

Ioana Ghenciu

L-limited-like properties on Banach spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 64 (2023), No. 4, 439–457

Persistent URL: <http://dml.cz/dmlcz/152625>

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2023

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* <http://dml.cz>

L-limited-like properties on Banach spaces

IOANA GHENCIU

Abstract. We study weakly precompact sets and operators. We show that an operator is weakly precompact if and only if its adjoint is pseudo weakly compact. We study Banach spaces with the p - L -limited* and the p -(SR*) properties and characterize these classes of Banach spaces in terms of p - L -limited* and p -Right* subsets. The p - L -limited* property is studied in some spaces of operators.

Keywords: p -Right* set; Right* set; DP p -convergent operator; weakly precompact operator; limited p -convergent operator

Classification: 46B20, 46B25, 46B28

1. Introduction

The concepts of sequentially Right (SR) property and L -limited property on Banach spaces were introduced in [30], [32]. Right sets and L -limited sets in dual Banach spaces were used to give characterizations of Banach spaces with the (SR) property and the L -limited property, see [26], [32]. The p -Right subsets and p - L -limited subsets of dual Banach spaces, and Banach spaces with the p -sequentially Right property and the p - L -limited property were studied in [21].

Right* sets and Banach spaces with the sequentially Right* (SR*) property were studied in [9], [18]. The p -Right* sets and Banach spaces with the p -sequentially Right* (p -(SR*)) property were introduced in [1]. The concepts of p - L -limited* (or R_p^*) sets and Banach spaces with the p - L -limited* (or SR $_p^*$) property were introduced in [10]. In this paper we study p - L -limited* and p -Right* sets, and Banach spaces with the p -Right* and p - L -limited* properties.

We obtain some characterizations of Banach spaces with the property that their p - L -limited* and p -Right* subsets are weakly precompact, relatively weakly compact, and relative norm compact. We show that an operator $T: Y \rightarrow X$ is weakly precompact if and only if T^* is pseudo weakly compact if and only if T^* is DP p -convergent, $2 \leq p < \infty$. We show that a subset of a Banach space X is weakly precompact if and only if it is a Right* set if and only if it is a p -Right* set, $2 \leq p < \infty$. We also study whether some spaces of operators have the p - L -limited* property.

2. Definitions and notation

Throughout this paper, X and Y will denote Banach spaces. The unit ball of X will be denoted by B_X , the identity map on X will be denoted by i_X , and X^* will denote the continuous linear dual of X . The space X embeds in Y (in symbols $X \hookrightarrow Y$) if X is isomorphic to a closed subspace of Y . An operator $T: X \rightarrow Y$ will be a continuous and linear function. The space of all operators from X to Y will be denoted by $L(X, Y)$.

A subset S of a Banach space X is said to be *weakly precompact* (or *weakly conditionally compact*) provided that every sequence from S has a weakly Cauchy subsequence. An operator $T: X \rightarrow Y$ is called *weakly precompact* if $T(B_X)$ is weakly precompact. A Banach space X is called *weakly sequentially complete* if every weakly Cauchy sequence in X is weakly convergent. A Banach space X has the *Grothendieck property* if w^* -convergent sequences in X^* are weakly convergent.

An operator $T: X \rightarrow Y$ is called *completely continuous* (or *Dunford–Pettis*) if T maps weakly convergent sequences to norm convergent sequences.

A Banach space X has the *Dunford–Pettis property* (DPP) if for any Banach space Y , every weakly compact operator $T: X \rightarrow Y$ is completely continuous. If X is a $C(K)$ -space or an L_1 -space, then X has the DPP. The reader can check [11] for results related to the DPP.

A subset A of a Banach space X is called a *Dunford–Pettis* (or DP) (*limited*, respectively) subset of X if each weakly null (w^* -null, respectively) sequence (x_n^*) in X^* tends to 0 uniformly on A ; i.e.

$$\sup_{x \in A} |x_n^*(x)| \rightarrow 0.$$

An operator $T: X \rightarrow Y$ is called *unconditionally convergent* if it takes weakly unconditionally convergent (wuc) series in X to unconditionally convergent series in Y .

A bounded subset A of X^* (or of X) is called a V -subset of X^* (a V^* -subset of X , respectively) provided that

$$\sup_{x^* \in A} |x^*(x_n)| \rightarrow 0 \quad \left(\sup_{x \in A} |x_n^*(x)| \rightarrow 0, \text{ respectively} \right)$$

for each wuc series $\sum x_n$ in X ($\sum x_n^*$ in X^* , respectively).

A Banach space X has *property (V)* if every V -subset of X^* is relatively weakly compact, see [29]. Reflexive Banach spaces and $C(K)$ spaces have property (V), see [29, Theorem 1, Proposition 7].

A Banach space X has *property (V^*)* if every V^* -subset of X is relatively weakly compact, see [29]. Reflexive Banach spaces and L_1 -spaces have property (V^*) , see [29].

For $1 \leq p < \infty$, p^* denotes the conjugate of p . If $p = 1$, c_0 plays the role of l_{p^*} . The unit vector basis of l_p will be denoted by (e_n) .

Let $1 \leq p < \infty$. A sequence (x_n) in X is called *weakly p -summable* if $(\langle x^*, x_n \rangle) \in l_p$ for each $x^* \in X^*$, see [12, page 32]. Let $l_p^w(X)$ denote the set of all weakly p -summable sequences in X . Let $c_0^w(X)$ be the space of weakly null sequences in X . If $p = \infty$, then we consider $c_0^w(X)$ instead of $l_\infty^w(X)$.

If $p < q$, then $l_p^w(X) \subseteq l_q^w(X)$. The weakly 1-summable sequences are precisely the wuc series and the weakly ∞ -summable sequences are precisely weakly null sequences.

Let $1 \leq p \leq \infty$. An operator $T: X \rightarrow Y$ is called *p -convergent* if T maps weakly p -summable sequences into norm null sequences, see [7]. The set of all p -convergent operators is denoted by $C_p(X, Y)$.

Let $1 \leq p \leq \infty$. A sequence (x_n) in X is called *weakly p -convergent* to $x \in X$ if the sequence $(x_n - x)$ is weakly p -summable, see [7]. A bounded subset K of X is *relatively weakly p -compact* if every sequence in K has a weakly p -convergent subsequence with limit in X .

An operator $T: X \rightarrow Y$ is *weakly p -compact* if $T(B_X)$ is relatively weakly p -compact, see [7]. The set of weakly p -compact operators $T: X \rightarrow Y$ will be denoted by $W_p(X, Y)$.

A Banach space $X \in W_p$ (or $X \in C_p$) if $i_X \in W_p(X, X)$ ($i_X \in C_p(X, X)$, respectively), see [7].

3. The p -L-limited* and p -SR* properties

In this section we study Banach spaces with the *L -limited**, *p -L-limited**, *Right**, and *p -Right** properties, $1 \leq p < \infty$.

We also study the *p -L-limited** property in the space $K_{w^*}(X^*, Y)$ of w^* - w compact operators from X^* to Y .

For the definition of Right topology on a Banach space X , see [30]. A sequence (x_n) in a Banach space X is Right null if and only if it is DP weakly null, see [19, Proposition 1].

An operator $T: X \rightarrow Y$ is *pseudo weakly compact* (pwc) or *Dunford-Pettis completely continuous* (DPcc) (or *limited completely continuous* (lcc)) if it takes DP (limited, respectively) weakly null sequences in X into norm null sequences in Y .

A subset K of X^* is called a *Right set*, see [26], (or *L-limited set*, see [32]) if each Right null (limited weakly null, respectively) sequence (x_n) in X tends to 0 uniformly on K .

A Banach space X is *sequentially Right* (SR) (or X has property (SR)), see [30], if for any Banach space Y , every pseudo weakly compact operator $T: X \rightarrow Y$ is weakly compact.

A Banach space X has the *L-limited property*, see [32], if every *L-limited* subset of X^* is relatively weakly compact.

Let $1 \leq p < \infty$. A subset A of a dual space X^* is called a *p-Right set* (or *p-L-limited set*, see [21], or *L_p -limited set*, see [10]) if for every DP (limited, respectively) weakly p -summable sequence (x_n) in X , $\sup_{x^* \in A} |x^*(x_n)| \rightarrow 0$.

Let $1 \leq p < \infty$. A Banach space X has the *p-(SR)* (or *p-L-limited*) property if every *p-Right* (*p-L-limited*, respectively) subset of X^* is relatively weakly compact, see [21].

The case $p = \infty$ can be included in the previous definitions, if we consider the ∞ -Right (or ∞ -L-limited) subsets of X^* to be precisely the Right (*L-limited*, respectively) sets and the ∞ -(SR) (∞ -L-limited, respectively) property to be the (SR) (*L-limited*, respectively) property.

Let $1 \leq p < \infty$. An operator $T: X \rightarrow Y$ is called *DP p-convergent*, see [21], (or *limited p-convergent*, see [16]), if it takes DP (limited, respectively) weakly p -summable sequences to norm null sequences.

A subset K of X is called a *Right** set (or R^* -set), see [9], (*L-limited** set, respectively) if each DP (limited, respectively) weakly null sequence (x_n^*) in X^* tends to 0 uniformly on K .

A Banach space X has the *(SR*)*, see [9], (or *L-limited**) property if every *Right** (*L-limited**, respectively) subset of X is relatively weakly compact.

Let $1 \leq p \leq \infty$. A subset A of a Banach space X is called a *p-Right* set* (or *p-R*-set*, see [1], (*p-L-limited** set or R_p^* set, respectively, see [10])) if for every DP (limited, respectively) weakly p -summable sequence (x_n^*) in X^* holds $\sup_{x \in A} |x_n^*(x)| \rightarrow 0$.

Let $1 \leq p \leq \infty$. A Banach space X has *property p-(SR*)*, see [1], (or *p-L-limited** or SR_p^* , see [10]) if every *p-Right** (*p-L-limited**, respectively) subset of X is relatively weakly compact.

We prefer the R_p^* sets to be called *p-L-limited** sets, so that there is no confusion between these sets and the *p-R** sets. Similarly, we prefer the SR_p^* property to be called the *p-L-limited** property so that there is no confusion between this property and the *p-(SR*)* property.

The ∞ -L-limited* (or ∞ -Right*) sets are precisely the L-limited* (Right*, respectively) sets, and the ∞ -L-limited* (∞ -Right*, respectively) property is precisely the L-limited* (Right*, respectively) property.

If $p < q$, then a q -L-limited* set is a p -L-limited* set, since $l_p^w(X^*) \subseteq l_q^w(X^*)$. If X has the p -L-limited* property, then it has the q -L-limited* property for $p < q$.

Every p -L-limited* (or p -Right*) set is bounded. Indeed, if A is an unbounded p -L-limited* (p -Right*, respectively) subset of X , then there are sequences (x_n) in A and (x_n^*) in B_{X^*} such that $|x_n^*(x_n)| > n^2$ for all n . Let $u_n^* = x_n^*/n^2$. Then $\sum \|u_n^*\|^p = \sum \|x_n^*\|^p/n^{2p} < \infty$. Hence (u_n^*) is a limited (DP, respectively) weakly p -summable sequence in X^* and $|u_n^*(x_n)| > 1$ for all n . This is a contradiction.

Let $1 \leq p \leq \infty$. A bounded subset A of X is called a p -(V^*) set, see [28], (or *weakly- p -Dunford-Pettis* set, see [20]) if $\sup_{x \in A} |x_n^*(x)| \rightarrow 0$ for every weakly p -summable (weakly null for $p = \infty$) sequence (x_n^*) in X^* .

A Banach space X has property p -(V^*), see [28], (or RDP_p^* [20]) if every p -(V^*) subset of X is relatively weakly compact.

The 1-(V^*) subsets of X are precisely the V^* -sets and the ∞ -(V^*) subsets of X are precisely the DP sets. Property 1-(V^*) is precisely property (V^*) and property ∞ -(V^*) is precisely the RDP* property, see [3] for this definition.

If $\sum x_n$ is wuc in X , then (x_n) is DP. Indeed, let $S: c_0 \rightarrow X$ be an operator such that $S(e_n) = x_n$ for all n , see [12, Proposition 2.2, page 36]. Since c_0 has the DPP and (e_n) is weakly null, (e_n) is DP, see [11, Theorem 1]. Then (x_n) is DP. Therefore the 1-Right subsets of X^* are precisely the V -sets and the 1-Right* subsets of X are the V^* -sets. Thus property 1-(SR) is property (V) and property 1-(SR*) is property (V^*).

It follows from definitions that for $1 \leq p \leq \infty$, every p -(V^*) set in X is a p -Right* set and every p -Right* set is a p -L-limited* set (since any limited weakly p -summable sequence is also DP weakly p -summable).

If X has property (V^*), then X has property (SR*). If X has property (SR*), then X has property RDP^* , see [9], (see [9] for this definition). If X has property (V), then it has property (SR), see [26].

Proposition 3.1. *Let $1 \leq p \leq \infty$ and let X be a Banach space.*

- (i) *If K is a weakly precompact subset of X , then K is a p -Right* set and a p -L-limited* set.*
- (ii) *If X has property p -L-limited*, then X has property p -(SR*).*
- (iii) *If X has property p -(SR*), then X has property (SR*). Consequently, X is weakly sequentially complete.*
- (iv) *If X has property (V), then X has property p -(SR). If X has property (V^*), then X has property p -(SR*).*

- (v) If X has property p -(SR*), then X has property p -(V*).
- (vi) If X has property p -(SR*) and X^* has the Grothendieck property, then X has property p -L-limited*.
- (vii) If X^* has property (V), then X has property p -L-limited*.

PROOF: (i) Let K be a weakly precompact subset of X . Then K is a Right* set, see [18, Theorem 17], and hence K is an L -limited* set. Further, K is a p -Right* set, and thus a p -L-limited* set.

(ii) Any p -Right* subset of X is a p -L-limited* set, thus relatively weakly compact. Hence X has property p -(SR*).

(iii) Any Right* subset of X is a p -Right* set, thus relatively weakly compact. Therefore X has property (SR*) and X is weakly sequentially complete, see [18, Corollary 18].

(iv) If X has property (V), then any p -Right subset of X^* is a 1-Right set (V-set), and thus relatively weakly compact. If X has property (V*), any p -Right* subset of X is a 1-Right* set (V*-set), and thus relatively weakly compact.

(vi) Since X^* has the Grothendieck property, any DP set in X^* is limited. Then every DP weakly p -summable sequence in X^* is limited weakly p -summable. Therefore any p -L-limited* set in X is a p -Right* set, and thus relatively weakly compact.

(vii) Suppose X^* has property (V). Then X has property (V*), see [29], and X has property p -(SR*) by (iv). Since X^* has property (V), X^* has the Grothendieck property, see [11, page 40], [24, Corollary 32 (ii)]. Then X has property p -L-limited* by (vi). \square

Example 1. (i) Since l_1 has the Schur property, B_{c_0} is a p -(V*) (hence a p -Right* and a p -limited*) set, and it is not relatively weakly compact. Then c_0 does not have properties p -(V*), p -(SR*) and p -L-limited*.

(ii) Let $X = l_1$ or $X = L_1$. Since X^* has property (V), see [29], X has property p -L-limited* by Proposition 3.1 (vii), $1 \leq p \leq \infty$.

An operator $T: X \rightarrow Y$ is called *limited*, see [5], (*weakly limited*, respectively), if $T(B_X)$ is limited (DP, respectively).

We note that $T: X \rightarrow Y$ is limited (weakly limited, respectively) if and only if T^* is w^* -norm sequentially continuous (completely continuous, respectively).

If $p = \infty$, the limited p -convergent (DP p -convergent, respectively) operators are precisely the limited completely continuous (pseudo weakly compact operators, respectively).

Theorem 3.2. Let $1 \leq p \leq \infty$. Let $T: Y \rightarrow X$ be an operator. The following statements are equivalent:

- (i) $T(B_Y)$ is a p -L-limited* (p -Right*, respectively) set.
- (ii) $T^*: X^* \rightarrow Y^*$ is limited p -convergent (DP p -convergent, respectively).

If $1 < p < \infty$, then we have one more equivalent condition:

- (iii) If $S: l_{p^*} \rightarrow X^*$ is a limited (weakly limited, respectively) operator, then $T^*S: l_{p^*} \rightarrow Y^*$ is compact.

PROOF: (i) \Rightarrow (ii) We only prove the result for p -L-limited* sets. The other case is similar. Suppose $T(B_Y)$ is a p -L-limited* set. Then for every limited weakly p -summable sequence (limited weakly null if $p = \infty$) (x_n^*) in X^* ,

$$\|T^*(x_n^*)\| = \sup_{y \in B_Y} |\langle T^*(x_n^*), y \rangle| = \sup_{y \in B_Y} |\langle T(y), x_n^* \rangle| \rightarrow 0.$$

Therefore $T^*: X^* \rightarrow Y^*$ is limited p -convergent (limited completely continuous if $p = \infty$).

Tracing back, we can prove (ii) \Rightarrow (i).

(ii) \Leftrightarrow (iii) If $1 < p < \infty$, the result follows from [21, Theorem 3.24]. \square

A Banach space X has the *Gelfand–Phillips* (GP) property (or is a *Gelfand–Phillips space*) if every limited subset of X is relatively compact.

Separable spaces and Schur spaces have the GP property, see [5].

Let $1 \leq p < \infty$. A Banach space X has the p -Gelfand–Phillips (p -GP) property (or is a p -Gelfand–Phillips space) if every limited weakly p -summable sequence in X is norm null, see [16].

The case $p = \infty$ can be included in the previous definition, if we consider the ∞ -GP property to be the GP property. If X has the GP property, then X has the p -GP property for any $1 \leq p < \infty$.

A Banach space X has the *Dunford–Pettis relatively compact property* (DPrcP) if every DP subset of X is relatively compact, see [14].

Schur spaces have the DPrcP. The space X does not contain l_1 if and only if X^* has the DPrcP, see [14].

Let $1 \leq p < \infty$. A Banach space X has the p -Dunford–Pettis relatively compact property (p -DPrcP) if every DP weakly p -summable sequence in X is norm null, see [21].

If X has the DPrcP, then X has the p -DPrcP for any $1 \leq p < \infty$.

We note that every reflexive space has the p -L-limited* (or the p -(SR*)) property, since every p -L-limited* (p -Right*, respectively) subset of X is bounded (as seen before), and thus relatively weakly compact.

Corollary 3.3.

- (i) ([10, Theorem 3.4], [1, Lemma 3.4 (iv)]) Let $1 \leq p \leq \infty$. The Banach space Y^* has the p -Gelfand-Phillips (or the p -DPrcP) property if and only if B_Y is a p -L-limited* (p -Right*, respectively) set in Y .
- (ii) If X^* has the p -GP property (or the p -DPrcP), then X has the p -L-limited* (p -(SR*), respectively) property if and only if X is reflexive.
- (iii) If X is a nonreflexive Banach space and X has the p -(SR*) (p -L-limited*, respectively) property, then X contains a copy of l_1 .

PROOF: (i) By Theorem 3.2 applied to the identity map i_Y on Y , B_Y is a p -L-limited* set if and only if $i_Y^* = i_{Y^*}$ is limited p -convergent if and only if Y^* has the p -GP property.

(ii) Suppose X^* has the p -GP property and X has the p -L-limited* property. By (i), B_X is a p -L-limited* subset of X , thus relatively weakly compact.

(iii) Suppose X is a nonreflexive Banach space with the p -(SR*) property. If X does not contain a copy of l_1 , then B_X is weakly precompact by Rosenthal's l_1 theorem. By Proposition 3.1, X is weakly sequentially complete. Then B_X is relatively weakly compact. This contradiction concludes the proof. \square

Let (e_n^*) be the unit basis of l_1 . The following result contains [10, Theorem 3.9].

Theorem 3.4. Let X be a Banach space and let $1 \leq p \leq \infty$. The following statements in each of the following collections are equivalent:

1. (i) If $T: Y \rightarrow X$ is an operator so that $T^*: X^* \rightarrow Y^*$ is limited p -convergent, then T is weakly precompact (weakly compact; compact, respectively).
 (ii) Same as (i) with $Y = l_1$.
 (iii) Every p -L-limited* subset of X is weakly precompact (relatively weakly compact; relatively compact, respectively).
2. (i) If $T: Y \rightarrow X$ is an operator so that $T^*: X^* \rightarrow Y^*$ is DP p -convergent, then T is weakly precompact (weakly compact; compact, respectively).
 (ii) Same as (i) with $Y = l_1$.
 (iii) Every p -Right* subset of X is weakly precompact (relatively weakly compact; relatively compact, respectively).

PROOF: We will show 1. (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i) in the weakly precompact case, if $1 \leq p < \infty$. The arguments for the remaining implications and for $p = \infty$ follow the same pattern.

1. (i) \Rightarrow (ii) is obvious.
1. (ii) \Rightarrow (iii) Suppose that A is a p -L-limited* subset of X , and let (x_n) be a sequence in A . We recall that A is bounded (as seen before). Define $T: l_1 \rightarrow X$

by $T(b) = \sum b_i x_i$. Note that $T^*: X^* \rightarrow l_\infty$, $T^*(x^*) = (x^*(x_i))$. Let (x_n^*) be a limited weakly p -summable sequence in X^* . Since A is a p -L-limited* set, it follows that

$$\|T^*(x_n^*)\| = \sup_i |x_n^*(x_i)| \rightarrow 0, \quad \text{as } n \rightarrow \infty,$$

and $T^*: X^* \rightarrow l_\infty$ is limited p -convergent. Then T is weakly precompact by hypothesis. Thus $(x_n) = (T(e_n^*))$ has a weakly Cauchy subsequence.

1. (iii) \Rightarrow (i) Let $T: Y \rightarrow X$ be an operator so that $T^*: X^* \rightarrow Y^*$ is limited p -convergent. Then $T(B_Y)$ is a p -L-limited* subset of X (by Theorem 3.2), and thus weakly precompact by assumptions. \square

Corollary 3.5. *Let X be a Banach space. The following statements in each of the following collections are equivalent:*

1. (i) *If $T: Y \rightarrow X$ is an operator so that $T^*: X^* \rightarrow Y^*$ is limited completely continuous, then T is weakly precompact (weakly compact; compact, respectively).*
 - (ii) *Same as (i) with $Y = l_1$.*
 - (iii) *Every L-limited* subset of X is weakly precompact (relatively weakly compact; relatively compact, respectively).*
2. ([18, Theorem 14])
 - (i) *If $T: Y \rightarrow X$ is an operator so that $T^*: X^* \rightarrow Y^*$ is pseudo weakly compact, then T is weakly precompact (weakly compact; compact, respectively).*
 - (ii) *Same as (i) with $Y = l_1$.*
 - (iii) *Every Right* subset of X is weakly precompact (relatively weakly compact; relatively compact, respectively).*

Corollary 3.6. *Let $1 \leq p \leq \infty$, X be a Banach space, and Y be a closed linear subspace of X . If X has the p -L-limited* (p -(SR*), respectively) property, then Y has the p -L-limited* (p -(SR*), respectively) property.*

PROOF: Let $T: E \rightarrow Y$ be an operator such that $T^*: Y^* \rightarrow E^*$ is limited p -convergent. Let $S: Y \rightarrow X$ be the natural embedding of Y into X . Since $T^*S^*: X^* \rightarrow E^*$ is limited p -convergent, $ST: E \rightarrow X$ is weakly compact by Theorem 3.4. If (a_n) is a sequence in B_E , then $(ST(a_n)) = (T(a_n))$ has a weakly convergent subsequence in X , and thus in Y . Therefore T is weakly compact, and Y has the p -L-limited* property by Theorem 3.4. \square

Theorem 3.7.

- (i) *Let $2 \leq p < \infty$. If $T: Y \rightarrow X$ is an operator such that $JT: Y \rightarrow l_p$ is compact for all 2-summing operators $J: X \rightarrow l_p$, then T is weakly precompact.*

- (ii) Let $2 \leq p < \infty$. If $T: Y \rightarrow X$ is an operator such that $T^*: X^* \rightarrow Y^*$ is DP p -convergent, then T is weakly precompact.
- (iii) If $T: Y \rightarrow X$ is an operator such that $T^*: X^* \rightarrow Y^*$ is pseudo weakly compact, then T is weakly precompact.

PROOF: (i) The proof is the same as the proof of [20, Theorem 16 (i)].

(ii) Suppose $T: Y \rightarrow X$ is an operator such that $T^*: X^* \rightarrow Y^*$ is DP p -convergent, and let $J: X \rightarrow l_p$ be a 2-summing operator. Then $J^{**}: X^{**} \rightarrow l_p$ is 2-summing [12, Proposition 2.19, page 50]. Therefore J^{**} is weakly compact and completely continuous [12, Theorem 2.17, page 50]. Since J^{**} is completely continuous, $J^*(B_{l_{p^*}})$ is a DP set in X^* , and $T^*J^*: l_{p^*} \rightarrow Y^*$ is compact by Theorem 3.2. Then $JT: Y \rightarrow l_p$ is compact. Apply (i).

(iii) Let $2 \leq p < \infty$ and let $T: Y \rightarrow X$ be an operator such that $T^*: X^* \rightarrow Y^*$ is pseudo weakly compact. Then T^* is DP p -convergent, and thus T is weakly precompact by (ii). \square

In [20, Theorem 16 (ii)] it is shown that if $2 < p < \infty$ and $T: Y \rightarrow X$ is an operator such that $T^*: X^* \rightarrow Y^*$ is p -convergent, then T is weakly precompact. We note that if T^* is p -convergent, then T^* is DP p -convergent. Thus Theorem 3.7 (ii) improves [20, Theorem 16 (ii)].

Corollary 3.8.

- (i) Let $2 \leq p < \infty$ and let $T: Y \rightarrow X$ be an operator. Then T is weakly precompact if and only if T^* is pseudo weakly compact if and only if T^* is DP p -convergent.
- (ii) Let $2 \leq p < \infty$. Let X be a Banach space and let A be a subset of X . Then A is weakly precompact if and only if A is p -Right* set if and only if A is a Right* set.
- (iii) Let $2 \leq p < \infty$. The Banach space X is weakly sequentially complete if and only if X has property p -(SR^*) if and only if X has property (SR^*).
- (iv) Let $2 \leq p < \infty$. If X has the Schur property, then p -Right* and Right* subsets of X are relatively compact.

PROOF: (i) If T^* is DP p -convergent (pseudo weakly compact, respectively), then T is weakly precompact by Theorem 3.7. If T is weakly precompact, then T^* is pseudo weakly compact by [18, Corollary 7], and thus DP p -convergent.

(ii) Let $T: Y \rightarrow X$ be an operator such that $T^*: X^* \rightarrow Y^*$ is DP p -convergent (pseudo weakly compact, respectively). Then T is weakly precompact by Theorem 3.7. It follows that every p -Right* (Right*, respectively) subset of X is weakly precompact by Theorem 3.4 (Corollary 3.5, respectively) part 2.

If A is weakly precompact, then A is a p -Right* (Right*, respectively) set by Proposition 3.1 ([18, Theorem 17], respectively).

(iii) Suppose X is weakly sequentially complete. If A is a p -Right* (Right*, respectively) subset of X , then A is weakly precompact, and thus relatively weakly compact. If X has property p -(SR*) ((SR*), respectively), then X is weakly sequentially complete by Proposition 3.1 ([18, Corollary 18], respectively). \square

Since any DP subset of X is a Right* set, we obtain the well known result about the weak precompactness of DP sets (by Corollary 3.8).

Corollary 3.9.

- (i) ([31, page 377], [2]) Every Dunford–Pettis subset of X is weakly precompact.
- (ii) ([20, Corollary 17]) Let $2 \leq p < \infty$. Every p -(V^*) subset of X is weakly precompact.

A subset A of X is p -limited, $1 \leq p < \infty$, see [27], if for every weak*(weak) p -summable sequence (x_n^*) in X^* , there exists $(\alpha_n) \in l_p$ such that $|x_n^*(x)| \leq \alpha_n$ for all $x \in A$ and $n \in \mathbb{N}$.

A sequence (x_n^*) in X^* is weak* p -summable sequence if and only if it is weakly p -summable, see [16, page 3].

Let $1 \leq p < \infty$. A subset A of X^* is a p -L-set in X^* , see [22], if for every weakly p -summable sequence (x_n) in X , there exists $(\alpha_n) \in l_p$ such that $|x^*(x_n)| \leq \alpha_n$ for all $x^* \in A$ and $n \in \mathbb{N}$.

A subset A of X^* is a p -L-set in X^* if and only if it is a p -limited set in X^* , see [22, Corollary 3]. We recall that an operator $T: X \rightarrow Y$ is completely continuous if and only if T maps weakly Cauchy sequences to norm convergent sequences.

Theorem 3.10. An operator $T: Y \rightarrow X$ is weakly precompact if and only if $T^*(A)$ is relatively compact whenever A is a 2-limited set in X^* .

PROOF: Suppose that $T: Y \rightarrow X$ is weakly precompact, and let A be a 2-limited set in X^* . Then A is a 2-L-set in X^* . Let (x_i^*) be a sequence in A and let $J: X \rightarrow l_\infty$ be defined by $J(x) = (x_i^*(x))$, $x \in X$. Note that $J^*(e_n^*) = x_n^*$ for each $n \in \mathbb{N}$. If (x_n) is weakly 2-summable in X , then

$$(\|J(x_n)\|)_n = \left(\sup_i |x_i^*(x_n)| \right)_n \in l_2,$$

since A is a 2-L-set. Therefore J is 2-summing, and thus weakly compact and completely continuous [12, Theorem 2.17, page 50]. Since $T(B_Y)$ is weakly precompact and J is completely continuous, $JT(B_Y)$ is relatively compact, and so JT is compact. Hence $(T^*J^*(e_n^*)) = (T^*(x_n^*))$ is relatively compact.

Conversely, suppose that $T^*(A)$ is relatively compact for any 2-limited set A in X^* . Let $J: X \rightarrow l_p$ be a 2-summing operator, $2 \leq p < \infty$. Then $J^*(B_{l_{p^*}})$ is a 2-limited set in X^* , see [22, Theorem 2]. Therefore $T^*J^*(B_{l_{p^*}})$ is relatively compact and T^*J^* is compact. Thus JT is compact and T is weakly precompact by Theorem 3.7. \square

Proposition 3.11. *Let $1 \leq p \leq \infty$ and let X be a Banach space.*

- (i) *If X has the p -(SR) property, then X^* has the p -(SR *) property.*
- (ii) *If X^* has the p -(SR) property, then X has the p -(SR *) property.*
- (iii) *If X has the p -L-limited property, then X^* has the p -L-limited * property.*
- (iv) *If X^* has the p -L-limited property, then X has the p -L-limited * property.*

PROOF: (i) Suppose X has the p -(SR) property. If (x_n) is a DP weakly p -summable sequence in X , then it is a DP weakly p -summable sequence in X^{**} . Hence every p -Right * subset of X^* is a p -Right set, thus relatively weakly compact.

(ii) Suppose X^* has the p -(SR) property. Note that every p -Right * subset of X is a p -Right subset of X^{**} , thus relatively weakly compact.

(iii) Suppose X has the p -L-limited property. If (x_n) is a limited weakly p -summable sequence in X , then it is a limited weakly p -summable sequence in X^{**} . Hence every p -L-limited * subset of X^* is a p -L-limited set, thus relatively weakly compact.

(iv) Suppose X^* has the p -L-limited property. Every p -L-limited * subset of X is a p -L-limited subset of X^{**} , thus relatively weakly compact. \square

Example 2. (i) This example shows that there is a Banach space that has property p -(V^*) and does not have property p -(SR *), $1 < p < \infty$. Let J_p be the James p -space, $1 < p < \infty$. Then J_p has property p -(V^*), see [28, Theorem 2.14]. The spaces J_p and J_p^* are separable non-reflexive spaces, and J_p contains no copy of l_1 . The space J_p does not have properties p -(SR *) and p -L-limited * by Corollary 3.3 (iii) (or by Proposition 3.1, since it is not weakly sequentially complete).

(ii) This example shows that there is a Banach space X that has property p -(SR *) and does not have property p -L-limited * , $2 \leq p \leq \infty$. Let X be the first Bourgain-Delbaen space, see [4]. The space X is a separable \mathcal{L}_∞ -space which has the Schur property, and X^* is weakly sequentially complete. If $2 \leq p \leq \infty$, every p -Right * set in X is relatively compact (by Corollary 3.8). Further, X^* is isomorphic to $C[0, 1]^*$, and thus X^* has the GP property (since L_1 -spaces have

the GP property, see [13]). Then X^* has the p -GP property and B_X is a p - L -limited* set (by Corollary 3.3 (i)) which is not weakly precompact.

(iii) If X is the first Bourgain–Delbaen space, then X contains a p -(V^*) set which is not weakly precompact for $1 < p < 2$. Let $T: l_{p^*} \rightarrow X^*$ be an operator. Since X^{**} is isomorphic to a $C(K)$ space, $T^*: X^{**} \rightarrow l_p$ is compact [33, page 100]. Hence T is compact and $X^* \in C_p$, if $1 < p < 2$, by [7, Proposition 1.5]. Then B_X is a p -(V^*) set [20, Corollary 25], and thus a p -Right* set, and B_X is not weakly precompact.

(iv) There is a Banach space X such that X^* has the p - L -limited* (p -(SR*), respectively) property but X does not have the p - L -limited (p -(SR), respectively) property. Let X be the first Bourgain–Delbaen space. Since X^* is isomorphic to an L_1 -space, X^* has property p - L -limited* (by Example 1 (ii)), and thus property p -(SR*) for all $1 \leq p \leq \infty$. The identity operator on X is completely continuous, hence limited p -convergent (DP p -convergent, respectively) and not weakly compact. Hence X does not have the p - L -limited (p -(SR), respectively) property for all $1 \leq p \leq \infty$, see [21], [32].

A Banach space X has the DP^* -property (DP^*P) if all weakly compact sets in X are limited, see [6].

If X has the DP^*P , then it has the DPP. If X is a Schur space or if X has the DPP and the Grothendieck property, then X has the DP^*P , see [6], [24].

Let $1 \leq p \leq \infty$. A Banach space X has the *Dunford–Pettis property of order p* (DPP_p , respectively), if every weakly compact operator $T: X \rightarrow Y$ is p -convergent for any Banach space Y , see [7].

Let $1 \leq p \leq \infty$. A Banach space X has the *DP * -property of order p* (DP^*P_p) if all weakly p -compact sets in X are limited, see [15].

The DPP_∞ is precisely the DPP, and every Banach space has the DPP_1 . If X has the DPP, then X has the DPP_p for all $1 \leq p < \infty$. The DP^*P_∞ is precisely the DP^*P and every Banach space has the DP^*P_1 . If X has the DP^*P , then X has the DP^*P_p for all $1 \leq p < \infty$. If X has the DP^*P_p , then X has the DPP_p .

Proposition 3.12.

- (i) Let $1 < p \leq \infty$. If X^* has the DPP_p , then a subset of X is p -Right* set if and only if it is a p -(V^*) set.
- (ii) Let $1 < p \leq \infty$. If X^* has the DP^*P_p , then a subset of X is p - L -limited* set if and only if it is a p -(V^*) set.
- (iii) Let $1 < p \leq \infty$. Suppose X^* has the DP^*P_p (DPP_p , respectively). Then X has property p -(V^*) if and only if X has property p - L -limited* (p -(SR*), respectively).

- (iv) Let $2 \leq p \leq \infty$. Suppose X^* has the DP^*P_p and A is a subset of X . Then A is a p -L-limited* set if and only if A is a p -(V^*) set if and only if A is weakly precompact.
- (v) Let $2 \leq p \leq \infty$. Suppose X^* has the DPP_p and A is a subset of X . Then A is a p -Right* set if and only if A is a p -(V^*) set if and only if A is weakly precompact.

PROOF: (i) Let $1 < p < \infty$. Suppose X^* has the DPP_p . Then every weakly p -summable sequence in X^* is DP, see [7, Proposition 3.2]. Hence every p -Right* subset of X is a p -(V^*) set.

Let $p = \infty$. Suppose X^* has the DPP. Then every weakly null sequence in X^* is DP, see [11, Theorem 1]. Hence every Right* subset of X is a DP set.

Conversely, any p -(V^*) set is a p -Right* set.

(ii) Let $1 < p < \infty$. Since X^* has the DP^*P_p , every weakly p -summable sequence in X^* is limited, see [16, Theorem 2.4]. Hence every p -L-limited* subset of X is a p -(V^*) set. Let $p = \infty$. Since X^* has the DP^*P , every weakly null sequence in X^* is limited, see [6], [24]. Then every L -limited* subset of X is a DP set. Conversely, any p -(V^*) set is a p -L-limited* set.

(iii) Suppose X^* has the DP^*P_p (DPP_p , respectively) and X has property p -(V^*). Every p -L-limited* (p -Right*, respectively) subset of X is a p -(V^*) set, and thus relatively weakly compact. The converse follows from Proposition 3.1.

(iv) Let $2 \leq p \leq \infty$. Every p -L-limited* subset of X is a p -(V^*) set (by (ii)), and thus weakly precompact by Corollary 3.9. If A is weakly precompact, then A is a p -L-limited* set and a p -(V^*) set by Proposition 3.1. \square

The following result gives a characterization of p -L-limited* (p -Right*, respectively) sets and contains [10, Theorem 3.12].

Proposition 3.13 ([25]). *Let $1 < p < \infty$. Suppose that A is a bounded subset of a Banach space X . Then the following assertions are equivalent:*

- (i) A is a p -L-limited* (p -Right*, respectively) set.
- (ii) $T(A)$ is relatively compact whenever Y is a Banach space and $T: X \rightarrow Y$ is an operator such that T^* is limited (weakly limited, respectively) weakly p -compact.
- (iii) $T(A)$ is relatively compact whenever $Y^* \in W_p$ and $T: X \rightarrow Y$ is an operator such that T^* is limited (weakly limited, respectively).
- (iv) $T(A)$ is relatively compact whenever $T: X \rightarrow l_p$ is an operator such that T^* is limited (weakly limited, respectively).
- (v) If (x_n^*) is a limited (DP, respectively) weakly p -summable sequence in X^* and (x_n) is a sequence in A , then $\lim x_n^*(x_n) = 0$.

If A is a bounded subset of X and $l_\infty(A) = B(A)$ is the Banach space of all bounded real-valued functions defined on A (endowed with sup norm), then let $E: X^* \rightarrow l_\infty(A)$ be defined by $E(x^*)(x) = x^*(x)$, $x^* \in X^*$, $x \in A$. The operator E is called the evaluation map of A .

If A is a bounded subset of X^* , let $E: X \rightarrow l_\infty(A) = B(A)$ be the evaluation map defined by $E(x) = x^*(x)$, $x \in X$, $x^* \in A$.

Motivated by [3, Theorem 3.1], we give characterizations of p -L-limited sets and p -L-limited* sets using evaluation maps.

Proposition 3.14. *Let $1 \leq p \leq \infty$.*

- (i) *A bounded subset A of X^* is a p -L-limited set if and only if the evaluation map $E: X \rightarrow B(A)$ defined by $E(x)(x^*) = x^*(x)$, $x \in X$, $x^* \in A$, is limited p -convergent.*
- (ii) *A bounded subset A of X is a p -L-limited* set if and only if the evaluation map $E: X^* \rightarrow B(A)$ defined by $E(x^*)(x) = x^*(x)$, $x^* \in X^*$, $x \in A$, is limited p -convergent.*
- (iii) *A subset A of X is a p -L-limited* set if and only if there is a Banach space Y and an operator $T: Y \rightarrow X$ such that T and T^* are limited p -convergent and $A \subset T(B_Y)$.*

PROOF: (i) Let A be a bounded subset of X^* , and let $E: X \rightarrow B(A)$ be the evaluation map. Then A is a p -L-limited set in X^* if and only if

$$\|E(x_n)\|_\infty = \sup_{x^* \in A} |x^*(x_n)| \rightarrow 0$$

for any limited weakly p -summable (limited weakly null for $p = \infty$) sequence (x_n) in X , if and only if E is limited p -convergent (limited completely continuous for $p = \infty$).

(ii) is similar to (i).

(iii) Let A be a p -L-limited* subset of X and let $\overline{\text{aco}}(A)$ be the closed absolutely convex hull of A . Note that $\overline{\text{aco}}(A)$ is also a p -L-limited* set. Let $Y = l_1(A)$, and define $T: Y \rightarrow X$ by $T(f) = \sum_{x \in A} f(x)x$, $f \in Y$. It is clear that T is a bounded linear operator, and $A \subset T(B_Y) \subset \overline{\text{aco}}(A)$. Since $Y = l_1(A)$ has the Schur property, the operator T is completely continuous, and thus limited p -convergent. Moreover, T^* is the evaluation map $E: X^* \rightarrow B(A)$, and thus T^* is limited p -convergent by (ii).

Conversely, suppose that $A \subset T(B_Y)$, where $T: Y \rightarrow X$ is an operator so that T and T^* are limited p -convergent. Then $T(B_Y)$, and thus A , is a p -L-limited* subset of X by Theorem 3.2. \square

For each $1 \leq p \leq \infty$, every p -L-limited* subset of X^* is a p -L-limited set, but the converse is not true. Since c_0 is separable, it has the GP property, and thus

the p -GP property. Then B_{l_1} is a p -L-limited set, see [21, Corollary 3.9], [32, Theorem 2.3]. The sequence (e_n) is weakly null, and thus limited in l_∞ , since l_∞ has the DP*P, see [24]. Since (e_n) is weakly p -summable, l_∞ does not have the p -GP property, and B_{l_1} is not a p -L-limited* set by Corollary 3.3 (i).

Theorem 3.15. *Let $1 \leq p \leq \infty$ and let X be a Banach space. Then the following are equivalent:*

- (i) *Every p -L-limited subset of X^* is a p -L-limited* set.*
- (ii) *T^{**} is limited p -convergent whenever Y is a Banach space and $T: X \rightarrow Y$ is a limited p -convergent operator.*
- (iii) *Same as (ii) with $Y = l_\infty$.*

PROOF: (i) \Rightarrow (ii) Suppose that every p -L-limited subset of X^* is a p -L-limited* set and let $T: X \rightarrow Y$ be a limited p -convergent operator. Then $T^*(B_{Y^*})$ is a p -L-limited set, see [21, Theorem 3.4], and thus a p -L-limited* set. Therefore T^{**} is limited p -convergent by Theorem 3.2. (ii) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (i) Let A be a p -L-limited subset of X^* and let (x_n^*) be a sequence in A . Define $T: X \rightarrow l_\infty$ by $T(x) = (x_i^*(x))$. Let (x_n) be a limited weakly p -summable sequence in X . Since A is a p -L-limited set,

$$\lim_n \|T(x_n)\| = \lim_n \sup_i |x_i^*(x_n)| = 0.$$

Therefore T is limited p -convergent. Since T^{**} is limited p -convergent (by (iii)), $T^*(B_{l_\infty^*})$ is a p -L-limited* set by Theorem 3.2. Hence $(T^*(e_n^*)) = (x_n^*)$, and thus A is a p -L-limited* set. \square

Corollary 3.16. *Let X be a Banach space. Then the following are equivalent:*

- (i) *Every L-limited subset of X^* is an L-limited* set.*
- (ii) *T^{**} is limited completely continuous whenever Y is a Banach space and $T: X \rightarrow Y$ is limited completely continuous.*
- (iii) *Same as (ii) with $Y = l_\infty$.*

Let $1 \leq p \leq \infty$. A bounded subset A of X^* is called a p -(V) set, see [28], (or *weakly- p -L-set*, see [20]) if for all weakly p -summable (weakly null for $p = \infty$) sequences (x_n) in X , $\sup_{x^* \in A} |x^*(x_n)| \rightarrow 0$.

A Banach space X has property p -(V), see [28], (or RDP $_p$, see [20]) if every p -(V) subset of X^* is relatively weakly compact.

Let K be a compact Hausdorff space. We recall that $C(K)$ has the Grothendieck property if and only if it contains no complemented copy of c_0 , see [8].

Proposition 3.17.

- (i) *Let $1 < p < \infty$. Suppose X has the DP*P $_p$. Then X has property p -(V) if and only if it has the p -L-limited property.*

(ii) Let $1 < p \leq \infty$. Let K be a compact Hausdorff space. If $C(K)$ has the Grothendieck property, then it has the p -L-limited property.

PROOF: (i) Suppose X has the DP^*P_p and property p -(V). By [21, Corollary 3.19], every p -L-limited set in X^* is a p -(V) set, and thus relatively weakly compact. The converse follows since every p -(V) set in X^* is a p -L-limited set.

(ii) If $C(K)$ has the Grothendieck property, then it has the DP^*P , see [24, Corollary 5], thus the DP^*P_p . Hence $C(K)$ has the p -L-limited property by (i) if $1 < p < \infty$ and by [32, Corollary 2.13] for $p = \infty$. \square

Corollary 3.18. Let $1 < p < \infty$ and let X be a Banach space.

- (i) If every p -Right (Right, respectively) subset of X^* is weakly precompact, then T^{**} is DP p -convergent (pseudo weakly compact, respectively) whenever $T: X \rightarrow Y$ is DP p -convergent (pseudo weakly compact, respectively).
- (ii) If every p -L-limited (L -limited, respectively) subset of X^* is weakly precompact, then T^{**} is limited p -convergent (limited completely continuous, respectively) whenever $T: X \rightarrow Y$ is limited p -convergent (limited completely continuous, respectively).
- (iii) Let K be a compact Hausdorff space. If $C(K)$ has the Grothendieck property, then T^{**} is limited p -convergent (limited completely continuous, respectively) whenever $T: C(K) \rightarrow Y$ has the same property.

PROOF: (i) Let A be a p -Right (Right, respectively) subset of X^* . Since A is weakly precompact, it is a p -Right* (Right*, respectively) set by Proposition 3.1. Then T^{**} is DP p -convergent (pseudo weakly compact, respectively) if and only if T has the same property, see [1, Theorem 3.6] ([1, Corollary 3.7], respectively).

(ii) If every p -L-limited (or L -limited) subset of X^* is weakly precompact, then every p -L-limited (L -limited, respectively) is a p -L-limited* set by Proposition 3.1. Apply Theorem 3.15 (Corollary 3.16, respectively).

(iii) By Proposition 3.17, $C(K)$ has the p -L-limited property. Apply (ii). \square

Since $X = C(K)$ has property (V), see [29], it has property p -(SR) by Proposition 3.1, and thus it satisfies the hypothesis of Corollary 3.18 (i).

The $w^* - w$ continuous (compact, respectively) operators from X^* to Y will be denoted by $L_{w^*}(X^*, Y)$ ($K_{w^*}(X^*, Y)$, respectively).

If H is a subset of $L_{w^*}(X^*, Y)$, $x^* \in X^*$ and $y^* \in Y^*$, let $H(x^*) = \{T(x^*): T \in H\}$ and $H^*(y^*) = \{T^*(y^*): T \in H\}$.

Theorem 3.19.

1. Let $1 \leq p \leq \infty$. If X has the p -wL-limited* property and Y has the p -L-limited* property (or if X has the p -L-limited* property and Y has

the p -wL-limited* property), then $K_{w^*}(X^*, Y)$ has the p -wL-limited* property.

2. Let $1 \leq p \leq \infty$. Suppose $L_{w^*}(X^*, Y) = K_{w^*}(X^*, Y)$. If X and Y have the p -L-limited* property, then $K_{w^*}(X^*, Y)$ has the p -L-limited* property.

PROOF: 1. Suppose that X has the p -wL-limited* property and Y has the p -L-limited* property. Let H be a p -L-limited* set in $K_{w^*}(X^*, Y)$. If $x^* \in X^*$ and $y^* \in Y^*$, let $\phi_{x^*}: K_{w^*}(X^*, Y) \rightarrow Y$ and $\psi_{y^*}: K_{w^*}(X^*, Y) \rightarrow X$ be defined by $\phi_{x^*}(T) = T(x^*)$, $\psi_{y^*}(T) = T^*(y^*)$, $T \in K_{w^*}(X^*, Y)$. Continuous linear images of p -L-limited* sets are p -L-limited* sets. For each $x^* \in X^*$, $H(x^*) = \phi_{x^*}(H)$ is a p -L-limited* set in Y , thus relatively weakly compact. Similarly $H^*(y^*)$ is a p -L-limited* set in X , thus weakly precompact for each $y^* \in Y^*$. Then H is weakly precompact by [17, Theorem 3.2].

2. Suppose X and Y have the p -L-limited* property. Let H be a p -L-limited* set in $K_{w^*}(X^*, Y)$. By the previous proof, $H(x^*)$ and $H^*(y^*)$ are p -L-limited* sets, hence relatively weakly compact for each $x^* \in X^*$ and $y^* \in Y^*$. Then H is relatively weakly compact by [23, Theorem 4.8]. \square

REFERENCES

- [1] Alikhani M., *Sequentially right-like properties on Banach spaces*, Filomat **33** (2019), no. 14, 4461–4474.
- [2] Andrews K. T., *Dunford–Pettis sets in the space of Bochner integrable functions*, Math. Ann. **241** (1979), no. 1, 35–41.
- [3] Bator E., Lewis P., Ochoa J., *Evaluation maps, restriction maps, and compactness*, Colloq. Math. **78** (1998), no. 1, 1–17.
- [4] Bourgain J., Delbaen F., *A class of special \mathcal{L}_∞ spaces*, Acta Math. **145** (1980), no. 3–4, 155–176.
- [5] Bourgain J., Diestel J., *Limited operators and strict cosingularity*, Math. Nachr. **119** (1984), 55–58.
- [6] Carrión H., Galindo P., Lourenço M., *A stronger Dunford–Pettis property*, Studia Math. **184** (2008), no. 3, 205–216.
- [7] Castillo J. M. F., Sanchez F., *Dunford–Pettis like properties of continuous vector function spaces*, Rev. Mat. Univ. Complut. Madrid **6** (1993), no. 1, 43–59.
- [8] Cembranos P., *$C(K, E)$ contains a complemented copy of c_0* , Proc. Amer. Math. Soc. **91** (1984), no. 4, 556–558.
- [9] Cilia R., Emmanuele G., *Some isomorphic properties in $K(X, Y)$ and in projective tensor products*, Colloq. Math. **146** (2017), no. 2, 239–252.
- [10] Dehghani M., Dehghani M. B., Moshtaghioun M. S., *Sequentially right Banach spaces of order p* , Comment. Math. Univ. Carolin. **61** (2020), no. 1, 51–67.
- [11] Diestel J., *A survey of results related to the Dunford–Pettis property*, Proc. of Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, N.C., 1979, Contemp. Math., 2, Amer. Math. Soc., Providence, 1980, pages 15–60.
- [12] Diestel J., Jarchow H., Tonge A., *Absolutely Summing Operators*, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995.

- [13] Drewnowski L., Emmanuele G., *On Banach spaces with the Gel'fand–Phillips property. II*, Rend. Circ. Mat. Palermo (2) **38** (1989), no. 3, 377–391.
- [14] Emmanuele G., *Banach spaces in which Dunford–Pettis sets are relatively compact*, Arch. Math. (Basel) **58** (1992), no. 5, 477–485.
- [15] Fourie J. H., Zeekoei E. D., *DP*-Properties of order p on Banach spaces*, Quaest. Math. **37** (2014), no. 3, 349–358.
- [16] Fourie J. H., Zeekoei E. D., *On weak-star p -convergent operators*, Quaest. Math. **40** (2017), no. 5, 563–579.
- [17] Ghenciu I., *Weak precompactness and property (V^*) in spaces of compact operators*, Colloq. Math. **138** (2015), no. 2, 255–269.
- [18] Ghenciu I., *L -sets and property (SR^*) in spaces of compact operators*, Monatsh. Math. **181** (2016), no. 3, 609–628.
- [19] Ghenciu I., *A note on some isomorphic properties in projective tensor products*, Extracta Math. **32** (2017), no. 1, 1–24.
- [20] Ghenciu I., *The p -Gelfand–Phillips property in spaces of operators and Dunford–Pettis like sets*, Acta Math. Hungar. **155** (2018), no. 2, 439–457.
- [21] Ghenciu I., *Some classes of Banach spaces and complemented subspaces of operators*, Adv. Oper. Theory **4** (2019), no. 2, 369–387.
- [22] Ghenciu I., *A note on p -limited sets in dual Banach spaces*, Monatsh. Math. **200** (2023), no. 2, 255–270.
- [23] Ghenciu I., Lewis P., *Almost weakly compact operators*, Bull. Pol. Acad. Sci. Math. **54** (2006), no. 3–4, 237–256.
- [24] Ghenciu I., Lewis P., *Completely continuous operators*, Colloq. Math. **126** (2012), no. 2, 231–256.
- [25] Ghenciu I., Popescu R., *A note on some classes of operators on $C(K, X)$* , Quaest. Math. **47** (2024), no. 1, 21–42.
- [26] Kačena M., *On sequentially right Banach spaces*, Extracta Math. **26** (2011), no. 1, 1–27.
- [27] Karn A. K., Sinha D. P., *An operator summability of sequences in Banach spaces*, Glasg. Math. J. **56** (2014), no. 2, 427–437.
- [28] Li L., Chen D., Chavez-Dominguez J. A., *Pełczyński's property (V^*) of order p and its quantification*, Math. Nachr. **291** (2018), no. 2–3, 420–442.
- [29] Pełczyński A., *Banach spaces on which every unconditionally converging operator is weakly compact*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. **10** (1962), 641–648.
- [30] Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K., *Topological characterization of weakly compact operators*, J. Math. Anal. Appl. **325** (2007), no. 2, 968–974.
- [31] Rosenthal H. P., *Point-wise compact subsets of the first Baire class*, Amer. J. Math. **99** (1977), no. 2, 362–378.
- [32] Salimi M., Moshtaghoun S. M., *A new class of Banach spaces and its relation with some geometric properties of Banach spaces*, Abstr. Appl. Anal. (2012), Art. ID 212957, 8 pages.
- [33] Wojtaszczyk P., *Banach Spaces for Analysts*, Cambridge Studies in Advanced Mathematics, 25, Cambridge University Press, Cambridge, 1991.

I. Ghenciu:

MATHEMATICS DEPARTMENT, UNIVERSITY OF WISCONSIN-RIVER FALLS, 410 S 3RD ST,
RIVER FALLS, WISCONSIN, 54022, U.S.A.

E-mail: ioana.ghenciu@uwr.edu

(Received April 25, 2023, revised February 27, 2024)