotent, then S is called a band. A semigroup
satisfying the identity ab = a (ab = b, respectively) is called a left zero (right
zero, respectively) semigroup. It is clear that every left (right, respectively) zero
semigroup is a band. A commutative band is called a semilattice. A semigroup
with a zero element 0 is called a zero semigroup if it satisfies the identity ab = 0.
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For a semigroup S, let wg denote the universal relation on S. The next lemma
is a characterization of semigroups in which 0g = wg.

Lemma 2.2 ([20, Theorem 3.2]). Semigroup S is a semigroup with s = wg
if and only if S is a retract ideal extension of a left zero semigroup by a zero
semigroup.

Remark 2.3. If A isa 6g-class of a semigroup S such that A is a subsemigroup
of S, then aa; = aasy for every a,ai,a2 € A, and hence 84 = wy. Then, using
Lemma 2.2, A is a retract ideal extension of a left zero semigroup by a zero
semigroup.

Remark 2.4. If a semigroup A is a retract ideal extension of a left zero semi-
group E4 by a zero semigroup, then A? = E,4 and the set of all idempotent
elements of A is F4. If ¢4 is a retract homomorphism of A onto Ej4 (act-
ing from the left), then aias = pa(aiaz) = valar)palaz) = pa(ar) for every
ai,as € A.

A semigroup S is called a left, (right, respectively) commutative semigroup if
it satisfies the identity xya = yza (axy = ayzx, respectively). A semigroup is
said to be a medial semigroup if it satisfies the identity axyb = ayxzb. It is clear
that every left commutative semigroup and every right commutative semigroup is
medial. Left commutative, right commutative and medial semigroups are studied
in many papers, see, for example, [1], [7], [9], [10], [14], [15], [17], [18], [19], [25],
[24], and the books [16], [22]. In this paper we also focus on them. The next lemma
characterizes medial semigroups S with the help of the factor semigroup S/60s.

Lemma 2.5 ([19, Lemma 3.1]). A semigroup S is a medial semigroup if and
only if the factor semigroup S/0g is left commutative.

Remark 2.6. It is easy to see that a left zero semigroup containing at least two
elements is not left commutative. Thus a left commutative semigroup has two
elements if and only if it is either a two-element semilattice, a two-element zero
semigroup, a two-element group or a two-element right zero semigroup.

For notions not defined but used in this paper, we refer the reader to books
(2], [16], [22].

3. Results

At the beginning of this section we construct four medial semigroups which
play an important role in the proof of our main theorem. All mappings in this
section act from the left.
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Construction 3.1. Let A be a semigroup which is a retract ideal extension of
a left zero semigroup E4 by a zero semigroup. Let ¢4 denote a retract homo-
morphism of A onto F4. By Remark 2.4, the ideal E4 of A is the set of all
idempotent elements of A, A2 = E4, and ajas = @a(a;) for every aj,as € A.
Let B be a semigroup such that AN B = (). Assume that B is also a retract
ideal extension of a left zero semigroup Ep by a zero semigroup. Let ¢p denote
a retract homomorphism of B onto Ep. By Remark 2.4, the ideal Ep of B is
the set of all idempotent elements of B, B> = Ep, and biby = ¢p(b;) for every
b1,bs € B. Let a be a homomorphism of A into Eg and 8 be a homomorphism of
B into itself which leaves the elements of Ep fixed. Assume that the equations

(1) Qaops = a,
(2) fopB =45,
(3) vpoB=yp

are satisfied. Since a maps A into Fp, and the mappings ¢pp and § leave the
elements of Ep fixed, we have

(4) ppoa=a=foa,
(5) Boyp=yp.

Let S = AU B. We define an operation “-” on S. For every z,y € S, let

palx) if z,y € A,

vy = () if x€ A, yeB,
B(x) if z€ B, yeA,

ep(z) if z,y € B.

wo»

We show that the operation is associative. Let a € A and z,y € S be

arbitrary elements. Using equations (1) and (4), we have

[ pala) if z,y€A,
(a-2)-y= { a(a)  otherwise.

[43

By the definition of the operation

a-(w-y)={

-7, we have

vala) if z,y€ A,
ala)  otherwise.
Thus

(a-z)-y=a-(z-y).
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Let b€ B and z,y € S be arbitrary elements. Using (2), (3) and (5), we have

[ B(b) if z,y€ A,
(b-) y{ vp(b) otherwise.

wo»

By the definition of the operation , we have

[ B(b) if z,y€A,
b-(x-y) _{ vp(b) otherwise.
Thus

(b-x) y=0b-(x-y).

“on

Consequently the operation is associative, and hence the algebraic structure
(S;-) is a semigroup. It is clear that (S;-) is a right commutative semigroup, and
hence a medial semigroup. It follows from the definition of the operation “-” that
(a1,a2) € 05 and (b1,bs) € Og for every aj,as € A and by,by € B. For every
a € Abe B, wehave a-a € Aand a-b € B, and hence (a,b) ¢ 5. Thus the
Os-classes of S are A and B. Since A2 C A, B> C B, A-B, B- A C B, the factor

semigroup S/f0g is a two-element semilattice.

To illustrate Construction 3.1, consider the following example. Let A = {a,0}
be a two-element zero semigroup (0 is the zero of A, and so E4 = {0}) and
B = {e, f} be a two-element left zero semigroup (and hence ¢p is the identity
mapping of B). Let a be a mapping of A into B such that a(xz) = e for every
x € A. It is clear that a is a homomorphism. Let S be the identity mapping
of B (that is, = ¢p). Then f leaves the elements of Ep fixed. The equations
(1), (2), and (3) are satisfied. The Cayley-table of the semigroup (S;-) is Table 1.

| a 0 e f
a0 0 e e
0|0 0 e e
ele e e e
Tr rrr

TABLE 1.

Construction 3.2. Let B be a semigroup which is a retract ideal extension of
a left zero semigroup Ep by a zero semigroup. Let ¢p denote a retract homo-
morphism of B onto EFp. By Remark 2.4, the ideal Ep of B is the set of all
idempotent elements of B, B> = Ep, and b1bs = pp(b1) for every by, by € B. Let
A be a nonempty set such that AN B = (. Let o be a mapping of A into B,
8 be a mapping of A into Eg and v be a homomorphism of B into itself which
leaves the elements of Ep fixed. Assume «a # 8 or v # ¢p, and
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(6) ppoa=p=yoa,
(7) $YBOY=¥B=707.

Since 5(A) C Ep and v leaves the element of Ep fixed, we have

(8) ppof=p=70p,
(9) Yo ¢p = ¢
Let S = AU B. We define an operation “e” on S. For every z,y € S, let

alz) if z,y €A,
rey— B(x) %fxEA and y € B,
~v(x) if e B, yeA,
4

g(z) if =,y € B.

[39h)

We show that the operation “e” is associative. Let a € A and x,y € S be
arbitrary elements. Using (6) and (8), we have

(aex) oy = Bla).

[1P%i

By the definition of the operation “e”, we have

ae(@ey) = Bla).
Thus
(aez)oy=as(zey).

Let b € B and z,y € S be an arbitrary elements. Using (7), (9) and the fact
that ¢p is a retract homomorphism, we have

(bez)ey=pp(b)

[1P%i

By the definition of the operation “e”, we have

be (zey)=pg(b).
Thus
(bea)ey—be(zey).

Consequently the operation “e” is associative, and hence the algebraic structure
(S;e) is a semigroup. It is clear that (S; e) is a right commutative semigroup, and
hence a medial semigroup. It follows from the definition of the operation “e” that
(a1,a2) € s and (by,bs) € Og for every aj,as € A and by, b € B. Let a € A and
b € B be arbitrary elements. Assume (a,b) € 8g. Then, for every a’ € A and
every b’ € B, we have a(a’) =a’ea=d"eb=(d') and y(V') = ea=0b eb=
¢p(b'). Thus o = 8 and v = ¢p. This contradicts the assumption that o # 3 or
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~v # pp. Consequently the fg-classes of S are A and B. Since A2 C B, B2 C B,
Ae B, Be AC B, the factor semigroup S/0s is a two-element zero semigroup.

To illustrate Construction 3.2, consider the following example. Let B = {b,0}
be a two-element zero semigroup (0 is the zero of B) and A = {a} be a singleton.
Let a(a) =0, f(a) =0, and v = ¢p. Then S(A4) = {0} = Ep, and ~ leaves the
elements of Ep fixed. Since b # 0, we have «a # 5. Equations (6) and (7) are
also satisfied. The Cayley-table of the semigroup (S;e) is Table 2.

ela b O
alb 0 0
b0 0 O
00 0 O
TABLE 2.

Construction 3.3. Let A be a semigroup which is a retract ideal extension of
a left zero semigroup F4 by a zero semigroup. Let ¢4 denote a retract homo-
morphism of A onto F4. By Remark 2.4, the ideal F4 of A is the set of all
idempotent elements of A, A2 = E4, and ajas = @a(ay) for every ay,as € A. Let
B be a nonempty set. Let o be a mapping of A into B and ~ be a mapping
of B into E 4 such that the equations

(10) a=aopa,
(11) Yol =pAa,

are satisfied. Let
(12) B=aox.

From equations (10) and (11), it follows that

(13) Bop=p,
(14) Boa=aoyoa=aopy =a.

Using the fact that y(b) € E4 and ¢ leaves the elements of E, fixed, the
equations (12) and (11) imply

(15) YyoB=roaoy=gpaoy="7.
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Let S = AU B. We define an operation “x” on S. For every x,y € S, let

alz) if z,y € A,

() if x€ A and y € B,
() if x€ B, ye€ A,

() if z,y € B.

SRS

THkY =

i)

X

=2

Wy ”

We show that the operation “x” is associative. Let a € A and z,y € S be
arbitrary elements. Using equations (10) and (14), we have

(a*z)*y: CIOA(G’) if z;yEA or l‘,yGB,
a(a)  otherwise.

By the definition of the operation “x”, we have

0k (zxy) = vala) if ac,y'eA or z,y € B,
ala)  otherwise.
Thus

(axx)*xy=ax(xxy).

Let b € B and z,y € S be an arbitrary elements. Using the equations (12) and
(15)7 we have
(b*x)*y: ﬂ(b) if x,ygA or r,y € B,
~v(b) otherwise.

[10%k

By the definition of the operation “x”, we have

Bb) if z,y€ A or z,y € B,
b =
#(@xy) { ~(b) otherwise.
Thus

(bxx)xy=0bx(xxvy).

Wy ”

Consequently the operation “x” is associative, and hence the algebraic structure
(S;*) is a semigroup. It is clear that (S; %) is a right commutative semigroup, and
hence a medial semigroup. It follows from the definition of the operation “x” that
(a1,a2) € 0s and (by,bs) € Og for every aj,as € A and by,by € B. Let a € A
and b € B be arbitrary elements. Assume (a,b) € . Then, for every o’ € A, we
have

Asd*a=d*beB

which is a contradiction. Thus the 6g-classes of S are A and B. Since A2 C A,
A% B, Bx A C B and B? C A, the factor semigroup S/fs is a two-element
group.

To illustrate Construction 3.3, consider the following example. Let A = {e}
be a one-element semigroup and B = {z,y} be a two-element set. Let « be the
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mapping of A onto the subset {z}. Let v be the only possible mapping of B
onto A. We note that 8(b) = = for every b € B. It is easy to see that the above
conditions for o and 7 are satisfied. The Cayley-table of the semigroup (S;*) is
Table 3.

TABLE 3.

Construction 3.4. Let A be a semigroup which is a retract ideal extension of
a left zero semigroup F4 by a zero semigroup. Let B be a semigroup such that
ANB =1, and B is also a retract ideal extension of a left zero semigroup Ep by
a zero semigroup. Let ¢4 and pp denote a retract homomorphism of A onto E 4
and B onto Ep, respectively. By Remark 2.4, the ideal F4 of A is the set of all
idempotent elements of A, A2 = E4, and ajas = pa(ay) for every aj,as € A.
Similarly, the ideal Eg of B is the set of all idempotent elements of B, B2 = Ep,
and b1by = ¢p(b1) for every by, bs € B. Let a be a homomorphism of A into Ep
and 8 be a homomorphism of B into E4. Assume that the equations

(16) aops=a=ppoaq,
(17) Bowp=p=paop,
(18) aof =g,
(19) Boa=ya

are satisfied. Let S = AUB. We define an operation “x” on S. For every z,y € S,
let
walz) if x,y € A,
afz) if z€ A, ye B,
THY = .
B(x) if x € B, ye A,
ep(x) if x,y € B.

Wy ”n

We show that the operation “x” is associative. Let a € A and z,y € S be
arbitrary elements. Using equations (16) and (19), we have

_ [ pala) if ye€A,
(axa)xy = { ala)  otherwise.

w9

By the definition of the operation “-”, we have

[ pala) if ye A,
ax(rxy) = { a(a) otherwise.
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Thus
(axx)*xy=ax(x*xy).

Let b€ B and z,y € S be arbitrary elements. Using (17) and (18), we have

Bb) i ye A

(b*x)*y:{ op(b) if y€ B.

By the definition of the operation “x”, we have

(BB if ye A,
b*(“y){ op(b) if ye B.

Thus
(bxx)*y=bx(x*y).

Consequently the operation “+” is associative. It is clear that the semigroup (S *)
is a medial semigroup. It follows from the definition of the operation “x” that
(a1,a2) € 0s and (b1,be) € Og for every aj,az € A and by,by € B. For every
a€ A be B, wehave axa € A and axb € B, and hence (a,b) ¢ 0. Thus the
fg-classes of S are A and B. Since A> C A, B2C B, AxB C B, BxA C A, the
factor semigroup S/0s is a two-element right zero semigroup.

To illustrate Construction 3.4, consider the following example. Let A = {e, f}
and B = {g, h} be disjoint two-element left zero semigroups. Let « be a mapping
of A into B such that a(e) = g and a(f) = h. Let 8 be the mapping of B into A
such that 5(g) = e and B(h) = f (that is, § and « are inverses of each other).
Since A and B are left zero semigroups, both of « and § are homomorphisms.
Since E4 = A and Eg = B, a maps A into Eg and 8 maps B into E4. In
this example, ¢4 and @p are the identities on the sets A and B, respectively,
which fact together with the note that the mappings o« and S are mutually
inverse, readily yields the validity of equations (16)—(19). The Cayley-table of the
semigroup (S;*) is Table 4.

*|e f g h
ele e g g
f\f fr hh
g|le ¢ g g
hif f h h
TABLE 4.

Theorem 3.5. A semigroup S is a medial semigroup such that the index of 0g
is 2 if and only if S is isomorphic to one of the semigroups defined in Construc-
tions 3.1- 3.4.
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PROOF: Semigroups S defined in Constructions 3.1- 3.4 are medial semigroups
such that the index of 8¢ is 2.

Conversely, let S be a medial semigroup such that the index of g is 2. By
Lemma 2.5 and Remark 2.6, S/fg is either a two-element semilattice, a two-
element zero semigroup, a two-element group or a two-element right zero semi-
group.

First consider the case when S/fg is a two-element semilattice. Let A and B
denote the fg-classes of S. Then A and B are subsemigroups of S such that
one of them is an ideal of S. Assume that B is an ideal of S. By Remark 2.3,
04 = wa and O = wp. Thus, by Lemma 2.2 and Remark 2.4, A is a retract
ideal extension of the set E 4 of all idempotent elements of A by a zero semigroup,
and B is a retract ideal extension of the set of all idempotent elements Ep of B by
a zero semigroup. Let ¢4 denote a retract homomorphism of A onto F4 and ¢p
denote a retract homomorphism of B onto Fp. By Remark 2.4, ajas = pa(a1)
for every aq,a2 € A, and bibs = pp(b1) for every by,by € B. By Remark 2.1,
|aB| =1 for every a € A. Let a be a mapping of A into B defined by

ala) = aB, a€ A
For every ai,as € A, we have
alaraz) = a1a2B = a1 Bas B = a(a1)a(az),

because B is a 0g-class, as B, Bas B C B, and hence ajasB = a1BasB. Thus «
is a homomorphism. For every a € A, we have

a(a)a(a) = aBaB = aB = afa),

because BaB C B, and hence aBaB = aB. Thus a maps A into the set Eg of
all idempotent elements of B.
By Remark 2.1, |bA| = 1 for every b € B. Let 8 be a mapping of B into itself
defined by
B(b) = bA, be B.

Let e be an idempotent element of A. Since S is a medial semigroup, we have,
for every b1,by € B,

ﬁ(blbg) = blbgA = b1b2€ = b1b2€€ = b1€b2€ = (blA)(bQA) = 6(b1)ﬁ(b2)7
that is, # is a homomorphism. If f € Epg, then

Bf)=FA=[ffA=ff=/F
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because B is a fg-class of S and fA C B. Thus 8 leaves the elements of Ep
fixed. For every a,a* € A and b € B, we have

(@opa)(a) = apa(a)) = a(aa”) = (aa®)b = a(a’d) = afa),

and hence (1) is satisfied. For every a,a* € A and b € B, we have

(B0 p)(b) = B(B(b)) = B(b)a = (ba”)a = b(a”a) = B(b).

Thus (2) is satisfied. For every b,b* € B and a € A, we have

(B 0 B)(b) = w(B(b)) = B(b)b" = (ba)b™ = b(ab”) = ¢p(b),

and hence (3) is satisfied. We can consider the semigroup (S;-) defined in Con-
struction 3.1. It is clear that the semigroup S is isomorphic to the semigroup
(S5).

In the second step of the proof, suppose that S/6g is a two-element zero semi-
group. Let A and B denote the Og-classes of S. We can suppose that B is an
ideal of S. Then A2 C B. By Remark 2.3, g = wp. Then, by Lemma 2.2 and
Remark 2.4, B is a retract ideal extension of a left zero semigroup Ep by a zero
semigroup, where E'p is the set of all idempotent elements of B. Moreover, for ar-
bitrary by, by € B, we have b1bs = ¢p(b1). By Remark 2.1, [aA| = |aB| = |bA] =1
for every a € A and b € B. For arbitrary a € A and b € B, let

ala) =aA, p(a)=aB, ~(b)=>bA.
Since bab € B for every a € A and b € B (and hence (bab,b) € 0g), we have
(ab)?® = a(bab) = ab.
Thus S(a) € Ep for every a € A. For every by,bs € B, we have
V(b1b2) = (b1b2) A = b1(b2A) = b1(Ab2A) = (b1A)(b2A) = 7(b1)7(b2),

because bo A, Abo A C B and, by Remark 2.1, |b;B| = 1. Thus ~ is a homomor-
phism. For every f € EFp and a € A, we have (fa, f) € g, and hence

fa=f(fa)=ff=1T
Thus
W) =fA=F,
that is, v leaves the elements of Ep fixed.
Since AB, AA C B, we have

a(AB) = aB = a(AA)
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for every a € A. Then

ppoa=p=voaq,
that is, (6) is satisfied. Using also the inclusions AB, AA C B, we get

bAB =bB = b(AA)
for every b € B. Then

$PBOCY =¥B=70°7,
that is, (7) is satisfied. Thus we can consider the semigroup (S;e) defined in
Construction 3.2. It is clear that S is isomorphic to (S;e).

In the third step of the proof, suppose that S/fg is a two-element group. Let

A and B denote the fg-classes of S. We can suppose that A is the identity
element of S/fs. Then A is a subsemigroup of S, AB, BA C B, and B? C A.
By Remark 2.3, 64 = wy. Then, by Lemma 2.2 and Remark 2.4, A is a retract
extension of a left zero semigroup E4 by a zero semigroup where F 4 is the set
of all idempotent elements of A. Moreover, for arbitrary ai,as € A, we have
araz = @a(a1). By Remark 2.1, |aB| = |bA| = |bB] = 1 for every a € A and
b € B. For arbitrary a € A and b € B, let

ala) = aB, B(b) = bA, ~(b) = bB.
Since bob1bs € B for every by, by € B (and so (bab1ba, b2) € fg), we have
(b1bg)? = b1 (babibs) = byby.

Thus v maps B into Ey4.
Let b € B be an arbitrary element. Since B? C A, we have

B(b) = bA =bB* = (bB)B = 4(b)B = a(v(b)) = (a0 7)(b).
Thus
ﬂ =ao7,
and hence (12) is satisfied. For arbitrary a € A, we have
(@opa)a) = a(pala)) = pa(a)B = (aa) B = a(aB) = a(a)
and

(yea)(a) =v(a(a)) = aa)B = (aB)B = a(BB) = pa(a).

Thus conditions (10) and (11) are satisfied. Hence we can consider the semigroup
(S; #) defined in Construction 3.3. It is clear that S is isomorphic to (S;x*).

In the fourth step of the proof, suppose that S/fs is a two-element right
zero semigroup. Let A and B denote the Og-classes of S. Then A and B are
subsemigroups of S such that AB C B and BA C A. By Remark 2.3, 04 = wx
and 0 = wp. Thus, by Lemma 2.2 and Remark 2.4, A is a retract ideal
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extension of a left zero semigroup F4 by a zero semigroup, where E4 is the set
of all idempotent elements of A. Moreover, for arbitrary ai,as € A, we have
aras = @a(ay). Similarly, B is a retract ideal extension of a left zero semi-
group Ep by a zero semigroup, where FEp is the set of all idempotent elements
of B. Moreover, for arbitrary by, by € B, we have bibs = pp(b1).

For every a € A and b € B, |aB| = |[bA] = 1 by Remark 2.1. Let a be
a mapping of A into B defined by

a(a) = aB, ac€ A,
and 8 be a mapping of B into A defined by
B(b) = bA, be B.

For every ai,a2 € A, we have a3 B, BasB C B, and hence ai1a2B = a1 BasB,
because |a; B| = 1 by Remark 2.1. Then

a(alag) = alagB = alBagB = a(al)a(ag).

Thus « is a homomorphism. For every a € A, we have BaB C B, and hence
a(BaB) = aB, because |aB| =1 by Remark 2.1. Then

(a(a))? = a(a)a(a) = aBaB = aB = o(a),

and hence o maps A into Ep. It can be similarly proved that g is a homomor-
phism which maps B into F4.
For arbitrary a € A and b € B,

(@opa)(a) = alpala)) = pa(a)b = (aa)b = a(ad) = a(a)
and

(pp 0 a)(a) = pp(a(a)) = a(a)b = (ab)b = a(bb) = a(a).
Thus (16) is satisfied. We can prove in a similar way that (17) is satisfied. For
arbitrary a € A and b € B,

(ao B)(b) = a(B(b)) = B(b)b = (ba)b = b(ab) = 5 (D).

Thus (18) is satisfied and (19) can be similarly proved. Consider the semigroup
(S; %) defined as in Construction 3.4. It is clear that S is isomorphic to (S;*). O

By [19, Dual of Lemma 3.2], a semigroup S is right commutative if and only
if the factor semigroup S/fg is commutative. This result and the proof of Theo-
rem 3.5 together imply the following corollary.
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Corollary 3.6. A semigroup S is a right commutative semigroup such that the
index of g is 2 if and only if S is isomorphic to one of the semigroups defined
in Constructions 3.1-3.3.

By [20], in a finite semigroup S both of the conditions that the index of g
is m and Ppy(S) = 1/m are satisfied if and only if each 6g-class contains the
same number of elements. Thus the following result is a consequence of Theo-
rem 3.5.

Theorem 3.7. A semigroup S is a finite medial semigroup such that the index
of 0g is 2 and Py, (S) = 1/2 if and only if S is isomorphic to one of the semi-
groups defined in Constructions 3.1-3.4 satisfying the condition |A| = |B| < oo
in each of the four cases.

Corollary 3.6 and Theorem 3.7 imply the following corollary.

Corollary 3.8. A semigroup S is a finite right commutative semigroup such
that the index of 0g equals 2 and Py (S) = 1/2 if and only if S is isomorphic
to one of the semigroups defined in Constructions 3.1-3.3 satisfying the condition
|A| = |B| < oo in each of the three cases.

REFERENCES

[1] Chrislock J. L., On medial semigroups, J. Algebra 12 (1969), no. 1, 1-9.

[2] Clifford A.H., Preston G.B., The Algebraic Theory of Semigroups. Vol. I., Mathematical
Surveys, 7, American Mathematical Society, Providence, 1961.

[3] Dixon J.D., The probability of generating the symmetric group, Math. Z. 110 (1969),
199-205.

[4] Dixon J.D., Pyber L., Seress A., Shalev A., Residual properties of free groups and proba-
bilistic methods, J. Reine Angew. Math. 556 (2003), 159-172.

[5] Eberhard S., Virchow S.-C., The Probability of Generating the Symmetric Group, Combi-
natorica 39 (2019), no. 2, 273-288.

[6] ErdSs P., Rényi A., Probabilistic Methods in Group Theory, J. Analyse Math. 14 (1965),
127-138.

[7] Gigoni R.S., Nilpotent elements in medial semigroups, Math. Slovaca 69 (2019), no. 5,
1033-1036.

[8] Gustafson W.H., What is the probability that two group elements commute?, Amer. Math.
Monthly 80 (1973), 1031-1034.

[9] Halili R.R., Azemi M., Topological medial semigroups, International Journal of Scientific
and Innovative Mathematical Research (IJSIMR) 8 (2020), no. 10, 18-22.

[10] Kehayopulu N., Tsingelis M., Ordered semigroups which are both right commutative and
right cancellative, Semigroup Forum 84 (2012), no. 3, 562-568.

[11] Liebeck M. W., Shalev A., The probability of generating a finite simple group, Geom. Ded-
icata 56 (1995), no. 1, 103-113.

[12] Liebeck M. W., Shalev A., Classical groups, probabilistic methods, and the (2, 3)-generation
problem, Ann. of Math. (2) 144 (1996), 77-125.



410

S
L

[24

[25]

A. Nagy, C. Téth

Liebeck M. W., Shalev A., Simple groups, probabilistic methods, and a conjecture of Kantor
and Lubotzky, J. Algebra 184 (1996), no. 1, 31-57.

Nagy A., Subdirectly irreducible right commutative semigroups, Semigroup Forum 46
(1993), 187-198.

Nagy A., Right commutative A-semigroups, Acta Sci. Math. (Szeged) 66 (2000), no. 1-2,
33-45.

Nagy A., Special Classes of Semigroups, Advances in Mathematics (Dordrecht), 1, Kluwer
Academic Publishers, Dordrecht, 2001.

Nagy A., A supplement to my paper “Right commutative A-semigroups”, Acta Scie. Math.
(Szeged) 71 (2005), no. 1-2, 35-36.

Nagy A., Medial permutable semigroups of the first kind, Semigroup Forum 76 (2008),
no. 2, 297-308.

Nagy A., A construction of left equalizer simple medial semigroups, Period. Math. Hungar.
86 (2023), no. 1, 37-42.

Nagy A., Téth C., On the probability that two elements of a finite semigroup have the same
right matriz, Comment. Math. Univ. Carolin. 63 (2022), no. 1, 21-31.

Pélfy P.P., Szalay M., On a problem of P. Turdn concerning Sylow subgroups, Studies in
Pure Mathematics, Birkh&duser, Basel, 1983, pages 531-542.

Petrich M., Lectures in Semigroups, John Wiley and Sons, London, 1977.

Pyber L., Shalev A., Residual properties of groups and probabilistic methods, C. R. Acad.
Sci. Paris Sér. I Math. 333 (2001), no. 4, 275-278.

Strecker R., Construction of medial semigroups, Comment. Math. Univ. Carolin. 25 (1984),
no. 4, 689-697.

Tamura N.-S., Nordahl T., Finitely generated left commutative semigroups are residually
finite, Semigroup Forum 28 (1984), no. 1-3, 347—354.

A. Nagy, C. Téth:

DEPARTMENT OF ALGEBRA, BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS,
MUEGYETEM RKP. 3, BUDAPEST, 1111, HUNGARY

E-mail: nagyat@math.bme.hu

E-mail: tcsaba94@gmail.com

(Received February 15, 2023, revised August 10, 2023)



