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L-limited-like properties on Banach spaces

Ioana Ghenciu

Abstract. We study weakly precompact sets and operators. We show that an
operator is weakly precompact if and only if its adjoint is pseudo weakly compact.
We study Banach spaces with the p-L-limited∗ and the p-(SR∗) properties and
characterize these classes of Banach spaces in terms of p-L-limited∗ and p-Right∗

subsets. The p-L-limited∗ property is studied in some spaces of operators.

Keywords: p-Right∗ set; Right∗ set; DP p-convergent operator; weakly precom-
pact operator; limited p-convergent operator

Classification: 46B20, 46B25, 46B28

1. Introduction

The concepts of sequentially Right (SR) property and L-limited property on

Banach spaces were introduced in [30], [32]. Right sets and L-limited sets in dual

Banach spaces were used to give characterizations of Banach spaces with the (SR)

property and the L-limited property, see [26], [32]. The p-Right subsets and p-L-

limited subsets of dual Banach spaces, and Banach spaces with the p-sequentially

Right property and the p-L-limited property were studied in [21].

Right∗ sets and Banach spaces with the sequentially Right∗ (SR∗) property

were studied in [9], [18]. The p-Right∗ sets and Banach spaces with the p-

sequentially Right∗ (p-(SR∗)) property were introduced in [1]. The concepts of

p-L-limited∗ (or R∗

p) sets and Banach spaces with the p-L-limited∗ (or SR∗

p) prop-

erty were introduced in [10]. In this paper we study p-L-limited∗ and p-Right∗

sets, and Banach spaces with the p-Right∗ and p-L-limited∗ properties.

We obtain some characterizations of Banach spaces with the property that

their p-L-limited∗ and p-Right∗ subsets are weakly precompact, relatively weakly

compact, and relative norm compact. We show that an operator T : Y → X is

weakly precompact if and only if T ∗ is pseudo weakly compact if and only if T ∗

is DP p-convergent, 2 ≤ p < ∞. We show that a subset of a Banach space X

is weakly precompact if and only if it is a Right∗ set if and only if it is a p-

Right∗ set, 2 ≤ p <∞. We also study whether some spaces of operators have the

p-L-limited∗ property.
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2. Definitions and notation

Throughout this paper, X and Y will denote Banach spaces. The unit ball

of X will be denoted by BX , the identity map on X will be denoted by iX , and

X∗ will denote the continuous linear dual of X . The space X embeds in Y (in

symbols X →֒ Y ) if X is isomorphic to a closed subspace of Y . An operator

T : X → Y will be a continuous and linear function. The space of all operators

from X to Y will be denoted by L(X,Y ).

A subset S of a Banach space X is said to be weakly precompact (or weakly

conditionally compact) provided that every sequence from S has a weakly Cauchy

subsequence. An operator T : X → Y is called weakly precompact if T (BX) is

weakly precompact. A Banach space X is called weakly sequentially complete if

every weakly Cauchy sequence in X is weakly convergent. A Banach space X has

the Grothendieck property if w∗-convergent sequences in X∗ are weakly conver-

gent.

An operator T : X → Y is called completely continuous (or Dunford–Pettis)

if T maps weakly convergent sequences to norm convergent sequences.

A Banach space X has the Dunford–Pettis property (DPP) if for any Banach

space Y , every weakly compact operator T : X → Y is completely continuous.

If X is a C(K)-space or an L1-space, then X has the DPP. The reader can check

[11] for results related to the DPP.

A subset A of a Banach space X is called a Dunford–Pettis (or DP) (limited,

respectively) subset of X if each weakly null (w∗-null, respectively) sequence (x∗n)

in X∗ tends to 0 uniformly on A; i.e.

sup
x∈A

|x∗n(x)| → 0.

An operator T : X → Y is called unconditionally convergent if it takes weakly

unconditionally convergent (wuc) series in X to unconditionally convergent series

in Y .

A bounded subset A of X∗ (or of X) is called a V -subset of X∗ (a V ∗-subset

of X , respectively) provided that

sup
x∗∈A

|x∗(xn)| → 0

(

sup
x∈A

|x∗n(x)| → 0, respectively

)

for each wuc series
∑

xn in X
(
∑

x∗n in X∗, respectively
)

.

A Banach space X has property (V ) if every V -subset of X∗ is relatively

weakly compact, see [29]. Reflexive Banach spaces and C(K) spaces have prop-

erty (V ), see [29, Theorem 1, Proposition 7].
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A Banach space X has property (V ∗) if every V ∗-subset of X is relatively

weakly compact, see [29]. Reflexive Banach spaces and L1-spaces have prop-

erty (V ∗), see [29].

For 1 ≤ p < ∞, p∗ denotes the conjugate of p. If p = 1, c0 plays the role

of lp∗ . The unit vector basis of lp will be denoted by (en).

Let 1 ≤ p < ∞. A sequence (xn) in X is called weakly p-summable if

(〈x∗, xn〉) ∈ lp for each x∗ ∈ X∗, see [12, page 32]. Let lwp (X) denote the set

of all weakly p-summable sequences in X . Let cw
0
(X) be the space of weakly null

sequences in X . If p = ∞, then we consider cw
0
(X) instead of lw

∞
(X).

If p < q, then lwp (X) ⊆ lwq (X). The weakly 1-summable sequences are precisely

the wuc series and the weakly ∞-summable sequences are precisely weakly null

sequences.

Let 1 ≤ p ≤ ∞. An operator T : X → Y is called p-convergent if T maps

weakly p-summable sequences into norm null sequences, see [7]. The set of all

p-convergent operators is denoted by Cp(X,Y ).

Let 1 ≤ p ≤ ∞. A sequence (xn) in X is called weakly p-convergent to x ∈ X

if the sequence (xn−x) is weakly p-summable, see [7]. A bounded subset K of X

is relatively weakly p-compact if every sequence in K has a weakly p-convergent

subsequence with limit in X .

An operator T : X → Y is weakly p-compact if T (BX) is relatively weakly

p-compact, see [7]. The set of weakly p-compact operators T : X → Y will be

denoted by Wp(X,Y ).

A Banach space X ∈ Wp (or X ∈ Cp) if iX ∈ Wp(X,X) (iX ∈ Cp(X,X),

respectively), see [7].

3. The p-L-limited∗ and p-SR∗ properties

In this section we study Banach spaces with the L-limited∗, p-L-limited∗,

Right∗, and p-Right∗ properties, 1 ≤ p <∞.

We also study the p-L-limited∗ property in the space Kw∗(X∗, Y ) of w∗-w

compact operators from X∗ to Y .

For the definition of Right topology on a Banach space X , see [30]. A sequence

(xn) in a Banach space X is Right null if and only if it is DP weakly null, see

[19, Proposition 1].

An operator T : X → Y is pseudo weakly compact (pwc) or Dunford–Pettis

completely continuous (DPcc) (or limited completely continuous (lcc)) if it takes

DP (limited, respectively) weakly null sequences in X into norm null sequences

in Y .
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A subset K of X∗ is called a Right set, see [26], (or L-limited set, see [32]) if

each Right null (limited weakly null, respectively) sequence (xn) in X tends to 0

uniformly on K.

A Banach space X is sequentially Right (SR) (or X has property (SR)),

see [30], if for any Banach space Y , every pseudo weakly compact operator

T : X → Y is weakly compact.

A Banach spaceX has the L-limited property, see [32], if every L-limited subset

of X∗ is relatively weakly compact.

Let 1 ≤ p < ∞. A subset A of a dual space X∗ is called a p-Right set

(or p-L-limited set, see [21], or Lp-limited set, see [10]) if for every DP (limited,

respectively) weakly p-summable sequence (xn) in X , supx∗∈A |x∗(xn)| → 0.

Let 1 ≤ p < ∞. A Banach space X has the p-(SR) (or p-L-limited) prop-

erty if every p-Right (p-L-limited, respectively) subset of X∗ is relatively weakly

compact, see [21].

The case p = ∞ can be included in the previous definitions, if we consider

the ∞-Right (or ∞-L-limited) subsets of X∗ to be precisely the Right (L-limited,

respectively) sets and the ∞-(SR) (∞-L-limited, respectively) property to be the

(SR) (L-limited, respectively) property.

Let 1 ≤ p < ∞. An operator T : X → Y is called DP p-convergent, see [21],

(or limited p-convergent, see [16]), if it takes DP (limited, respectively) weakly

p-summable sequences to norm null sequences.

A subset K of X is called a Right∗ set (or R∗-set), see [9], (L-limited∗ set,

respectively) if each DP (limited, respectively) weakly null sequence (x∗n) in X∗

tends to 0 uniformly on K.

A Banach space X has the (SR∗), see [9], (or L-limited∗) property if every

Right∗ (L-limited∗, respectively) subset of X is relatively weakly compact.

Let 1 ≤ p ≤ ∞. A subset A of a Banach space X is called a p-Right∗ set

(or p-R∗-set), see [1], (p-L-limited∗ set or R∗

p set, respectively, see [10]) if for

every DP (limited, respectively) weakly p-summable sequence (x∗n) in X∗ holds

supx∈A |x∗n(x)| → 0.

Let 1 ≤ p ≤ ∞. A Banach space X has property p-(SR∗), see [1], (or p-

L-limited∗ or SR∗

p, see [10]) if every p-Right∗ (p-L-limited∗, respectively) subset

of X is relatively weakly compact.

We prefer the R∗

p sets to be called p-L-limited∗ sets, so that there is no confu-

sion between these sets and the p-R∗ sets. Similarly, we prefer the SR∗

p property

to be called the p-L-limited∗ property so that there is no confusion between this

property and the p-(SR∗) property.



L-limited-like properties on Banach spaces 443

The ∞-L-limited∗ (or ∞-Right∗) sets are precisely the L-limited∗ (Right∗,

respectively) sets, and the ∞-L-limited∗ (∞-Right∗, respectively) property is

precisely the L-limited∗ (Right∗, respectively) property.

If p < q, then a q-L-limited∗ set is a p-L-limited∗ set, since lwp (X
∗) ⊆ lwq (X

∗).

If X has the p-L-limited∗ property, then it has the q-L-limited∗ property for

p < q.

Every p-L-limited∗ (or p-Right∗) set is bounded. Indeed, if A is an unbounded

p-L-limited∗ (p-Right∗, respectively) subset of X , then there are sequences (xn)

in A and (x∗n) in BX∗ such that |x∗n(xn)| > n2 for all n. Let u∗n = x∗n/n
2. Then

∑

‖u∗n‖
p =

∑

‖x∗n‖
p/n2p <∞. Hence (u∗n) is a limited (DP, respectively) weakly

p-summable sequence in X∗ and |u∗n(xn)| > 1 for all n. This is a contradiction.

Let 1 ≤ p ≤ ∞. A bounded subset A of X is called a p-(V ∗) set, see [28], (or

weakly-p-Dunford–Pettis set, see [20]) if supx∈A |x∗n(x)| → 0 for every weakly

p-summable (weakly null for p = ∞) sequence (x∗n) in X∗.

A Banach space X has property p-(V ∗), see [28], (or RDP∗

p [20]) if every

p-(V ∗) subset of X is relatively weakly compact.

The 1-(V ∗) subsets of X are precisely the V ∗-sets and the ∞-(V ∗) subsets

of X are precisely the DP sets. Property 1-(V ∗) is precisely property (V ∗) and

property ∞-(V ∗) is precisely the RDP∗ property, see [3] for this definition.

If
∑

xn is wuc in X , then (xn) is DP. Indeed, let S : c0 → X be an operator

such that S(en) = xn for all n, see [12, Proposition 2.2, page 36]. Since c0
has the DPP and (en) is weakly null, (en) is DP, see [11, Theorem 1]. Then

(xn) is DP. Therefore the 1-Right subsets of X∗ are precisely the V -sets and the

1-Right∗ subsets of X are the V ∗-sets. Thus property 1-(SR) is property (V )

and property 1-(SR∗) is property (V ∗).

It follows from definitions that for 1 ≤ p ≤ ∞, every p-(V ∗) set in X is a p-

Right∗ set and every p-Right∗ set is a p-L-limited∗ set (since any limited weakly

p-summable sequence is also DP weakly p-summable).

If X has property (V ∗), then X has property (SR∗). If X has property (SR∗),

then X has property RDP∗, see [9], (see [9] for this definition). If X has prop-

erty (V ), then it has property (SR), see [26].

Proposition 3.1. Let 1 ≤ p ≤ ∞ and let X be a Banach space.

(i) If K is a weakly precompact subset of X , then K is a p-Right∗ set and

a p-L-limited∗ set.

(ii) If X has property p-L-limited∗, then X has property p-(SR∗).

(iii) If X has property p-(SR∗), then X has property (SR∗). Consequently,

X is weakly sequentially complete.

(iv) If X has property (V ), then X has property p-(SR). If X has prop-

erty (V ∗), then X has property p-(SR∗).
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(v) If X has property p-(SR∗), then X has property p-(V ∗).

(vi) If X has property p-(SR∗) and X∗ has the Grothendieck property, then

X has property p-L-limited∗.

(vii) If X∗ has property (V ), then X has property p-L-limited∗.

Proof: (i) Let K be a weakly precompact subset of X . Then K is a Right∗ set,

see [18, Theorem 17], and hence K is an L-limited∗ set. Further, K is a p-Right∗

set, and thus a p-L-limited∗ set.

(ii) Any p-Right∗ subset of X is a p-L-limited∗ set, thus relatively weakly

compact. Hence X has property p-(SR∗).

(iii) Any Right∗ subset of X is a p-Right∗ set, thus relatively weakly compact.

Therefore X has property (SR∗) and X is weakly sequentially complete, see [18,

Corollary 18].

(iv) If X has property (V ), then any p-Right subset of X∗ is a 1-Right set

(V -set), and thus relatively weakly compact. If X has property (V ∗), any

p-Right∗ subset of X is a 1-Right∗ set (V ∗-set), and thus relatively weakly com-

pact.

(vi) Since X∗ has the Grothendieck property, any DP set in X∗ is lim-

ited. Then every DP weakly p-summable sequence in X∗ is limited weakly

p-summable. Therefore any p-L-limited∗ set in X is a p-Right∗ set, and thus

relatively weakly compact.

(vii) Suppose X∗ has property (V ). Then X has property (V ∗), see [29],

and X has property p-(SR∗) by (iv). Since X∗ has property (V ), X∗ has the

Grothendieck property, see [11, page 40], [24, Corollary 32 (ii)]. Then X has

property p-L-limited∗ by (vi). �

Example 1. (i) Since l1 has the Schur property, Bc0 is a p-(V ∗) (hence a p-

Right∗ and a p-limited∗) set, and it is not relatively weakly compact. Then c0
does not have properties p-(V ∗), p-(SR∗) and p-L-limited∗.

(ii) Let X = l1 or X = L1. Since X∗ has property (V ), see [29], X has

property p-L-limited∗ by Proposition 3.1 (vii), 1 ≤ p ≤ ∞.

An operator T : X → Y is called limited, see [5], (weakly limited, respectively),

if T (BX) is limited (DP, respectively).

We note that T : X → Y is limited (weakly limited, respectively) if and only

if T ∗ is w∗-norm sequentially continuous (completely continuous, respectively).

If p = ∞, the limited p-convergent (DP p-convergent, respectively) operators

are precisely the limited completely continuous (pseudo weakly compact opera-

tors, respectively).

Theorem 3.2. Let 1 ≤ p ≤ ∞. Let T : Y → X be an operator. The following

statements are equivalent:



L-limited-like properties on Banach spaces 445

(i) T (BY ) is a p-L-limited∗ (p-Right∗, respectively) set.

(ii) T ∗ : X∗ → Y ∗ is limited p-convergent (DP p-convergent, respectively).

If 1 < p <∞, then we have one more equivalent condition:

(iii) If S : lp∗ → X∗ is a limited (weakly limited, respectively) operator, then

T ∗S : lp∗ → Y ∗ is compact.

Proof: (i) ⇒ (ii) We only prove the result for p-L-limited∗ sets. The other case

is similar. Suppose T (BY ) is a p-L-limited∗ set. Then for every limited weakly

p-summable sequence (limited weakly null if p = ∞) (x∗n) in X
∗,

‖T ∗(x∗n)‖ = sup
y∈BY

|〈T ∗(x∗n), y〉| = sup
y∈BY

|〈T (y), x∗n〉| → 0.

Therefore T ∗ : X∗ → Y ∗ is limited p-convergent (limited completely continuous

if p = ∞).

Tracing back, we can prove (ii) ⇒ (i).

(ii) ⇔ (iii) If 1 < p <∞, the result follows from [21, Theorem 3.24]. �

A Banach space X has the Gelfand–Phillips (GP) property (or is a Gelfand–

Phillips space) if every limited subset of X is relatively compact.

Separable spaces and Schur spaces have the GP property, see [5].

Let 1 ≤ p < ∞. A Banach space X has the p-Gelfand–Phillips (p-GP)

property (or is a p-Gelfand-Phillips space) if every limited weakly p-summable

sequence in X is norm null, see [16].

The case p = ∞ can be included in the previous definition, if we consider the

∞-GP property to be the GP property. If X has the GP property, then X has

the p-GP property for any 1 ≤ p <∞.

A Banach space X has theDunford–Pettis relatively compact property (DPrcP)

if every DP subset of X is relatively compact, see [14].

Schur spaces have the DPrcP. The space X does not contain l1 if and only

if X∗ has the DPrcP, see [14].

Let 1 ≤ p <∞. A Banach space X has the p-Dunford–Pettis relatively com-

pact property (p-DPrcP) if every DP weakly p-summable sequence in X is norm

null, see [21].

If X has the DPrcP, then X has the p-DPrcP for any 1 ≤ p <∞.

We note that every reflexive space has the p-L-limited∗ (or the p-(SR∗)) prop-

erty, since every p-L-limited∗ (p-Right∗, respectively) subset of X is bounded (as

seen before), and thus relatively weakly compact.



446 I. Ghenciu

Corollary 3.3.

(i) ([10, Theorem 3.4], [1, Lemma 3.4 (iv)]) Let 1 ≤ p ≤ ∞. The Banach

space Y ∗ has the p-Gelfand–Phillips (or the p-DPrcP) property if and

only if BY is a p-L-limited∗ (p-Right∗, respectively) set in Y .

(ii) If X∗ has the p-GP property (or the p-DPrcP), then X has the p-L-

limited∗ (the p-(SR∗), respectively) property if and only if X is reflexive.

(iii) If X is a nonreflexive Banach space and X has the p-(SR∗) (the p-L-

limited∗, respectively) property, then X contains a copy of l1.

Proof: (i) By Theorem 3.2 applied to the identity map iY on Y , BY is a p-L-

limited∗ set if and only if i∗Y = iY ∗ is limited p-convergent if and only if Y ∗ has

the p-GP property.

(ii) Suppose X∗ has the p-GP property and X has the p-L-limited∗ property.

By (i), BX is a p-L-limited∗ subset of X , thus relatively weakly compact.

(iii) Suppose X is a nonreflexive Banach space with the p-(SR∗) property.

If X does not contain a copy of l1, then BX is weakly precompact by Rosen-

thal’s l1 theorem. By Proposition 3.1, X is weakly sequentially complete. Then

BX is relatively weakly compact. This contradiction concludes the proof. �

Let (e∗n) be the unit basis of l1. The following result contains [10, Theorem 3.9].

Theorem 3.4. Let X be a Banach space and let 1 ≤ p ≤ ∞. The following

statements in each of the following collections are equivalent:

1. (i) If T : Y → X is an operator so that T ∗ : X∗ → Y ∗ is limited p-

convergent, then T is weakly precompact (weakly compact; com-

pact, respectively).

(ii) Same as (i) with Y = l1.

(iii) Every p-L-limited∗ subset of X is weakly precompact (relatively

weakly compact; relatively compact, respectively).

2. (i) If T : Y → X is an operator so that T ∗ : X∗ → Y ∗ is DP p-

convergent, then T is weakly precompact (weakly compact; com-

pact, respectively).

(ii) Same as (i) with Y = l1.

(iii) Every p-Right∗ subset of X is weakly precompact (relatively weakly

compact; relatively compact, respectively).

Proof: We will show 1. (i) ⇒ (ii) ⇒ (iii) ⇒ (i) in the weakly precompact case, if

1 ≤ p <∞. The arguments for the remaining implications and for p = ∞ follow

the same pattern.

1. (i) ⇒ (ii) is obvious.

1. (ii) ⇒ (iii) Suppose that A is a p-L-limited∗ subset of X , and let (xn) be

a sequence in A. We recall that A is bounded (as seen before). Define T : l1 → X
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by T (b) =
∑

bixi. Note that T ∗ : X∗ → l∞, T ∗(x∗) = (x∗(xi)). Let (x∗n) be

a limited weakly p-summable sequence in X∗. Since A is a p-L-limited∗ set, it

follows that

‖T ∗(x∗n)‖ = sup
i

|x∗n(xi)| → 0, as n→ ∞,

and T ∗ : X∗ → l∞ is limited p-convergent. Then T is weakly precompact by

hypothesis. Thus (xn) = (T (e∗n)) has a weakly Cauchy subsequence.

1. (iii) ⇒ (i) Let T : Y → X be an operator so that T ∗ : X∗ → Y ∗ is limited

p-convergent. Then T (BY ) is a p-L-limited∗ subset of X (by Theorem 3.2), and

thus weakly precompact by assumptions. �

Corollary 3.5. Let X be a Banach space. The following statements in each of

the following collections are equivalent:

1. (i) If T : Y → X is an operator so that T ∗ : X∗ → Y ∗ is limited com-

pletely continuous, then T is weakly precompact (weakly compact;

compact, respectively).

(ii) Same as (i) with Y = l1.

(iii) Every L-limited∗ subset of X is weakly precompact (relatively

weakly compact; relatively compact, respectively).

2. ([18, Theorem 14])

(i) If T : Y → X is an operator so that T ∗ : X∗ → Y ∗ is pseudo weakly

compact, then T is weakly precompact (weakly compact; compact,

respectively).

(ii) Same as (i) with Y = l1.

(iii) Every Right∗ subset of X is weakly precompact (relatively weakly

compact; relatively compact, respectively).

Corollary 3.6. Let 1 ≤ p ≤ ∞, X be a Banach space, and Y be a closed linear

subspace of X . If X has the p-L-limited∗ (p-(SR∗), respectively) property, then

Y has the p-L-limited∗ (p-(SR∗), respectively) property.

Proof: Let T : E → Y be an operator such that T ∗ : Y ∗ → E∗ is limited

p-convergent. Let S : Y → X be the natural embedding of Y into X . Since

T ∗S∗ : X∗ → E∗ is limited p-convergent, ST : E → X is weakly compact by

Theorem 3.4. If (an) is a sequence in BE , then (ST (an)) = (T (an)) has a weakly

convergent subsequence in X , and thus in Y . Therefore T is weakly compact,

and Y has the p-L-limited∗ property by Theorem 3.4. �

Theorem 3.7.

(i) Let 2 ≤ p < ∞. If T : Y → X is an operator such that JT : Y → lp
is compact for all 2-summing operators J : X → lp, then T is weakly

precompact.
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(ii) Let 2 ≤ p <∞. If T : Y → X is an operator such that T ∗ : X∗ → Y ∗ is

DP p-convergent, then T is weakly precompact.

(iii) If T : Y → X is an operator such that T ∗ : X∗ → Y ∗ is pseudo weakly

compact, then T is weakly precompact.

Proof: (i) The proof is the same as the proof of [20, Theorem 16 (i)].

(ii) Suppose T : Y → X is an operator such that T ∗ : X∗ → Y ∗ is DP p-

convergent, and let J : X → lp be a 2-summing operator. Then J∗∗ : X∗∗ → lp
is 2-summing [12, Proposition 2.19, page 50]. Therefore J∗∗ is weakly compact

and completely continuous [12, Theorem 2.17, page 50]. Since J∗∗ is completely

continuous, J∗(Blp∗ ) is a DP set in X∗, and T ∗J∗ : lp∗ → Y ∗ is compact by

Theorem 3.2. Then JT : Y → lp is compact. Apply (i).

(iii) Let 2 ≤ p <∞ and let T : Y → X be an operator such that T ∗ : X∗ → Y ∗

is pseudo weakly compact. Then T ∗ is DP p-convergent, and thus T is weakly

precompact by (ii). �

In [20, Theorem 16 (ii)] it is shown that if 2 < p < ∞ and T : Y → X is an

operator such that T ∗ : X∗ → Y ∗ is p-convergent, then T is weakly precompact.

We note that if T ∗ is p-convergent, then T ∗ is DP p-convergent. Thus Theo-

rem 3.7 (ii) improves [20, Theorem 16 (ii)].

Corollary 3.8.

(i) Let 2 ≤ p < ∞ and let T : Y → X be an operator. Then T is weakly

precompact if and only if T ∗ is pseudo weakly compact if and only if T ∗

is DP p-convergent.

(ii) Let 2 ≤ p < ∞. Let X be a Banach space and let A be a subset of X .

Then A is weakly precompact if and only if A is p-Right∗ set if and only

if A is a Right∗ set.

(iii) Let 2 ≤ p < ∞. The Banach space X is weakly sequentially complete

if and only if X has property p-(SR∗) if and only if X has property

(SR∗).

(iv) Let 2 ≤ p < ∞. If X has the Schur property, then p-Right∗ and Right∗

subsets of X are relatively compact.

Proof: (i) If T ∗ is DP p-convergent (pseudo weakly compact, respectively),

then T is weakly precompact by Theorem 3.7. If T is weakly precompact, then

T ∗ is pseudo weakly compact by [18, Corollary 7], and thus DP p-convergent.

(ii) Let T : Y → X be an operator such that T ∗ : X∗ → Y ∗ is DP p-convergent

(pseudo weakly compact, respectively). Then T is weakly precompact by The-

orem 3.7. It follows that every p-Right∗ (Right∗, respectively) subset of X is

weakly precompact by Theorem 3.4 (Corollary 3.5, respectively) part 2.
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If A is weakly precompact, then A is a p-Right∗ (Right∗, respectively) set by

Proposition 3.1 ([18, Theorem 17], respectively).

(iii) Suppose X is weakly sequentially complete. If A is a p-Right∗ (Right∗, re-

spectively) subset of X , then A is weakly precompact, and thus relatively weakly

compact. If X has property p-(SR∗) ((SR∗), respectively), then X is weakly

sequentially complete by Proposition 3.1 ([18, Corollary 18], respectively). �

Since any DP subset of X is a Right∗ set, we obtain the well known result

about the weak precompactness of DP sets (by Corollary 3.8).

Corollary 3.9.

(i) ([31, page 377], [2]) Every Dunford–Pettis subset of X is weakly precom-

pact.

(ii) ([20, Corollary 17]) Let 2 ≤ p <∞. Every p-(V ∗) subset of X is weakly

precompact.

A subset A of X is p-limited, 1 ≤ p < ∞, see [27], if for every weak∗(weak)

p-summable sequence (x∗n) in X∗, there exists (αn) ∈ lp such that |x∗n(x)| ≤ αn

for all x ∈ A and n ∈ N.

A sequence (x∗n) in X∗ is weak∗ p-summable sequence if and only if it is weakly

p-summable, see [16, page 3].

Let 1 ≤ p < ∞. A subset A of X∗ is a p-L-set in X∗, see [22], if for

every weakly p-summable sequence (xn) in X , there exists (αn) ∈ lp such that

|x∗(xn)| ≤ αn for all x∗ ∈ A and n ∈ N.

A subset A of X∗ is a p-L-set in X∗ if and only if it is a p-limited set in X∗, see

[22, Corollary 3]. We recall that an operator T : X → Y is completely continuous

if and only if T maps weakly Cauchy sequences to norm convergent sequences.

Theorem 3.10. An operator T : Y → X is weakly precompact if and only if

T ∗(A) is relatively compact whenever A is a 2-limited set in X∗.

Proof: Suppose that T : Y → X is weakly precompact, and let A be a 2-

limited set in X∗. Then A is a 2-L-set in X∗. Let (x∗i ) be a sequence in A and

let J : X → l∞ be defined by J(x) = (x∗i (x)), x ∈ X . Note that J∗(e∗n) = x∗n for

each n ∈ N. If (xn) is weakly 2-summable in X , then

(‖J(xn)‖)n =
(

sup
i

|x∗i (xn)|
)

n
∈ l2,

since A is a 2-L-set. Therefore J is 2-summing, and thus weakly compact and

completely continuous [12, Theorem 2.17, page 50]. Since T (BY ) is weakly pre-

compact and J is completely continuous, JT (BY ) is relatively compact, and so

JT is compact. Hence (T ∗J∗(e∗n)) = (T ∗(x∗n)) is relatively compact.
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Conversely, suppose that T ∗(A) is relatively compact for any 2-limited set A

in X∗. Let J : X → lp be a 2-summing operator, 2 ≤ p < ∞. Then J∗(Blp∗ )

is a 2-limited set in X∗, see [22, Theorem 2]. Therefore T ∗J∗(Blp∗ ) is relatively

compact and T ∗J∗ is compact. Thus JT is compact and T is weakly precompact

by Theorem 3.7. �

Proposition 3.11. Let 1 ≤ p ≤ ∞ and let X be a Banach space.

(i) If X has the p-(SR) property, then X∗ has the p-(SR∗) property.

(ii) If X∗ has the p-(SR) property, then X has the p-(SR∗) property.

(iii) If X has the p-L-limited property, then X∗ has the p-L-limited∗ prop-

erty.

(iv) If X∗ has the p-L-limited property, then X has the p-L-limited∗ prop-

erty.

Proof: (i) Suppose X has the p-(SR) property. If (xn) is a DP weakly p-

summable sequence in X , then it is a DP weakly p-summable sequence in X∗∗.

Hence every p-Right∗ subset of X∗ is a p-Right set, thus relatively weakly com-

pact.

(ii) Suppose X∗ has the p-(SR) property. Note that every p-Right∗ subset

of X is a p-Right subset of X∗∗, thus relatively weakly compact.

(iii) Suppose X has the p-L-limited property. If (xn) is a limited weakly p-

summable sequence in X , then it is a limited weakly p-summable sequence in X∗∗.

Hence every p-L-limited∗ subset of X∗ is a p-L-limited set, thus relatively weakly

compact.

(iv) Suppose X∗ has the p-L-limited property. Every p-L-limited∗ subset of X

is a p-L-limited subset of X∗∗, thus relatively weakly compact. �

Example 2. (i) This example shows that there is a Banach space that has prop-

erty p-(V ∗) and does not have property p-(SR∗), 1 < p < ∞. Let Jp be the

James p-space, 1 < p <∞. Then Jp has property p-(V ∗), see [28, Theorem 2.14].

The spaces Jp and J∗

p are separable non-reflexive spaces, and Jp contains no

copy of l1. The space Jp does not have properties p-(SR∗) and p-L-limited∗

by Corollary 3.3 (iii) (or by Proposition 3.1, since it is not weakly sequentially

complete).

(ii) This example shows that there is a Banach space X that has property

p-(SR∗) and does not have property p-L-limited∗, 2 ≤ p ≤ ∞. Let X be the first

Bourgain–Delbaen space, see [4]. The space X is a separable L∞-space which

has the Schur property, and X∗ is weakly sequentially complete. If 2 ≤ p ≤ ∞,

every p-Right∗ set in X is relatively compact (by Corollary 3.8). Further, X∗ is

isomorphic to C[0, 1]∗, and thus X∗ has the GP property (since L1-spaces have
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the GP property, see [13]). Then X∗ has the p-GP property and BX is a p-L-

limited∗ set (by Corollary 3.3 (i)) which is not weakly precompact.

(iii) If X is the first Bourgain–Delbaen space, then X contains a p-(V ∗) set

which is not weakly precompact for 1 < p < 2. Let T : lp∗ → X∗ be an operator.

Since X∗∗ is isomorphic to a C(K) space, T ∗ : X∗∗ → lp is compact [33, page 100].

Hence T is compact and X∗ ∈ Cp, if 1 < p < 2, by [7, Proposition 1.5]. Then

BX is a p-(V ∗) set [20, Corollary 25], and thus a p-Right∗ set, and BX is not

weakly precompact.

(iv) There is a Banach space X such that X∗ has the p-L-limited∗ (p-(SR∗),

respectively) property but X does not have the p-L-limited (p-(SR), respectively)

property. Let X be the first Bourgain–Delbaen space. Since X∗ is isomorphic

to an L1-space, X
∗ has property p-L-limited∗ (by Example 1 (ii)), and thus

property p-(SR∗) for all 1 ≤ p ≤ ∞. The identity operator on X is completely

continuous, hence limited p-convergent (DP p-convergent, respectively) and not

weakly compact. Hence X does not have the p-L-limited (p-(SR), respectively)

property for all 1 ≤ p ≤ ∞, see [21], [32].

A Banach space X has the DP∗-property (DP∗P) if all weakly compact sets

in X are limited, see [6].

If X has the DP∗P, then it has the DPP. If X is a Schur space or if X has

the DPP and the Grothendieck property, then X has the DP∗P, see [6], [24].

Let 1 ≤ p ≤ ∞. A Banach space X has the Dunford–Pettis property of

order p (DPPp, respectively), if every weakly compact operator T : X → Y is

p-convergent for any Banach space Y , see [7].

Let 1 ≤ p ≤ ∞. A Banach space X has the DP∗-property of order p (DP∗Pp)

if all weakly p-compact sets in X are limited, see [15].

The DPP∞ is precisely the DPP, and every Banach space has the DPP1. If X

has the DPP, then X has the DPPp for all 1 ≤ p <∞. The DP∗P∞ is precisely

the DP∗P and every Banach space has the DP∗P1. If X has the DP∗P, then X

has the DP∗Pp for all 1 ≤ p <∞. If X has the DP∗Pp, then X has the DPPp.

Proposition 3.12.

(i) Let 1 < p ≤ ∞. If X∗ has the DPPp, then a subset of X is p-Right∗ set

if and only if it is a p-(V ∗) set.

(ii) Let 1 < p ≤ ∞. If X∗ has the DP∗Pp, then a subset of X is p-L-limited∗

set if and only if it is a p-(V ∗) set.

(iii) Let 1 < p ≤ ∞. Suppose X∗ has the DP∗Pp (DPPp, respectively).

Then X has property p-(V ∗) if and only if X has property p-L-limited∗

(p-(SR∗), respectively).
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(iv) Let 2 ≤ p ≤ ∞. Suppose X∗ has the DP∗Pp and A is a subset of X .

Then A is a p-L-limited∗ set if and only if A is a p-(V ∗) set if and only

if A is weakly precompact.

(v) Let 2 ≤ p ≤ ∞. Suppose X∗ has the DPPp and A is a subset of X .

Then A is a p-Right∗ set if and only if A is a p-(V ∗) set if and only if A

is weakly precompact.

Proof: (i) Let 1 < p < ∞. Suppose X∗ has the DPPp. Then every weakly

p-summable sequence in X∗ is DP, see [7, Proposition 3.2]. Hence every p-Right∗

subset of X is a p-(V ∗) set.

Let p = ∞. Suppose X∗ has the DPP. Then every weakly null sequence in X∗

is DP, see [11, Theorem 1]. Hence every Right∗ subset of X is a DP set.

Conversely, any p-(V ∗) set is a p-Right∗ set.

(ii) Let 1 < p < ∞. Since X∗ has the DP∗Pp, every weakly p-summable

sequence in X∗ is limited, see [16, Theorem 2.4]. Hence every p-L-limited∗ subset

of X is a p-(V ∗) set. Let p = ∞. Since X∗ has the DP∗P, every weakly null

sequence in X∗ is limited, see [6], [24]. Then every L-limited∗ subset of X is

a DP set. Conversely, any p-(V ∗) set is a p-L-limited∗ set.

(iii) Suppose X∗ has the DP∗Pp (DPPp, respectively) and X has property

p-(V ∗). Every p-L-limited∗ (p-Right∗, respectively) subset of X is a p-(V ∗) set,

and thus relatively weakly compact. The converse follows from Proposition 3.1.

(iv) Let 2 ≤ p ≤ ∞. Every p-L-limited∗ subset of X is a p-(V ∗) set (by (ii)),

and thus weakly precompact by Corollary 3.9. If A is weakly precompact, then

A is a p-L-limited∗ set and a p-(V ∗) set by Proposition 3.1. �

The following result gives a characterization of p-L-limited∗ (p-Right∗, respec-

tively) sets and contains [10, Theorem 3.12].

Proposition 3.13 ([25]). Let 1 < p < ∞. Suppose that A is a bounded subset

of a Banach space X . Then the following assertions are equivalent:

(i) A is a p-L-limited∗ (p-Right∗, respectively) set.

(ii) T (A) is relatively compact whenever Y is a Banach space and T : X → Y

is an operator such that T ∗ is limited (weakly limited, respectively)

weakly p-compact.

(iii) T (A) is relatively compact whenever Y ∗ ∈ Wp and T : X → Y is an

operator such that T ∗ is limited (weakly limited, respectively).

(iv) T (A) is relatively compact whenever T : X → lp is an operator such that

T ∗ is limited (weakly limited, respectively).

(v) If (x∗n) is a limited (DP, respectively) weakly p-summable sequence in

X∗ and (xn) is a sequence in A, then limx∗n(xn) = 0.
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If A is a bounded subset of X and l∞(A) = B(A) is the Banach space of all

bounded real-valued functions defined on A (endowed with sup norm), then let

E : X∗ → l∞(A) be defined by Ex∗(x) = x∗(x), x∗ ∈ X∗, x ∈ A. The operator E

is called the evaluation map of A.

If A is a bounded subset of X∗, let E : X → l∞(A) = B(A) be the evaluation

map defined by Ex(x∗) = x∗(x), x ∈ X , x∗ ∈ A.

Motivated by [3, Theorem 3.1], we give characterizations of p-L-limited sets

and p-L-limited∗ sets using evaluation maps.

Proposition 3.14. Let 1 ≤ p ≤ ∞.

(i) A bounded subset A of X∗ is a p-L-limited set if and only if the evaluation

map E : X → B(A) defined by E(x)(x∗) = x∗(x), x ∈ X , x∗ ∈ A, is

limited p-convergent.

(ii) A bounded subset A of X is a p-L-limited∗ set if and only if the evaluation

map E : X∗ → B(A) defined by E(x∗)(x) = x∗(x), x∗ ∈ X∗, x ∈ A, is

limited p-convergent.

(iii) A subset A of X is a p-L-limited∗ set if and only if there is a Banach

space Y and an operator T : Y → X such that T and T ∗ are limited

p-convergent and A ⊂ T (BY ).

Proof: (i) Let A be a bounded subset of X∗, and let E : X → B(A) be the

evaluation map. Then A is a p-L-limited set in X∗ if and only if

‖E(xn)‖∞ = sup
x∗∈A

|x∗(xn)| → 0

for any limited weakly p-summable (limited weakly null for p = ∞) sequence (xn)

in X , if and only if E is limited p-convergent (limited completely continuous for

p = ∞).

(ii) is similar to (i).

(iii) Let A be a p-L-limited∗ subset of X and let aco(A) be the closed ab-

solutely convex hull of A. Note that aco(A) is also a p-L-limited∗ set. Let

Y = l1(A), and define T : Y → X by T (f) =
∑

x∈A f(x)x, f ∈ Y . It is clear

that T is a bounded linear operator, and A ⊂ T (BY ) ⊂ aco(A). Since Y = l1(A)

has the Schur property, the operator T is completely continuous, and thus limited

p-convergent. Moreover, T ∗ is the evaluation map E : X∗ → B(A), and thus T ∗

is limited p-convergent by (ii).

Conversely, suppose that A ⊂ T (BY ), where T : Y → X is an operator so that

T and T ∗ are limited p-convergent. Then T (BY ), and thus A, is a p-L-limited∗

subset of X by Theorem 3.2. �

For each 1 ≤ p ≤ ∞, every p-L-limited∗ subset of X∗ is a p-L-limited set, but

the converse is not true. Since c0 is separable, it has the GP property, and thus
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the p-GP property. Then Bl1 is a p-L-limited set, see [21, Corollary 3.9], [32,

Theorem 2.3]. The sequence (en) is weakly null, and thus limited in l∞, since l∞
has the DP∗P, see [24]. Since (en) is weakly p-summable, l∞ does not have the

p-GP property, and Bl1 is not a p-L-limited∗ set by Corollary 3.3 (i).

Theorem 3.15. Let 1 ≤ p ≤ ∞ and let X be a Banach space. Then the

following are equivalent:

(i) Every p-L-limited subset of X∗ is a p-L-limited∗ set.

(ii) T ∗∗ is limited p-convergent whenever Y is a Banach space and T : X → Y

is a limited p-convergent operator.

(iii) Same as (ii) with Y = l∞.

Proof: (i) ⇒ (ii) Suppose that every p-L-limited subset of X∗ is a p-L-limited∗

set and let T : X → Y be a limited p-convergent operator. Then T ∗(BY ∗) is

a p-L-limited set, see [21, Theorem 3.4], and thus a p-L-limited∗ set. Therefore

T ∗∗ is limited p-convergent by Theorem 3.2. (ii) ⇒ (iii) is obvious.

(iii) ⇒ (i) Let A be a p-L-limited subset of X∗ and let (x∗n) be a sequence

in A. Define T : X → l∞ by T (x) = (x∗i (x)). Let (xn) be a limited weakly

p-summable sequence in X . Since A is a p-L-limited set,

lim
n

‖T (xn)‖ = lim
n

sup
i

|x∗i (xn)| = 0.

Therefore T is limited p-convergent. Since T ∗∗ is limited p-convergent (by (iii)),

T ∗(Bl∗
∞

) is a p-L-limited∗ set by Theorem 3.2. Hence (T ∗(e∗n)) = (x∗n), and

thus A is a p-L-limited∗ set. �

Corollary 3.16. Let X be a Banach space. Then the following are equivalent:

(i) Every L-limited subset of X∗ is an L-limited∗ set.

(ii) T ∗∗ is limited completely continuous whenever Y is a Banach space and

T : X → Y is limited completely continuous.

(iii) Same as (ii) with Y = l∞.

Let 1 ≤ p ≤ ∞. A bounded subset A of X∗ is called a p-(V ) set, see [28],

(or weakly-p-L-set, see [20]) if for all weakly p-summable (weakly null for p = ∞)

sequences (xn) in X , supx∗∈A |x∗(xn)| → 0.

A Banach space X has property p-(V ), see [28], (or RDPp, see [20]) if every

p-(V ) subset of X∗ is relatively weakly compact.

Let K be a compact Hausdorff space. We recall that C(K) has the Grothen-

dieck property if and only if it contains no complemented copy of c0, see [8].

Proposition 3.17.

(i) Let 1 < p <∞. Suppose X has the DP∗Pp. Then X has property p-(V )

if and only if it has the p-L-limited property.
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(ii) Let 1 < p ≤ ∞. Let K be a compact Hausdorff space. If C(K) has the

Grothendieck property, then it has the p-L-limited property.

Proof: (i) Suppose X has the DP∗Pp and property p-(V ). By [21, Corol-

lary 3.19], every p-L-limited set in X∗ is a p-(V ) set, and thus relatively weakly

compact. The converse follows since every p-(V ) set in X∗ is a p-L-limited set.

(ii) If C(K) has the Grothendieck property, then it has the DP∗P, see [24,

Corollary 5], thus the DP∗Pp. Hence C(K) has the p-L-limited property by (i)

if 1 < p <∞ and by [32, Corollary 2.13] for p = ∞. �

Corollary 3.18. Let 1 < p <∞ and let X be a Banach space.

(i) If every p-Right (Right, respectively) subset of X∗ is weakly precom-

pact, then T ∗∗ is DP p-convergent (pseudo weakly compact, respectively)

whenever T : X → Y is DP p-convergent (pseudo weakly compact, re-

spectively).

(ii) If every p-L-limited (L-limited, respectively) subset of X∗ is weakly pre-

compact, then T ∗∗ is limited p-convergent (limited completely continu-

ous, respectively) whenever T : X → Y is limited p-convergent (limited

completely continuous, respectively).

(iii) Let K be a compact Hausdorff space. If C(K) has the Grothendieck

property, then T ∗∗ is limited p-convergent (limited completely continu-

ous, respectively) whenever T : C(K) → Y has the same property.

Proof: (i) Let A be a p-Right (Right, respectively) subset of X∗. Since A is

weakly precompact, it is a p-Right∗ (Right∗, respectively) set by Proposition 3.1.

Then T ∗∗ is DP p-convergent (pseudo weakly compact, respectively) if and only

if T has the same property, see [1, Theorem 3.6] ([1, Corollary 3.7], respectively).

(ii) If every p-L-limited (or L-limited) subset of X∗ is weakly precompact,

then every p-L-limited (L-limited, respectively) is a p-L-limited∗ set by Proposi-

tion 3.1. Apply Theorem 3.15 (Corollary 3.16, respectively).

(iii) By Proposition 3.17, C(K) has the p-L-limited property. Apply (ii). �

Since X = C(K) has property (V ), see [29], it has property p-(SR) by Propo-

sition 3.1, and thus it satisfies the hypothesis of Corollary 3.18 (i).

The w∗ −w continuous (compact, respectively) operators from X∗ to Y will

be denoted by Lw∗(X∗, Y ) (Kw∗(X∗, Y ), respectively).

If H is a subset of Lw∗(X∗, Y ), x∗ ∈ X∗ and y∗ ∈ Y ∗, let H(x∗) = {T (x∗):

T ∈ H} and H∗(y∗) = {T ∗(y∗) : T ∈ H}.

Theorem 3.19.

1. Let 1 ≤ p ≤ ∞. If X has the p-wL-limited∗ property and Y has the

p-L-limited∗ property (or if X has the p-L-limited∗ property and Y has
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the p-wL-limited∗ property), then Kw∗(X∗, Y ) has the p-wL-limited∗

property.

2. Let 1 ≤ p ≤ ∞. Suppose Lw∗(X∗, Y ) = Kw∗(X∗, Y ). If X and Y

have the p-L-limited∗ property, then Kw∗(X∗, Y ) has the p-L-limited∗

property.

Proof: 1. Suppose that X has the p-wL-limited∗ property and Y has the p-

L-limited∗ property. Let H be a p-L-limited∗ set in Kw∗(X∗, Y ). If x∗ ∈ X∗ and

y∗ ∈ Y ∗, let φx∗ : Kw∗(X∗, Y ) → Y and ψy∗ : Kw∗(X∗, Y ) → X be defined by

φx∗(T ) = T (x∗), ψy∗(T ) = T ∗(y∗), T ∈ Kw∗(X∗, Y ). Continuous linear images

of p-L-limited∗ sets are p-L-limited∗ sets. For each x∗ ∈ X∗, H(x∗) = φx∗(H)

is a p-L-limited∗ set in Y , thus relatively weakly compact. Similarly H∗(y∗) is

a p-L-limited∗ set in X , thus weakly precompact for each y∗ ∈ Y ∗. Then H is

is weakly precompact by [17, Theorem 3.2].

2. Suppose X and Y have the p-L-limited∗ property. Let H be a p-L-

limited∗ set in Kw∗(X∗, Y ). By the previous proof, H(x∗) and H∗(y∗) are p-L-

limited∗ sets, hence relatively weakly compact for each x∗ ∈ X∗ and y∗ ∈ Y ∗.

Then H is relatively weakly compact by [23, Theorem 4.8]. �
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